ϟ
 
DOI: 10.1063/1.1796271
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes

S. Vaitheeswaran,Jayendran C. Rasaiah,Gerhard Hummer

Electric field
Carbon nanotube
Dipole
2004
Water molecules in the narrow cylindrical pore of a (6,6) carbon nanotube form single-file chains with their dipoles collectively oriented either up or down along the tube axis. We study the interaction of such water chains with homogeneous electric fields for finite closed and infinite periodically replicated tubes. By evaluating the grand-canonical partition function term-by-term, we show that homogeneous electric fields favor the filling of previously empty nanotubes with water from the bulk phase. A two-state description of the collective water dipole orientation in the nanotube provides an excellent approximation for the dependence of the water-chain polarization and the filling equilibrium on the electric field. The energy and entropy contributions to the free energy of filling the nanotube were determined from the temperature dependence of the occupancy probabilities. We find that the energy of transfer depends sensitively on the water-tube interaction potential, and that the entropy of one-dimensionally ordered water chains is comparable to that of bulk water. We also discuss implications for proton transfer reactions in biology.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes” is a paper by S. Vaitheeswaran Jayendran C. Rasaiah Gerhard Hummer published in 2004. It has an Open Access status of “closed”. You can read and download a PDF Full Text of this paper here.