ϟ
 
DOI: 10.1038/nphys2564
¤ OpenAccess: Green
This work has “Green” OA status. This means it may cost money to access on the publisher landing page, but there is a free copy in an OA repository.

Photoexcitation cascade and multiple hot-carrier generation in graphene

Klaas‐Jan Tielrooij,Justin C. W. Song,Søren A. Jensen,Alba Centeno,Amaia Pesquera,Amaia Zurutuza Elorza,Mischa Bonn,L. S. Levitov,Frank H. L. Koppens

Photoexcitation
Graphene
Optoelectronics
2013
The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications. The efficiency of carrier–carrier scattering in graphene is now experimentally demonstrated. The dominance of this mechanism over phonon-related scattering means that a single high-energy photon could create two or more electron–hole pairs in graphene; an effect useful for optoelectronic applications.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Photoexcitation cascade and multiple hot-carrier generation in graphene” is a paper by Klaas‐Jan Tielrooij Justin C. W. Song Søren A. Jensen Alba Centeno Amaia Pesquera Amaia Zurutuza Elorza Mischa Bonn L. S. Levitov Frank H. L. Koppens published in 2013. It has an Open Access status of “green”. You can read and download a PDF Full Text of this paper here.