ϟ
 
DOI: 10.1021/nn103047r
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

Tumor Regression <i>In Vivo</i> by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers

Won Il Choi,Jayoung Kim,Chulho Kang,Clare Chisu Byeon,Young Ha Kim,Giyoong Tae

Nanocarriers
Photothermal therapy
In vivo
2011
We developed a very effective hyperthermia system for successful photothermal cancer therapy. Instead of applying individual gold nanorods (GNRs) that can absorb NIR light, GNRs were loaded into functional nanocarriers that could provide stable storage of GNRs and selective delivery to a target tumor site. The functional nanocarriers (chitosan-conjugated, Pluronic-based nanocarriers) were prepared by chemically cross-linking Pluronic F 68 with chitosan conjugation to form a flexible, soft, and excellent reservoir for biomacromolecules as well as tumor targeting. In vivo characteristics of the nanocarriers including a long circulation time, a good tumor accumulation, and low liver uptake were previously characterized by us. When GNRs were delivered by using these nanocarriers, much enhanced in vitro cellular uptake and a photothermal effect were observed for a cancer cell line. More importantly, an intravenous injection of this system followed by NIR laser irradiation to the tumor site resulted in a very efficient thermolysis in vivo. Thus, apparently complete tumor resorption was achieved without damage to the surrounding tissue, suggesting a promising candidate for clinical phototherapeutic applications.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Tumor Regression <i>In Vivo</i> by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers” is a paper by Won Il Choi Jayoung Kim Chulho Kang Clare Chisu Byeon Young Ha Kim Giyoong Tae published in 2011. It has an Open Access status of “closed”. You can read and download a PDF Full Text of this paper here.