ϟ

Guillaume Bourgatte

Here are all the papers by Guillaume Bourgatte that you can download and read on OA.mg.
Guillaume Bourgatte’s last known institution is . Download Guillaume Bourgatte PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/16/02/p02027
2021
Cited 34 times
The CMS Phase-1 pixel detector upgrade
The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.
DOI: 10.1088/1748-0221/16/12/p12014
2021
Cited 8 times
Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC
Abstract The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip.
DOI: 10.1088/1748-0221/15/03/p03014
2020
Cited 8 times
Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS
A new CMS tracker detector will be installed for operation at the High Luminosity LHC (HL-LHC). This detector comprises modules with two closely spaced parallel sensor plates and front-end ASICs capable of transmitting tracking information to the CMS Level-1 (L1) trigger at the 40 MHz beam crossing rate. The inclusion of tracking information in the L1 trigger decision will be essential for selecting events of interest efficiently at the HL-LHC. The CMS Binary Chip (CBC) has been designed to read out and correlate hits from pairs of tracker sensors, forming so-called track stubs. For the first time, a prototype irradiated module and a full-sized module, both equipped with the version 2 of the CBC, have been operated in test beam facilities. The efficiency of the stub finding logic of the modules for various angles of incidence has been studied. The ability of the modules to reject tracks with transverse momentum less than 2 GeV has been demonstrated. For modules built with irradiated sensors, no significant drop in the stub finding performance has been observed. Results from the beam tests are described in this paper.
DOI: 10.1088/1748-0221/15/04/p04017
2020
Cited 5 times
Experimental study of different silicon sensor options for the upgrade of the CMS Outer Tracker
During the high-luminosity phase of the LHC (HL-LHC), planned to start in 2027, the accelerator is expected to deliver an instantaneous peak luminosity of up to 7.5×1034 cm−2 s−1. A total integrated luminosity of 0300 or even 0400 fb−1 is foreseen to be delivered to the general purpose detectors ATLAS and CMS over a decade, thereby increasing the discovery potential of the LHC experiments significantly. The CMS detector will undergo a major upgrade for the HL-LHC, with entirely new tracking detectors consisting of an Outer Tracker and Inner Tracker. However, the new tracking system will be exposed to a significantly higher radiation than the current tracker, requiring new radiation-hard sensors. CMS initiated an extensive irradiation and measurement campaign starting in 2009 to systematically compare the properties of different silicon materials and design choices for the Outer Tracker sensors. Several test structures and sensors were designed and implemented on 18 different combinations of wafer materials, thicknesses, and production technologies. The devices were electrically characterized before and after irradiation with neutrons, and with protons of different energies, with fluences corresponding to those expected at different radii of the CMS Outer Tracker after 0300 fb−1. The tests performed include studies with β sources, lasers, and beam scans. This paper compares the performance of different options for the HL-LHC silicon sensors with a focus on silicon bulk material and thickness.
DOI: 10.1088/1748-0221/14/10/p10017
2019
Cited 3 times
The DAQ and control system for the CMS Phase-1 pixel detector upgrade
In 2017 a new pixel detector was installed in the CMS detector. This so-called Phase-1 pixel detector features four barrel layers in the central region and three disks per end in the forward regions. The upgraded pixel detector requires an upgraded data acquisition (DAQ) system to accept a new data format and larger event sizes. A new DAQ and control system has been developed based on a combination of custom and commercial microTCA parts. Custom mezzanine cards on standard carrier cards provide a front-end driver for readout, and two types of front-end controller for configuration and the distribution of clock and trigger signals. Before the installation of the detector the DAQ system underwent a series of integration tests, including readout of the pilot pixel detector, which was constructed with prototype Phase-1 electronics and operated in CMS from 2015 to 2016, quality assurance of the CMS Phase-1 detector during its assembly, and testing with the CMS Central DAQ. This paper describes the Phase-1 pixel DAQ and control system, along with the integration tests and results. A description of the operational experience and performance in data taking is included.
DOI: 10.1088/1748-0221/16/11/p11028
2021
Cited 3 times
Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker
Abstract During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m 2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 10 15 n eq /cm 2 . The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker.
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2019
JRJC 2018. Book of proceedings
2020
Étude des propriétés CP du boson de Higgs dans le canal tau tau dans l’expérience CMS auprès du LHC
Cette these a pour sujet la recherche de violation CP dans les desintegrations tau tau du boson de Higgs (H → ττ → a1νa1ν → 3πν3πν) dans l’experience CMS, aupres de l’accelerateur du LHC. L’analyse a porte sur un echantillon de donnees correspondant a l’integralite des donnees du Run 2 du LHC, avec une luminosite integree de 137 fb-1. La methode dite du vecteur polarimetrique a ete employee pour definir l’observable caracterisant l’etat CP du boson de Higgs.Cette analyse s’accompagne de deux autres etudes. La premiere est l'amelioration des performances d'identification des leptons taus pour la phase de haute luminosite du LHC (HL-LHC), pour le rejet des electrons, par l'emploi d’arbres de decision boostes. Les electrons emettant des photons par radiation continue de freinage, ils constituent un bruit de fond consequent a l'identification des leptons taus dans leurs modes de desintegrations hadroniques.La seconde etude est celle de l'efficacite de reconstruction des impacts dans le trajectographe a pistes en silicium. L’origine des inefficacites observees a ete evaluee dans le contexte de la presence de particules hautement ionisantes.
2020
Higgs boson CP properties study in the tau tau channel in the CMS experiment at LHC