ϟ
 
DOI: 10.1073/pnas.1116437108
¤ OpenAccess: Bronze
This work has “Bronze” OA status. This means it is free to read on the publisher landing page, but without any identifiable license.

Global food demand and the sustainable intensification of agriculture

David Tilman,Christian Balzer,Jason Hill,Belinda L. Befort

Agriculture
Greenhouse gas
Per capita
2011
Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100–110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ∼1 billion ha of land would be cleared globally by 2050, with CO 2 -C equivalent greenhouse gas emissions reaching ∼3 Gt y −1 and N use ∼250 Mt y −1 by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ∼0.2 billion ha, greenhouse gas emissions of ∼1 Gt y −1 , and global N use of ∼225 Mt y −1 . Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Global food demand and the sustainable intensification of agriculture” is a paper by David Tilman Christian Balzer Jason Hill Belinda L. Befort published in 2011. It has an Open Access status of “bronze”. You can read and download a PDF Full Text of this paper here.