ϟ

Yiming Zhang

Here are all the papers by Yiming Zhang that you can download and read on OA.mg.
Yiming Zhang’s last known institution is . Download Yiming Zhang PDFs here.

Claim this Profile →
DOI: 10.1016/j.gca.2021.11.014
2022
Cited 21 times
Variations in wetland hydrology drive rapid changes in the microbial community, carbon metabolic activity, and greenhouse gas fluxes
Wetlands play a crucial role in the carbon cycle as they are the largest natural source of methane, a potent greenhouse gas. Changes in wetland hydrology can alter the rate of greenhouse gas release from wetlands and have the potential to alter Earth’s carbon budget. However, the microbial dynamics underpinning these observations are poorly constrained. Here we combine monitoring of environmental parameters and greenhouse gas fluxes with monthly records of microbial phospholipid fatty acid (PLFAs) δ13C values to probe changes in microbial community and biogeochemistry in response to hydrological changes in a monsoon influenced subtropical wetland from central China. Our results show that water table depth is a key factor controlling the microbial community structure, with Gram-negative bacteria and actinobacteria increasing and fungi decreasing during dry and low water table periods. Meanwhile, the δ13C values of specific PLFAs decreased up to 12‰ during dry compared to wet periods. The extent of depletion varied, but PLFAs from Gram-negative bacteria were most depleted in 13C, indicative for a rapid increase in methanotrophy (methane consumption) during these dry periods. Furthermore, the methane emission of the wetland was drastically reduced and even had negative flux values during dry periods, suggesting that the increased methanotrophy led to a reduced methane flux and a temporary shift of the wetland from a methane source to a methane sink. Our results indicate that short-term hydrological variations lead to a rapid response in microbial community and carbon metabolic activity that directly influences wetland carbon dynamics and greenhouse gas emissions.
DOI: 10.1038/s41559-023-02238-y
2023
Single-cell transcriptomics reveals the brain evolution of web-building spiders
Abstract Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider ( Hylyphantes graminicola ). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders’ web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
DOI: 10.1016/j.chemgeo.2020.119622
2020
Cited 10 times
The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH
Long-chain (C21-C33) n-alkan-2-ones are biomarkers ubiquitous in peat deposits. However, their paleoenvironmental significance lacks constraints. Here we evaluate the influence pH exerts on the occurrence of long-chain n-alkan-2-ones in Chinese peats. A comparison of the distribution in a collection (n = 65) of modern peat samples with different pH (pH values 4.4–8.6) from China demonstrates that their distribution is significantly different in acid compared to alkaline peat. This difference can be explained by the pH control on the conversion of n-alkan-2-one precursor compounds (n-alkanes and fatty acids). Transfer functions between pH and n-alkan-2-one ratios were established using linear and logarithmic regression models. We then applied these proxies to reconstruct variations of paleo-pH in the Dajiuhu peat sequence to identify the history of peatland acidification over the last 13 kyr. We find significant changes in paleo-pH during the deglaciation/early Holocene and relate these to times of dry climate in the region. The drought-induced peat acidification is supported by observations from modern drying events in the peatland. We propose that long-chain n-alkan-2-ones in peats have potential to trace paleo-pH changes across the deglaciation and Holocene, although further research from different peatlands and time periods is still needed.