ϟ
 
DOI: 10.1002/adma.201806482
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

Tuning Oxygen Vacancies in Ultrathin TiO<sub>2</sub> Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm

Yunxuan Zhao,Yufei Zhao,Run Shi,Bin Wang,Geoffrey I.N. Waterhouse,Li‐Zhu Wu,Chen‐Ho Tung,Tierui Zhang

Materials science
Photocatalysis
Catalysis
2019
Abstract Dinitrogen reduction to ammonia using transition metal catalysts is central to both the chemical industry and the Earth's nitrogen cycle. In the Haber–Bosch process, a metallic iron catalyst and high temperatures (400 °C) and pressures (200 atm) are necessary to activate and cleave NN bonds, motivating the search for alternative catalysts that can transform N 2 to NH 3 under far milder reaction conditions. Here, the successful hydrothermal synthesis of ultrathin TiO 2 nanosheets with an abundance of oxygen vacancies and intrinsic compressive strain, achieved through a facile copper‐doping strategy, is reported. These defect‐rich ultrathin anatase nanosheets exhibit remarkable and stable performance for photocatalytic reduction of N 2 to NH 3 in water, exhibiting photoactivity up to 700 nm. The oxygen vacancies and strain effect allow strong chemisorption and activation of molecular N 2 and water, resulting in unusually high rates of NH 3 evolution under visible‐light irradiation. Therefore, this study offers a promising and sustainable route for the fixation of atmospheric N 2 using solar energy.
Loading...
    Cite this:
Generate Citation
Powered by Citationsy*
    Tuning Oxygen Vacancies in Ultrathin TiO<sub>2</sub> Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm” is a paper by Yunxuan Zhao Yufei Zhao Run Shi Bin Wang Geoffrey I.N. Waterhouse Li‐Zhu Wu Chen‐Ho Tung Tierui Zhang published in 2019. It has an Open Access status of “closed”. You can read and download a PDF Full Text of this paper here.