ϟ

Yi Xin Zeng

Here are all the papers by Yi Xin Zeng that you can download and read on OA.mg.
Yi Xin Zeng’s last known institution is . Download Yi Xin Zeng PDFs here.

Claim this Profile →
DOI: 10.1261/rna.1034808
2008
Cited 1,029 times
MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis
To investigate the global expression profile of miRNAs in primary breast cancer (BC) and normal adjacent tumor tissues (NATs) and its potential relevance to clinicopathological characteristics and patient survival, the genome-wide expression profiling of miRNAs in BC was investigated using a microarray containing 435 mature human miRNA oligonucleotide probes. Nine miRNAs of hsa-miR-21, hsa-miR-365, hsa-miR-181b, hsa-let-7f, hsa-miR-155, hsa-miR-29b, hsa-miR-181d, hsa-miR-98, and hsa-miR-29c were observed to be up-regulated greater than twofold in BC compared with NAT, whereas seven miRNAs of hsa-miR-497, hsa-miR-31, hsa-miR-355, hsa-miR-320, rno-mir-140, hsa-miR-127 and hsa-miR-30a-3p were observed to be down-regulated greater than twofold. The most significantly up-regulated miRNAs, hsa-mir-21 (miR-21), was quantitatively analyzed by TaqMan real-time PCR in 113 BC tumors. Interestingly, among the 113 BC cases, high level expression of miR-21 was significantly correlated with advanced clinical stage (P = 0.006, Fisher's exact text), lymph node metastasis (P = 0.007, Fisher's exact text), and shortened survival of the patients (hazard ratio [HR]=5.476, P < 0.001). Multivariate Cox regression analysis revealed this prognostic impact (HR=4.133, P = 0.001) to be independent of disease stage (HR=2.226, P = 0.013) and histological grade (HR=3.681, P = 0.033). This study could identify the differentiated miRNAs expression profile in BC and reveal that miR-21 overexpression was correlated with specific breast cancer biopathologic features, such as advanced tumor stage, lymph node metastasis, and poor survival of the patients, indicating that miR-21 may serve as a molecular prognostic marker for BC and disease progression.
DOI: 10.1016/j.ccr.2014.01.028
2014
Cited 402 times
Disrupting the Interaction of BRD4 with Diacetylated Twist Suppresses Tumorigenesis in Basal-like Breast Cancer
Twist is a key transcription activator of epithelial-mesenchymal transition (EMT). It remains unclear how Twist induces gene expression. Here we report a mechanism by which Twist recruits BRD4 to direct WNT5A expression in basal-like breast cancer (BLBC). Twist contains a "histone H4-mimic" GK-X-GK motif that is diacetylated by Tip60. The diacetylated Twist binds the second bromodomain of BRD4, whose first bromodomain interacts with acetylated H4, thereby constructing an activated Twist/BRD4/P-TEFb/RNA-Pol II complex at the WNT5A promoter and enhancer. Pharmacologic inhibition of the Twist-BRD4 association reduced WNT5A expression and suppressed invasion, cancer stem cell (CSC)-like properties, and tumorigenicity of BLBC cells. Our study indicates that the interaction with BRD4 is critical for the oncogenic function of Twist in BLBC.
DOI: 10.1172/jci39374
2009
Cited 375 times
The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells
The polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is dysregulated in various cancers, and its upregulation strongly correlates with an invasive phenotype and poor prognosis in patients with nasopharyngeal carcinomas. However, the underlying mechanism of Bmi-1-mediated invasiveness remains unknown. In the current study, we found that upregulation of Bmi-1 induced epithelial-mesenchymal transition (EMT) and enhanced the motility and invasiveness of human nasopharyngeal epithelial cells, whereas silencing endogenous Bmi-1 expression reversed EMT and reduced motility. Furthermore, upregulation of Bmi-1 led to the stabilization of Snail, a transcriptional repressor associated with EMT, via modulation of PI3K/Akt/GSK-3beta signaling. Chromatin immunoprecipitation assays revealed that Bmi-1 transcriptionally downregulated expression of the tumor suppressor PTEN in tumor cells through direct association with the PTEN locus. This in vitro analysis was consistent with the statistical inverse correlation detected between Bmi-1 and PTEN expression in a cohort of human nasopharyngeal carcinoma biopsies. Moreover, ablation of PTEN expression partially rescued the migratory/invasive phenotype of Bmi-1-silenced cells, indicating that PTEN might be a major mediator of Bmi-1-induced EMT. Our results provide functional and mechanistic links between the oncoprotein Bmi-1 and the tumor suppressor PTEN in the development and progression of cancer.
DOI: 10.1038/ng.601
2010
Cited 359 times
A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci
DOI: 10.1136/gut.2011.239145
2011
Cited 352 times
The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2
<h3>Background</h3> Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-124) in hepatocellular carcinoma (HCC). <h3>Objective</h3> To determine the status of miR-124 expression and its underlying mechanisms in the pathogenesis of HCC. <h3>Methods</h3> The expression levels of miR-124 were first examined in HCC cell lines and tumour tissues by real-time PCR. The in vitro and in vivo functional effect of miR-124 was examined further. A luciferase reporter assay was conducted to confirm target associations. <h3>Results</h3> The expression levels of miR-124 were frequently reduced in HCC cells and tissues, and low-level expression of miR-124 was significantly associated with a more aggressive and/or poor prognostic phenotype of patients with HCC (p&lt;0.05). In HCC cell lines, stable overexpression of miR-124 was sufficient to inhibit cell motility and invasion in vitro, and suppress intrahepatic and pulmonary metastasis in vivo. In addition, ectopic overexpression of miR-124 in HCC cells inhibited epithelial–mesenchymal cell transition, formation of stress fibres, filopodia and lamellipodia. Further studies showed that miR-124 could directly target the 3<sup>′</sup>-untranslated region (3′-UTR) of both ROCK2 and EZH2 mRNAs, and suppress their mRNA and protein expressions. These findings suggest that miR-124 plays a critical role in regulating cytoskeletal events and epithelial–mesenchymal cell transition and, ultimately, inhibits the invasive and/or metastatic potential of HCC, probably by its direct target on ROCK2 and EZH2 genes. These results provide functional and mechanistic links between the tumour suppressor miRNA-124 and the two oncogenes ROCK2 and EZH2 on the aggressive nature of HCC. <h3>Conclusion</h3> These data highlight an important role for miR-124 in the regulation of invasion and metastasis in the molecular aetiology of HCC, and suggest a potential application of miR-124 in prognosis prediction and cancer treatment.
DOI: 10.1016/j.canlet.2016.01.040
2016
Cited 320 times
Global trends in incidence and mortality of nasopharyngeal carcinoma
Nasopharyngeal carcinoma (NPC) is a rare malignancy with an extraordinarily skewed geographic distribution worldwide. Although decreasing trends in incidence and mortality of NPC have been sporadically reported in some high-risk areas, no comprehensive description of the global trends has ever been made. We accessed incidence (1970–2007) and mortality (1970–2013) data from multiple sources, with the main ones being the Cancer Incidence in Five Continents (CI5) series and the World Health Organization (WHO) cancer mortality database. During the entire period studied, age-standardized incidence rates (ASIRs) of NPC decreased significantly in southern and eastern Asia, north America and Nordic countries with average annual percent changes (AAPCs) of −0.9% to −5.4% in males and −1.1% to −4.1% in females. Declines in age-standardized mortality rates (ASMRs) are even more remarkable and extensive, with AAPCs varying from −0.9% and −0.8% to −3.7% and −6.5% in males and females, respectively. Decreasing trends in NPC incidence are probably due to tobacco control, changes in diets and economic development. Declines in mortality rates are the results of advancements in diagnostic and radiotherapy techniques, as well as decreased incidence rates.
DOI: 10.1038/ng.638
2010
Cited 308 times
Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers
DOI: 10.1093/jnci/djv291
2015
Cited 295 times
Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma
This study aimed to establish an effective prognostic nomogram with or without plasma Epstein-Barr virus DNA (EBV DNA) for nondisseminated nasopharyngeal carcinoma (NPC).The nomogram was based on a retrospective study of 4630 patients who underwent radiotherapy with or without chemotherapy at Sun Yat-sen University Cancer Center from 2007 to 2009. The predictive accuracy and discriminative ability of the nomogram were determined by a concordance index (C-index) and calibration curve and were compared with EBV DNA and the current staging system. The results were validated using bootstrap resampling and a prospective cohort study on 1819 patients consecutively enrolled from 2011 to 2012 at the same institution. All statistical tests were two-sided.Independent factors derived from multivariable analysis of the primary cohort to predict recurrence were age, sex, body mass index (BMI), T stage, N stage, plasma EBV DNA, pretreatment high sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), and hemoglobin level (HGB), which were all assembled into the nomogram with (nomogram B) or without EBV DNA (nomogram A). The calibration curve for the probability of recurrence showed that the nomogram-based predictions were in good agreement with actual observations. The C-index of nomogram B for predicting recurrence was 0.728 (P < .001), which was statistically higher than the C-index values for nomogram A (0.690), EBV DNA (0.680), and the current staging system (0.609). The C-index of nomogram B (0.730) and nomogram A (0.681) remained higher for predicting recurrence among patients treated with intensity-modulated radiotherapy (P < .001). The results were confirmed in the validation cohort.The proposed nomogram with or without plasma EBV DNA resulted in more accurate prognostic prediction for NPC patients.
DOI: 10.1016/j.ajhg.2009.10.016
2009
Cited 290 times
Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation
Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional "north-south" population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused "outliers," probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future.
DOI: 10.18632/oncotarget.2118
2014
Cited 289 times
Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma
Tumor-derived exosomes contain biologically active proteins and messenger and microRNAs (miRNAs). These particles serve as vehicles of intercellular communication and are emerging mediators of tumorigenesis and immune escape. Here, we isolated 30-100 nm exosomes from the serum of patients with nasopharyngeal carcinoma (NPC) or the supernatant of TW03 cells. Increased circulating exosome concentrations were correlated with advanced lymphoid node stage and poor prognosis in NPC patients (P< 0.05). TW03-derived exosomes impaired T-cell function by inhibiting T-cell proliferation and Th1 and Th17 differentiation and promoting Treg induction by NPC cells in vitro. These results are associated with decreases in ERK, STAT1, and STAT3 phosphorylation and increases in STAT5 phosphorylation in exosome-stimulated T-cells. TW03-derived exosomes increased the proinflammatory cytokines IL-1β, IL-6, and IL-10 but decreased IFNγ, IL-2, and IL-17 release from CD4+ or CD8+ T-cells. Furthermore, five commonly over-expressed miRNAs were identified in the exosomes from patient sera or NPC cells: hsa-miR-24-3p, hsa-miR-891a, hsa-miR-106a-5p, hsa-miR-20a-5p, and hsa-miR-1908. These over-expressed miRNA clusters down-regulated the MARK1 signaling pathway to alter cell proliferation and differentiation. Overall, these observations reveal the clinical relevance and prognostic value of tumor-derived exosomes and identify a unique intercellular mechanism mediated by tumor-derived exosomes to modulate T-cell function in NPC.
DOI: 10.1186/bcr2803
2011
Cited 281 times
Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivotumor growth
MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets.We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays.Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis).Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment.
DOI: 10.1056/nejmoa1213096
2013
Cited 262 times
<i>HLA-B*13:01</i>and the Dapsone Hypersensitivity Syndrome
Dapsone is used in the treatment of infections and inflammatory diseases. The dapsone hypersensitivity syndrome, which is associated with a reported mortality of 9.9%, develops in about 0.5 to 3.6% of persons treated with the drug. Currently, no tests are available to predict the risk of the dapsone hypersensitivity syndrome.
DOI: 10.1158/0008-5472.can-10-2435
2011
Cited 251 times
miR-125b Is Methylated and Functions as a Tumor Suppressor by Regulating the ETS1 Proto-oncogene in Human Invasive Breast Cancer
The microRNA miR-125b is dysregulated in various human cancers but its underlying mechanisms of action are poorly understood. Here, we report that miR-125b is downregulated in invasive breast cancers where it predicts poor patient survival. Hypermethylation of the miR-125b promoter partially accounted for reduction of miR-125b expression in human breast cancer. Ectopic restoration of miR-125b expression in breast cancer cells suppressed proliferation, induced G(1) cell-cycle arrest in vitro, and inhibited tumorigenesis in vivo. We identified the ETS1 gene as a novel direct target of miR-125b. siRNA-mediated ETS1 knockdown phenocopied the effect of miR-125b in breast cell lines and ETS1 overexpression in invasive breast cancer tissues also correlated with poor patient prognosis. Taken together, our findings point to an important role for miR-125b in the molecular etiology of invasive breast cancer, and they suggest miR-125b as a potential theranostic tool in this disease.
DOI: 10.1371/journal.pone.0030806
2012
Cited 240 times
Increased Intratumoral Neutrophil in Colorectal Carcinomas Correlates Closely with Malignant Phenotype and Predicts Patients' Adverse Prognosis
Background Substantial evidence suggests that the presence of inflammatory cells plays a critical role in the development and/or progression of human tumors. Neutrophils are the common inflammatory cells in tumors; however, the infiltration of intratumoral neutrophils in colorectal carcinoma (CRC) and its effect on CRC patients' prognosis are poorly understood. Methodology/Principal Findings In this study, the methods of tissue microarray and immunohistochemistry (IHC) were used to investigate the prognostic significance of intratumoral CD66b+ neutrophil in CRC. According to receiver operating characteristic curve analysis, the cutoff score for high intratumoral CD66b+ neutrophil in CRC was defined when the mean counts were more than 60 per TMA spot. In our study, high intratumoral CD66b+ neutrophil was observed in 104/229 (45.4%) of CRCs and in 29/229 (12.7%) of adjacent mucosal tissues. Further correlation analysis showed that high intratumoral neutrophil was positively correlated with pT status, pM status and clinical stage (P<0.05). In univariate survival analysis, a significant association between high intratumoral neutrophil and shortened patients' survival was found (P<0.0001). In different subsets of CRC patients, intratumoral neutrophil was also a prognostic indicator in patients with stage II, stage III, grade 2, grade 3, pT1, pT2, pN0 and pN1 (P<0.05). Importantly, high intratumoral neutrophil was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Conclusions/Significance Our results provide evidence that increased intratumoral neutrophil in CRC may be important in the acquisition of a malignant phenotype, indicating that the presence of intratumoral neutrophil is an independent factor for poor prognosis of patients with CRC.
DOI: 10.1038/s41467-019-11558-2
2019
Cited 225 times
A meta-analysis of genome-wide association studies identifies multiple longevity genes
Abstract Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78 , associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
DOI: 10.1038/ng.2985
2014
Cited 213 times
Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk
Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted a genome-wide association study of CRC in East Asians with 14,963 cases and 31,945 controls and identified 6 new loci associated with CRC risk (P = 3.42 × 10(-8) to 9.22 × 10(-21)) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcriptional regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9), and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC-associated loci. Our study provides insights into the genetic basis of CRC and suggests the involvement of new biological pathways.
DOI: 10.1080/15548627.2017.1381804
2017
Cited 189 times
Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2)
Impaired macroautophagy/autophagy and high levels of glycolysis are prevalent in liver cancer. However, it remains unknown whether there is a regulatory relationship between autophagy and glycolytic metabolism. In this study, by utilizing cancer cells with basal or impaired autophagic flux, we demonstrated that glycolytic activity is negatively correlated with autophagy level. The autophagic degradation of HK2 (hexokinase 2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate, was found to be involved in the regulation of glycolysis by autophagy. The Lys63-linked ubiquitination of HK2 catalyzed by the E3 ligase TRAF6 was critical for the subsequent recognition of HK2 by the autophagy receptor protein SQSTM1/p62 for the process of selective autophagic degradation. In a tissue microarray of human liver cancer, the combination of high HK2 expression and high SQSTM1 expression was shown to have biological and prognostic significance. Furthermore, 3-BrPA, a pyruvate analog targeting HK2, significantly decreased the growth of autophagy-impaired tumors in vitro and in vivo (p < 0.05). By demonstrating the regulation of glycolysis by autophagy through the TRAF6- and SQSTM1-mediated ubiquitination system, our study may open an avenue for developing a glycolysis-targeting therapeutic intervention for treatment of autophagy-impaired liver cancer.
DOI: 10.1073/pnas.1917891117
2020
Cited 171 times
Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy
Significance Strategies to improve efficacy and reduce side effects of immune checkpoint blockade (ICB) therapy are clinically relevant. Here, we described a transdermal cold atmospheric plasma (CAP)-mediated ICB therapy. Local delivery of CAP through hollow-structured microneedles as microchannels promote the release of tumor-associated antigens by CAP. The subsequent T cell-mediated immune response can be augmented by the immune checkpoint inhibitors delivered via microneedles, resulting in enhanced local and systemic anticancer immunity. The synergism between CAP and ICB integrated with microneedles provides a platform technique for cancer treatment and other diseases in a minimally invasive manner.
DOI: 10.1038/s41564-017-0080-8
2018
Cited 162 times
Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry
Epstein-Barr virus (EBV) is causally associated with nasopharyngeal carcinoma, 10% of gastric carcinoma and various B cell lymphomas 1 . EBV infects both B cells and epithelial cells 2 . Recently, we reported that epidermal growth factor and Neuropilin 1 markedly enhanced EBV entry into nasopharyngeal epithelial cells 3 . However, knowledge of how EBV infects epithelial cells remains incomplete. To understand the mechanisms through which EBV infects epithelial cells, we integrated microarray and RNA interference screen analyses and found that Ephrin receptor A2 (EphA2) is important for EBV entry into the epithelial cells. EphA2 short interfering RNA knockdown or CRISPR-Cas9 knockout markedly reduced EBV epithelial cell infection, which was mostly restored by EphA2 complementary DNA rescue. EphA2 overexpression increased epithelial cell EBV infection. Soluble EphA2 protein, antibodies against EphA2, soluble EphA2 ligand EphrinA1, or the EphA2 inhibitor 2,5-dimethylpyrrolyl benzoic acid efficiently blocked EBV epithelial cell infection. Mechanistically, EphA2 interacted with EBV entry proteins gH/gL and gB to facilitate EBV internalization and fusion. The EphA2 Ephrin-binding domain and fibronectin type III repeats domain were essential for EphA2-mediated EBV infection, while the intracellular domain was dispensable. This is distinct from Kaposi's sarcoma-associated herpesvirus infection through EphA2 4 . Taken together, our results identify EphA2 as a critical player for EBV epithelial cell entry.
DOI: 10.1021/acsnano.0c08379
2021
Cited 151 times
Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates
The coronavirus disease pandemic of 2019 (COVID-19) caused by the novel SARS-CoV-2 coronavirus resulted in economic losses and threatened human health worldwide. The pandemic highlights an urgent need for a stable, easily produced, and effective vaccine. SARS-CoV-2 uses the spike protein receptor-binding domain (RBD) to bind its cognate receptor, angiotensin-converting enzyme 2 (ACE2), and initiate membrane fusion. Thus, the RBD is an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticle vaccine candidates, namely, RBD-Ferritin (24-mer), RBD-mi3 (60-mer), and RBD-I53–50 (120-mer), via covalent conjugation using the SpyTag-SpyCatcher system. When mice were immunized with the RBD-conjugated nanoparticles (NPs) in conjunction with the AddaVax or Sigma Adjuvant System, the resulting antisera exhibited 8- to 120-fold greater neutralizing activity against both a pseudovirus and the authentic virus than those of mice immunized with monomeric RBD. Most importantly, sera from mice immunized with RBD-conjugated NPs more efficiently blocked the binding of RBD to ACE2 in vitro, further corroborating the promising immunization effect. Additionally, the vaccine has distinct advantages in terms of a relatively simple scale-up and flexible assembly. These results illustrate that the SARS-CoV-2 RBD-conjugated nanoparticles developed in this study are a competitive vaccine candidate and that the carrier nanoparticles could be adopted as a universal platform for a future vaccine development.
DOI: 10.1038/s41588-019-0436-5
2019
Cited 136 times
Genome sequencing analysis identifies Epstein–Barr virus subtypes associated with high risk of nasopharyngeal carcinoma
Epstein–Barr virus (EBV) infection is ubiquitous worldwide and is associated with multiple cancers, including nasopharyngeal carcinoma (NPC). The importance of EBV viral genomic variation in NPC development and its striking epidemic in southern China has been poorly explored. Through large-scale genome sequencing of 270 EBV isolates and two-stage association study of EBV isolates from China, we identify two non-synonymous EBV variants within BALF2 that are strongly associated with the risk of NPC (odds ratio (OR) = 8.69, P = 9.69 × 10−25 for SNP 162476_C; OR = 6.14, P = 2.40 × 10−32 for SNP 163364_T). The cumulative effects of these variants contribute to 83% of the overall risk of NPC in southern China. Phylogenetic analysis of the risk variants reveals a unique origin in Asia, followed by clonal expansion in NPC-endemic regions. Our results provide novel insights into the NPC endemic in southern China and also enable the identification of high-risk individuals for NPC prevention. Whole-genome sequencing and association analysis of 270 Epstein–Barr virus (EBV) isolates from China identify two non-synonymous EBV variants within BALF2 that are strongly associated with the risk of nasopharyngeal carcinoma.
DOI: 10.1073/pnas.1819799116
2019
Cited 129 times
Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy
Significance We detected cfDNA somatic mutations in combination with protein markers to efficiently identify early stage HCC from asymptomatic HBsAg-seropositive individuals in a community population. We designed an assay to profile multiple types of genetic variations in parallel so that 2 mL of plasma were sufficient to achieve high sensitivity in the detection of cfDNA mutations. The assay successfully identified four early-stage HCC cases (&lt;3 cm) from 331 HBsAg (+) individuals who were negative based on screening with serum AFP and ultrasonography. The positive predictive value was 17%, which was much higher than in previous studies. This paper shows that the combination of cfDNA and serum protein markers has significant promise for the early detection of HCC in the community population.
DOI: 10.1053/j.gastro.2018.11.066
2019
Cited 114 times
Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer
Background & AimsGenome-wide association studies (GWASs) have associated approximately 50 loci with risk of colorectal cancer (CRC)—nearly one third of these loci were initially associated with CRC in studies conducted in East Asian populations. We conducted a GWAS of East Asians to identify CRC risk loci and evaluate the generalizability of findings from GWASs of European populations to Asian populations.MethodsWe analyzed genetic data from 22,775 patients with CRC (cases) and 47,731 individuals without cancer (controls) from 14 studies in the Asia Colorectal Cancer Consortium. First, we performed a meta-analysis of 7 GWASs (10,625 cases and 34,595 controls) and identified 46,554 promising risk variants for replication by adding them to the Multi-Ethnic Global Array (MEGA) for genotype analysis in 6445 cases and 7175 controls. These data were analyzed, along with data from an additional 5705 cases and 5961 controls genotyped using the OncoArray. We also obtained data from 57,976 cases and 67,242 controls of European descent. Variants at identified risk loci were functionally annotated and evaluated in correlation with gene expression levels.ResultsA meta-analyses of all samples from people of Asian descent identified 13 loci and 1 new variant at a known locus (10q24.2) associated with risk of CRC at the genome-wide significance level of P < 5 × 10–8. We did not perform experiments to replicate these associations in additional individuals of Asian ancestry. However, the lead risk variant in 6 of these loci was also significantly associated with risk of CRC in European descendants. A strong association (44%–75% increase in risk per allele) was found for 2 low-frequency variants: rs201395236 at 1q44 (minor allele frequency, 1.34%) and rs77969132 at 12p11.21 (minor allele frequency, 1.53%). For 8 of the 13 associated loci, the variants with the highest levels of significant association were located inside or near the protein-coding genes L1TD1, EFCAB2, PPP1R21, SLCO2A1, HLA-G, NOTCH4, DENND5B, and GNAS. For other intergenic loci, we provided evidence for the possible involvement of the genes ALDH7A1, PRICKLE1, KLF5, WWOX, and GLP2R. We replicated findings for 41 of 52 previously reported risk loci.ConclusionsWe showed that most of the risk loci previously associated with CRC risk in individuals of European descent were also associated with CRC risk in East Asians. Furthermore, we identified 13 loci significantly associated with risk for CRC in Asians. Many of these loci contained genes that regulate the immune response, Wnt signaling to β-catenin, prostaglandin E2 catabolism, and cell pluripotency and proliferation. Further analyses of these genes and their variants is warranted, particularly for the 8 loci for which the lead CRC risk variants were not replicated in persons of European descent. Genome-wide association studies (GWASs) have associated approximately 50 loci with risk of colorectal cancer (CRC)—nearly one third of these loci were initially associated with CRC in studies conducted in East Asian populations. We conducted a GWAS of East Asians to identify CRC risk loci and evaluate the generalizability of findings from GWASs of European populations to Asian populations. We analyzed genetic data from 22,775 patients with CRC (cases) and 47,731 individuals without cancer (controls) from 14 studies in the Asia Colorectal Cancer Consortium. First, we performed a meta-analysis of 7 GWASs (10,625 cases and 34,595 controls) and identified 46,554 promising risk variants for replication by adding them to the Multi-Ethnic Global Array (MEGA) for genotype analysis in 6445 cases and 7175 controls. These data were analyzed, along with data from an additional 5705 cases and 5961 controls genotyped using the OncoArray. We also obtained data from 57,976 cases and 67,242 controls of European descent. Variants at identified risk loci were functionally annotated and evaluated in correlation with gene expression levels. A meta-analyses of all samples from people of Asian descent identified 13 loci and 1 new variant at a known locus (10q24.2) associated with risk of CRC at the genome-wide significance level of P < 5 × 10–8. We did not perform experiments to replicate these associations in additional individuals of Asian ancestry. However, the lead risk variant in 6 of these loci was also significantly associated with risk of CRC in European descendants. A strong association (44%–75% increase in risk per allele) was found for 2 low-frequency variants: rs201395236 at 1q44 (minor allele frequency, 1.34%) and rs77969132 at 12p11.21 (minor allele frequency, 1.53%). For 8 of the 13 associated loci, the variants with the highest levels of significant association were located inside or near the protein-coding genes L1TD1, EFCAB2, PPP1R21, SLCO2A1, HLA-G, NOTCH4, DENND5B, and GNAS. For other intergenic loci, we provided evidence for the possible involvement of the genes ALDH7A1, PRICKLE1, KLF5, WWOX, and GLP2R. We replicated findings for 41 of 52 previously reported risk loci. We showed that most of the risk loci previously associated with CRC risk in individuals of European descent were also associated with CRC risk in East Asians. Furthermore, we identified 13 loci significantly associated with risk for CRC in Asians. Many of these loci contained genes that regulate the immune response, Wnt signaling to β-catenin, prostaglandin E2 catabolism, and cell pluripotency and proliferation. Further analyses of these genes and their variants is warranted, particularly for the 8 loci for which the lead CRC risk variants were not replicated in persons of European descent.
DOI: 10.1056/nejmoa2206916
2023
Cited 76 times
Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality
Five modifiable risk factors are associated with cardiovascular disease and death from any cause. Studies using individual-level data to evaluate the regional and sex-specific prevalence of the risk factors and their effect on these outcomes are lacking.We pooled and harmonized individual-level data from 112 cohort studies conducted in 34 countries and 8 geographic regions participating in the Global Cardiovascular Risk Consortium. We examined associations between the risk factors (body-mass index, systolic blood pressure, non-high-density lipoprotein cholesterol, current smoking, and diabetes) and incident cardiovascular disease and death from any cause using Cox regression analyses, stratified according to geographic region, age, and sex. Population-attributable fractions were estimated for the 10-year incidence of cardiovascular disease and 10-year all-cause mortality.Among 1,518,028 participants (54.1% of whom were women) with a median age of 54.4 years, regional variations in the prevalence of the five modifiable risk factors were noted. Incident cardiovascular disease occurred in 80,596 participants during a median follow-up of 7.3 years (maximum, 47.3), and 177,369 participants died during a median follow-up of 8.7 years (maximum, 47.6). For all five risk factors combined, the aggregate global population-attributable fraction of the 10-year incidence of cardiovascular disease was 57.2% (95% confidence interval [CI], 52.4 to 62.1) among women and 52.6% (95% CI, 49.0 to 56.1) among men, and the corresponding values for 10-year all-cause mortality were 22.2% (95% CI, 16.8 to 27.5) and 19.1% (95% CI, 14.6 to 23.6).Harmonized individual-level data from a global cohort showed that 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, and 22.2% and 19.1% of deaths from any cause among women and men, respectively, may be attributable to five modifiable risk factors. (Funded by the German Center for Cardiovascular Research (DZHK); ClinicalTrials.gov number, NCT05466825.).
DOI: 10.1016/j.phymed.2023.154762
2023
Cited 19 times
Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice
Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain.The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice.SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed.Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation.In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
DOI: 10.1101/2024.01.22.575730
2024
Cited 5 times
TDP-43 nuclear loss in FTD/ALS causes widespread alternative polyadenylation changes
In frontotemporal dementia and amyotrophic lateral sclerosis, the RNA-binding protein TDP-43 is depleted from the nucleus. TDP-43 loss leads to cryptic exon inclusion but a role in other RNA processing events remains unresolved. Here, we show that loss of TDP-43 causes widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.
DOI: 10.1038/ng0197-78
1997
Cited 278 times
AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression
DOI: 10.1186/1471-2407-6-178
2006
Cited 211 times
Trends in incidence and mortality of nasopharyngeal carcinoma over a 20–25 year period (1978/1983–2002) in Sihui and Cangwu counties in southern China
Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world but is common in southern China. A recent report from the Hong Kong Cancer Registry, a high-risk area for NPC in southern China, showed that incidence rate decreased by 29% for males and by 30% for females from 1980-1999, while mortality rate decreased by 43% for males and 50% for females. Changing environmental risk factors and improvements in diagnosis and treatment were speculated to be the major factors contributing to the downward trend of the incidence and mortality rates of NPC. To investigate the secular trends in different Cantonese populations with different socio-economic backgrounds and lifestyles, we report the incidences and mortality rates from two population-based cancer registries in Sihui and Cangwu counties from 1978-2002.Incidence and mortality rates were aggregated by 5-year age groups and 5 calendar years. To adjust for the effect of difference in age composition for different periods, the total and age-specific rates of NPC incidence and mortality rate were adjusted by direct standardization according to the World Standard Population (1960). The Estimated Annual Percentage Change (EAPC) was used as an estimate of the trend.The incidence rate of NPC has remained stable during the recent two decades in Sihui and in females in Cangwu, with a slight increase observed in males in Cangwu from 17.81 to 19.76 per 100,000. The incidence rate in Sihui is 1.4-2.0 times higher during the corresponding years than in Cangwu, even though the residents of both areas are of Cantonese ethnicity. A progressive decline in mortality rate was observed in females only in Sihui, with an average reduction of 6.3% (p = 0.016) per five-year period.To summarize, there is great potential to work in the area of NPC prevention and treatment in southern China to decrease NPC risk and improve survival risk rates in order to reduce M:I ratios. Future efforts on effective prevention, early detection and treatment strategies were also discussed in this paper. Furthermore, the data quality and completeness also need to be improved.
DOI: 10.1007/s00262-006-0160-8
2006
Cited 209 times
Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10
DOI: 10.1371/journal.pgen.1002791
2012
Cited 177 times
GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers
Genome-wide association studies (GWAS) have recently identified KIF1B as susceptibility locus for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). To further identify novel susceptibility loci associated with HBV-related HCC and replicate the previously reported association, we performed a large three-stage GWAS in the Han Chinese population. 523,663 autosomal SNPs in 1,538 HBV-positive HCC patients and 1,465 chronic HBV carriers were genotyped for the discovery stage. Top candidate SNPs were genotyped in the initial validation samples of 2,112 HBV-positive HCC cases and 2,208 HBV carriers and then in the second validation samples of 1,021 cases and 1,491 HBV carriers. We discovered two novel associations at rs9272105 (HLA-DQA1/DRB1) on 6p21.32 (OR = 1.30, P = 1.13×10⁻¹⁹) and rs455804 (GRIK1) on 21q21.3 (OR = 0.84, P = 1.86×10⁻⁸), which were further replicated in the fourth independent sample of 1,298 cases and 1,026 controls (rs9272105: OR = 1.25, P = 1.71×10⁻⁴; rs455804: OR = 0.84, P = 6.92×10⁻³). We also revealed the associations of HLA-DRB1*0405 and 0901*0602, which could partially account for the association at rs9272105. The association at rs455804 implicates GRIK1 as a novel susceptibility gene for HBV-related HCC, suggesting the involvement of glutamate signaling in the development of HBV-related HCC.
DOI: 10.1371/journal.ppat.1000940
2010
Cited 177 times
Epstein-Barr Virus-Encoded LMP2A Induces an Epithelial–Mesenchymal Transition and Increases the Number of Side Population Stem-like Cancer Cells in Nasopharyngeal Carcinoma
It has been recently reported that a side population of cells in nasopharyngeal carcinoma (NPC) displayed characteristics of stem-like cancer cells. However, the molecular mechanisms underlying the modulation of such stem-like cell populations in NPC remain unclear. Epstein-Barr virus was the first identified human tumor virus to be associated with various malignancies, most notably NPC. LMP2A, the Epstein-Barr virus encoded latent protein, has been reported to play roles in oncogenic processes. We report by immunostaining in our current study that LMP2A is overexpressed in 57.6% of the nasopharyngeal carcinoma tumors sampled and is mainly localized at the tumor invasive front. We found also in NPC cells that the exogenous expression of LMP2A greatly increases their invasive/migratory ability, induces epithelial-mesenchymal transition (EMT)-like cellular marker alterations, and stimulates stem cell side populations and the expression of stem cell markers. In addition, LMP2A enhances the transforming ability of cancer cells in both colony formation and soft agar assays, as well as the self-renewal ability of stem-like cancer cells in a spherical culture assay. Additionally, LMP2A increases the number of cancer initiating cells in a xenograft tumor formation assay. More importantly, the endogenous expression of LMP2A positively correlates with the expression of ABCG2 in NPC samples. Finally, we demonstrate that Akt inhibitor (V) greatly decreases the size of the stem cell side populations in LMP2A-expressing cells. Taken together, our data indicate that LMP2A induces EMT and stem-like cell self-renewal in NPC, suggesting a novel mechanism by which Epstein-Barr virus induces the initiation, metastasis and recurrence of NPC.
DOI: 10.1186/1479-5876-8-13
2010
Cited 177 times
The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer
Although an abundance of evidence has indicated that tumor-associated macrophages (TAMs) are associated with a favorable prognosis in patients with colon cancer, it is still unknown how TAMs exert a protective effect. This study examined whether TAMs are involved in hepatic metastasis of colon cancer.One hundred and sixty cases of pathologically-confirmed specimens were obtained from colon carcinoma patients with TNM stage IIIB and IV between January 1997 and July 2004 at the Cancer Center of Sun Yat-Sen University. The density of macrophages in the invasive front (CD68TFHotspot) was scored with an immunohistochemical assay. The relationship between the CD68TFHotspot and the clinicopathologic parameters, the potential of hepatic metastasis, and the 5-year survival rate were analyzed.TAMs were associated with the incidence of hepatic metastasis and the 5-year survival rate in patients with colon cancers. Both univariate and multivariate analyses revealed that the CD68TFHotspot was independently prognostic of survival. A higher 5-year survival rate among patients with stage IIIB after radical resection occurred in patients with a higher macrophage infiltration in the invasive front (81.0%) than in those with a lower macrophage infiltration (48.6%). Most importantly, the CD68TFHotspot was associated with both the potential of hepatic metastasis and the interval between colon resection and the occurrence of hepatic metastasis.This study showed evidence that TAMs infiltrated in the invasive front are associated with improvement in both hepatic metastasis and overall survival in colon cancer, implying that TAMs have protective potential in colon cancers and might serve as a novel therapeutic target.
DOI: 10.1182/blood-2002-05-1389
2002
Cited 162 times
Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells
We have previously reported that stressed apoptotic tumor cells are more immunogenic in vivo than nonstressed ones. Using confocal microscopy we have confirmed our previous observation that heat-stressed apoptotic 12B1-D1 leukemia cells(BCR-ABL+) express HSP60 and HSP72 on their surface. To explore how the immune system distinguishes stressed from nonstressed apoptotic tumor cells, we analyzed the responses of dendritic cells to these 2 types of apoptotic cells. We found that nonstressed and heat-stressed apoptotic 12B1-D1 cells were taken up by dendritic cells in a comparable fashion. However, when stressed apoptotic 12B1-D1 cells were coincubated with immature dendritic cells for 24 hours, this resulted in greater up-regulation of costimulatory molecules (CD40, CD80, and CD86) on the surface of dendritic cells. Moreover, stressed apoptotic 12B1-D1 cells were more effective in stimulating dendritic cells to secrete interleukin-12 (IL-12) and in enhancing their immunostimulatory functions in mixed leukocyte reactions. Furthermore, we demonstrated that immunization of mice with stressed apoptotic 12B1-D1 cells induced the secretion of T helper-1 (TH1) profile of cytokines by spleen cells. Splenocytes from mice immunized with stressed apoptotic cells, but not nonstressed ones, were capable of lysing 12B1-D1 and the parental 12B1 line, but not a B-cell leukemia line, A20. Our data indicate that stressed apoptotic tumor cells are capable of providing the necessary danger signals, likely through increased surface expression of heat shock proteins (HSPs), resulting in activation/maturation of dendritic cells and, ultimately, the generation of potent antitumor T-cell responses.
DOI: 10.1136/gutjnl-2011-300207
2011
Cited 155 times
Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial–mesenchymaltransition
<h3>Background and Aims</h3> The authors have previously isolated a putative oncogene, eukaryotic initiation factor 5A2 (<i>EIF5A2</i>) from 3q26. In this study, <i>EIF5A2</i> was characterised for its role in colorectal carcinoma (CRC) aggressiveness and underlying molecular mechanisms. <h3>Methods</h3> The expression dynamics of EIF5A2 were examined by immunohistochemistry in a cohort of carcinomatous and non-neoplastic colorectal tissues and cells. A series of in-vivo and in-vitro assays was performed to elucidate the function of <i>EIF5A2</i> in CRC and its underlying mechanisms. <h3>Results</h3> The overexpression of EIF5A2 was examined by immunohistochemistry in 102/229 (44.5%) CRC patients, and it was significantly correlated with tumour metastasis and determined to be an independent predictor of shortened survival (p&lt;0.05). Ectopic overexpression of EIF5A2 in CRC cells enhanced cell motility and invasion in vitro and tumour metastasis in vivo, and induced epithelial–mesenchymal transition (EMT). The depletion of EIF5A2 expression prevented CRC cell invasiveness and inhibited EMT. Importantly, the metastasis-associated protein 1 (MTA1) gene was identified as a potential downstream target of EIF5A2 in CRC cells, and knockdown of MTA1 eliminated the augmentation of carcinoma cell migration, invasion and EMT by ectopic EIF5A2. The overexpression of EIF5A2 in CRC cells substantially enhanced the enrichment of c-myc on the promoter of <i>MTA1</i>, and MTA1 upregulation by EIF5A2 was partly dependent on c-myc. <h3>Conclusion</h3> The data suggest that <i>EIF5A2</i> plays an important oncogenic role in CRC aggressiveness by the upregulation of MTA1 to induce EMT, and EIF5A2 could be employed as a novel prognostic marker and/or effective therapeutic target for CRC.
DOI: 10.1136/gut.2010.231993
2011
Cited 150 times
EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies
A previous study of ours indicated that enhancer of zeste homologue 2 (EZH2) plays an important role in hepatocellular carcinoma (HCC) tumorigenesis. The aim of the present study was to investigate the potential diagnostic utility of EZH2 in HCC.Immunohistochemistry was performed to examine the expression dynamics of EZH2 in two independent surgical cohorts of HCC and non-malignant liver tissues to develop a diagnostic yield of EZH2, HSP70 and GPC3 for HCC detection. The diagnostic performances of EZH2 and a three-marker panel in HCC were re-evaluated by using an additional biopsy cohort.Immunohistochemistry analysis demonstrated that the sensitivity and specificity of EZH2 for HCC detection was 95.8% and 97.8% in the testing cohort. Similar results were confirmed in the validation cohort. For diagnosis of well-differentiated HCCs, the sensitivity and specificity were 68.9% and 91.5% for EZH2, 62.5% and 98.5% for HSP70, 50.0% and 92.1% for GPC3, and 75.0% and 100% for a three-marker panel. In biopsies, positive cases for at least one marker increased from large regenerative nodule and hepatocellular adenoma (0/12) to focal nodular hyperplasia (2/20), dysplastic nodule (7/25), well-differentiated HCC (16/18) and moderately and poorly differentiated HCC (54/54). When at least two positive markers were considered, regardless of their identity, the positive cases were detected in 0/12 large regenerative nodules and hepatocellular adenomas, 0/20 focal nodular hyperplasias, 0/25 dysplastic nodules, 11/18 well-differentiated HCCs, 32/37 moderately differentiated HCCs and 15/17 poorly differentiated HCCs.Our findings suggest that EZH2 protein, as examined by immunohistochemistry, may serve as a promising diagnostic biomarker of HCCs, and the use of a three-marker panel (EZH2, HSP70 and GPC3) can improve the rate of detection of HCCs in liver biopsy tissues.
DOI: 10.1038/ncomms7240
2015
Cited 144 times
Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells
Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB(23-431). Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells.
DOI: 10.1016/j.canlet.2011.07.016
2011
Cited 140 times
Salinomycin inhibits osteosarcoma by targeting its tumor stem cells
Osteosarcoma is the most common primary bone tumor in children and adolescents and is typically associated with a poor prognosis. Tumor stem cells (TSCs) are presumed to drive tumor initiation and tumor relapse or metastasis. Hence, the poor prognosis of osteosarcoma likely results from a failure to target the osteosarcoma stem cells. Here, we have utilized three different methods to enrich TSCs in osteosarcoma and further evaluated whether salinomycin could selectively target TSCs in osteosarcoma. Our results indicated that sarcosphere selection, chemotherapy selection and stem cell marker OCT4 or SOX2 over-expression are all effective in the enrichment of TSCs from osteosarcoma cell lines. Further investigation found that salinomycin inhibited osteosarcoma by selectively targeting its stem cells both in vitro and in vivo without severe side effects, and the Wnt/β-catenin signaling pathway may be involved in this inhibition of salinomycin. Taken together, we have identified that salinomycin is an effective inhibitor of osteosarcoma stem cells, supporting the use of salinomycin for elimination of osteosarcoma stem cells and implying a need for further clinical evaluation.
DOI: 10.1158/1078-0432.ccr-09-3178
2010
Cited 135 times
The Tumor Suppressor UCHL1 Forms a Complex with p53/MDM2/ARF to Promote p53 Signaling and Is Frequently Silenced in Nasopharyngeal Carcinoma
Nasopharyngeal carcinoma is prevalent in southern China and Southeast Asia, with distinct geographic and ethnic distribution. One candidate susceptibility locus has been identified at 4p11-14, with the associated candidate gene(s) not identified yet. This study investigated the role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in nasopharyngeal carcinoma pathogenesis.UCHL1 expression and methylation were examined in nasopharyngeal carcinoma. Furthermore, the mechanism of its tumor-suppressive function was elucidated in nasopharyngeal carcinoma cells.Through genomewide expression profiling, we identified UCHL1, a 4p14 gene normally expressed in normal upper respiratory tract tissues, being silenced in all nasopharyngeal carcinoma cell lines. Its silencing is mediated by CpG methylation because UCHL1 promoter methylation was detected in all silenced cell lines, and pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. UCHL1 methylation was also frequently detected in primary tumors but only weakly detected in few normal nasopharyngeal tissues, indicating that the methylation-mediated silencing of UCHL1 is important in nasopharyngeal carcinoma pathogenesis. Ectopic UCHL1 expression dramatically inhibited the growth of nasopharyngeal carcinoma cells through promoting tumor cell apoptosis. We further found that UCHL1 formed a complex with p53/p14(ARF)/Mdm2 p53 binding protein homolog (mouse), MDM2 and activated the p53 signaling pathway. UCHL1 expression extended p53 and p14(ARF) protein half-life and shortened MDM2 protein half-life.These results indicate that UCHL1 could deubiquitinate p53 and p14(ARF) and ubiquitinate MDM2 for p53 stabilization to promote p53 signaling, thus involved in nasopharyngeal carcinoma pathogenesis, whereas it is frequently silenced in this tumor.
DOI: 10.1200/jco.2010.33.7741
2011
Cited 133 times
Eight-Signature Classifier for Prediction of Nasopharyngeal Carcinoma Survival
Currently, nasopharyngeal carcinoma (NPC) prognosis evaluation is based primarily on the TNM staging system. This study aims to identify prognostic markers for NPC.We detected expression of 18 biomarkers by immunohistochemistry in NPC tumors from 209 patients and evaluated the association between gene expression level and disease-specific survival (DSS). We used support vector machine (SVM)--based methods to develop a prognostic classifier for NPC (NPC-SVM classifier). Further validation of the NPC-SVM classifier was performed in an independent cohort of 1,059 patients.The NPC-SVM classifier integrated patient sex and the protein expression level of seven genes, including Epstein-Barr virus latency membrane protein 1, CD147, caveolin-1, phospho-P70S6 kinase, matrix metalloproteinase 11, survivin, and secreted protein acidic and rich in cysteine. The NPC-SVM classifier distinguished patients with NPC into low- and high-risk groups with significant differences in 5-year DSS in the evaluated patients (87% v 37.7%; P < .001) in the validation cohort. In multivariate analysis adjusted for age, TNM stage, and histologic subtype, the NPC-SVM classifier was an independent predictor of 5-year DSS in the evaluated patients (hazard ratio, 4.9; 95% CI, 3.0 to 7.9) in the validation cohort.As a powerful predictor of 5-year DSS among patients with NPC, the newly developed NPC-SVM classifier based on tumor-associated biomarkers will facilitate patient counseling and individualize management of patients with NPC.
DOI: 10.1186/1471-2407-10-446
2010
Cited 131 times
Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China
Nasopharyngeal carcinoma (NPC) is rare in most parts of the world but is a common malignancy in southern China, especially in Guangdong. Dietary habit is regarded as an important modifier of NPC risk in several endemic areas and may partially explain the geographic distribution of NPC incidence. In China, rapid economic development during the past few decades has changed the predominant lifestyle and dietary habits of the Chinese considerably, requiring a reassessment of diet and its potential influence on NPC risk in this NPC-endemic area. To evaluate the association between dietary factors and NPC risk in Guangdong, China, a large-scale, hospital-based case-control study was conducted. 1387 eligible cases and 1459 frequency matched controls were recruited. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were estimated using a logistic regression model, adjusting for age, sex, education, dialect, and habitation household type. Observations made include the following: 1) consumption of canton-style salted fish, preserved vegetables and preserved/cured meat were significantly associated with increased risk of NPC, with enhanced odds ratios (OR) of 2.45 (95% CI: 2.03-2.94), 3.17(95% CI: 2.68-3.77) and 2.09 (95% CI: 1.22-3.60) respectively in the highest intake frequency stratum during childhood; 2) consumption of fresh fruit was associated with reduced risk with a dose-dependent relationship (p = 0.001); and 3) consumption of Canton-style herbal tea and herbal slow-cooked soup was associated with decreased risk, with ORs of 0.84 (95% CI: 0.68-1.03) and 0.58 (95% CI: 0.47-0.72) respectively in the highest intake frequency stratum. In multivariate analyses, these associations remained significant. It can be inferred that previously established dietary risk factors in the Cantonese population are still stable and have contributed to the incidence of NPC.
DOI: 10.1182/blood-2007-07-099325
2008
Cited 129 times
Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia
Previously, we and others showed that mitotic Aurora-A kinase (Aur-A) was required for accurate mitotic entry and proper spindle assembly. In this study, we found that expression of Aur-A was markedly elevated in bone marrow mononuclear cells (BMMCs) obtained from a significant portion of de novo acute myeloid leukemia (AML) patients. Targeting human primary AML cells with Aur-A kinase inhibitory VX-680 led to apoptotic cell death in a dose-dependent manner. Importantly, VX-680-induced cell death was preferentially higher in Aur-A-high primary leukemic blasts compared with Aur-A-low AML (P < .001) or normal BMMCs (P < .001), suggesting the possible pharmacologic window in targeting Aurora kinase among Aur-A-high VX-680-sensitive leukemia patients. VX-680-induced cell death in AML cell lines was accompanied by formation of monopolar mitotic spindles, G(2)/M phase arrest, decreased phosphorylated(p)-Akt-1, and increased proteolytic cleavage of procaspase-3 and poly(ADP)ribose polymerase. Notably, VX-680 increased Bax/Bcl-2 expression ratio, a favorable proapoptotic predictor for drug response and survival in AML. Lastly, VX-680 enhanced the cytotoxic effect of the chemotherapeutic agent etoposide (VP16) on AML cells. Together, we concluded that Aurora kinases were potentially therapeutic targets for AML and that Aur-A-high expression may serve as a differential marker for selective treatment.
DOI: 10.1093/carcin/bgq150
2010
Cited 129 times
EZH2 supports ovarian carcinoma cell invasion and/or metastasis via regulation of TGF-β1 and is a predictor of outcome in ovarian carcinoma patients
It was suggested that the enhancer of zeste homolog 2 (EZH2) gene is a putative candidate oncogene in several types of human cancer. The potential oncogenic role of EZH2 and its clinical/prognostic significance, however, in ovarian carcinoma are unclear. In this study, EZH2 expression was examined by immunohistochemistry (IHC) in cohorts of normal and tumorous ovarian tissues. High expression of EZH2 was examined in none of the normal ovaries, in 3% of the cystadenomas, in 23% of the borderline tumors and in 50% of the ovarian carcinomas, respectively. In the ovarian carcinomas, high expression of EZH2 was positively correlated with an ascending histological grade and/or advanced stage of the disease (P < 0.05). Moreover, high expression of EZH2 in ovarian carcinoma was determined to be a strong and an independent predictor of short overall survival (P < 0.05). In ovarian carcinoma HO-8910 and UACC-326 cell lines, EZH2 knockdown by RNA interference led to a G(1) phase cell cycle arrest, reduced cell growth/proliferation and inhibited cell migration and/or invasion in vitro. In addition, EZH2 knockdown was found to reduce transforming growth factor-beta1 (TGF-beta1) expression and increase E-cadherin expression either in the transcript or in the protein levels. Furthermore, a significant positive correlation between overexpression of EZH2 and TGF-beta1 in ovarian carcinoma tissues was observed (P < 0.001). These findings suggest a potential important role of EZH2 in the control of cell migration and/or invasion via the regulation of TGF-beta1 expression, and the high expression of EZH2, as detected by IHC, is an independent molecular marker for shortened survival time of patients with ovarian carcinoma.
DOI: 10.1186/1476-4598-9-4
2010
Cited 128 times
Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways
Increasing amounts of evidence indicate that tumor infiltrating lymphocytes (TIL) are correlated with the prognosis of cancer patients. This study focuses on the association between the densities of tumor infiltrating cytotoxic T lymphocytes (CTL), activated CTL, regulatory T lymphocytes (Treg) and Th17 lymphocytes, and the prognosis and clinicopathological features of nasopharyngeal carcinoma (NPC) patients.Double immunohistochemical staining was performed in 106 biopsy specimens from newly diagnosed NPC patients. Prognostic values of infiltrating lymphocyte densities were evaluated by Kaplan-Meier analysis and Cox regression. The density of CD8+ TIL was positively correlated with lymph node metastasis, while the density of Foxp3+ TIL was negatively associated with T stage (P < 0.05). For survival evaluation, the density of Foxp3+ TIL or Foxp3+ TIL combined with GrB+ TIL together was associated with better overall survival (OS) and progression-free survival (PFS) (P < 0.01) in all patients and in the patients with late-stage diseases (Stages III and IV, P < 0.01). Meanwhile a low density of CD8+TIL or high ratio of FOXP3+TIL to CD8+TIL was correlated with better PFS in early stage patients (Stages I and II, P < 0.05). No significant association was found between IL-17+ TIL and clinicopathological characteristic or survival of NPC patients.Our study identifies for the first time the tumor infiltrating Foxp3+ TIL as an independent favorable factor in the prognosis of NPC patients, especially for the patients with late-stage diseases.
DOI: 10.1038/s41467-018-07308-5
2018
Cited 124 times
Vasculogenic mimicry formation in EBV-associated epithelial malignancies
Epstein-Barr virus (EBV)-associated epithelial cancers, including nasopharyngeal carcinoma (NPC) and approximately 10% of gastric cancers, termed EBVaGC, represent 80% of all EBV-related malignancies. However, the exact role of EBV in epithelial cancers remains elusive. Here, we report that EBV functions in vasculogenic mimicry (VM). Epithelial cancer cells infected with EBV develop tumor vascular networks that correlate with tumor growth, which is different from endothelial-derived angiogenic vessels and is VEGF-independent. Mechanistically, activation of the PI3K/AKT/mTOR/HIF-1α signaling cascade, which is partly mediated by LMP2A, is responsible for EBV-induced VM formation. Both xenografts and clinical samples of NPC and EBVaGC exhibit VM histologically, which are correlated with AKT and HIF-1α activation. Furthermore, although anti-VEGF monotherapy shows limited effects, potent synergistic antitumor activities are achieved by combination therapy with VEGF and HIF-1α-targeted agents. Our findings suggest that EBV creates plasticity in epithelial cells to express endothelial phenotype and provides a novel EBV-targeted antitumor strategy.
DOI: 10.1080/15548627.2015.1009767
2015
Cited 122 times
ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells
PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.
DOI: 10.1371/journal.pone.0083069
2013
Cited 122 times
A Large Cohort Study Reveals the Association of Elevated Peripheral Blood Lymphocyte-to-Monocyte Ratio with Favorable Prognosis in Nasopharyngeal Carcinoma
Nasopharyngeal carcinoma (NPC) is an endemic neoplasm in southern China. Although NPC sufferers are sensitive to radiotherapy, 20-30% of patients finally progress with recurrence and metastases. Elevated lymphocyte-to-monocyte ratio (LMR) has been reported to be associated with favorable prognosis in some hematology malignancies, but has not been studied in NPC. The aim of this study was to evaluate whether LMR could predict the prognosis of NPC patients.A retrospective cohort of 1,547 non-metastatic NPC patients was recruited between January 2005 and June 2008. The counts for peripheral lymphocyte and monocyte were retrieved, and the LMR was calculated. Receiver operating characteristic curve analysis, univariate and multivariate COX proportional hazards analyses were applied to evaluate the associations of LMR with overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS) and loco-regional recurrence-free survival (LRRFS), respectively.Univariate analysis revealed that higher LMR level (≥ 5.220) was significantly associated with superior OS, DFS and DMFS (P values <0.001). The higher lymphocyte count (≥ 2.145 × 10(9)/L) was significantly associated with better OS (P = 0.002) and DMFS (P = 0.031), respectively, while the lower monocyte count (<0.475 × 10(9)/L) was associated with better OS (P = 0.012), DFS (P = 0.011) and DMFS (P = 0.003), respectively. Multivariate Cox proportional hazard analysis showed that higher LMR level was a significantly independent predictor for superior OS (hazard ratio or HR = 0.558, 95% confidence interval or 95% CI = 0.417-0.748; P<0.001), DFS (HR = 0.669, 95% CI = 0.535-0.838; P<0.001) and DMFS (HR = 0.543, 95% CI = 0.403-0.732; P<0.001), respectively. The advanced T and N stages were also independent indicators for worse OS, DFS, and DMFS, except that T stage showed borderline statistical significance for DFS (P = 0.053) and DMFS (P = 0.080).The elevated pretreatment peripheral LMR level was a significant favorable factor for NPC prognosis and this easily accessed variable may serve as a potent marker to predict the outcomes of NPC patients.
DOI: 10.1158/0008-5472.can-10-3557
2011
Cited 121 times
Serglycin Is a Theranostic Target in Nasopharyngeal Carcinoma that Promotes Metastasis
Nasopharyngeal carcinoma (NPC) is known for its high-metastatic potential. Here we report the identification of the proteoglycan serglycin as a functionally significant regulator of metastasis in this setting. Comparative genomic expression profiling of NPC cell line clones with high- and low-metastatic potential revealed the serglycin gene (SRGN) as one of the most upregulated genes in highly metastatic cells. RNAi-mediated inhibition of serglycin expression blocked serglycin secretion and the invasive motility of highly metastatic cells, reducing metastatic capacity in vivo. Conversely, serglycin overexpression in poorly metastatic cells increased their motile behavior and metastatic capacity in vivo. Growth rate was not influenced by serglycin in either highly or poorly metastatic cells. Secreted but not bacterial recombinant serglycin promoted motile behavior, suggesting a critical role for glycosylation in serglycin activity. Serglycin inhibition was associated with reduced expression of vimentin but not other epithelial-mesenchymal transition proteins. In clinical specimens, serglycin expression was elevated significantly in liver metastases from NPC relative to primary NPC tumors. We evaluated the prognostic value of serglycin by immunohistochemical staining of tissue microarrays from 263 NPC patients followed by multivariate analyses. High serglycin expression in primary NPC was found to be an unfavorable independent indicator of distant metastasis-free and disease-free survival. Our findings establish that glycosylated serglycin regulates NPC metastasis via autocrine and paracrine routes, and that it serves as an independent prognostic indicator of metastasis-free survival and disease-free survival in NPC patients.
DOI: 10.1016/j.ajhg.2016.02.021
2016
Cited 121 times
Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis
The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets.
DOI: 10.1016/j.molcel.2012.02.018
2012
Cited 117 times
Skp2 E3 Ligase Integrates ATM Activation and Homologous Recombination Repair by Ubiquitinating NBS1
The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.
DOI: 10.1093/carcin/bgs181
2012
Cited 117 times
As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial–mesenchymal transition and activation of AKT signaling
Nasopharyngeal carcinoma (NPC) has the highest metastatic potential among head and neck cancers. Distant metastasis is the major cause of treatment failure. The role of interleukin-8 (IL-8) in NPC progression remains unknown. Our multivariate survival analyses of 255 patients with NPC revealed that higher IL-8 expression in primary NPC tissue was an independent prognostic factor for overall survival, disease-free survival, and distant metastasis-free survival of the patients. In vitro study revealed that IL-8 was highly expressed in the established high-metastasis NPC clone S18 relative to the low-metastasis cells. Suppression of IL-8 by short-hairpin RNA reduced the expression of IL-8 in S18 cells and subsequently inhibited migration, invasion, and hepatic metastasis of the cells without influencing cellular growth. Overexpression of IL-8 in S26 cells resulted in increased migration, invasion, and metastasis capabilities of the cells without affecting cellular growth. Exogenous IL-8 enhanced the migration and invasion of low-metastasis CNE-2 cells in a dose-dependent manner. An epithelial-mesenchymal transition (EMT) could be induced by IL-8 in various NPC cell lines. The high level of phosphorylated AKT in S18 cells could be suppressed by knocking down IL-8 expression. Further, IL-8-promoted migration and invasion could be abolished by either the application of the phosphoinositide-3-kinase inhibitor LY294002 or the knock down of AKT expression by using small-interfering RNA. In summary, IL-8 serves as an independent prognostic indicator of overall survival, disease-free survival, and metastasis-free survival for patients with NPC. IL-8 promotes NPC metastasis via autocrine and paracrine means, involving activation of AKT signaling and inducing EMT in NPC cells.
DOI: 10.1038/ncomms8270
2015
Cited 109 times
Identification of new susceptibility loci for IgA nephropathy in Han Chinese
IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. Previously identified genome-wide association study (GWAS) loci explain only a fraction of disease risk. To identify novel susceptibility loci in Han Chinese, we conduct a four-stage GWAS comprising 8,313 cases and 19,680 controls. Here, we show novel associations at ST6GAL1 on 3q27.3 (rs7634389, odds ratio (OR)=1.13, P=7.27 × 10(-10)), ACCS on 11p11.2 (rs2074038, OR=1.14, P=3.93 × 10(-9)) and ODF1-KLF10 on 8q22.3 (rs2033562, OR=1.13, P=1.41 × 10(-9)), validate a recently reported association at ITGAX-ITGAM on 16p11.2 (rs7190997, OR=1.22, P=2.26 × 10(-19)), and identify three independent signals within the DEFA locus (rs2738058, P=1.15 × 10(-19); rs12716641, P=9.53 × 10(-9); rs9314614, P=4.25 × 10(-9), multivariate association). The risk variants on 3q27.3 and 11p11.2 show strong association with mRNA expression levels in blood cells while allele frequencies of the risk variants within ST6GAL1, ACCS and DEFA correlate with geographical variation in IgAN prevalence. Our findings expand our understanding on IgAN genetic susceptibility and provide novel biological insights into molecular mechanisms underlying IgAN.
DOI: 10.2119/molmed.2010.00103
2010
Cited 109 times
High Expression of H3K27me3 in Human Hepatocellular Carcinomas Correlates Closely with Vascular Invasion and Predicts Worse Prognosis in Patients
It has been suggested that trimethylation of lysine 27 on histone H3 (H3K27me3) is a crucial epigenetic process in tumorigenesis. However, the expression dynamics of H3K27me3 and its clinicopathological/prognostic significance in hepatocellular carcinoma (HCC) are unclear. In this study, immunohistochemical analysis (IHC) was used to examine protein expression of H3K27me3 in HCC tissues from two independent cohorts and corresponding nontumorous hepatocellular tissues by tissue microarray. The optimal cutpoint of H3K27me3 expression was assessed by the X-tile program. Our results showed that the cutpoint for high expression of H3K27me3 in HCCs was determined when more than 70% of the tumor cells showed positive staining. High expression of H3K27me3 was observed in 134 of 212 (63.2%) and 76 of 126 (60.4%) of HCCs in the testing and validation cohorts, respectively. Correlation analysis demonstrated that high expression of H3K27me3 in HCCs was significantly correlated with large tumor size, multiplicity, poor differentiation, advanced clinical stage and vascular invasion (P < 0.05). In addition, high expression of H3K27me3 in HCC patients was associated closely with shortened survival time, independent of serum α-fetoprotein levels, tumor size and multiplicity, clinical stage, vascular invasion and relapse as evidenced by univariate and multivariate analysis in both cohorts (P < 0.05). In different subsets of HCC patients, H3K27me3 expression was also a prognostic indicator in patients with stage II tumors (P < 0.05). Thus, these findings provide evidence that a high expression of H3K27me3, as detected by IHC, correlates closely with vascular invasion of HCCs and is an independent molecular marker for poor prognosis in patients with HCC.
DOI: 10.1111/cei.12605
2015
Cited 103 times
The complex pathophysiology of acquired aplastic anaemia
Summary Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8+ cytotoxic T cells, CD4+ T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure.
DOI: 10.1172/jci61380
2012
Cited 103 times
CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies resistant to current chemotherapies or radiotherapies, which makes it urgent to identify new therapeutic targets for HCC. In this study, we found that checkpoint kinase 1 (CHK1) was frequently overexpressed and correlated with poor clinical outcome in patients with HCC. We further showed that the CHK1 inhibitor GÖ6976 was capable of sensitizing HCC cells to cisplatin, indicating that CHK1 may have oncogenic function in HCC. We found that CHK1 phosphorylated the tumor suppressor spleen tyrosine kinase (L) (SYK[L]) and identified the phosphorylation site at Ser295. Furthermore, CHK1 phosphorylation of SYK(L) promoted its subsequent proteasomal degradation. Expression of a nonphosphorylated mutant of SYK(L) was more efficient at suppressing proliferation, colony formation, mobility, and tumor growth in HCC lines. Importantly, a strong inverse correlation between the expression levels of CHK1 and SYK(L) was observed in patients with HCC. Collectively, our data demonstrate that SYK(L) is a substrate of CHK1 in tumor cells and suggest that targeting the CHK1/SYK(L) pathway may be a promising strategy for treating HCC.
DOI: 10.1053/j.gastro.2017.03.024
2017
Cited 102 times
Genetic Features of Aflatoxin-Associated Hepatocellular Carcinoma
<h3>Background & Aims</h3> Dietary exposure to aflatoxin is an important risk factor for hepatocellular carcinoma (HCC). However, little is known about the genomic features and mutations of aflatoxin-associated HCCs compared with HCCs not associated with aflatoxin exposure. We investigated the genetic features of aflatoxin-associated HCC that can be used to differentiate them from HCCs not associated with this carcinogen. <h3>Methods</h3> We obtained HCC tumor tissues and matched non-tumor liver tissues from 49 patients, collected from 1990 through 2016, at the Qidong Liver Cancer Hospital Institute in China—a high-risk region for aflatoxin exposure (38.2% of food samples test positive for aflatoxin contamination). Somatic variants were identified using GATK Best Practices Pipeline. We validated part of the mutations from whole-genome sequencing and whole-exome sequencing by Sanger sequencing. We also analyzed genomes of 1072 HCCs, obtained from 5 datasets from China, the United States, France, and Japan. Mutations in 49 aflatoxin-associated HCCs and 1072 HCCs from other regions were analyzed using the Wellcome Trust Sanger Institute mutational signatures framework with non-negative matrix factorization. The mutation landscape and mutational signatures from the aflatoxin-associated HCC and HCC samples from general population were compared. We identified genetic features of aflatoxin-associated HCC, and used these to identify aflatoxin-associated HCCs in datasets from other regions. Tumor samples were analyzed by immunohistochemistry to determine microvessel density and levels of CD34 and CD274 (PD-L1). <h3>Results</h3> Aflatoxin-associated HCCs frequently contained C>A transversions, the sequence motif GCN, and strand bias. In addition to previously reported mutations in <i>TP53</i>, we found frequent mutations in the adhesion G protein−coupled receptor B1 gene (<i>ADGRB1</i>), which were associated with increased capillary density of tumor tissue. Aflatoxin-associated HCC tissues contained high-level potential mutation-associated neoantigens, and many infiltrating lymphocytes and tumors cells that expressed PD-L1, compared to HCCs not associated with aflatoxin. Of the HCCs from China, 9.8% contained the aflatoxin-associated genetic features, whereas 0.4%−3.5% of HCCs from other regions contained these genetic features. <h3>Conclusions</h3> We identified specific genetic and mutation features of HCCs associated with aflatoxin exposure, including mutations in <i>ADGRB1</i>, compared to HCCs from general populations. We associated these mutations with increased vascularization and expression of PD-L1 in HCC tissues. These findings might be used to identify patients with HCC due to aflatoxin exposure, and select therapies.
DOI: 10.1371/journal.ppat.1006503
2017
Cited 102 times
LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma
Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC.
DOI: 10.4161/cc.20898
2012
Cited 99 times
MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene
The microRNA miR-138 is dysregulated in several human cancers, but the underlying mechanism remains largely unknown. Here, we report that miR-138 is commonly underexpressed in nasopharyngeal carcinoma (NPC) specimens and NPC cell lines. The ectopic expression of miR-138 dramatically suppressed cell proliferation and colony formation in vitro and inhibited tumorigenesis in vivo. Moreover, we identified the cyclin D1 (CCND1) gene as a novel direct target of miR-138. In consistent with the knocked-down expression of CCND1, overexpression of miR-138 inhibited cell growth and cell cycle progression in NPC cells. Furthermore, CCND1 was widely upregulated in NPC tumors, and its mRNA levels were inversely correlated with miR-138 expression. Taken together, our findings suggest that miR-138 might be a tumor suppressor in NPC, which is exerted partially by inhibiting CCND1 expression. The identification of functional miR-138 in NPC and its direct link to CCND1 might provide good candidates for developing diagnostic markers and therapeutic applications for NPC.
DOI: 10.1093/jnci/djs210
2012
Cited 97 times
Glycogen Synthase Kinase-3β, NF-κB Signaling, and Tumorigenesis of Human Osteosarcoma
Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent.We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3β expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5-8 mice per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3β in osteosarcoma growth in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Immunochemistry was performed on primary tumor specimens from osteosarcoma patients (n = 74) to determine the relationship of GSK-3β activity with overall survival.Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3β formed colonies in vitro and tumors in vivo more readily than cells with higher levels and cells in which GSK-3β had been silenced formed fewer colonies and smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3β resulted in apoptosis of osteosarcoma cells. Inhibition of GSK-3β resulted in inhibition of the NF-κB pathway and reduction of NF-κB-mediated transcription. Combination treatments with GSK-3β inhibitors, NF-κB inhibitors, and chemotherapy drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma specimens had hyperactive GSK-3β, and nuclear NF-κB had a shorter median overall survival time (49.2 months) compared with patients whose tumors had inactive GSK-3β and NF-κB (109.2 months).GSK-3β activity may promote osteosarcoma tumor growth, and therapeutic targeting of the GSK-3β and/or NF-κB pathways may be an effective way to enhance the therapeutic activity of anticancer drugs against osteosarcoma.
DOI: 10.1038/ncomms7641
2015
Cited 95 times
Skp2–MacroH2A1–CDK8 axis orchestrates G2/M transition and tumorigenesis
Understanding the mechanism by which cell growth, migration, polyploidy, and tumorigenesis are regulated may provide important therapeutic strategies for cancer therapy. Here we identify the Skp2–macroH2A1 (mH2A1)–cyclin-dependent kinase 8 (CDK8) axis as a critical pathway for these processes, and deregulation of this pathway is associated with human breast cancer progression and patient survival outcome. We showed that mH2A1 is a new substrate of Skp2 SCF complex whose degradation by Skp2 promotes CDK8 gene and protein expression. Strikingly, breast tumour suppression on Skp2 deficiency can be rescued by mH2A1 knockdown or CDK8 restoration using mouse tumour models. We further show that CDK8 regulates p27 protein expression by facilitating Skp2-mediated p27 ubiquitination and degradation. Our study establishes a critical role of Skp2–mH2A1–CDK8 axis in breast cancer development and targeting this pathway offers a promising strategy for breast cancer therapy. Skp2 forms part of the SCF complex—an E3 ubiquitin ligase. Here the authors identify macroH2A1 as a novel target of Skp2 and propose an axis of regulation involving Skp2-macroH2A1-CDK8-p27 in cancer.
DOI: 10.1007/s10549-017-4246-0
2017
Cited 95 times
The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis
DOI: 10.1186/1471-2407-13-349
2013
Cited 92 times
Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder
Yes-associated protein 1 (YAP 1), the nuclear effector of the Hippo pathway, is a key regulator of organ size and a candidate human oncogene in multiple tumors. However, the expression dynamics of YAP 1 in urothelial carcinoma of the bladder (UCB) and its clinical/prognostic significance are unclear.In this study, the methods of quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry (IHC) were utilized to investigate mRNA/ protein expression of YAP 1 in UCBs. Spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data.Up-regulated expression of YAP 1 mRNA and protein was observed in the majority of UCBs by qRT-PCR and Western blotting, when compared with their paired normal bladder tissues. By IHC, positive expression of YAP 1 was examined in 113/213 (53.1%) of UCBs and in 6/86 (7.0%) of normal bladder specimens tissues. Positive expression of YAP 1 was correlated with poorer differentiation, higher T classification and higher N classification (P < 0.05). In univariate survival analysis, a significant association between positive expression of YAP 1 and shortened patients' survival was found (P < 0.001). In different subsets of UCB patients, YAP 1 expression was also a prognostic indicator in patients with grade 2 (P = 0.005) or grade 3 (P = 0.046) UCB, and in patients in pT1 (P = 0.013), pT2-4 (P = 0.002), pN- (P < 0.001) or pT2-4/pN- (P = 0.004) stage. Importantly, YAP 1 expression (P = 0.003) together with pT and pN status (P< 0.05) provided significant independent prognostic parameters in multivariate analysis.Our findings provide evidences that positive expression of YAP 1 in UCB may be important in the acquisition of an aggressive phenotype, and it is an independent biomarker for poor prognosis of patients with UCB.
DOI: 10.1038/s41467-020-14870-4
2020
Cited 92 times
Targeting the CK1α/CBX4 axis for metastasis in osteosarcoma
Abstract Osteosarcoma, an aggressive malignant cancer, has a high lung metastasis rate and lacks therapeutic target. Here, we reported that chromobox homolog 4 (CBX4) was overexpressed in osteosarcoma cell lines and tissues. CBX4 promoted metastasis by transcriptionally up-regulating Runx2 via the recruitment of GCN5 to the Runx2 promoter. The phosphorylation of CBX4 at T437 by casein kinase 1α (CK1α) facilitated its ubiquitination at both K178 and K280 and subsequent degradation by CHIP, and this phosphorylation of CBX4 could be reduced by TNFα. Consistently, CK1α suppressed cell migration and invasion through inhibition of CBX4. There was a reverse correlation between CK1α and CBX4 in osteosarcoma tissues, and CK1α was a valuable marker to predict clinical outcomes in osteosarcoma patients with metastasis. Pyrvinium pamoate (PP) as a selective activator of CK1α could inhibit osteosarcoma metastasis via the CK1α/CBX4 axis. Our findings indicate that targeting the CK1α/CBX4 axis may benefit osteosarcoma patients with metastasis.
DOI: 10.1038/s41375-018-0324-5
2018
Cited 90 times
Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma
Extranodal natural killer T-cell lymphoma (nasal type; NKTCL) is an aggressive malignancy strongly associated with Epstein-Barr virus (EBV) infection. However, the role of EBV in NKTCL development is unclear, largely due to the lack of information about EBV genome and transcriptome in NKTCL. Here, using high-throughput sequencing, we obtained whole genome (n = 27) and transcriptome datasets (n = 18) of EBV derived from NKTCL tumor biopsies. We assembled 27 EBV genomes and detected an average of 1,152 single nucleotide variants and 44.8 indels (<50 bp) of EBV per sample. We also identified frequent focal EBV genome deletions and integrated EBV fragments in the host genome. Moreover, Phylogenetic analysis revealed that NKTCL-derived EBVs are closely clustered; transcriptome analysis revealed less activation of both latent and lytic genes and larger amount of T-cell epitope alterations in NKTCL, as compared with other EBV-associated cancers. Furthermore, we observed transcriptional defects of the BARTs miRNA by deletion, and the disruption of host NHEJ1 by integrated EBV fragment, implying novel pathogenic mechanisms of EBV. Taken together, we reported for the first time global mutational and transcriptional profiles of EBV in NKTCL clinical samples, revealing important somatic events of EBV and providing insights to better understanding of EBV’s contribution in tumorigenesis.
DOI: 10.1093/jnci/djv146
2015
Cited 89 times
Impact of a New Fusion Receptor on PD-1–Mediated Immunosuppression in Adoptive T Cell Therapy
Adoptive T cell transfer (ACT) is currently under investigation for the treatment of metastatic cancer. Recent evidence suggests that the coinhibitory PD-1-PD-L1 axis plays a major role in ACT failure. We hypothesized that a new fusion receptor reverting PD-1-mediated inhibition into CD28 costimulation may break peripheral tolerance.Different PD-1-CD28 fusion receptor constructs were created and retrovirally transduced into primary T cell receptor transgenic murine CD8(+) T cells specific for ovalbumin (OT-1). Cytokine release, proliferation, cytotoxicity, and tumor recognition were analyzed in vitro. Antitumor efficacy and mode of action were investigated in mice bearing subcutaneous tumors induced with the pancreatic carcinoma cell line Panc02 expressing the model antigen ovalbumin (Panc-OVA). For antitumoral efficacy, six to eight mice per group were used. All statistical tests are two-sided.Transduction of the PD-1-CD28 receptor constructs mediated enhanced cytokine release, T cell proliferation, and T cell-induced lysis of target tumor cells. The PD-1-CD28 receptor function was dependent on two of the CD28-signaling motifs and IFN-γ release. Treatment of mice with established Panc-OVA tumors with fusion receptor-transduced OT-1 T cells mediated complete tumor regression. Mice rejecting the tumor were protected upon subsequent rechallenge with either ovalbumin-positive or -negative tumors, indicative of a memory response and epitope spreading in nine of 11 mice vs none of the six naïve mice (P < .001). Treatment efficacy was associated with accumulation of IFN-γ-producing T cells and an increased ratio of CD8(+) T cells to immunosuppressive myeloid-derived suppressor cells in the tumors.Transduction of T cells with this new PD-1-CD28 receptor has the potential of breaking the PD-1-PD-L1-immunosuppressive axis in ACT.
DOI: 10.1371/journal.pgen.1004873
2015
Cited 89 times
Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets
Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets.
DOI: 10.1186/s40880-016-0103-5
2016
Cited 89 times
A new prognostic histopathologic classification of nasopharyngeal carcinoma
The current World Health Organization (WHO) classification of nasopharyngeal carcinoma (NPC) conveys little prognostic information. This study aimed to propose an NPC histopathologic classification that can potentially be used to predict prognosis and treatment response. We initially developed a histopathologic classification based on the morphologic traits and cell differentiation of tumors of 2716 NPC patients who were identified at Sun Yat-sen University Cancer Center (SYSUCC) (training cohort). Then, the proposed classification was applied to 1702 patients (retrospective validation cohort) from hospitals outside SYSUCC and 1613 patients (prospective validation cohort) from SYSUCC. The efficacy of radiochemotherapy and radiotherapy modalities was compared between the proposed subtypes. We used Cox proportional hazards models to estimate hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS). The 5-year OS rates for all NPC patients who were diagnosed with epithelial carcinoma (EC; 3708 patients), mixed sarcomatoid-epithelial carcinoma (MSEC; 1247 patients), sarcomatoid carcinoma (SC; 823 patients), and squamous cell carcinoma (SCC; 253 patients) were 79.4%, 70.5%, 59.6%, and 42.6%, respectively (P < 0.001). In multivariate models, patients with MSEC had a shorter OS than patients with EC (HR = 1.44, 95% CI = 1.27–1.62), SC (HR = 2.00, 95% CI = 1.76–2.28), or SCC (HR = 4.23, 95% CI = 3.34–5.38). Radiochemotherapy significantly improved survival compared with radiotherapy alone for patients with EC (HR = 0.67, 95% CI = 0.56–0.80), MSEC (HR = 0.58, 95% CI = 0.49–0.75), and possibly for those with SCC (HR = 0.63; 95% CI = 0.40–0.98), but not for patients with SC (HR = 0.97, 95% CI = 0.74–1.28). The proposed classification offers more information for the prediction of NPC prognosis compared with the WHO classification and might be a valuable tool to guide treatment decisions for subtypes that are associated with a poor prognosis.
DOI: 10.1038/s41418-019-0302-0
2019
Cited 84 times
STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion
Stimulator of interferon genes (STING), a major adaptor protein in antiviral innate immune signaling, is considered as one of the most important regulators of antiviral and antitumor immunity. Although STING agonists are now intensively studied in clinical trials as a new class of adjuvants to boost cancer immunotherapy, the tumor-intrinsic role of the STING pathway in shaping the tumor microenvironment remains controversial. Here, we discovered that STING plays a vital role in regulation of myeloid-derived suppressor cell (MDSC) differentiation and antitumor immunity in Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). Mechanistic analyses reveal that STING represses NPC-derived MDSC induction by enhancing SOCS1 expression in both tumor cells and MDSCs. SOCS1 physically interacts with STAT3 through its SH2 domain to prevent STAT3 phosphorylation and dimerization, resulting in reduced MDSC induction via inhibition of GM-CSF and IL-6 production. Notably, reduced tumoral STING expression was found to be significantly associated with a poor prognosis for NPC patients. Our findings reveal a novel mechanism linking STING to tumor microenvironmental cytokine production and MDSC induction.
DOI: 10.1080/2162402x.2015.1044712
2015
Cited 83 times
COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells
The expansion of myeloid-derived suppressor cells (MDSCs) is a common feature of cancer, but its biological roles and molecular mechanism remain unclear. Here, we investigated a molecular link between MDSC expansion and tumor cell metastasis in nasopharyngeal carcinoma (NPC). We demonstrated that MDSCs expanded and were positively correlated with the elevated tumor COX-2 expression and serum IL-6 levels in NPC patients. Importantly, COX-2 and MDSCs were poor predictors of patient disease-free survival (DFS). Knocking down tumor COX-2 expression hampered functional TW03-mediated-MDSC cell (T-MDSC) induction with IL-6 blocking. We identified that T-MDSCs promoted NPC cell migration and invasion by triggering the epithelial-mesenchymal transition (EMT) on cell-to-cell contact, and T-MDSCs enhanced tumor experimental lung metastasis in vivo. Interestingly, the contact between T-MDSCs and NPC cells enhanced tumor COX-2 expression, which subsequently activated the β-catenin/TCF4 pathway, resulting in EMT of the cancer cells. Blocking transforming growth factor β (TGFβ) or inducible nitric oxide synthase (iNOS) significantly abolished the T-MDSC-induced upregulation of COX-2 and EMT scores in NPC cells, whereas the administration of TGFβ or L-arginine supplements upregulated COX-2 expression and EMT scores in NPC cells. These findings reveal that COX-2 is a key factor mediating the interaction between MDSCs and tumor cells, suggesting that the inhibition of COX-2 or MDSCs has the potential to suppress NPC metastasis.
DOI: 10.1016/s1470-2045(16)30148-6
2016
Cited 82 times
Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study
Extranodal natural killer T-cell lymphoma (NKTCL), nasal type, is a rare and aggressive malignancy that occurs predominantly in Asian and Latin American populations. Although Epstein-Barr virus infection is a known risk factor, other risk factors and the pathogenesis of NKTCL are not well understood. We aimed to identify common genetic variants affecting individual risk of NKTCL.We did a genome-wide association study of 189 patients with extranodal NKTCL, nasal type (WHO classification criteria; cases) and 957 controls from Guangdong province, southern China. We validated our findings in four independent case-control series, including 75 cases from Guangdong province and 296 controls from Hong Kong, 65 cases and 983 controls from Guangdong province, 125 cases and 1110 controls from Beijing (northern China), and 60 cases and 2476 controls from Singapore. We used imputation and conditional logistic regression analyses to fine-map the associations. We also did a meta-analysis of the replication series and of the entire dataset.Associations exceeding the genome-wide significance threshold (p<5 × 10(-8)) were seen at 51 single-nucleotide polymorphisms (SNPs) mapping to the class II MHC region on chromosome 6, with rs9277378 (located in HLA-DPB1) having the strongest association with NKTCL susceptibility (p=4·21 × 10(-19), odds ratio [OR] 1·84 [95% CI 1·61-2·11] in meta-analysis of entire dataset). Imputation-based fine-mapping across the class II MHC region suggests that four aminoacid residues (Gly84-Gly85-Pro86-Met87) in near-complete linkage disequilibrium at the edge of the peptide-binding groove of HLA-DPB1 could account for most of the association between the rs9277378*A risk allele and NKTCL susceptibility (OR 2·38, p value for haplotype 2·32 × 10(-14)). This association is distinct from MHC associations with Epstein-Barr virus infection.To our knowledge, this is the first time that a genetic variant conferring an NKTCL risk is noted at genome-wide significance. This finding underlines the importance of HLA-DP antigen presentation in the pathogenesis of NKTCL.Top-Notch Young Talents Program of China, Special Support Program of Guangdong, Specialized Research Fund for the Doctoral Program of Higher Education (20110171120099), Program for New Century Excellent Talents in University (NCET-11-0529), National Medical Research Council of Singapore (TCR12DEC005), Tanoto Foundation Professorship in Medical Oncology, New Century Foundation Limited, Ling Foundation, Singapore National Cancer Centre Research Fund, and the US National Institutes of Health (1R01AR062886, 5U01GM092691-04, and 1R01AR063759-01A1).
DOI: 10.1093/aje/kwx018
2017
Cited 78 times
Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China
The magnitude and patterns of associations between smoking and risk of nasopharyngeal carcinoma (NPC) in high-incidence regions remain uncertain. Associations with active and passive tobacco smoking were estimated using multivariate logistic regression in a population-based case-control study of 2,530 NPC cases and 2,595 controls in Guangdong and Guangxi, southern China, in 2010-2014. Among men, risk of NPC was significantly higher in current smokers compared with never smokers (odds ratio (OR) = 1.32, 95% confidence interval (CI): 1.14, 1.53) but not in former smokers (OR = 0.92, 95% CI: 0.73, 1.17). Risk increased with smoking intensity (per 10 cigarettes/day, OR = 1.09, 95% CI: 1.03, 1.16), smoking duration (per 10 years, OR = 1.11, 95% CI: 1.06, 1.16), and cumulative smoking (per 10 pack-years, OR = 1.08, 95% CI: 1.04, 1.12). Risk decreased with later age at smoking initiation (per year, OR = 0.97, 95% CI: 0.96, 0.98) but not greater time since smoking cessation. Exposures to passive smoking during childhood (OR = 1.24, 95% CI: 1.03, 1.48) and from a spouse during adulthood (OR = 1.30, 95% CI: 1.03, 1.63) were independently associated with increased NPC risk in never-smoking men and women, but exposure-response trends were not observed. In conclusion, active and passive tobacco smoking are associated with modestly increased risk of NPC in southern China; risk is highest among long-term smokers.
DOI: 10.1126/sciadv.abi5781
2021
Cited 63 times
Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors
CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-β (TGF-β). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-β receptor 2 (DNR) can simultaneously shield them from TGF-β. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-β shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.
DOI: 10.1038/s41392-020-00414-1
2021
Cited 50 times
Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes
Abstract It remains unknown for decades how some of the therapeutic fusion proteins positive in a small percentage of cancer cells account for patient outcome. Here, we report that osteosarcoma Rab22a-NeoF1 fusion protein, together with its binding partner PYK2, is sorted into exosomes by HSP90 via its KFERQ-like motif (RVLFLN 142 ). The exosomal Rab22a-NeoF1 fusion protein facilitates the pulmonary pre-metastatic niche formation by recruiting bone marrow-derived macrophages. The exosomal PYK2 activates RhoA in its negative recipient osteosarcoma cells and induces signal transducer and activator of transcription 3 activation in its recipient macrophages to increase M2 phenotype. Consequently, lung metastases of its recipient osteosarcoma cells are promoted by this exosomal Rab22a-NeoF1 fusion protein, and this event can be targeted by disrupting its interaction with PYK2 using a designed internalizing RGD peptide.
DOI: 10.1186/s13020-022-00634-3
2022
Cited 43 times
Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells
Abstract Background Alzheimer’s disease (AD) is a neurodegenerative disease. Ferroptosis plays a critical role in neurodegenerative diseases. Nuclear factor E2-related factor 2 (Nrf2) is considered an important factor in ferroptosis. Studies have demonstrated that salidroside has a potential therapeutic effect on AD. The intrinsic effect of salidroside on ferroptosis is unclear. The purpose of this study was to investigate the protective effects and pharmacological mechanisms of salidroside on alleviating neuronal ferroptosis in Aβ 1−42 -induced AD mice and glutamate-injured HT22 cells. Methods HT22 cells were injured by glutamate (Glu), HT22 cells transfected with siRNA Nrf2, and Aβ 1−42 -induced WT and Nrf2 −/− AD mice were treated with salidroside. The mitochondria ultrastructure, intracellular Fe 2+ , reactive oxygen species, mitochondrial membrane potential, and lipid peroxidation of HT22 cells were detected. Malondialdehyde, reduced glutathione, oxidized glutathione disulfide, and superoxide dismutase were measured. The novel object recognition test, Y-maze, and open field test were used to investigate the protective effects of salidroside on Aβ 1−42 -induced WT and Nrf2 −/− AD mice. The protein expressions of PTGS2, GPX4, Nrf2, and HO1 in the hippocampus were investigated by Western blot. Results Salidroside increased the cell viability and the level of MMP of Glu-injured HT22 cells, reduced the level of lipid peroxidation and ROS, and increased GPX4 and SLC7A11 protein expressions. These changes were not observed in siRNA Nrf2 transfected HT22 cells. Salidroside improved the ultrastructural changes in mitochondria of HT22 cells and Aβ 1−42 -induced AD mice, but not in Aβ 1−42 -induced Nrf2 −/− AD mice. Salidroside increased protein expression levels of GPX4, HO1, and NQO1 and decreased protein expression of PTGS2 in Aβ 1−42 -induced AD mice but not in Aβ 1−42 -induced Nrf2 −/− AD mice. Conclusions Salidroside plays a neuroprotective role by inhibiting neuronal ferroptosis in Aβ 1−42 -induced AD mice and Glu-injured HT22 cells, and its mechanism is related to activation of the Nrf2/HO1 signaling pathway. Graphical Abstract
DOI: 10.1016/j.undsp.2023.08.014
2024
Data-driven real-time prediction for attitude and position of super-large diameter shield using a hybrid deep learning approach
The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields - a critical consideration for construction safety and tunnel lining quality. This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield. The approach consists of principal component analysis (PCA) and temporal convolutional network (TCN). The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty, improve accuracy and the data effect, and 9 sets of required principal component characteristic data are obtained. The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network. The approach’s effectiveness is exemplified using data from a tunnel construction project in China. The obtained results show remarkable accuracy in predicting the global attitude and position, with an average error ratio of less than 2 mm on four shield outputs in 97.30% of cases. Moreover, the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position, with an average prediction accuracy of 89.68%. The proposed hybrid model demonstrates superiority over TCN, long short-term memory (LSTM), and recurrent neural network (RNN) in multiple indexes. Shapley additive exPlanations (SHAP) analysis is also performed to investigate the significance of different data features in the prediction process. This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.
DOI: 10.1182/blood.v97.11.3505
2001
Cited 148 times
Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity
In attempting to develop effective anticancer immunotherapies, the relative ability of apoptotic cells to induce an immune response remains an important but controversial consideration. A novel gene-transfer approach was used by which rapid induction of pure apoptosis can be selectively achieved in a transfected tumor cell population following exposure to a semisynthetic dimerizing ligand, AP20187. Inoculation of BALB/c mice with apoptotic and viable 12B1-D1 leukemia cells, at a 12:1 ratio subcutaneously, led to early tumor growth. Heat stress up-regulated the expression of membrane heat shock proteins (HSP72 and HSP60) on apoptotic 12B1-D1 cells, and stressed apoptotic cells were capable of generating a T-cell–mediated specific antitumor response. Pulsing of stressed apoptotic leukemia cells onto syngeneic dendritic cells resulted largely in rejection of coinjected viable 12B1-D1 cells. Mice rejecting the primary 12B1-D1 inoculum were immune to the same but not to a different leukemia challenge. Our findings indicate that tumor immunogenicity is dependent on whether cells are stressed before apoptosis induction and suggest that the immune system is capable of distinguishing between stressed and nonstressed cells undergoing programmed cell death.
DOI: 10.1007/s00262-007-0305-4
2007
Cited 125 times
Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine
DOI: 10.1158/0008-5472.can-07-1379
2007
Cited 113 times
Aurora-A, a Negative Prognostic Marker, Increases Migration and Decreases Radiosensitivity in Cancer Cells
Centrosomal Aurora-A (Aur-A) kinase ensures proper spindle assembly and accurate chromosome segregation in mitosis. Overexpression of Aur-A leads to centrosome amplification, aberrant spindle, and consequent genetic instability. In the present study, Aur-A was found to be overexpressed in laryngeal squamous cell carcinoma (LSCC). Moreover, Aur-A expression was adversely correlated with median survival, and further identified as a potential independent factor for disease prognosis. Suppression of Aurora kinase activity chemically or genetically led to LSCC Hep2 cell cycle arrest and apoptotic cell death. Importantly, we found that Aur-A increases cell migration and this novel function was correlated with Akt1 activation. The enhanced cell migration induced by Aur-A overexpression could be abrogated by either small-molecule Akt1 inhibitor or short interfering RNA. VX-680, a selective Aurora kinase inhibitor, decreased Akt1 phosphorylation at Ser(473) and inhibited cell migration, but failed to do so in constitutive active Akt1 (myr-Akt1)-overexpressed cells. Moreover, our data suggested that overexpression of Aur-A kinase might also contribute to radioresistance of LSCC. Inhibiting Aur-A by VX-680 induced expression of p53 and potently sensitized cells to radiotherapy, leading to significant cell death. Ectopic overexpression of Aur-A, however, reduced p53 level and rendered cells more resistant to irradiation. Taken together, we showed that Aur-A kinase, a negative prognostic marker, promotes migration and reduces radiosensitivity in laryngeal cancer cells.
1996
Cited 111 times
Regulation of p21WAF1/CIP1 expression by p53-independent pathways.
DOI: 10.1016/0165-2478(94)00065-4
1994
Cited 111 times
Understanding the mechanism of the age-change of thymic function to promote T cell differentiation
Immunological functions peak at around puberty and gradually decline thereafter with advancing age. The immunological decline mainly occurs in the T cell-dependent immune system and is generally associated with an increase in not only susceptibility to infections but also incidence of autoimmune phenomena. The age-related changes in T-cell dependent immune functions can be mainly ascribed to the physiological thymic involution which starts in the early phase of life. The age-related thymic involution can be ascribed to either extrinsic or intrinsic factors. Bone marrow stem cells can be one of the extrinsic factors for the thymic involution, but their role is estimated to be marginal as compared with alteration of the thymic microenvironment. With advancing age, the thymic capacity to promote T-cell differentiation declines together with a change in the composition of T-cell subsets produced. Such an alteration of the thymic environment is responsible for the age-related change in peripheral T cells in number and in composition. Age change is observed in several intrinsic factors in the thymic environment which influence proliferation of thymocytes. These thymic intrinsic factors can either promote or inhibit proliferation of thymocytes, and promoting factors generally decrease with age with a concomitant increase in inhibitory factors. Various endocrine hormones are important extrinsic factors influencing the thymic function. In fact, physiological thymic involution can be intervened by manipulation of the endocrine system, sometimes resulting in rejuvenation of immune functions to a certain extent.(ABSTRACT TRUNCATED AT 250 WORDS)
DOI: 10.1186/1479-5876-6-1
2008
Cited 110 times
Elevated expressions of survivin and VEGF protein are strong independent predictors of survival in advanced nasopharyngeal carcinoma
Abstract Background Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China. The China 1992 TNM staging system has been widely used for prognosis prediction of NPC patients in China. Although NPC patients can be classified according to their clinical stage in this system, their prognosis may vary significantly. Method 280 cases of NPC with clinical follow-up data were collected and expressions of survivin and VEGF in tumor tissues were investigated by immunohistochemistry (IHC). Apoptosis index (AI) in 100 cases of NPC was detected by the TUNEL method. Results Expression of survivin and VEGF were significantly associated with TNM stage, T-stage and metastasis of NPC. The patients with survivin and VEGF over-expression presented lower 5-year survival rate, as compared to those of low-expression (42.32% vs. 70.54%, 40.1% vs. 67.8%, respectively, P &lt; 0.05), especially in advanced stage patients (36.51% vs. 73.41%, 35.03% vs. 65.22%, respectively, P &lt; 0.05). The 5-year survival rate in NPC patients with survivin and VEGF dual over-expression was significantly lower than that of patients with dual low-expression (18.22% vs. 73.54%, respectively; P = 0.0003). Multivariate analysis indicated that both survivin and VEGF over-expression in NPC tumor tissues were strong independent factors of poor prognosis in NPC patients. The mean AI in the 39 survivin low-expression cases was 144.7 ± 39.9, which was significantly higher than that in 61 survivin over-expression cases (111.6 ± 39.8) (T test, P &lt; 0.05). Conclusion Survivin and VEGF over-expression are independent prognostic factors for the patients with NPC. These results also suggest that tumor survivin and VEGF expressions are valuable prognostic markers for prognosis prediction in NPC patients.
DOI: 10.1128/jvi.79.24.15323-15330.2005
2005
Cited 108 times
Genomic Sequence Analysis of Epstein-Barr Virus Strain GD1 from a Nasopharyngeal Carcinoma Patient
To date, the only entire Epstein-Barr virus (EBV) genomic sequence available in the database is the prototype B95.8, which was derived from an individual with infectious mononucleosis. A causative link between EBV and nasopharyngeal carcinoma (NPC), a disease with a distinctly high incidence in southern China, has been widely investigated. However, no full-length analysis of any substrain of EBV from this area has been reported. In this study, we analyzed the entire genomic sequence of an EBV strain from a patient with NPC in Guangdong, China. This EBV strain was termed GD1 (Guangdong strain 1), and the full-length sequence of GD1 was submitted to the GenBank database. The assigned accession number is AY961628. The entire GD1 sequence is 171,656 bp in length, with 59.5% G+C content and 40.5% A+T content. We detected many sequence variations in GD1 compared to prototypical strain B95.8, including 43 deletion sites, 44 insertion sites, and 1,413 point mutations. Furthermore, we evaluated the frequency of some of these GD1 mutations in Cantonese NPC patients and found them to be highly prevalent. These findings suggest that GD1 is highly representative of the EBV strains isolated from NPC patients in Guangdong, China, an area with the highest incidence of NPC in the world. Furthermore, these findings provide the second full-length sequence analysis of any EBV strain as well as the first full-length sequence analysis of an NPC-derived EBV strain.
DOI: 10.1074/jbc.m109.048397
2010
Cited 103 times
Stem-like Cancer Cells Are Inducible by Increasing Genomic Instability in Cancer Cells
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.
DOI: 10.1186/1479-5876-7-56
2009
Cited 101 times
Higher percentage of CD133+ cells is associated with poor prognosis in colon carcinoma patients with stage IIIB
Cancer stem cell model suggested that tumor progression is driven by the overpopulation of cancer stem cells and eradicating or inhibiting the symmetric division of cancer stem cells would become the most important therapeutic strategy. However, clinical evidence for this hypothesis is still scarce. To evaluate the overpopulation hypothesis of cancer stem cells the association of percentage of CD133+ tumor cells with clinicopathological parameters in colon cancer was investigated since CD133 is a putative cancer stem cell marker shared by multiple solid tumors.Tumor tissues matched with adjacent normal tissues were collected from 104 stage IIIB colon cancer patients who were subject to radical resection between January, 1999 to July, 2003 in this center. The CD133 expression was examined with immunohistochemical staining. The correlation of the percentage of CD133+ cell with clinicopathological parameters and patients' 5-year survival was analyzed.The CD133+ cells were infrequent and heterogeneous distribution in the cancer tissue. Staining of CD133 was localized not only on the glandular-luminal surface of cancer cells but also on the invasive budding and the poorly differentiated tumors with ductal structures. Both univariate and multivariate survival analysis revealed that the percentage of CD133+ cancer cells and the invasive depth of tumor were independently prognostic. The patients with a lower percentage of CD133+ cancer cells (less than 5%) were strongly associated with a higher 5-year survival rate than those with a higher percentage of CD133+ cancer cells (greater than or equal to 55%). Additionally, no correlation was obtained between the percentage of CD133+ cancer cells and the other clinicopathological parameters including gender, age, site of primary mass, pathologic types, grades, and invasive depth.The fact that a higher percentage CD133+ cells were strongly associated with a poorer prognosis in patients with locally advanced colon cancer implicated that CD133+ cancer cells contribute to the tumor progression, and the overpopulation hypothesis of cancer stem cell seems reasonable.
DOI: 10.1128/jvi.00823-11
2011
Cited 98 times
Direct Sequencing and Characterization of a Clinical Isolate of Epstein-Barr Virus from Nasopharyngeal Carcinoma Tissue by Using Next-Generation Sequencing Technology
Epstein-Barr virus (EBV)-encoded molecules have been detected in the tumor tissues of several cancers, including nasopharyngeal carcinoma (NPC), suggesting that EBV plays an important role in tumorigenesis. However, the nature of EBV with respect to genome width in vivo and whether EBV undergoes clonal expansion in the tumor tissues are still poorly understood. In this study, next-generation sequencing (NGS) was used to sequence DNA extracted directly from the tumor tissue of a patient with NPC. Apart from the human sequences, a clinically isolated EBV genome 164.7 kb in size was successfully assembled and named GD2 (GenBank accession number HQ020558). Sequence and phylogenetic analyses showed that GD2 was closely related to GD1, a previously assembled variant derived from a patient with NPC. GD2 contains the most prevalent EBV variants reported in Cantonese patients with NPC, suggesting that it might be the prevalent strain in this population. Furthermore, GD2 could be grouped into a single subtype according to common classification criteria and contains only 6 heterozygous point mutations, suggesting the monoclonal expansion of GD2 in NPC. This study represents the first genome-wide analysis of a clinical isolate of EBV directly extracted from NPC tissue. Our study reveals that NGS allows the characterization of genome-wide variations of EBV in clinical tumors and provides evidence of monoclonal expansion of EBV in vivo. The pipeline could also be applied to the study of other pathogen-related malignancies. With additional NGS studies of NPC, it might be possible to uncover the potential causative EBV variant involved in NPC.
DOI: 10.1016/j.ejphar.2010.03.051
2010
Cited 95 times
Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells
Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G1 phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer.
DOI: 10.1371/journal.pone.0019137
2011
Cited 95 times
Upregulation of MiR-155 in Nasopharyngeal Carcinoma is Partly Driven by LMP1 and LMP2A and Downregulates a Negative Prognostic Marker JMJD1A
The role of microRNA-155 (miR-155) has been associated with oncogenesis of several human tumors. However the expression pattern of miR-155 has not been investigated in nasopharyngeal carcinoma (NPC). The present study was to assess miR-155 expression pattern and its possible function in NPC, to identify its targets and evaluate their clinical applications in NPC. MiR-155 was found to be upregulated in two Epstein-Barr virus (EBV) negative NPC derived cell lines CNE1 and TW03, as well as in NPC clinical samples by quantitative Real-time PCR and in situ hybridization detection. EBV encoded LMP1 and LMP2A could further enhance the expression of miR-155 in NPC CNE1 and TW03 cells. JMJD1A and BACH1 were identified as putative targets of miR-155 in a bioinformatics screen. Overexpression of miR-155 downregulated a luciferase transcript fused to the 3'UTR of JMJD1A and BACH1. MiR-155 mimic could downregulate the expression of JMJD1A and BACH1, while miR-155 inhibitor could upregulate JMJD1A expression in NPC cell lines. Moreover, downregulation of JMJD1A was significantly correlated with N stage in TNM classification (p = 0.023), a lower five-year survival rate (p = 0.021), and a lower five-year disease-free survival rate (p = 0.049) of NPC patients. Taken together, up-regulation of miR-155 in NPC is partly driven by LMP1 and LMP2A, and results in downregulation of JMJD1A, which is associated with N stage and poor prognosis of NPC patients. The potential of miR-155 and JMJD1A as therapeutic targets in NPC should be further investigated.
DOI: 10.1371/journal.pone.0099857
2014
Cited 76 times
Epstein-Barr Virus (EBV) Infection in Chinese Children: A Retrospective Study of Age-Specific Prevalence
Epstein-Barr Virus (EBV) is a globally prevalent herpesvirus associated with infectious mononucleosis and many malignancies. The survey on EBV prevalence appears to be important to study EBV-related diseases and determine when to administer prophylactic vaccine. The purpose of this retrospective study was to collect baseline information about the prevalence of EBV infection in Chinese children.We collected 1778 serum samples from healthy children aged 0 to 10, who were enrolled in conventional health and nutrition examinations without any EBV-related symptom in 2012 and 2013 in North China (n = 973) and South China (n = 805). We detected four EBV-specific antibodies, i.e., anti-VCA-IgG and IgM, anti-EBNA-IgG and anti-EA-IgG, by ELISA, representing all of the phases of EBV infection. The overall EBV seroprevalence in samples from North and South China were 80.78% and 79.38% respectively. The EBV seropositivity rates dropped slightly at age 2, and then increased gradually with age. The seroprevalence became stabilized at over 90% after age 8. In this study, the seroprevalence trends between North and South China showed no difference (P>0.05), and the trends of average antibody concentrations were similar as well (P>0.05).EBV seroprevalence became more than 50% before age 3 in Chinese children, and exceed 90% after age 8. This study can be helpful to study the relationship between EBV and EBV-associated diseases, and supportive to EBV vaccine development and implementation.
DOI: 10.1016/j.canlet.2012.10.033
2013
Cited 74 times
MicroRNA-29c enhances the sensitivities of human nasopharyngeal carcinoma to cisplatin-based chemotherapy and radiotherapy
This study was aimed to investigate the potential role of microRNA-29c (miR-29c) in regulating the sensitivities of nasopharyngeal carcinoma (NPC) to ionizing radiation (IR) and cisplatin. Low expression of miR-29c was positively associated with therapeutic resistance in 159 NPC cases. Our further in vitro and in vivo studies illustrated ectopic restoration of miR-29c substantially enhanced the sensitivity of NPC cells to IR and cisplatin treatment by promoting apoptosis. Furthermore, we detected miR-29c repressed expression of anti-apoptotic factors, Mcl-1 and Bcl-2 in NPC tissues and cell lines. These data indicate miR-29c might serve as a potential therapeutic sensitizer in NPC treatment.
DOI: 10.1007/s00262-015-1765-6
2015
Cited 72 times
Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator
The expansion of myeloid-derived suppressor cells (MDSCs) and its correlation with advanced disease stage have been shown in solid cancers. Here, we investigated the functional features and clinical significance of MDSCs in extranodal NK/T cell lymphoma (ENKL). A higher percentage of circulating HLA-DR(-)CD33(+)CD11b(+) MDSCs was observed in ENKL patients than in healthy controls (P < 0.05, n = 32) by flow cytometry analysis. These MDSCs from ENKL patients (ENKL-MDSCs) consisted of CD14(+) monocytic (Mo-MDSCs, >60 %) and CD15(+) granulocytic (PMN-MDSCs, <20 %) MDSCs. Furthermore, these ENKL-MDSCs expressed higher levels of Arg-1, iNOS and IL-17 compared to the levels of MDSCs from healthy donors, and they expressed moderate levels of TGFβ and IL-10 but lower levels of CD66b. The ENKL-MDSCs strongly suppressed the anti-CD3-induced allogeneic and autologous CD4 T cell proliferation (P < 0.05), but they only slightly suppressed CD8 T cell proliferation (P > 0.05). Interestingly, ENKL-MDSCs inhibited the secretion of IFNγ but promoted IL-10, IL-17 and TGFβ secretion as well as Foxp3 expression in T cells. The administration of inhibitors of iNOS, Arg-1 and ROS significantly reversed the suppression of anti-CD3-induced T cell proliferation by MDSCs (P < 0.05). Importantly, based on multivariate Cox regression analysis, the HLA-DR(-)CD33(+)CD11b(+) cells and CD14(+) Mo-MDSCs were independent predictors for disease-free survival (DFS, P = 0.013 and 0.016) and overall survival (OS, P = 0.017 and 0.027). Overall, our results identified for the first time that ENKL-MDSCs (mainly Mo-MDSCs) have a prognostic value for patients and a suppressive function on T cell proliferation.
DOI: 10.1158/1078-0432.ccr-14-0082
2014
Cited 71 times
Clinical Activity of Adjuvant Cytokine-Induced Killer Cell Immunotherapy in Patients with Post-Mastectomy Triple-Negative Breast Cancer
Abstract Purpose: Triple-negative breast cancer (TNBC) is a high risk form of this disease, even after surgery, due to the absence of targets for hormone treatment and anti–Her-2 therapy. Chemotherapy is the main therapeutic strategy for such patients with breast cancer, although the outcome is often unsatisfactory. Thus, the development of combination adjuvant therapies is essential for improved prognosis in patients with TNBC. In this study, we investigated the efficacy of a sequential combination of cytokine-induced killer cell (CIK) infusion and chemotherapy for patients with post-mastectomy TNBC. Experimental Design: From 2008 to 2012, 90 patients with post-mastectomy TNBC were included in this retrospective study: 45 cases received chemotherapy alone or with sequential radiotherapy; a further 45 cases received chemotherapy with/without radiotherapy and sequential CIK infusion. Results: Survival analysis showed significantly higher disease-free survival (DFS) and overall survival (OS) rates in the CIK treatment group compared with the control group (P = 0.0382, P = 0.0046, respectively; log-rank test). Multivariate survival analysis showed that CIK adjuvant treatment was an independent prognostic factor for OS of patients with TNBC. In subgroup analyses, CIK adjuvant treatment significantly increased the DFS rate of patients with pathologic grade 3, and significantly increased the OS rate of patients in N1, N2, N3, IIB, III TNM (tumor–node–metastasis) stages, and with pathologic grade 3. Conclusions: These data indicate that adjuvant CIK treatment combined with chemotherapy is an effective therapeutic strategy to prevent disease recurrence and prolong survival of patients with TNBC, particularly those with lymph node metastasis, advanced TNM stage, and poor pathologic grade. Clin Cancer Res; 20(11); 3003–11. ©2014 AACR.
DOI: 10.1074/jbc.m112.367532
2012
Cited 70 times
Tumor Microenvironment Macrophage Inhibitory Factor Directs the Accumulation of Interleukin-17-producing Tumor-infiltrating Lymphocytes and Predicts Favorable Survival in Nasopharyngeal Carcinoma Patients
The accumulation of an intratumoral CD4<sup>+</sup> interleukin-17-producing subset (Th17) of tumor-infiltrating lymphocytes (TILs) is a general characteristic in many cancers. The relationship between the percentage of Th17 cells and clinical prognosis differs among cancers. The mechanism responsible for the increasing percentage of such cells in NPC is still unknown, as is their biological function. Here, our data showed an increase of Th17 cells in tumor tissues relative to their numbers in normal nasopharynx tissues or in the matched peripheral blood of NPC patients. Th17 cells in tumor tissue produced more IFNγ than did those in the peripheral blood of matched NPC patients and healthy controls. We observed high levels of CD154, G-CSF, CXCL1, IL-6, IL-8, and macrophage inhibitory factor (MIF) out of 36 cytokines examined in tumor tissue cultures. MIF promoted the generation and recruitment of Th17 cells mediated by NPC tumor cells <i>in vitro</i>; this promoting effect was mainly dependent on the mammalian target of rapamycin pathway and was mediated by the MIF-CXCR4 axis. Finally, the expression level of MIF in tumor cells and in TILs was positively correlated in NPC tumor tissues, and the frequency of MIF-positive TILs was positively correlated with NPC patient clinical outcomes. Taken together, our findings illustrate that tumor-derived MIF can affect patient prognosis, which might be related to the increase of Th17 cells in the NPC tumor microenvironment.
DOI: 10.1073/pnas.1513359112
2015
Cited 69 times
Nonmuscle myosin heavy chain IIA mediates Epstein–Barr virus infection of nasopharyngeal epithelial cells
EBV causes B lymphomas and undifferentiated nasopharyngeal carcinoma (NPC). Although the mechanisms by which EBV infects B lymphocytes have been extensively studied, investigation of the mechanisms by which EBV infects nasopharyngeal epithelial cells (NPECs) has only recently been enabled by the successful growth of B lymphoma Mo-MLV insertion region 1 homolog (BMI1)-immortalized NPECs in vitro and the discovery that neuropilin 1 expression positively affects EBV glycoprotein B (gB)-mediated infection and tyrosine kinase activations in enhancing EBV infection of BMI1-immortalized NPECs. We have now found that even though EBV infected NPECs grown as a monolayer at extremely low efficiency (<3%), close to 30% of NPECs grown as sphere-like cells (SLCs) were infected by EBV. We also identified nonmuscle myosin heavy chain IIA (NMHC-IIA) as another NPEC protein important for efficient EBV infection. EBV gH/gL specifically interacted with NMHC-IIA both in vitro and in vivo. NMHC-IIA densely aggregated on the surface of NPEC SLCs and colocalized with EBV. EBV infection of NPEC SLCs was significantly reduced by NMHC-IIA siRNA knock-down. NMHC-IIA antisera also efficiently blocked EBV infection. These data indicate that NMHC-IIA is an important factor for EBV NPEC infection.
DOI: 10.1245/s10434-013-3144-x
2013
Cited 69 times
The Efficacy of Cytokine-Induced Killer Cell Infusion as an Adjuvant Therapy for Postoperative Hepatocellular Carcinoma Patients
DOI: 10.1002/ijc.30447
2016
Cited 66 times
Estimation of heritability for nine common cancers using data from genome‐wide association studies in Chinese population
The familial aggregation indicated the inheritance of cancer risk. Recent genome‐wide association studies (GWASs) have identified a number of common single‐nucleotide polymorphisms (SNPs). Following heritability analyses have shown that SNPs could explain a moderate amount of variance for different cancer phenotypes among Caucasians. However, little information was available in Chinese population. We performed a genome‐wide complex trait analysis for common cancers at nine anatomical sites in Chinese population (14,629 cancer cases vs . 17,554 controls) and estimated the heritability of these cancers based on the common SNPs. We found that common SNPs explained certain amount of heritability with significance for all nine cancer sites: gastric cancer (20.26%), esophageal squamous cell carcinoma (19.86%), colorectal cancer (16.30%), lung cancer (LC) (15.17%), and epithelial ovarian cancer (13.31%), and a similar heritability around 10% for hepatitis B virus‐related hepatocellular carcinoma, prostate cancer, breast cancer and nasopharyngeal carcinoma. We found that nearly or less than 25% change was shown when removing the regions expanding 250 kb or 500 kb upward and downward of the GWAS‐reported SNPs. We also found strong linear correlations between variance partitioned by each chromosome and chromosomal length only for LC ( R 2 = 0.641, p = 0.001) and esophageal squamous cell cancer ( R 2 = 0.633, p = 0.002), which implied us the complex heterogeneity of cancers. These results indicate polygenic genetic architecture of the nine common cancers in Chinese population. Further efforts should be made to discover the hidden heritability of different cancer types among Chinese.
DOI: 10.18632/oncotarget.3518
2015
Cited 65 times
WNT5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis
Nasopharyngeal carcinoma (NPC) has the highest metastasis rate among head and neck cancers with unclear mechanism. WNT5A belongs to the WNT family of cysteine-rich secreted glycoproteins. Our previous high-throughput gene expression profiling revealed that WNT5A was up-regulated in highly metastatic cells. In the present study, we first confirmed the elevated expression of WNT5A in metastatic NPC tissues at both the mRNA and protein levels. We then found that WNT5A promoted epithelial-mesenchymal transition (EMT) in NPC cells, induced the accumulation of CD24-CD44+ cells and side population, which are believed to be cancer stem cell characteristics. Moreover, WNT5A promoted the migration and invasion of NPC cells in vitro, while in vivo treatment with recombinant WNT5A promoted lung metastasis. Knocking down WNT5A diminished NPC tumorigenesis in vivo. When elevated expression of WNT5A coincided with the elevated expression of vimentin in the primary NPC, the patients had a poorer prognosis. Among major signaling pathways, protein kinase C (PKC) signaling was activated by WNT5A in NPC cells. A positive feedback loop between WNT5A and phospho-PKC to promote EMT was also revealed. Taken together, these data suggest that WNT5A is an important molecule in promoting stem cell characteristics in NPC, leading to tumorigenesis and metastasis.
DOI: 10.1038/ncomms4661
2014
Cited 65 times
IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation
Lack of cellular differentiation is a key feature of nasopharyngeal carcinoma (NPC), but it also presents as a unique opportunity for intervention by differentiation therapy. Here using RNA-seq profiling analysis and functional assays, we demonstrate that reduced IKKα expression is responsible for the undifferentiated phenotype of NPC. Conversely, overexpression of IKKα induces differentiation and reduces tumorigenicity of NPC cells without activating NF-κB signalling. Importantly, we describe a mechanism whereby EZH2 directs IKKα transcriptional repression via H3K27 histone methylation on the IKKα promoter. The differentiation agent, retinoic acid, increases IKKα expression by suppressing EZH2-mediated H3K27 histone methylation, resulting in enhanced differentiation of NPC cells. In agreement, an inverse correlation between IKKα (low) and EZH2 (high) expression is associated with a lack of differentiation in NPC patient samples. Collectively, these findings demonstrate a role for IKKα in NPC differentiation and reveal an epigenetic mechanism for IKKα regulation, unveiling a new avenue for differentiation therapy.
DOI: 10.3892/ijo.2016.3823
2016
Cited 65 times
ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC), one of the most aggressive cancers, is characterized by heterogeneous genetic and epigenetic changes. Recently, A-to-I RNA editing, catalyzed by adenosine deaminases acting on RNA (ADARs), was found to be aberrantly regulated during tumorigenesis. We previously reported that ADAR2 was downregulated in ESCC but its role was unclear. Thus, we report here that overexpression of ADAR2 can induce apoptosis in ESCC cell lines and inhibit tumor growth in vitro and in vivo. ADAR2 knockdown inhibited apoptosis in ADAR2 highly expressing tumor cells. RNA-seq assay showed that ADAR2, not ADAR1 or active-site-mutated ADAR2, could edit insulin-like growth factor binding protein 7 (IGFBP7) mRNA in ESCC. IGFBP7 knockdown or ADAR2 catalytic activity destruction abolished the pro-apoptotic function of ADAR2. Mechanistically, RNA editing may stabilize IGFBP7 protein by changing the protease recognition site of matriptase and this is essential for IGFBP7 to induce apoptosis. Western blotting revealed that ADAR2 overexpression could induce IGFBP7-dependent inhibition of Akt signaling. Thus, our data indicate that ADAR2 suppresses tumor growth and induces apoptosis by editing and stabilizing IGFBP7 in ESCC, and this may represent a novel therapeutic target for treating ESCC.
DOI: 10.4161/23723556.2014.976507
2015
Cited 61 times
Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma
Adoptive cell therapy (ACT) for cancers using autologous tumor-infiltrating lymphocytes (TILs) can induce immune responses and antitumor activity in metastatic melanoma patients. Here, we aimed to assess the safety and antitumor activity of ACT using expanded TILs following concurrent chemoradiotherapy (CCRT) in patients with locoregionally advanced nasopharyngeal carcinoma (NPC). Twenty-three newly diagnosed, locoregionally advanced NPC patients were enrolled, of whom 20 received a single-dose of TIL infusion following CCRT. All treated patients were assessed for toxicity, survival and clinical and immunologic responses. Correlations between immunological responses and treatment effectiveness were further studied. Only mild adverse events (AEs), including Grade 3 neutropenia (1/23, 5%) consistent with immune-related causes, were observed. Nineteen of 20 patients exhibited an objective antitumor response, and 18 patients displayed disease-free survival longer than 12 mo after ACT. A measurable plasma Epstein–Barr virus (EBV) load was detected in 14 patients at diagnosis, but a measurable EBV load was not found in patients after one week of ACT, and the plasma EBV load remained undetectable in 17 patients at 6 mo after ACT. Expansion and persistence of T cells specific for EBV antigens in peripheral blood following TIL therapy were observed in 13 patients. The apparent positive correlation between tumor regression and the expansion of T cells specific for EBV was further investigated in four patients. This study shows that NPC patients can tolerate ACT with TILs following CCRT and that this treatment results in sustained antitumor activity and anti-EBV immune responses. A larger phase II trial is in progress.
DOI: 10.1371/journal.pone.0086149
2014
Cited 58 times
Knockdown of miR-214 Promotes Apoptosis and Inhibits Cell Proliferation in Nasopharyngeal Carcinoma
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.
DOI: 10.1016/j.molcel.2018.09.007
2018
Cited 58 times
Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication
DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.