ϟ

Yosef Shiloh

Here are all the papers by Yosef Shiloh that you can download and read on OA.mg.
Yosef Shiloh’s last known institution is . Download Yosef Shiloh PDFs here.

Claim this Profile →
DOI: 10.1126/science.1140321
2007
Cited 2,775 times
ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage
Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.
DOI: 10.1126/science.7792600
1995
Cited 2,649 times
A Single Ataxia Telangiectasia Gene with a Product Similar to PI-3 Kinase
A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.
DOI: 10.1038/nrc1011
2003
Cited 2,376 times
ATM and related protein kinases: safeguarding genome integrity
DOI: 10.1126/science.281.5383.1674
1998
Cited 1,625 times
Enhanced Phosphorylation of p53 by ATM in Response to DNA Damage
The ATM protein, encoded by the gene responsible for the human genetic disorder ataxia telangiectasia (A-T), regulates several cellular responses to DNA breaks. ATM shares a phosphoinositide 3-kinase–related domain with several proteins, some of them protein kinases. A wortmannin-sensitive protein kinase activity was associated with endogenous or recombinant ATM and was abolished by structural ATM mutations. In vitro substrates included the translation repressor PHAS-I and the p53 protein. ATM phosphorylated p53 in vitro on a single residue, serine-15, which is phosphorylated in vivo in response to DNA damage. This activity was markedly enhanced within minutes after treatment of cells with a radiomimetic drug; the total amount of ATM remained unchanged. Various damage-induced responses may be activated by enhancement of the protein kinase activity of ATM.
DOI: 10.1016/s0092-8674(00)80086-0
1996
Cited 1,392 times
Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia
A murine model of ataxia telangiectasia was created by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. The majority of animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulate the ataxia telangiectasia phenotype in humans, providing a mammalian model in which to study the pathophysiology of this pleiotropic disorder.
DOI: 10.1038/nrm3546
2013
Cited 1,335 times
The ATM protein kinase: regulating the cellular response to genotoxic stress, and more
DOI: 10.1073/pnas.190030497
2000
Cited 786 times
Ataxia telangiectasia-mutated phosphorylates Chk2 <i>in vivo</i> and <i>in vitro</i>
The protein kinase Chk2, the mammalian homolog of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases, is phosphorylated and activated in response to DNA damage by ionizing radiation (IR), UV irradiation, and replication blocks by hydroxyurea (HU). Phosphorylation and activation of Chk2 are ataxia telangiectasia-mutated (ATM) dependent in response to IR, whereas Chk2 phosphorylation is ATM-independent when cells are exposed to UV or HU. Here we show that in vitro, ATM phosphorylates the Ser-Gln/Thr-Gln (SQ/TQ) cluster domain (SCD) on Chk2, which contains seven SQ/TQ motifs, and Thr68 is the major in vitro phosphorylation site by ATM. ATM- and Rad3-related also phosphorylates Thr68 in addition to Thr26 and Ser50, which are not phosphorylated to a significant extent by ATM in vitro. In vivo, Thr68 is phosphorylated in an ATM-dependent manner in response to IR, but not in response to UV or HU. Substitution of Thr68 with Ala reduced the extent of phosphorylation and activation of Chk2 in response to IR, and mutation of all seven SQ/TQ motifs blocked all phosphorylation and activation of Chk2 after IR. These results suggest that in vivo, Chk2 is directly phosphorylated by ATM in response to IR and that Chk2 is regulated by phosphorylation of the SCD.
DOI: 10.1016/j.molcel.2008.05.017
2008
Cited 776 times
ATM Signaling Facilitates Repair of DNA Double-Strand Breaks Associated with Heterochromatin
Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.
DOI: 10.1038/ncb1446
2006
Cited 648 times
Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway
DOI: 10.1101/gad.886901
2001
Cited 647 times
ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage
The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258-260 and 393-395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2.
DOI: 10.1146/annurev.immunol.15.1.177
1997
Cited 612 times
THE GENETIC DEFECT IN ATAXIA-TELANGIECTASIA
The autosomal recessive human disorder ataxia-telangiectasia (A-T) was first described as a separate disease entity 40 years ago. It is a multisystem disease characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, radiosensitivity, predisposition to lymphoid malignancies and immunodeficiency, with defects in both cellular and humoral immunity. The pleiotropic nature of the clinical and cellular phenotype suggests that the gene product involved is important in maintaining stability of the genome but also plays a more general role in signal transduction. The chromosomal instability and radiosensitivity so characteristic of this disease appear to be related to defective activation of cell cycle checkpoints. Greater insight into the nature of the defect in A-T has been provided by the recent identification, by positional cloning, of the responsible gene, ATM. The ATM gene is related to a family of genes involved in cellular responses to DNA damage and/or cell cycle control. These genes encode large proteins containing a phosphatidylinositol 3-kinase domain, some of which have protein kinase activity. The mutations causing A-T completely inactivate or eliminate the ATM protein. This protein has been detected and localized to different subcellular compartments.
DOI: 10.1016/s0959-437x(00)00159-3
2001
Cited 562 times
ATM and ATR: networking cellular responses to DNA damage
Maintenance of genome stability depends on the appropriate response to DNA damage. This response is based on complex networks of signaling pathways that activate numerous processes and lead ultimately to damage repair and cellular survival - or apoptosis. The protein kinases ATM and ATR are master controllers of some of these networks, acting either in concert or separately to orchestrate the responses to specific types of DNA damage or stalled replication. Understanding their mode of action is essential to our understanding of how cells cope with genotoxic stress.
DOI: 10.1016/j.tibs.2006.05.004
2006
Cited 522 times
The ATM-mediated DNA-damage response: taking shape
Cellular responses to DNA damage are crucial for maintaining homeostasis and preventing the development of cancer. Our understanding of the DNA-damage response has evolved: whereas previously the focus was on DNA repair, we now appreciate that the response to DNA lesions involves a complex, highly branched signaling network. Defects in this response lead to severely debilitating, cancer-predisposing "genomic instability syndromes". Double strand breaks (DSBs) in DNA are potent triggers of the DNA-damage response, which is why they are used to study this pathway. The chief transducer of the DSB signal is the nuclear protein kinase ataxia-telangiectasia mutated (ATM). Genetic, biochemical and structural studies have recently provided insights into the ATM-mediated DSB response, reshaping our view of this signaling pathway while raising new questions.
DOI: 10.1093/hmg/4.11.2025
1995
Cited 500 times
The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency radiation sensitivity, and cancer predisposition. A-T heterozygotes are moderately cancer prone. The A-T gene, designated ATM, was recently identified in our laboratory by positional cloning, and a partial cDNA clone was found to encode a polypeptide with a PI-3 kinase domain. We report here the molecular cloning of a cDNA contig spanning the complete open reading frame of the ATM gene. The predicted protein of 3056 amino acids shows significant sequence similarities to several large proteins in yeast, Drosophila and mammals, all of which share the PI-3 kinase domain. Many of these proteins are involved in the detection of DNA damage and the control of cell cycle progression. Mutations in their genes confer a variety of phenotypes with features similar to those observed in human A-T cells. The complete sequence of the ATM gene product provides useful clues to the function of this protein, and furthers understanding of the pleiotropic nature of the A-T mutations.
DOI: 10.1146/annurev.genet.31.1.635
1997
Cited 474 times
ATAXIA-TELANGIECTASIA AND THE NIJMEGEN BREAKAGE SYNDROME: Related Disorders But Genes Apart
▪ Abstract Gene mutations provide valuable clues to cellular metabolism. In humans such insights come mainly from genetic disorders. Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are two distinct, but closely related, single gene disorders that highlight a complex junction of several signal transduction pathways. These pathways appear to control defense mechanisms against specific types of damage to cellular macromolecules, and probably regulate the processing of certain types of DNA damage or normal intermediates of DNA metabolism. A-T is characterized primarily by cerebellar degeneration, immunodeficiency, genome instability, clinical radiosensitivity, and cancer predisposition. NBS shares all these features except cerebellar deterioration. The cellular phenotypes of A-T and NBS are almost indistinguishable, however, and include chromosomal instability, radiosensitivity, and defects in cell cycle checkpoints normally induced by ionizing radiation. The recent identification of the gene responsible for A-T, ATM, has revealed its product to be a large, constitutively expressed phosphoprotein with a carboxy-terminal region similar to the catalytic domain of phosphatidylinositol 3-kinases (PI 3-kinases). ATM is a member of a family of proteins identified in various organisms, which share the PI 3-kinase domain and are involved in regulation of cell cycle progression and response to genotoxic agents. Some of these proteins, most notably the DNA-dependent protein kinase, have an associated protein kinase activity, and preliminary data indicate this activity in ATM as well. Mutations in A-T patients are null alleles that truncate or destabilize the ATM protein. Atm-deficient mice recapitulate the human phenotype with slower nervous-system degeneration. Two ATM interactors, c-Abl and p53, underscore its role in cellular responses to genotoxic stress. The complexity of ATM's structure and mode of action make it a paradigm of multifaceted signal transduction proteins involved in many physiological pathways via multiple protein-protein interactions. The as yet unknown NBS protein may be a component in an ATM-based complex, with a key role in sensing and processing specific DNA damage or intermediates and signaling their presence to the cell cycle machinery.
DOI: 10.1038/35013083
2000
Cited 470 times
Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products
DOI: 10.1038/387520a0
1997
Cited 455 times
Interaction between ATM protein and c-Abl in response to DNA damage
DOI: 10.1073/pnas.96.26.14973
1999
Cited 424 times
Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage
The p53 tumor-suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. This process is associated with posttranslational modifications of p53, some of which are mediated by the ATM protein kinase. However, these modifications alone may not account in full for p53 stabilization. p53's stability and activity are negatively regulated by the oncoprotein MDM2, whose gene is activated by p53. Conceivably, p53 function may be modulated by modifications of MDM2 as well. We show here that after treatment of cells with ionizing radiation or a radiomimetic chemical, but not UV radiation, MDM2 is phosphorylated rapidly in an ATM-dependent manner. This phosphorylation is independent of p53 and the DNA-dependent protein kinase. Furthermore, MDM2 is directly phosphorylated by ATM in vitro. These findings suggest that in response to DNA strand breaks, ATM may promote p53 activity and stability by mediating simultaneous phosphorylation of both partners of the p53-MDM2 autoregulatory feedback loop.
DOI: 10.1016/0092-8674(95)90480-8
1995
Cited 355 times
TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1
Patients with the genetic disorder ataxia telangiectasia (AT) have mutations in the AT mutated (ATM) gene, which is homologous to TEL1 and the checkpoint gene MEC1. A tel1 deletion mutant, unlike a mec1 deletion, is viable and does not exhibit increased sensitivity to DNA-damaging agents. However, increased dosage of TEL1 rescues sensitivity of a mec1 mutant, mec1-1, to DNA-damaging agents and rescues viability of a mec1 disruption. mec1-1 tel1 delta 1 double mutants are synergistically sensitive to DNA-damaging agents, including radiomimetic drugs. These data indicate that TEL1 and MEC1 are functionally related and that functions of the ATM gene are apparently divided between at least two S. cerevisiae homologs.
DOI: 10.1016/j.molcel.2011.02.015
2011
Cited 351 times
Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks
The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.
DOI: 10.1016/s1568-7864(01)00007-6
2002
Cited 338 times
ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage
ATM is one of the sentries at the gate of genome stability. This multifunctional protein kinase orchestrates the intricate array of cellular responses to DNA double-strand breaks. Absence or inactivation of ATM leads to the pleiotropic genetic disorder ataxia-telangiectasia (A-T), whose hallmarks are neuronal degeneration, immunodeficiency, genomic instability, premature aging and cancer predisposition. Several features of the complex clinical and cellular phenotype of A-T are reminiscent of other syndromes involving neurodegeneration, premature aging or genomic instability. A common denominator of many of these conditions is the perturbation of the cellular balance of reactive oxygen species, which leads to constant oxidative stress. Of these disorders, ATM deficiency is one of the most extensively studied with regard to the genome instability-oxidative stress connection. This connection may provide new insights into the phenotypes associated with genetic deficiencies of DNA damage responses, and point to new strategies to alleviate some of their clinical symptoms.
DOI: 10.1186/1471-2105-6-232
2005
Cited 308 times
EXPANDER – an integrative program suite for microarray data analysis
Gene expression microarrays are a prominent experimental tool in functional genomics which has opened the opportunity for gaining global, systems-level understanding of transcriptional networks. Experiments that apply this technology typically generate overwhelming volumes of data, unprecedented in biological research. Therefore the task of mining meaningful biological knowledge out of the raw data is a major challenge in bioinformatics. Of special need are integrative packages that provide biologist users with advanced but yet easy to use, set of algorithms, together covering the whole range of steps in microarray data analysis.Here we present the EXPANDER 2.0 (EXPression ANalyzer and DisplayER) software package. EXPANDER 2.0 is an integrative package for the analysis of gene expression data, designed as a 'one-stop shop' tool that implements various data analysis algorithms ranging from the initial steps of normalization and filtering, through clustering and biclustering, to high-level functional enrichment analysis that points to biological processes that are active in the examined conditions, and to promoter cis-regulatory elements analysis that elucidates transcription factors that control the observed transcriptional response. EXPANDER is available with pre-compiled functional Gene Ontology (GO) and promoter sequence-derived data files for yeast, worm, fly, rat, mouse and human, supporting high-level analysis applied to data obtained from these six organisms.EXPANDER integrated capabilities and its built-in support of multiple organisms make it a very powerful tool for analysis of microarray data. The package is freely available for academic users at http://www.cs.tau.ac.il/~rshamir/expander.
DOI: 10.1074/jbc.m611605200
2007
Cited 275 times
Ataxia Telangiectasia Mutated (ATM) Is Essential for DNA-PKcs Phosphorylations at the Thr-2609 Cluster upon DNA Double Strand Break
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated at the Thr-2609 cluster and Ser-2056 upon ionizing radiation (IR). Furthermore, DNA-PKcs phosphorylation at both regions is critical for its role in DNA double strand break (DSB) repair as well as cellular resistance to radiation. IR-induced DNA-PKcs phosphorylation at Thr-2609 and Ser-2056, however, exhibits distinct kinetics indicating that they are differentially regulated. Although DNA-PKcs autophosphorylates itself at Ser-2056 after IR, we have reported here that ATM mediates DNA-PKcs phosphorylation at Thr-2609 as well as at the adjacent (S/T)Q motifs within the Thr-2609 cluster. In addition, our data suggest that DNA-PKcs- and ATM-mediated DNA-PKcs phosphorylations are cooperative and required for the full activation of DNA-PKcs and the subsequent DSB repair. Elimination of DNA-PKcs phosphorylation at both regions severely compromises radioresistance and DSB repair. Finally, our result provides a possible mechanism for the direct involvement of ATM in non-homologous end joining-mediated DSB repair.
DOI: 10.1101/gad.1703008
2008
Cited 257 times
The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression
Histone monoubiquitylation is implicated in critical regulatory processes. We explored the roles of histone H2B ubiquitylation in human cells by reducing the expression of hBRE1/RNF20, the major H2B-specific E3 ubiquitin ligase. While H2B ubiquitylation is broadly associated with transcribed genes, only a subset of genes was transcriptionally affected by RNF20 depletion and abrogation of H2B ubiquitylation. Gene expression dependent on RNF20 includes histones H2A and H2B and the p53 tumor suppressor. In contrast, RNF20 suppresses the expression of several proto-oncogenes, which reside preferentially in closed chromatin and are modestly transcribed despite bearing marks usually associated with high transcription rates. Remarkably, RNF20 depletion augmented the transcriptional effects of epidermal growth factor (EGF), increased cell migration, and elicited transformation and tumorigenesis. Furthermore, frequent RNF20 promoter hypermethylation was observed in tumors. RNF20 may thus be a putative tumor suppressor, acting through selective regulation of a distinct subset of genes.
DOI: 10.1126/scisignal.2001034
2010
Cited 255 times
ATM-Dependent and -Independent Dynamics of the Nuclear Phosphoproteome After DNA Damage
Quantitative phosphoproteomics suggests that kinases other than ATM participate in the initial phase of the cellular response to DNA double-strand breaks.
DOI: 10.18632/aging.204248
2022
Cited 134 times
New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary
Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication were the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. The proposal of these hallmarks of ageing has been instrumental in guiding and pushing forward research on the biology of ageing. In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones. Amalgamation of the 'old' and 'new' hallmarks of ageing may provide a more comprehensive explanation of ageing and age-related diseases, shedding light on interventional and therapeutic studies to achieve healthy, happy, and productive lives in the elderly.
DOI: 10.1038/35018134
2000
Cited 306 times
Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response
DOI: 10.1101/gr.947203
2003
Cited 292 times
Genome-Wide In Silico Identification of Transcriptional Regulators Controlling the Cell Cycle in Human Cells
Dissection of regulatory networks that control gene transcription is one of the greatest challenges of functional genomics. Using human genomic sequences, models for binding sites of known transcription factors, and gene expression data, we demonstrate that the reverse engineering approach, which infers regulatory mechanisms from gene expression patterns, can reveal transcriptional networks in human cells. To date, such methodologies were successfully demonstrated only in prokaryotes and low eukaryotes. We developed computational methods for identifying putative binding sites of transcription factors and for evaluating the statistical significance of their prevalence in a given set of promoters. Focusing on transcriptional mechanisms that control cell cycle progression, our computational analyses revealed eight transcription factors whose binding sites are significantly overrepresented in promoters of genes whose expression is cell-cycle-dependent. The enrichment of some of these factors is specific to certain phases of the cell cycle. In addition, several pairs of these transcription factors show a significant co-occurrence rate in cell-cycle-regulated promoters. Each such pair indicates functional cooperation between its members in regulating the transcriptional program associated with cell cycle progression. The methods presented here are general and can be applied to the analysis of transcriptional networks controlling any biological process. [Supplemental material is available online at www.genome.org , including full lists of genes whose promoters were found to contain high scoring sites for any of the enriched transcription factors reported in Tables 1 and 3.]
DOI: 10.1016/s0065-230x(01)83007-4
2001
Cited 288 times
ATM: Genome stability, neuronal development, and cancer cross paths
One of the cornerstones of the web of signaling pathways governing cellular life and differentiation is the DNA damage response. It spans a complex network of pathways, ranging from DNA repair to modulation of numerous processes in the cell. DNA double-strand breaks (DSBs), which are formed as a result of genotoxic stress or normal recombinational processes, are extremely lethal lesions that rapidly mobilize this intricate defense system. The master controller that pilots cellular responses to DSBs is the ATM protein kinase, which turns on this network by phosphorylating key players in its various branches. ATM is the protein product of the gene mutated in the human genetic disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, sterility, genomic instability, cancer predisposition, and radiation sensitivity. The clinical and cellular phenotype of A-T attests to the numerous roles of ATM, on the one hand, and to the link between the DNA damage response and developmental processes on the other hand. Recent studies of this protein and its effectors, combined with a thorough investigation of animal models of A-T, have led to new insights into the mode of action of this master controller of the DNA damage response. The evidence that ATM is involved in signaling pathways other than those related to damage response, particularly ones relating to cellular growth and differentiation, reinforces the multifaceted nature of this protein, in which genome stability, developmental processes, and cancer cross paths.
DOI: 10.1128/mcb.21.8.2743-2754.2001
2001
Cited 283 times
Jun NH<sub>2</sub>-Terminal Kinase Phosphorylation of p53 on Thr-81 Is Important for p53 Stabilization and Transcriptional Activities in Response to Stress
The p53 tumor suppressor protein plays a key role in the regulation of stress-mediated growth arrest and apoptosis. Stress-induced phosphorylation of p53 tightly regulates its stability and transcriptional activities. Mass spectrometry analysis of p53 phosphorylated in 293T cells by active Jun NH2-terminal kinase (JNK) identified T81 as the JNK phosphorylation site. JNK phosphorylated p53 at T81 in response to DNA damage and stress-inducing agents, as determined by phospho-specific antibodies to T81. Unlike wild-type p53, in response to JNK stimuli p53 mutated on T81 (T81A) did not exhibit increased expression or concomitant activation of transcriptional activity, growth inhibition, and apoptosis. Forced expression of MKP5, a JNK phosphatase, in JNK kinase-expressing cells decreased T81 phosphorylation while reducing p53 transcriptional activity and p53-mediated apoptosis. Similarly transfection of antisense JNK 1 and -2 decreased T81 phosphorylation in response to UV irradiation. More than 180 human tumors have been reported to contain p53 with mutations within the region that encompasses T81 and the JNK binding site (amino acids 81 to 116). Our studies identify an additional mechanism for the regulation of p53 stability and functional activities in response to stress.
DOI: 10.1038/sj.onc.1203124
1999
Cited 271 times
ATM: A mediator of multiple responses to genotoxic stress
The ATM protein kinase is the product of the gene responsible for the pleiotropic recessive disorder ataxia-telangiectasia. ATM-deficient cells show enhanced sensitivity and greatly reduced responses to genotoxic agents that generate DNA double strand breaks (DSBs), such as ionizing radiation and radiomimetic chemicals, but exhibit normal responses to DNA adducts and base modifications induced by other agents. Therefore, DSBs are most likely the predominant signal for the activation of ATM-mediated pathways. Identification of the ATM gene triggered extensive research aimed at elucidating the numerous functions of its large multifaceted protein product. While ATM has both nuclear and cytoplasmic functions, this review will focus on its roles in the nucleus where it plays a central role in the very early stages of damage detection and serves as a master controller of cellular responses to DSBs. By activating key regulators of multiple signal transduction pathways, ATM mediates the efficient induction of a signaling network responsible for repair of the damage, and for cellular recovery and survival.
DOI: 10.1074/jbc.m102986200
2001
Cited 264 times
Nuclear Retention of ATM at Sites of DNA Double Strand Breaks
The ATM protein kinase mediates a rapid induction of cellular responses to DNA double strand breaks (DSBs). ATM kinase activity is enhanced immediately after exposure of cells to DSB-inducing agents, but no changes in its amount or subcellular location following that activation have been reported. We speculated that some of the ATM molecules associate with sites of DSBs, while the rest of the nuclear ATM pool remains in the nucleoplasm, masking detection of the damage-associated ATM fraction. Using detergent extraction to remove nucleoplasmic proteins, we show here that immediately following induction of DSBs, a fraction of the ATM pool becomes resistant to extraction and is detected in nuclear aggregates. Colocalization of the retained ATM with the phosphorylated form of histone H2AX (γ-H2AX) and with foci of the Nbs1 protein suggests that ATM associates with sites of DSBs. The striking correlation between the appearance of retained ATM and of γ-H2AX, and the rapid association of a fraction of ATM with γ-H2AX foci, are consistent with a major role for ATM in the early detection of DSBs and subsequent induction of cellular responses.
DOI: 10.1093/hmg/5.4.433
1996
Cited 261 times
Predominance of null mutations in ataxia-telangiectasia
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition. The responsible gene, ATM, was recently identified by positional cloning and found to encode a putative 350 kDa protein with a PI 3-kinase-like domain, presumably involved in mediating cell cycle arrest in response to radiation-induced DNA damage. The nature and location of A-T mutations should provide insight into the function of the ATM protein and the molecular basis of this pleiotropic disease. Of 44 A-T mutations identified by us to date, 39 (89%) are expected to inactivate the ATM protein by truncating it, by abolishing correct initiation or termination of translation, or by deleting large segments. Additional mutations are four smaller in-frame deletions and insertions, and one substitution of a highly conserved amino acid at the PI 3-kinase domain. The emerging profile of mutations causing A-T is thus dominated by those expected to completely inactivate the ATM protein. ATM mutations with milder effects may result in phenotypes related, but not identical, to A-T.
DOI: 10.1038/sj.onc.1201319
1997
Cited 236 times
Recombinant ATM protein complements the cellular A-T phenotype
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability and radiation sensitivity. The cellular phenotype of A-T points to defects in signal transduction pathways involved in activation of cell cycle checkpoints by free radical damage, and other pathways that mediate the transmission of specific mitogenic stimuli. The product of the responsible gene, ATM, belongs to a family of large proteins that contribute to maintaining genome stability and cell cycle progression in various organisms. A recombinant vector that stably expresses a full-length ATM protein is a valuable tool for its functional analysis. We constructed and cloned a recombinant, full-length open reading frame of ATM using a combination of vectors and hosts that overcame an inherent instability of this sequence. Recombinant ATM was stably expressed in insect cells using a baculovirus vector, albeit at a low level, and in human A-T cells using an episomal expression vector. An amino-terminal FLAG epitope added to the protein allowed highly specific detection of the recombinant molecule by immunoblotting, immunoprecipitation and immunostaining, and its isolation using immunoaffinity. Similar to endogenous ATM, the recombinant protein is located mainly in the nucleus, with low levels in the cytoplasm. Ectopic expression of ATM in A-T cells restored normal sensitivity to ionizing radiation and the radiomimetic drug neocarzinostatin, and a normal pattern of post-irradiation DNA synthesis, which represents an S-phase checkpoint. These observations indicate that the recombinant, epitope-tagged protein is functional. Introduction into this molecule of a known A-T missense mutation, Glu2904Gly, resulted in apparent instability of the protein and inability to complement the A-T phenotype. These findings indicate that the physiological defects characteristic of A-T cells result from the absence of the ATM protein, and that this deficiency can be corrected by ectopic expression of this protein.
DOI: 10.1086/301755
1998
Cited 234 times
Genotype-Phenotype Relationships in Ataxia-Telangiectasia and Variants
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity, and cancer predisposition. A-T cells are sensitive to ionizing radiation and radiomimetic chemicals and fail to activate cell-cycle checkpoints after treatment with these agents. The responsible gene, ATM, encodes a large protein kinase with a phosphatidylinositol 3-kinase-like domain. The typical A-T phenotype is caused, in most cases, by null ATM alleles that truncate or severely destabilize the ATM protein. Rare patients with milder manifestations of the clinical or cellular characteristics of the disease have been reported and have been designated "A-T variants." A special variant form of A-T is A-TFresno, which combines a typical A-T phenotype with microcephaly and mental retardation. The possible association of these syndromes with ATM is both important for understanding their molecular basis and essential for counseling and diagnostic purposes. We quantified ATM-protein levels in six A-T variants, and we searched their ATM genes for mutations. Cell lines from these patients exhibited considerable variability in radiosensitivity while showing the typical radioresistant DNA synthesis of A-T cells. Unlike classical A-T patients, these patients exhibited 1%-17% of the normal level of ATM. The underlying ATM genotypes were either homozygous for mutations expected to produce mild phenotypes or compound heterozygotes for a mild and a severe mutation. An A-TFresno cell line was found devoid of the ATM protein and homozygous for a severe ATM mutation. We conclude that certain "A-T variant" phenotypes represent ATM mutations, including some of those without telangiectasia. Our findings extend the range of phenotypes associated with ATM mutations.
DOI: 10.1093/hmg/8.1.69
1999
Cited 204 times
Characterization of ATM gene mutations in 66 ataxia telangiectasia families
Ataxia telangiectasia (AT) is an autosomal recessive disease characterized by neurological and immunological symptoms, radiosensitivity and cancer predisposition. The gene mutated in AT, designated the ATM gene, encodes a large protein kinase with a PI-3 kinase-related domain. In this study, we investigated the mutational spectrum of the ATM gene in a cohort of AT patients living in Germany. We amplified and sequenced all 66 exons and the flanking untranslated regions from genomic DNA of 66 unrelated AT patients. We identified 46 different ATM mutations and 26 sequence polymorphisms and variants scattered throughout the gene. A total of 34 mutations have not been described in other populations. Seven mutations occurred in more than one family, but none of these accounted for more than five alleles in our patient group. The majority of the mutations were truncating, confirming that the absence of full-length ATM protein is the most common molecular basis of AT. Transcript analyses demonstrated single exon skipping as the consequence of most splice site substitutions, but a more complex pattern was observed for two mutations. Immunoblot studies of cell lines carrying ATM missense substitutions or in-frame deletions detected residual ATM protein in four cases. One of these mutations, a valine deletion proximal to the kinase domain, resulted in ATM protein levels >20% of normal in an AT lymphoblastoid cell line. In summary, our results survey and characterize a plethora of variations in the ATM gene identified by exon scanning sequencing and indicate a high diversity of mutations giving rise to AT in a non-isolated population.
DOI: 10.1074/jbc.m009809200
2001
Cited 184 times
ATM Is Required for IκB Kinase (IKK) Activation in Response to DNA Double Strand Breaks
Following challenge with proinflammatory stimuli or generation of DNA double strand breaks (DSBs), transcription factor NF-κB translocates from the cytoplasm to the nucleus to activate expression of target genes. In addition, NF-κB plays a key role in protecting cells from proapoptotic stimuli, including DSBs. Patients suffering from the genetic disorder ataxia-telangiectasia, caused by mutations in the<i>ATM</i> gene, are highly sensitive to inducers of DSBs, such as ionizing radiation. Similar hypersensitivity is displayed by cell lines derived from ataxia-telangiectasia patients or<i>Atm</i> knockout mice. The ATM protein, a member of the phosphatidylinositol 3-kinase (PI3K)-like family, is a multifunctional protein kinase whose activity is stimulated by DSBs. As both ATM and NF-κB deficiencies result in increased sensitivity to DSBs, we examined the role of ATM in NF-κB activation. We report that ATM is essential for NF-κB activation in response to DSBs but not proinflammatory stimuli, and this activity is mediated via the IκB kinase complex. DNA-dependent protein kinase, another member of the PI3K-like family, PI3K itself, and c-Abl, a nuclear tyrosine kinase, are not required for this response.
DOI: 10.1016/j.febslet.2011.05.013
2011
Cited 183 times
Beyond ATM: The protein kinase landscape of the DNA damage response
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double‐strand break (DSB), which activates a massive signaling network – the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage‐induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high‐throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross‐talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
DOI: 10.4161/cc.9.8.11298
2010
Cited 183 times
Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response
The DNA damage response (DDR) is a complex signaling network that is induced by DNA lesions and vigorously activated by double strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which phosphorylates key players in its various branches. SFPQ (PSF) and NONO (p54) are nuclear proteins that interact with each other and have diverse roles in nucleic acids metabolism. The SFPQ/NONO heterodimer was previously found to enhance DNA strand break rejoining in vitro. Our attention was drawn to these two proteins as they interact with the nuclear matrix protein Matrin 3 (MATR3), which we found to be a novel ATM target. We asked whether SFPQ and NONO too are involved in the DSB response. Proteins that function at the early phase of this response are often recruited to the damaged sites. We observed rapid recruitment of SFPQ/NONO to sites of DNA damage induced by laser microbeam. In MATR3 knockdown cells SFPQ/NONO retention at DNA damage sites was prolonged. SFPQ and MATR3 depletion led to abnormal accumulation of cells at the S-phase of the cell cycle following treatment with the radiomimetic chemical neocarzinostatin. Notably, proteins involved in DSB repair via nonhomologous end-joining co-immunoprecipitated with NONO; SFPQ depletion delayed DSB repair. Collectively the data suggest that SFPQ, NONO and MATR3 are involved in the early stage of the DSB response, setting the scene for DSB repair.
DOI: 10.1038/nprot.2009.230
2010
Cited 179 times
Expander: from expression microarrays to networks and functions
DOI: 10.1073/pnas.95.17.10146
1998
Cited 176 times
ATM binds to β-adaptin in cytoplasmic vesicles
Inherited mutations in the ATM gene lead to a complex clinical phenotype characterized by neuronal degeneration, oculocutaneous telangiectasias, immune dysfunction, and cancer predisposition. Using the yeast two-hybrid system, we demonstrate that ataxia telangiectasia mutated (ATM) binds to beta-adaptin, one of the components of the AP-2 adaptor complex, which is involved in clathrin-mediated endocytosis of receptors. The interaction between ATM and beta-adaptin was confirmed in vitro, and coimmunoprecipitation and colocalization studies show that the proteins also associate in vivo. ATM also interacts in vitro with beta-NAP, a neuronal-specific beta-adaptin homolog that was identified as an autoantigen in a patient with cerebellar degeneration. Our data describing the association of ATM with beta-adaptin in vesicles indicate that ATM may play a role in intracellular vesicle and/or protein transport mechanisms.
DOI: 10.1073/pnas.0408595102
2005
Cited 171 times
Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage
Maintenance of genomic stability depends on the DNA damage response, an extensive signaling network that is activated by DNA lesions such as double-strand breaks (DSBs). The primary activator of the mammalian DSB response is the nuclear protein kinase ataxia-telangiectasia, mutated (ATM), which phosphorylates key players in various arms of this network. The activation and stabilization of the p53 protein play a major role in the DNA damage response and are mediated by ATM-dependent posttranslational modifications of p53 and Mdm2, a ubiquitin ligase of p53. p53's response to DNA damage also depends on Mdm2-dependent proteolysis of Mdmx, a homologue of Mdm2 that represses p53's transactivation function. Here we show that efficient damage-induced degradation of human Hdmx depends on functional ATM and at least three sites on the Hdmx that are phosphorylated in response to DSBs. One of these sites, S403, is a direct ATM target. Accordingly, each of these sites is important for Hdm2-mediated ubiquitination of Hdmx after DSB induction. These results demonstrate a sophisticated mechanism whereby ATM fine-tunes the optimal activation of p53 by simultaneously modifying each player in the process.
DOI: 10.1006/geno.1996.0201
1996
Cited 162 times
Genomic Organization of the ATM Gene
The ATM gene was recently identified and found to be responsible for the genetic disorder ataxiatelgiectasia. The major ATM transcript is 13 kb. Using long-distance PCR, we determined the genomic structure of this gene and identified all of its exon-intron boundaries. The ATM gene spans approximately 150 kb of genomic DNA and consists of 66 exons. The initiation codon falls within exon 4. The last exon is 3.8 kb and contains the stop codon and a 3'-untranslated region of about 3600 nucleotides.
DOI: 10.1016/j.molcel.2005.04.015
2005
Cited 160 times
ATM-Dependent Phosphorylation of ATF2 Is Required for the DNA Damage Response
Activating transcription factor 2 (ATF2) is regulated by JNK/p38 in response to stress. Here, we demonstrate that the protein kinase ATM phosphorylates ATF2 on serines 490 and 498 following ionizing radiation (IR). Phosphoantibodies to ATF2(490/8) reveal dose- and time-dependent phosphorylation of ATF2 by ATM that results in its rapid colocalization with gamma-H2AX and MRN components into IR-induced foci (IRIF). Inhibition of ATF2 expression decreased recruitment of Mre11 to IRIF, abrogated S phase checkpoint, reduced activation of ATM, Chk1, and Chk2, and impaired radioresistance. ATF2 requires neither JNK/p38 nor its DNA binding domain for recruitment to IRIF and the S phase checkpoint. Our findings identify a role for ATF2 in the DNA damage response that is uncoupled from its transcriptional activity.
DOI: 10.4161/cc.4.9.1981
2005
Cited 152 times
ATM-Mediated Phosphorylations Inhibit Mdmx/Mdm2 Stabilization by HAUSP in Favor of p53 Activation
The p53 tumor suppressor protein has a major role in protecting genome integrity. Under normal circumstances Mdmx and Mdm2 control the activity of p53. Both proteins inhibit the transcriptional regulation by p53, while Mdm2 also functions as an E3 ubiquitin ligase to target both p53 and Mdmx for proteasomal degradation. HAUSP counteracts the destabilizing effect of Mdm2 by direct deubiquitination of p53. Subsequently, HAUSP was shown to deubiquitinate Mdm2 and Mdmx, thereby stabilizing these proteins. The ATM protein kinase is a key regulator of the p53 pathway in response to double strand breaks (DSBs) in the DNA. ATM fine-tunes p53's response to DNA damage by directly phosphorylating it, by regulating additional post-translational modifications of this protein, and by affecting two p53 regulators: Mdm2 and Mdmx. ATM directly and indirectly induces Mdm2 and Mdmx phosphorylation, resulting in decreased activity and stability of these proteins. We recently provided a mechanism for the reduced stability of Mdm2 and Mdmx by showing that ATM-dependent phosphorylation lowers their affinity for the deubiquitinating enzyme HAUSP. Altogether, the emerging picture portrays an elaborate, but fine-tuned, ATM-mediated control of p53 activation and stabilization following DNA damage. Further insight into the mechanism by which ATM switches the interactions between HAUSP, Mdmx, Mdm2 and p53, to favor p53 activation may offer new tools for therapeutic intervention in the p53 pathway for cancer treatment.
DOI: 10.1158/0008-5472.can-06-2565
2006
Cited 152 times
Inhibition of Transforming Growth Factor-β1 Signaling Attenuates Ataxia Telangiectasia Mutated Activity in Response to Genotoxic Stress
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor beta (TGFbeta)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGFbeta inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgfbeta1 null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGFbeta type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced gammaH2AX radiation-induced foci; and increased radiosensitivity compared with TGFbeta competent cells. We determined that loss of TGFbeta signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGFbeta restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgfbeta1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGFbeta may be used to advantage in cancer therapy.
DOI: 10.1371/journal.pone.0023882
2011
Cited 140 times
Matrin 3 Binds and Stabilizes mRNA
Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.
DOI: 10.1038/emboj.2009.302
2009
Cited 130 times
Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety. This type of linkage is found at stalled topoisomerase I (Top1)-DNA covalent complexes, and TDP1 has been implicated in the repair of such complexes. Here we show that Top1-associated DNA double-stranded breaks (DSBs) induce the phosphorylation of TDP1 at S81. This phosphorylation is mediated by the protein kinases: ataxia-telangiectasia-mutated (ATM) and DNA-dependent protein kinase (DNA-PK). Phosphorylated TDP1 forms nuclear foci that co-localize with those of phosphorylated histone H2AX (gammaH2AX). Both Top1-induced replication- and transcription-mediated DNA damages induce TDP1 phosphorylation. Furthermore, we show that S81 phosphorylation stabilizes TDP1, induces the formation of XRCC1 (X-ray cross-complementing group 1)-TDP1 complexes and enhances the mobilization of TDP1 to DNA damage sites. Finally, we provide evidence that TDP1-S81 phosphorylation promotes cell survival and DNA repair in response to CPT-induced DSBs. Together; our findings provide a new mechanism for TDP1 post-translational regulation by ATM and DNA-PK.
DOI: 10.1016/j.dnarep.2008.03.005
2008
Cited 127 times
The role of the DNA damage response in neuronal development, organization and maintenance
The DNA damage response is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in consort in response to DNA damage. Defects in the DNA damage response in proliferating cells can lead to cancer while defects in neurons result in neurodegenerative pathologies. Neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity that generates large amounts of reactive oxygen species with DNA damaging capacity and their intense transcriptional activity increase the potential for damage of their genomic DNA. Neurons ensure their longevity and functionality in the face of these threats by elaborate mechanisms that defend the integrity of their genome. This review focuses on the DNA damage response in neuronal cells and points to the importance of this elaborate network to the integrity of the nervous system from its early development and throughout the lifetime of the organism.
DOI: 10.1016/j.dnarep.2008.03.006
2008
Cited 124 times
The neurological phenotype of ataxia-telangiectasia: Solving a persistent puzzle
Human genomic instability syndromes affect the nervous system to different degrees of severity, attesting to the vulnerability of the CNS to perturbations of genomic integrity and the DNA damage response (DDR). Ataxia-telangiectasia (A-T) is a typical genomic instability syndrome whose major characteristic is progressive neuronal degeneration but is also associated with immunodeficiency, cancer predisposition and acute sensitivity to ionizing radiation and radiomimetic chemicals. A-T is caused by loss or inactivation of the ATM protein kinase, which mobilizes the complex, multi-branched cellular response to double strand breaks in the DNA by phosphorylating numerous DDR players. The link between ATM's function in the DDR and the neuronal demise in A-T has been questioned in the past. However, recent studies of the ATM-mediated DDR in neurons suggest that the neurological phenotype in A-T is indeed caused by deficiency in this function, similar to other features of the disease. Still, major issues concerning this phenotype remain open, including the presumed differences between the DDR in post-mitotic neurons and proliferating cells, the nature of the damage that accumulates in the DNA of ATM-deficient neurons under normal life conditions, the mode of death of ATM-deficient neurons, and the lack of a major neuronal phenotype in the mouse model of A-T. A-T remains a prototype disease for the study of the DDR's role in CNS development and maintenance.
DOI: 10.1038/ncb1817
2008
Cited 123 times
Activation of ATM depends on chromatin interactions occurring before induction of DNA damage
Efficient and correct responses to double-stranded breaks (DSB) in chromosomal DNA are crucial for maintaining genomic stability and preventing chromosomal alterations that lead to cancer. The generation of DSB is associated with structural changes in chromatin and the activation of the protein kinase ataxia-telangiectasia mutated (ATM), a key regulator of the signalling network of the cellular response to DSB. The interrelationship between DSB-induced changes in chromatin architecture and the activation of ATM is unclear. Here we show that the nucleosome-binding protein HMGN1 modulates the interaction of ATM with chromatin both before and after DSB formation, thereby optimizing its activation. Loss of HMGN1 or ablation of its ability to bind to chromatin reduces the levels of ionizing radiation (IR)-induced ATM autophosphorylation and the activation of several ATM targets. IR treatments lead to a global increase in the acetylation of Lys 14 of histone H3 (H3K14) in an HMGN1-dependent manner and treatment of cells with histone deacetylase inhibitors bypasses the HMGN1 requirement for efficient ATM activation. Thus, by regulating the levels of histone modifications, HMGN1 affects ATM activation. Our studies identify a new mediator of ATM activation and demonstrate a direct link between the steady-state intranuclear organization of ATM and the kinetics of its activation after DNA damage.
DOI: 10.1016/j.cell.2018.11.024
2019
Cited 102 times
UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors
Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.
DOI: 10.1016/j.yexcr.2014.09.002
2014
Cited 95 times
ATM: Expanding roles as a chief guardian of genome stability
• The ATM protein kinase mobilizes the cellular response to DNA double-strand breaks. • Evidence is presented that ATM also regulates other aspects of genome stability . • ATM may have a more general role in maintaining genome integrity than previously thought.
DOI: 10.1016/j.semcancer.2015.12.005
2016
Cited 92 times
Systemic DNA damage responses in aging and diseases
The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype–phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability.
DOI: 10.1016/j.arr.2016.05.002
2017
Cited 90 times
Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing
A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration − primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene − the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions.
DOI: 10.1128/mcb.17.4.2020
1997
Cited 160 times
Fragments of ATM Which Have Dominant-Negative or Complementing Activity
The ATM protein has been implicated in pathways controlling cell cycle checkpoints, radiosensitivity, genetic instability, and aging.Expression of ATM fragments containing a leucine zipper motif in a human tumor cell line abrogated the S-phase checkpoint after ionizing irradiation and enhanced radiosensitivity and chromosomal breakage.These fragments did not abrogate irradiation-induced G 1 or G 2 checkpoints, suggesting that cell cycle checkpoint defects alone cannot account for chromosomal instability in ataxia telangiectasia (AT) cells.Expression of the carboxy-terminal portion of ATM, which contains the PI-3 kinase domain, complemented radiosensitivity and the S-phase checkpoint and reduced chromosomal breakage after irradiation in AT cells.These observations suggest that ATM function is dependent on interactions with itself or other proteins through the leucine zipper region and that the PI-3 kinase domain contains much of the significant activity of ATM.
DOI: 10.1073/pnas.94.5.1840
1997
Cited 159 times
The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage
The product of the ataxia-telangiectasia gene (ATM) was identified by using an antiserum developed to a peptide corresponding to the deduced amino acid sequence. The ATM protein is a single, high-molecular weight protein predominantly confined to the nucleus of human fibroblasts, but is present in both nuclear and microsomal fractions from human lymphoblast cells and peripheral blood lymphocytes. ATM protein levels and localization remain constant throughout all stages of the cell cycle. Truncated ATM protein was not detected in lymphoblasts from ataxia-telangiectasia patients homozygous for mutations leading to premature protein termination. Exposure of normal human cells to gamma-irradiation and the radiomimetic drug neocarzinostatin had no effect on ATM protein levels, in contrast to a noted rise in p53 levels over the same time interval. These findings are consistent with a role for the ATM protein in ensuring the fidelity of DNA repair and cell cycle regulation following genome damage.
DOI: 10.1002/bies.950191011
1997
Cited 154 times
Hypothesis: Ataxia‐telangiectasia: Is ATM a sensor of oxidative damage and stress?
Ataxia-telangiectasia (A-T) is a pleiotropic recessive disorder characterized by cerebellar ataxia, immunodeficiency, specific developmental defects, profound predisposition to cancer and acute radiosensitivity. Functional inactivation of a single gene product, ATM, accounts for this compound phenotype. We suggest that ATM acts as a sensor of reactive oxygen species and/or oxidative damage of cellular macromolecules, including DNA. In turn, ATM induces signalling through multiple pathways, thereby coordinating acute phase stress responses with cell cycle checkpoint control and repair of oxidative damage. Absence of ATM is proposed to limit the repair of insidious oxidative damage that can occur under normal physiological conditions, ultimately leading to apoptosis of particularly sensitive cells, such as neurons and thymocytes.
DOI: 10.1159/000472285
1995
Cited 153 times
Ataxia-Telangiectasia: Closer to Unraveling the Mystery
DOI: 10.1038/sj.onc.1204565
2001
Cited 126 times
Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase
The type 1 insulin-like growth factor receptor (IGF1R) is required for growth, tumorigenicity and protection from apoptosis. IGF1R overexpression is associated with radioresistance in breast cancer. We used antisense (AS) RNA to downregulate IGF1R expression in mouse melanoma cells. Cells expressing AS-IGF1R transcripts were more radiosensitive in vitro and in vivo than controls. Also they showed reduced radiation-induced p53 accumulation and p53 serine 18 phosphorylation, and radioresistant DNA synthesis. These changes were reminiscent of the cellular phenotype of the human genetic disorder ataxia-telangiectasia (A-T), caused by mutations in the ATM gene. Cellular Atm protein levels were lower in AS-IGF1R-transfected cells than in control cells, although there was no difference in Atm expression at the transcriptional level. AS-IGF1R cells had detectable basal Atm kinase activity, but failed to induce kinase activity after irradiation. This suggests that IGF1R signalling can modulate the function of Atm, and supports the concept of targeted IGF1R downregulation as a potential treatment for malignant melanoma and other radioresistant tumours.
2001
Cited 122 times
Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice.
Ataxia-telangiectasia (A-T) is a genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype and suffer primarily from progressive ataxia caused by degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical features of the human disease. We previously hypothesized that some aspects of A-T, such as the preferential loss of certain neurons, could result from a continuous state of increased oxidative stress (G. Rotman and Y. Shiloh, Cancer Surv., 29: 285-304, 1997; G. Rotman and Y. Shiloh, BioEssays, 19: 911-917, 1997). The present work tests this hypothesis by analyzing markers of redox state in brains of Atm-deficient mice. We found alterations in the levels of thiol-containing compounds in Atm (-/-) brains, as well as significant changes in the activities of thioredoxin, catalase, and manganese superoxide dismutase in Atm (-/-) cerebella. These changes are indicative of increased levels of reactive oxygen species, which are seen primarily in the cerebellum of Atm-deficient mice. Our findings support the hypothesis that the absence of functional ATM results in oxidative stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.
DOI: 10.1128/mcb.25.21.9608-9620.2005
2005
Cited 121 times
DNA Damage-Induced Phosphorylation of MdmX at Serine 367 Activates p53 by Targeting MdmX for Mdm2-Dependent Degradation
AbstractUnderstanding how p53 activity is regulated is crucial in elucidating mechanisms of cellular defense against cancer. Genetic data indicate that Mdmx as well as Mdm2 plays a major role in maintaining p53 activity at low levels in nonstressed cells. However, biochemical mechanisms of how Mdmx regulates p53 activity are not well understood. Through identification of Mdmx-binding proteins, we found that 14-3-3 proteins are associated with Mdmx. Mdmx harbors a consensus sequence for binding of 14-3-3. Serine 367 (S367) is located within the putative binding sequence for 14-3-3, and its substitution with alanine (S367A) abolishes binding of Mdmx to 14-3-3. Transfection assays indicated that the S367A mutation, in cooperation with Mdm2, enhances the ability of Mdmx to repress the transcriptional activity of p53. The S367A mutant is more resistant to Mdm2-dependent ubiquitination and degradation than wild-type Mdmx, and Mdmx phosphorylated at S367 is preferentially degraded by Mdm2. Several types of DNA damage markedly enhance S367 phosphorylation, coinciding with increased binding of Mdmx to 14-3-3 and accelerated Mdmx degradation. Furthermore, promotion of growth of normal human fibroblasts after introduction of Mdmx is enhanced by the S367 mutation. We propose that Mdmx phosphorylation at S367 plays an important role in p53 activation after DNA damage by triggering Mdm2-dependent degradation of Mdmx. SUPPLEMENTAL MATERIALSupplemental material for this article may be found at http://mcb.asm.org.ACKNOWLEDGMENTSThe original human Mdm2 and Mdmx clones are kind gifts from Donna George and Steven Berberich, respectively. We are indebted to Jiangdong Chen, Christian Gaiddon, and Ari Elson for providing us with the wild-type Flag-tagged Mdm2 expression vector, the HA-tagged p53 expression vector, and the GST-14-3-3 expression vectors, respectively. The His-ubiquitin expression plasmid is a kind gift from Dirk Bohmann. We thank Gigi Lozano for providing us p53/Mdm2-deficient fibroblasts. We also thank Tomomi Shinozaki for her experimental assistance at the initial part of the project.This work is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Y.T and K.O.), a Grant-in-Aid for Third Term Comprehensive Control Research for Cancer from the Ministry of Health, Labor and Welfare, Japan (Y.T.), a Grant-in-Aid from the Tokyo Biochemical Research Foundation (Y.T.), Research Grants from the Princess Takamatsu Cancer Research Fund and Takeda Science Foundation (Y.T.), and the Program for Promotion of Fundamental Studies in Health Sciences of Organization for Pharmaceutical Safety and Research of Japan (Y.T.). The work was also supported by NCI grant 87497 (to C.P). Work in the laboratory of Y.S. is supported by the A-T Children's Project, the A-T Medical Research Foundation, and the National Institute of Neurological Disorders and Stroke (NS31763).
DOI: 10.1101/gr.7.6.592
1997
Cited 118 times
Ataxia-Telangiectasia Locus: Sequence Analysis of 184 kb of Human Genomic DNA Containing the Entire <i>ATM</i> Gene
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity, and cancer predisposition. The genomic organization of the A-T gene, designated ATM, was established recently. To date, more than 100 A-T-associated mutations have been reported in the ATM gene that do not support the existence of one or several mutational hotspots. To allow genotype/phenotype correlations it will be important to find additional ATM mutations. The nature and location of the mutations will also provide insights into the molecular processes that underly the disease. To facilitate the search for ATM mutations and to establish the basis for the identification of transcriptional regulatory elements, we have sequenced and report here 184,490 bp of genomic sequence from the human 11q22-23 chromosomal region containing the entire ATM gene, spanning 146 kb, and 10 kb of the 5'-region of an adjacent gene named E14/NPAT. The latter shares a bidirectional promoter with ATM and is transcribed in the opposite direction. The entire region is transcribed to approximately 85% and translated to 5%. Genome-wide repeats were found to constitute 37.2%, with LINE (17.1%) and Alu (14.6%) being the main repetitive elements. The high representation of LINE repeats is attributable to the presence of three full-length LINE-1s, inserted in the same orientation in introns 18 and 63 as well as downstream of the ATM gene. Homology searches suggest that ATM exon 2 could have derived from a mammalian interspersed repeat (MIR). Promoter recognition algorithms identified divergent promoter elements within the CpG island, which lies between the ATM and E14/NPAT genes, and provide evidence for a putative second ATM promoter located within intron 3, immediately upstream of the first coding exon. The low G+C level (38.1%) of the ATM locus is reflected in a strongly biased codon and amino acid usage of the gene.
DOI: 10.4161/cc.6.6.3990
2007
Cited 107 times
Programs for Cell Death: Apoptosis is Only One Way to Go
Cell death programs are major players in tissue homeostasis, development and cellular stress responses. A prominent cause of malignant transformation is the cumulative genetic alterations in pathways that regulate cellular growth and death. The processes that govern cell death following genotoxic stress are a major focus of basic research and are also very relevant to translational research in clinical oncology: understanding cell death following cancer therapy is essential for designing new treatment modalities. Cell death is usually, and sometimes automatically, linked with one of its major programs, apoptosis. Recent advances have led, however, to the emergence of additional, non-apoptotic cell death pathways, each with its triggers and readouts. Genotoxic stress appears to induce several cell death pathways, only part of which fall within the classical definition of apoptosis. Accordingly, solid tumor cells that are refractive to apoptosis were shown to die via non-apoptotic mechanisms. Recently we demonstrated that mitotic cell death induced by DNA damage in cells with defective G2/M checkpoint is mechanistically distinct from apoptosis. This review outlines recent advances in the understanding of molecular networks operative in apoptotic and non-apoptotic cell death mechanisms and their cross-talks.
DOI: 10.1093/carcin/4.10.1317
1983
Cited 106 times
Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism
Journal Article Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism Get access Yosef Shiloh, Yosef Shiloh 3 1Department of Molecular Virology, Hebrew University-Hadassah Medical CenterPOB 1172, Jerusalem 91 010, Israel2Department Human Genetics, Hebrew University-Hadassah Medical CenterPOB 1172, Jerusalem 91 010, Israel 3 To whom reprint request should be sent at Division of Genetics, The Children's Hospital, Medical Center, 300 Longwood Avenue, Boston, MA 02115, USA. Search for other works by this author on: Oxford Academic PubMed Google Scholar Eynat Tabor, Eynat Tabor 1Department of Molecular Virology, Hebrew University-Hadassah Medical CenterPOB 1172, Jerusalem 91 010, Israel Search for other works by this author on: Oxford Academic PubMed Google Scholar Yachiel Becker Yachiel Becker 1Department of Molecular Virology, Hebrew University-Hadassah Medical CenterPOB 1172, Jerusalem 91 010, Israel Search for other works by this author on: Oxford Academic PubMed Google Scholar Carcinogenesis, Volume 4, Issue 10, October 1983, Pages 1317–1322, https://doi.org/10.1093/carcin/4.10.1317 Published: 01 October 1983 Article history Received: 27 May 1983 Accepted: 22 July 1983 Published: 01 October 1983
DOI: 10.1073/pnas.0908867107
2010
Cited 105 times
Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and is considered to be the outcome of chronic liver inflammation. Currently, the main treatment for HCC is surgical resection. However, survival rates are suboptimal partially because of tumor recurrence in the remaining liver. Our aim was to understand the molecular mechanisms linking liver regeneration under chronic inflammation to hepatic tumorigenesis. Mdr2-KO mice, a model of inflammation-associated cancer, underwent partial hepatectomy (PHx), which led to enhanced hepatocarcinogenesis. Moreover, liver regeneration in these mice was severely attenuated. We demonstrate the activation of the DNA damage-response machinery and increased genomic instability during early liver inflammatory stages resulting in hepatocyte apoptosis, cell-cycle arrest, and senescence and suggest their involvement in tumor growth acceleration subsequent to PHx. We propose that under the regenerative proliferative stress induced by liver resection, the genomic unstable hepatocytes generated during chronic inflammation escape senescence and apoptosis and reenter the cell cycle, triggering the enhanced tumorigenesis. Thus, we clarify the immediate and long-term contributions of the DNA damage response to HCC development and recurrence.
DOI: 10.1016/j.molonc.2011.06.004
2011
Cited 86 times
Transcriptional modulation induced by ionizing radiation: p53 remains a central player
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
DOI: 10.1093/nar/gkq1167
2010
Cited 80 times
SPIKE: a database of highly curated human signaling pathways
The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community.SPIKE (Signaling Pathways Integrated Knowledge Engine; http:// www.cs.tau.ac.il/spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction.To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator's understanding and make the utilization of the pathways easy.The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways.Pathways are regularly updated, and additional pathways are gradually added.The complete database and the individual maps are freely exportable in several formats.The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.
DOI: 10.1016/j.febslet.2011.07.034
2011
Cited 69 times
RNF20–RNF40: A ubiquitin‐driven link between gene expression and the DNA damage response
The DNA damage response (DDR) is emerging as a vast signaling network that temporarily modulates numerous aspects of cellular metabolism in the face of DNA lesions, especially critical ones such as the double strand break (DSB). The DDR involves extensive dynamics of protein post-translational modifications, most notably phosphorylation and ubiquitylation. The DSB response is mobilized primarily by the ATM protein kinase, which phosphorylates a plethora of key players in its various branches. It is based on a core of proteins dedicated to the damage response, and a cadre of proteins borrowed temporarily from other cellular processes to help meet the challenge. A recently identified novel component of the DDR pathway - histone H2B monoubiquitylation - exemplifies this principle. In mammalian cells, H2B monoubiquitylation is driven primarily by an E3 ubiquitin ligase composed of the two RING finger proteins RNF20 and RNF40. Generation of monoubiquitylated histone H2B (H2Bub) has been known to be coupled to gene transcription, presumably modulating chromatin decondensation at transcribed regions. New evidence indicates that the regulatory function of H2Bub on gene expression can selectively enhance or suppress the expression of distinct subsets of genes through a mechanism involving the hPAF1 complex and the TFIIS protein. This delicate regulatory process specifically affects genes that control cell growth and genome stability, and places RNF20 and RNF40 in the realm of tumor suppressor proteins. In parallel, it was found that following DSB induction, the H2B monoubiquitylation module is recruited to damage sites where it induces local H2Bub, which in turn is required for timely recruitment of DSB repair protein and, subsequently, timely DSB repair. This pathway represents a crossroads of the DDR and chromatin organization, and is a typical example of how the DDR calls to action functional modules that in unprovoked cells regulate other processes.
DOI: 10.1042/bj20021284
2002
Cited 107 times
Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366
The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1.
DOI: 10.1093/hmg/5.12.2033
1996
Cited 103 times
Ataxia-telangiectasia: founder effect among north African Jews
The ATM gene is responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency and cancer predisposition. A-T carriers were reported to be moderately cancer-prone. A wide variety of A-T mutations, most of which are unique to single families, were identified in various ethnic groups, precluding carrier screening with mutation-specific assays. However, a single mutation was observed in 32/33 defective ATM alleles in Jewish A-T families of North African origin, coming from various regions of Morocco and Tunisia. This mutation, 103C-->T, results in a stop codon at position 35 of the ATM protein. In keeping with the nature of this mutation, various antibodies directed against the ATM protein failed to defect this protein in patient cells. A rapid carrier detection assay detected this mutation in three out of 488 ATM alleles of Jewish Moroccan or Tunisian origin. This founder effect provides a unique opportunity for population-based screening for A-T carriers in a large Jewish community.
DOI: 10.1073/pnas.95.21.12653
1998
Cited 95 times
Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice
Ataxia-telangiectasia (AT) is a human disease caused by mutations in the ATM gene. The neural phenotype of AT includes progressive cerebellar neurodegeneration, which results in ataxia and eventual motor dysfunction. Surprisingly, mice in which the Atm gene has been inactivated lack distinct behavioral ataxia or pronounced cerebellar degeneration, the hallmarks of the human disease. To determine whether lack of the Atm protein can nonetheless lead to structural abnormalities in the brain, we compared brains from male Atm-deficient mice with male, age-matched controls. Atm-deficient mice exhibited severe degeneration of tyrosine hydroxylase-positive, dopaminergic nigro-striatal neurons, and their terminals in the striatum. This cell loss was accompanied by a large reduction in immunoreactivity for the dopamine transporter in the striatum. A reduction in dopaminergic neurons also was evident in the ventral tegmental area. This effect was selective in that the noradrenergic nucleus locus coeruleus was normal in these mice. Behaviorally, Atm-deficient mice expressed locomotor abnormalities manifested as stride-length asymmetry, which could be corrected by peripheral application of the dopaminergic precursor l -dopa. In addition, these mice were hypersensitive to the dopamine releasing drug d -amphetamine. These results indicate that ATM deficiency can severely affect dopaminergic neurons in the central nervous system and suggest possible strategies for treating this aspect of the disease.
DOI: 10.1074/jbc.m106798200
2002
Cited 91 times
Accumulation of DNA Damage and Reduced Levels of Nicotine Adenine Dinucleotide in the Brains of Atm-deficient Mice
Ataxia-telangiectasia (A-T) is a human genetic disorder caused by mutational inactivation of the <i>ATM</i> gene. A-T patients display a pleiotropic phenotype, in which a major neurological feature is progressive ataxia due to degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse<i>Atm</i> locus creates a murine model of A-T that exhibits most of the clinical and cellular features of the human disease, but the neurological phenotype is barely expressed. We present evidence for the accumulation of DNA strand breaks in the brains of Atm(−/−), supporting the notion that ATM plays a major role in maintaining genomic stability. We also show a perturbation of the steady state levels of pyridine nucleotides. There is a significant decrease in both the reduced and the oxidized forms of NAD and in the total levels of NADP<sub>T</sub> and NADP<sup>+</sup> in the brains of Atm(−/−) mice. The changes in NAD<sub>T</sub>, NADH, NAD<sup>+</sup>, NADP<sub>T</sub>, and NADP<sup>+</sup> were progressive and observed primarily in the cerebellum of 4-month-old Atm(−/−) mice. Higher rates of mitochondrial respiration were also recorded in 4-month-old Atm(−/−) cerebella. Taken together, our findings support the hypothesis that absence of functional ATM results in continuous stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.
DOI: 10.1128/mcb.00562-06
2006
Cited 86 times
Differential Roles of ATM- and Chk2-Mediated Phosphorylations of Hdmx in Response to DNA Damage
The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53's essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosphorylation of Hdmx on S403, S367, and S342, with S403 being targeted directly by ATM. Here we show that S367 phosphorylation is mediated by the Chk2 protein kinase, a downstream kinase of ATM. This phosphorylation, which is important for subsequent Hdmx ubiquitination and degradation, creates a binding site for 14-3-3 proteins which controls nuclear accumulation of Hdmx following DSBs. Phosphorylation of S342 also contributed to optimal 14-3-3 interaction and nuclear accumulation of Hdmx, but phosphorylation of S403 did not. Our data indicate that binding of a 14-3-3 dimer and subsequent nuclear accumulation are essential steps toward degradation of p53's inhibitor, Hdmx, in response to DNA damage. These results demonstrate a sophisticated control by ATM of a target protein, Hdmx, which itself is one of several ATM targets in the ATM-p53 axis of the DNA damage response.
DOI: 10.1186/gb-2005-6-5-r43
2005
Cited 79 times
Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis.
Gene-expression microarrays and RNA interferences (RNAi) are among the most prominent techniques in functional genomics. The combination of the two holds promise for systematic, large-scale dissection of transcriptional networks. Recent studies, however, raise the concern that nonspecific responses to small interfering RNAs (siRNAs) might obscure the consequences of silencing the gene of interest, throwing into question the ability of this experimental strategy to achieve precise network dissections. We used microarrays and RNAi to dissect a transcriptional network induced by DNA damage in a human cellular system. We recorded expression profiles with and without exposure of the cells to a radiomimetic drug that induces DNA double-strand breaks (DSBs). Profiles were measured in control cells and in cells knocked-down for the Rel-A subunit of NFκB and for p53, two pivotal stress-induced transcription factors, and for the protein kinase ATM, the major transducer of the cellular responses to DSBs. We observed that NFκB and p53 mediated most of the damage-induced gene activation; that they controlled the activation of largely disjoint sets of genes; and that ATM was required for the activation of both pathways. Applying computational promoter analysis, we demonstrated that the dissection of the network into ATM/NFκB and ATM/p53-mediated arms was highly accurate. Our results demonstrate that the combined experimental strategy of expression arrays and RNAi is indeed a powerful method for the dissection of complex transcriptional networks, and that computational promoter analysis can provide a strong complementary means for assessing the accuracy of this dissection.
DOI: 10.1091/mbc.e07-07-0698
2008
Cited 76 times
WRN Is Required for ATM Activation and the S-Phase Checkpoint in Response to Interstrand Cross-Link–Induced DNA Double-Strand Breaks
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link–induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, γH2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link–induced collapsed replication forks.
DOI: 10.1073/pnas.82.11.3761
1985
Cited 76 times
Differential amplification, assembly, and relocation of multiple DNA sequences in human neuroblastomas and neuroblastoma cell lines.
DNA amplification, manifested by homogeneously staining regions in chromosomes and by extrachromosomal, double minute bodies, is characteristic of many neuroblastoma cell lines. Sequences recruited from a specific domain on the short arm of chromosome 2 (2p) are amplified in advanced-stage primary neuroblastomas, whereas sequences from distinctly different regions of 2p are amplified in the neuroblastoma cell line IMR-32. Five different DNA segments, which include the oncogene N-myc, three other fragments derived from the homogeneously staining region of the neuroblastoma cell line IMR-32, and a fifth fragment, derived from the neuroblastoma cell line NB-9, showed differential and variable amplification in 24 advanced-stage neuroblastoma tumors out of 112 tested specimens. All five fragments were mapped within the chromosomal region 2p23-2p25 by three different approaches. However, eight other fragments cloned from the homogeneously staining region of IMR-32 cells, which were not amplified in the tumor tissues examined, were mapped to two more proximal domains of 2p, thousands of kilobases apart from each other and from the chromosomal domain that is amplified in the tumors. These results establish the amplification, to different degrees, of a variable-sized segment of one domain near the terminus of 2p in advanced neuroblastomas. These tumors might ultimately be distinguished according to the pattern of amplification of DNA segments within this domain. The data presented also indicate the existence of a new and complex amplification mechanism in at least one neuroblastoma cell line (IMR-32), which involves not only relocation of DNA from specific genomic domains but also the formation of novel units by splicing together very distant DNA segments.
DOI: 10.1074/jbc.m601895200
2006
Cited 75 times
Nuclear Ataxia-Telangiectasia Mutated (ATM) Mediates the Cellular Response to DNA Double Strand Breaks in Human Neuron-like Cells
The protein kinase ATM (ataxia-telangiectasia mutated) activates the cellular response to double strand breaks (DSBs), a highly cytotoxic DNA lesion. ATM is activated by DSBs and in turn phosphorylates key players in numerous damage response pathways. ATM is missing or inactivated in the autosomal recessive disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, genomic instability, radiation sensitivity, and cancer predisposition. The predominant symptom of A-T is a progressive loss of movement coordination due to ongoing degeneration of the cerebellar cortex and peripheral neuropathy. A major deficiency in understanding A-T is the lack of information on the role of ATM in neurons. It is unclear whether the ATM-mediated DSB response operates in these cells similarly to proliferating cells. Furthermore, ATM was reported to be cytoplasmic in neurons and suggested to function in these cells in capacities other than the DNA damage response. Recently we obtained genetic molecular evidence that the neuronal degeneration in A-T does result from defective DNA damage response. We therefore undertook to investigate this response in a model system of human neuron-like cells (NLCs) obtained by neuronal differentiation in culture. ATM was largely nuclear in NLCs, and their ATM-mediated responses to DSBs were similar to those of proliferating cells. Knocking down ATM did not interfere with neuronal differentiation but abolished ATM-mediated damage responses in NLCs. We concluded that nuclear ATM mediates the DSB response in NLCs similarly to in proliferating cells. Attempts to understand the neurodegeneration in A-T should be directed to investigating the DSB response in the nervous system.
DOI: 10.1021/pr800304n
2008
Cited 68 times
Citrate Boosts the Performance of Phosphopeptide Analysis by UPLC-ESI-MS/MS
Incomplete recovery from the LC column is identified as a major cause for poor detection efficiency of phosphopeptides by LC-MS/MS. It is proposed that metal ions adsorbed on the stationary phase interact with the phosphate group of phosphopeptides via an ion-pairing mechanism related to IMAC (IMAC: immobilized metal ion affinity chromatography). This may result in their partial or even complete retention. Addition of phosphate, EDTA or citrate to the phosphopeptide sample was tested to overcome the detrimental phosphopeptide suppression during gradient LC-MS/MS analysis, while the standard solvent composition (water, acetonitrile, formic acid) of the LC system was left unchanged. With the use of UPLC, a citrate additive was found to be highly effective in increasing the phosphopeptide detection sensitivity. Addition of EDTA was found to be comparable with respect to sensitivity enhancement, but led to fast clogging and destruction of the spray needle and analytical columns due to precipitation. In contrast, a citrate additive is compatible with prolonged and stable routine operation. A 50 mM citrate additive was tested successfully for UPLC-MS analysis of a commercial four-component phosphopeptide mixture, a tryptic β-casein digest, and several digests of the 140 kDa protein SETDB1. In this protein, 27 phosphorylation sites could be identified by UPLC-MS/MS using addition of citrate, including the detection of several phosphopeptides carrying 3−5 pSer/pThr residues, compared to identification of only 10 sites without citrate addition. A 50 mM citrate additive particularly increases the recovery of multiply phosphorylated peptides, thus, extending the scope of phosphopeptide analysis by LC-MS/MS.
DOI: 10.1093/carcin/3.7.815
1982
Cited 66 times
The response of ataxia-telangiectasia homozygous and heterozygous skin fibroblasts to neocarzinostatin
Skin fibroblast strains from patients with ataxia-telangiectasia (A-T) were recently reported to be hypersensitive to the antitumor antibiotic neocarzinostatin (NCS). In this study, the distinct intermediate degree of NCS sensitivity previously shown with two strains of A-T heterozygous fibroblasts was extended and confirmed in an additional eight strains. A sensitivity baseline for A-T heterozygous cells has thus been established and may serve for the laboratory diagnosis of A-T heterozygotes, a cancer-prone population. The response of A-T homozygous and heterozygous cells to NCS was further characterized by two molecular parameters, DNA repair synthesis and inhibition of DNA replication. The pattern of dose response with regard to DNA repair synthesis, as assayed by the benzoylated naphthoylated DEAE cellulose chromatography method, was similar in normal, A-T homozygous and A-T heterozygous cells, although certain variability between strains was observed with regard to the amount of repair incorporation. This finding correlates with a similar observation made with the same cell strains following γ-irradiation. Inhibition of DNA synthesis following NCS treatment was reduced in A-T homozygous cells, as compared to normal cells, but the “Inhibition resistant” component of DNA synthesis typically observed following treatment with low doses of X-rays or bleomycin was not observed with NCS. A-T heterozygous cells showed somewhat less inhibition of DNA synthesis than normal cells following NCS treatment, although this difference was small and was not significant enough to serve as an additional laboratory diagnostic aid. It is concluded that the reduced inhibition of DNA synthesis, rather than reduced extent of DNA repair synthesis, correlates with the cellular hypersensitivity of A-T homozygous cells. This hypersensitivity seems to be observed primarily, if not exclusively, with DNA breaking agents.
DOI: 10.4161/cc.10.24.18642
2011
Cited 60 times
Involvement of the nuclear proteasome activator PA28γ in the cellular response to DNA double-strand breaks
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs), a highly cytotoxic DNA lesion, activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways--nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.
DOI: 10.1038/embor.2011.96
2011
Cited 57 times
ATM‐mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double‐strand break repair
The cellular response to double-strand breaks (DSBs) in DNA is a complex signalling network, mobilized by the nuclear protein kinase ataxia-telangiectasia mutated (ATM), which phosphorylates many factors in the various branches of this network. A main question is how ATM regulates DSB repair. Here, we identify the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) as an ATM target. PNKP phosphorylates 5'-OH and dephosphorylates 3'-phosphate DNA ends that are formed at DSB termini caused by DNA-damaging agents, thereby regenerating legitimate ends for further processing. We establish that the ATM phosphorylation targets on human PNKP-Ser 114 and Ser 126-are crucial for cellular survival following DSB induction and for effective DSB repair, being essential for damage-induced enhancement of the activity of PNKP and its proper accumulation at the sites of DNA damage. These findings show a direct functional link between ATM and the DSB-repair machinery.
DOI: 10.1126/scisignal.2005032
2014
Cited 51 times
Parallel Profiling of the Transcriptome, Cistrome, and Epigenome in the Cellular Response to Ionizing Radiation
The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers. We identified protein-coding and previously unidentified noncoding genes that were responsive to IR, and demonstrated that IR-induced transcriptional dynamics was mediated largely by the transcription factors p53 and nuclear factor κB (NF-κB) and was primarily dependent on the kinase ataxia-telangiectasia mutated (ATM). The resultant data set provides a rich resource for understanding a basic, underlying component of a critical cellular stress response.
DOI: 10.1016/j.molcel.2018.02.002
2018
Cited 42 times
The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair
<h2>Summary</h2> Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
DOI: 10.1016/j.dnarep.2020.102950
2020
Cited 36 times
The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T’s hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T – the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
DOI: 10.15252/embj.2020104400
2020
Cited 29 times
Phosphoproteomics reveals novel modes of function and inter‐relationships among PIKKs in response to genotoxic stress
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.
1996
Cited 82 times
Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening.
We have examined the distal half of the ataxia-telangiectasia (A-T) gene transcript for truncation mutations in 48 A-T affecteds. We found 21 mutations; 4 of the mutations were seen in more than one individual. Genotyping of the individuals sharing mutations, by using nearby microsatellite markers, established that three of the four groups shared common haplotypes, indicating that these were probably founder effects, not public mutations. The one public mutation was found in two American families, one of Ashkenazi Jewish background and the other not. Most truncations deleted the PI3-kinase domain, although some exceptions to this were found in patients with typical A-T phenotypes. All patients not previously known to be consanguineous were found to be compound heterozygotes when mutations could be identified--that is, normal and abnormal protein segments were seen on SDS-PAGE gels. All 48 patients gave RT-PCR products, indicating the presence of relatively stable mRNAs despite their mutations. These results suggest that few public mutations or hot spots can be expected in the A-T gene and that epidemiological studies of A-T carrier status and associated health risks will have to be designed around populations with frequent founder-effect mutations, despite the obvious limitations of this approach.
DOI: 10.1016/s0968-0004(00)89083-0
1995
Cited 81 times
Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase
Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines.LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival.Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced.Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated.
DOI: 10.1038/sj.onc.1209189
2005
Cited 72 times
Parallel induction of ATM-dependent pro- and antiapoptotic signals in response to ionizing radiation in murine lymphoid tissue
The ATM protein kinase, functionally missing in patients with the human genetic disorder ataxia-telangiectasia, is a master regulator of the cellular network induced by DNA double-strand breaks. The ATM gene is also frequently mutated in sporadic cancers of lymphoid origin. Here, we applied a functional genomics approach that combined gene expression profiling and computational promoter analysis to obtain global dissection of the transcriptional response to ionizing radiation in murine lymphoid tissue. Cluster analysis revealed a prominent pattern characterizing dozens of genes whose response to irradiation was Atm-dependent. Computational analysis identified significant enrichment of the binding site signatures of NF-kappaB and p53 among promoters of these genes, pointing to the major role of these two transcription factors in mediating the Atm-dependent transcriptional response in the irradiated lymphoid tissue. Examination of the response showed that pro- and antiapoptotic signals were simultaneously induced, with the proapoptotic pathway mediated by p53 targets, and the prosurvival pathway by NF-kappaB targets. These findings further elucidate the molecular network induced by IR, point to novel putative NF-kappaB targets, and suggest a mechanistic model for cellular balancing between pro- and antiapoptotic signals induced by IR in lymphoid tissues, which has implications for cancer management. The emerging model suggests that restoring the p53-mediated apoptotic arm while blocking the NF-kappaB-mediated prosurvival arm could effectively increase the radiosensitivity of lymphoid tumors.
1988
Cited 70 times
Sporadic amplification of the HER2/neu protooncogene in adenocarcinomas of various tissues.
The HER2/neu protooncogene was found to be amplified in 6 of 109 primary adenocarcinoma tumors. No HER2/neu amplification was found in 29 other primary nonadenocarcinomatous tumors. In two colon tumors, in addition to the amplification, DNA rearrangement of HER2/neu gene was also observed. The rearrangement was explored in detail in one tumor and it was shown to be confined to the 3' region of the gene. Moreover, this tumor expressed an aberrant HER2/neu polypeptide with a molecular weight of 190,000, which is larger by approximately 5,000 than the molecular weight of the normal HER2/neu protein. The aberrant HER2/neu protein was immunoprecipitated with site-specific antibodies against a synthetic peptide from the COOH-terminal end of the normal HER2/neu protein; it also displayed intrinsic protein tyrosine kinase activity leading to self-phosphorylation.
1995
Cited 70 times
Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 11q23.3.
Chromosome 11 is frequently altered in several types of human neoplasms. In breast cancer, loss of heterozygosity has been described in two regions of this chromosome, 11p15 and 11q22-23. In this report we have dissected the two regions using high-density polymorphic markers, and have found that there are at least two independent areas of loss of heterozygosity in each region, suggesting that multiple genes on chromosome 11 may be targets of genetic alteration during tumor establishment or progression. The regions defined are: at 11p15, between loci D11S576 and D11S1318 and between D11S988 and D11S1318; at 11q23, between D11S2000 and D11S897 and between D11S528 and D11S990. The narrowing of these regions of loss should facilitate the cloning of the regions in yeast artificial chromosomes to identify the critical tumor suppressor genes.
DOI: 10.1007/bf01541389
1996
Cited 69 times
Ataxia-telangiectasia and the ATM gene: Linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints
DOI: 10.1038/344168a0
1990
Cited 69 times
A single origin of phenylketonuria in Yemenite Jews
DOI: 10.1007/bf00292656
1986
Cited 63 times
Assignment of the human ?-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33?36
DOI: 10.1186/1471-2105-9-110
2008
Cited 60 times
SPIKE – a database, visualization and analysis tool of cellular signaling pathways
Abstract Background Biological signaling pathways that govern cellular physiology form an intricate web of tightly regulated interlocking processes. Data on these regulatory networks are accumulating at an unprecedented pace. The assimilation, visualization and interpretation of these data have become a major challenge in biological research, and once met, will greatly boost our ability to understand cell functioning on a systems level. Results To cope with this challenge, we are developing the SPIKE knowledge-base of signaling pathways. SPIKE contains three main software components: 1) A database (DB) of biological signaling pathways. Carefully curated information from the literature and data from large public sources constitute distinct tiers of the DB. 2) A visualization package that allows interactive graphic representations of regulatory interactions stored in the DB and superposition of functional genomic and proteomic data on the maps. 3) An algorithmic inference engine that analyzes the networks for novel functional interplays between network components. SPIKE is designed and implemented as a community tool and therefore provides a user-friendly interface that allows registered users to upload data to SPIKE DB. Our vision is that the DB will be populated by a distributed and highly collaborative effort undertaken by multiple groups in the research community, where each group contributes data in its field of expertise. Conclusion The integrated capabilities of SPIKE make it a powerful platform for the analysis of signaling networks and the integration of knowledge on such networks with omics data.
DOI: 10.1093/nar/gkv270
2015
Cited 34 times
The COP9 signalosome is vital for timely repair of DNA double-strand breaks
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.
DOI: 10.1002/(sici)1098-2264(199703)18:3<175::aid-gcc4>3.0.co;2-z
1997
Cited 68 times
Loss of heterozygosity at 11q23.1 in breast carcinomas: Indication for involvement of a gene distal and close toATM
Previous reports have suggested that heterozygotes for ataxia-telangiectasia (A-T) have an increased risk of cancer, in particular breast cancer. The ATM gene, responsible for A-T, was recently cloned. Loss of heterozygosity (LOH) in the chromosome band 11q23, where the ATM gene is located, has been reported in several types of tumours including breast carcinomas. Whether the ATM gene is the target, and the sole target, for the LOH seen in this region is not yet known. In this study, 169 primary breast carcinomas and 10 metastases were examined for allelic imbalance (AI) using 10 microsatellite markers mapping to 11q23.1. Nine of the markers reside within a 10 Mb region surrounding the ATM gene, whereas the tenth locus, APOC-3, is located more than 12 Mb telomeric from this region. The highest frequencies of alteration were found for APOC-3 (45%), and for two markers located approximately 200 and 900 kb telomeric from ATM, DIIS1294 (44%) and DIIS1818 (44%). The marker located within the ATM gene, DIIS2179, was altered in 37% of the informative tumours. The present deletion map indicates that three distinct regions at 11q23.1 may be involved in breast cancer development; one between the markers DIIS1294 and DIIS1818, a second close to APOC-3, and a third that is possibly the ATM-gene itself. Genes Chromosom. Cancer 18:175–180, 1997. © 1997 Wiley-Liss, Inc.
DOI: 10.1016/s0952-7915(96)80030-6
1996
Cited 67 times
Ataxia-telangiectasia: a multifaceted genetic disorder associated with defective signal transduction
The gene responsible for the defect in the human genetic disorder ataxia-telangiectasia, ATM, was cloned recently. The part of the gene coding for a phosphatidylinositol 3-kinase domain showed it to be related to a family of genes involved in signal transduction, cell cycle control and the response to DNA damage. The elucidation of the role of the ATM gene product will provide valuable insight into the radiosensitivity, cancer predisposition, immunodeficiency and neuropathology that characterize this syndrome.
DOI: 10.1038/sj.onc.1204111
2001
Cited 66 times
Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by α-lipoic acid
Cells from patients with the genetic disorder ataxia-telangiectasia (A-T) are hypersensitive to ionizing radiation and radiomimetic agents, both of which generate reactive oxygen species capable of causing oxidative damage to DNA and other macromolecules. We describe in A-T cells constitutive activation of pathways that normally respond to genotoxic stress. Basal levels of p53 and p21WAF1/CIP1, phosphorylation on serine 15 of p53, and the Tyr15-phosphorylated form of cdc2 are chronically elevated in these cells. Treatment of A-T cells with the antioxidant α-lipoic acid significantly reduced the levels of these proteins, pointing to the involvement of reactive oxygen species in their chronic activation. These findings suggest that the absence of functional ATM results in a mild but continuous state of oxidative stress, which could account for several features of the pleiotropic phenotype of A-T.
DOI: 10.1093/nar/25.9.1678
1997
Cited 63 times
Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-transcriptional regulation of ATM gene expression
Mutations in the ATM gene are responsible for the multisystem disorder ataxia-telangiectasia, characterized by neurodegeneration, immune deficiency and cancer predisposition. While no alternative splicing was identified within the coding region, the first four exons of the ATM gene, which fall within the 5′ untranslated region (UTR), undergo extensive alternative splicing. We identified 12 different 5′ UTRs that show considerable diversity in length and sequence contents. These mRNA leaders, which range from 150 to 884 nucleotides (nt), are expected to form variable secondary structures and contain different numbers of AUG codons. The longest 5′ UTR contains a total of 18 AUGs upstream of the translation start site. The 3′ UTR of 3590 nt is contained within a single 3′ exon. Alternative polyadenylation results in 3′ UTRs of varying lengths. These structural features suggest that ATM expression might be subject to complex posttranscriptional regulation, enabling rapid modulation of ATM protein level in response to environmental stimuli or alterations in cellular physiological states.