ϟ
 
DOI: 10.1021/la300929g
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

H<sub>2</sub>O<sub>2</sub>-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species

Di He,Shikha Garg,T. David Waite

Chemistry
Disproportionation
Reactivity (psychology)
2012
The H(2)O(2)-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0-14.0) is investigated here, and an electron charging-discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H(2)O(2) to form Ag(+) and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging-discharging mechanism. Our experimental results show that the AgNP reactivity toward H(2)O(2) varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H(2)O(2) and its conjugate base HO(2)(-) with AgNPs whereas at lower pH (3-10) the pH dependence of H(2)O(2) decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag(+) have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min(-1) at pH 11.0, reducing to 144.2 min(-1) at pH 10.0 and 3.2 min(-1) at pH 3.0.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    H<sub>2</sub>O<sub>2</sub>-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species” is a paper by Di He Shikha Garg T. David Waite published in 2012. It has an Open Access status of “closed”. You can read and download a PDF Full Text of this paper here.