ϟ
 
DOI: 10.1016/j.celrep.2015.07.061
¤ OpenAccess: Gold
This work has “Gold” OA status. This means it is published in an Open Access journal that is indexed by the DOAJ.

Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate

Priya Srikanth,Karam Han,Dana G. Callahan,Eugenia Makovkina,Christina Muratore,Matthew A. Lalli,Hongjun Zhou,Justin D. Boyd,Kenneth S. Kosik,Dennis J. Selkoe,Tracy L. Young‐Pearse

DISC1
Wnt signaling pathway
Biology
2015
Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1) as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11) translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate” is a paper by Priya Srikanth Karam Han Dana G. Callahan Eugenia Makovkina Christina Muratore Matthew A. Lalli Hongjun Zhou Justin D. Boyd Kenneth S. Kosik Dennis J. Selkoe Tracy L. Young‐Pearse published in 2015. It has an Open Access status of “gold”. You can read and download a PDF Full Text of this paper here.