ϟ
 
DOI: 10.3389/fnsyn.2017.00013
¤ OpenAccess: Gold
This work has “Gold” OA status. This means it is published in an Open Access journal that is indexed by the DOAJ.

Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca2+ Affinity of the Multi-C2-Domain Protein Otoferlin

Sandra Meese,A. Cepeda,Felix Gahlen,Christopher M. Adams,Ralf Ficner,Anthony J. Ricci,Stefan Heller,Ellen Reisinger,Meike Herget

Phosphorylation
Cell biology
Biology
2017
Otoferlin is essential for fast Ca2+-triggered transmitter release from auditory inner hair cells (IHCs), playing key roles in synaptic vesicle release, replenishment and retrieval. Dysfunction of otoferlin results in profound prelingual deafness. Despite its crucial role in cochlear synaptic processes, mechanisms regulating otoferlin activity have not been studied to date. Here, we identified Ca2+/calmodulin-dependent serine/threonine kinase II delta (CaMKIIδ) as an otoferlin binding partner by pull-downs from chicken utricles and reassured interaction by a co-immunoprecipitation with heterologously expressed proteins in HEK cells. We confirmed the expression of CaMKIIδ in rodent IHCs by immunohistochemistry and real-time PCR. A proximity ligation assay indicates close proximity of the two proteins in rat IHCs, suggesting that otoferlin and CaMKIIδ also interact in mammalian IHCs. In vitro phosphorylation of otoferlin by CaMKIIδ revealed ten phosphorylation sites, five of which are located within C2-domains. Exchange of serines/threonines at phosphorylated sites into phosphomimetic aspartates reduces the Ca2+ affinity of the recombinant C2F domain 10-fold, and increases the Ca2+ affinity of the C2C domain. Concordantly, we show that phosphorylation of otoferlin and/or its interaction partners are enhanced upon hair cell depolarization and blocked by pharmacological CaMKII inhibition. We therefore propose that otoferlin activity is regulated by CaMKIIδ in IHCs.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca2+ Affinity of the Multi-C2-Domain Protein Otoferlin” is a paper by Sandra Meese A. Cepeda Felix Gahlen Christopher M. Adams Ralf Ficner Anthony J. Ricci Stefan Heller Ellen Reisinger Meike Herget published in 2017. It has an Open Access status of “gold”. You can read and download a PDF Full Text of this paper here.