ϟ
 
DOI: 10.1103/physrevc.21.879
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

Neutron hole states in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Pb</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>7</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>6</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>5</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:…

J. Guillot,J. Van de Wiele,H. Langevin-Joliot,E. Gerlic,J. P. Didélez,Guillaume Duhamel,Gaël Perrin,M. Buénerd,J. Chauvin

Excitation
Physics
Energy (signal processing)
1980
Neutron hole states were investigated in the $^{207,206,205}\mathrm{Pb}$ isotopes up to 25 MeV excitation energy using the ($^{3}\mathrm{He}$,$\ensuremath{\alpha}$) reaction at 100 MeV incident energy with 100 keV energy resolution. Above the well-matched low-lying levels corresponding to high angular momentum transfers, new peaks are identified. In addition, three gross structures, riding on a continuous background, are observed in each of the three isotopes, with some fine structures showing up to 10 MeV excitation energy. For $^{207}\mathrm{Pb}$, angular distributions have been obtained for the low-lying levels as well as for the deeply bound hole states. The data have been analyzed with distorted-wave Born-approximation calculations and spectroscopic factors extracted. It has been found that the low-lying levels do not exhaust the $1i\frac{13}{2}$ and $1h\frac{9}{2}$ neutron hole strengths. Corrections for exact finite-range effects, form factor shapes, and indirect pickup contributions have been calculated, and modify significantly the $2f\frac{7}{2}$ spectroscopic measured strength but not the $1i\frac{13}{2}$ and the $1h\frac{9}{2}$ ones. Most of the $1i\frac{13}{2}$ and $1h\frac{9}{2}$ missing strengths are found in the "bump" located at about 5 MeV excitation energy. The highly fragmented bump observed at about 8 MeV excitation energy is shown to arise from $1h\frac{11}{2}$ neutron pickup exhausting 45% of the sum-rule limit. Finally, the very smooth structure extending to 21 MeV excitation energy is tentatively attributed to $1g\frac{7}{2}+1g\frac{9}{2}$ neutron holes with 80% of the total strength. In $^{207}\mathrm{Pb}$, the four first isobaric analog states are observed as narrow structures around 20 MeV excitation energy.NUCLEAR REACTIONS $^{208,207,206}\mathrm{Pb}$ ($^{3}\mathrm{He}$, $\ensuremath{\alpha}$), $E=101.75$ MeV; measured $\ensuremath{\sigma}({E}_{\ensuremath{\alpha}}, \ensuremath{\theta})$, $^{207,206,205}\mathrm{Pb}$ deduced levels, $\mathrm{Ex}$, $l$, $J$, $\ensuremath{\pi}$, ${C}^{2}S$; $^{207,206,205}\mathrm{Pb}$ inner shell spectroscopic factors: enriched targets, magnetic spectrometer.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Neutron hole states in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Pb</mml:mi></mml:mrow><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>7</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>6</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mn>0</mml:mn><mml:mn>5</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:…” is a paper by J. Guillot J. Van de Wiele H. Langevin-Joliot E. Gerlic J. P. Didélez Guillaume Duhamel Gaël Perrin M. Buénerd J. Chauvin published in 1980. It has an Open Access status of “closed”. You can read and download a PDF Full Text of this paper here.