ϟ

Yasuko Rikihisa

Here are all the papers by Yasuko Rikihisa that you can download and read on OA.mg.
Yasuko Rikihisa’s last known institution is . Download Yasuko Rikihisa PDFs here.

Claim this Profile →
DOI: 10.1099/00207713-51-6-2145
2001
Cited 1,851 times
Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila.
The genera Anaplasma, Ehrlichia, Cowdria, Neorickettsia and Wolbachia encompass a group of obligate intracellular bacteria that reside in vacuoles of eukaryotic cells and were previously placed in taxa based upon morphological, ecological, epidemiological and clinical characteristics. Recent genetic analyses of 16S rRNA genes, groESL and surface protein genes have indicated that the existing taxa designations are flawed. All 16S rRNA gene and groESL sequences deposited in GenBank prior to 2000 and selected sequences deposited thereafter were aligned and phylogenetic trees and bootstrap values were calculated using the neighbour-joining method and compared with trees generated with maximum-probability, maximum-likelihood, majority-rule consensus and parsimony methods. Supported by bootstrap probabilities of at least 54%, 16S rRNA gene comparisons consistently clustered to yield four distinct clades characterized roughly as Anaplasma (including the Ehrlichia phagocytophila group, Ehrlichia platys and Ehrlichia bovis) with a minimum of 96.1% similarity, Ehrlichia (including Cowdria ruminantium) with a minimum of 97.7% similarity, Wolbachia with a minimum of 95.6% similarity and Neorickettsia (including Ehrlichia sennetsu and Ehrlichia risticii) with a minimum of 94.9% similarity. Maximum similarity between clades ranged from 87.1 to 94.9%. Insufficient differences existed among E. phagocytophila, Ehrlichia equi and the human granulocytic ehrlichiosis (HGE) agent to support separate species designations, and this group was at least 98.2% similar to any Anaplasma species. These 16S rRNA gene analyses are strongly supported by similar groESL clades, as well as biological and antigenic characteristics. It is proposed that all members of the tribes Ehrlichieae and Wolbachieae be transferred to the family Anaplasmataceae and that the tribe structure of the family Rickettsiaceae be eliminated. The genus Anaplasma should be emended to include Anaplasma (Ehrlichia) phagocytophila comb. nov. (which also encompasses the former E. equi and the HGE agent), Anaplasma (Ehrlichia) bovis comb. nov. and Anaplasma (Ehrlichia) platys comb. nov., the genus Ehrlichia should be emended to include Ehrlichia (Cowdria) ruminantium comb. nov. and the genus Neorickettsia should be emended to include Neorickettsia (Ehrlichia) risticii comb. nov. and Neorickettsia (Ehrlichia) sennetsu comb. nov.
DOI: 10.1371/journal.pgen.0020021
2006
Cited 441 times
Comparative Genomics of Emerging Human Ehrlichiosis Agents
Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.
DOI: 10.1128/cmr.4.3.286
1991
Cited 421 times
The tribe Ehrlichieae and ehrlichial diseases
The tribe Ehrlichieae consists of gram-negative minute cocci that are obligate intracellular parasites classified in the family Rickettsiaceae. Although ehrlichial organisms have been observed in leukocytes for many years, only a few species have been cultured in quantities sufficient for biochemical and molecular analyses. Recents studies on 16S-rRNA sequence analysis and energy metabolism showed that the genus Ehrlichia is closely related to the genus Rickettsia. There is, however, no antigenic cross-reactivity between these genera. Ehrlichial organisms cause a disease called "ehrlichiosis," a noncontagious infectious disease known to be transmitted by a tick in several cases and by a fluke in one case. Ehrlichia spp. infect dogs, ruminants, horses, and humans. Recently, two new ehrlichial diseases, Potomac horse fever and human ehrlichiosis, were discovered in the United States. The etiologic agent of Potomac horse fever, Ehrlichia risticii, is closely related to the known human pathogen Ehrlichia sennetsu. The etiologic agent of human ehrlichiosis is related to Ehrlichia canis, a canine pathogen. In contrast to the genus Rickettsia, members of the tribe Ehrlichieae reside primarily in the cytoplasmic vacuoles of monocytes or granulocytes and cause hematologic abnormalities, lymphadenopathy, and other pathologic changes in the host. However, the actual mechanisms whereby Ehrlichia spp. infect leukocytes, multiply in them, and produce various forms of systemic disease have not been defined. Depending on the ehrlichial species involved, serologic or direct microscopic observation of stained blood smears is currently used to diagnose ehrlichial disease.
DOI: 10.1056/nejm199907153410303
1999
Cited 398 times
<i>Ehrlichia ewingii,</i>a Newly Recognized Agent of Human Ehrlichiosis
Human ehrlichiosis is a recently recognized tick-borne infection. Four species infect humans: Ehrlichia chaffeensis, E. sennetsu, E. canis, and the agent of human granulocytic ehrlichiosis.We tested peripheral-blood leukocytes from 413 patients with possible ehrlichiosis by broad-range and species-specific polymerase-chain-reaction (PCR) assays for ehrlichia. The species present were identified by species-specific PCR assays and nucleotide sequencing of the gene encoding ehrlichia 16S ribosomal RNA. Western blot analysis was used to study serologic responses.In four patients, ehrlichia DNA was detected in leukocytes by a broad-range PCR assay, but not by assays specific for E. chaffeensis or the agent of human granulocytic ehrlichiosis. The nucleotide sequences of these PCR products matched that of E. ewingii, an agent previously reported as a cause of granulocytic ehrlichiosis in dogs. These four patients, all from Missouri, presented between May and August 1996, 1997, or 1998 with fever, headache, and thrombocytopenia, with or without leukopenia. All had been exposed to ticks, and three were receiving immunosuppressive therapy. Serum samples obtained from three of these patients during convalescence contained antibodies that reacted with E. chaffeensis and E. canis antigens in a pattern different from that of humans with E. chaffeensis infection but similar to that of a dog experimentally infected with E. ewingii. Morulae were identified in neutrophils from two patients. All four patients were successfully treated with doxycycline.These findings provide evidence of E. ewingii infection in humans. The associated disease may be clinically indistinguishable from infection caused by E. chaffeensis or the agent of human granulocytic ehrlichiosis.
DOI: 10.1196/annals.1374.016
2006
Cited 290 times
Human Infection with <i>Ehrlichia Canis</i> Accompanied by Clinical Signs in Venezuela
Abstract: A total of 20 human patients with clinical signs compatible with human monocytic ehrlichiosis (HME), who were admitted to the emergency clinic in Lara State, Venezuela, were studied. Thirty percent (6/20) patients were positive for Ehrlichia canis 16S rRNA on gene‐specific polymerase chain reaction (PCR). Compared with the U.S. strains, 16S rRNA gene sequences from all six patients had the same base mutation as the sequence of the E. canis Venezuelan human Ehrlichia (VHE) strain previously isolated from an asymptomatic human. This study is the first report of E. canis infection of human patients with clinical signs of HME.
DOI: 10.1128/aem.72.2.1102-1109.2006
2006
Cited 284 times
Novel Genetic Variants of <i>Anaplasma phagocytophilum</i> , <i>Anaplasma bovis</i> , <i>Anaplasma centrale</i> , and a Novel <i>Ehrlichia</i> sp. in Wild Deer and Ticks on Two Major Islands in Japan
ABSTRACT Wild deer are one of the important natural reservoir hosts of several species of Ehrlichia and Anaplasma that cause human ehrlichiosis or anaplasmosis in the United States and Europe. The primary aim of the present study was to determine whether and what species of Ehrlichia and Anaplasma naturally infect deer in Japan. Blood samples obtained from wild deer on two major Japanese islands, Hokkaido and Honshu, were tested for the presence of Ehrlichia and Anaplasma by PCR assays and sequencing of the 16S rRNA genes, major outer membrane protein p44 genes, and groESL . DNA representing four species and two genera of Ehrlichia and Anaplasma was identified in 33 of 126 wild deer (26%). DNA sequence analysis revealed novel strains of Anaplasma phagocytophilum , a novel Ehrlichia sp., Anaplasma centrale , and Anaplasma bovis in the blood samples from deer. None of these have been found previously in deer. The new Ehrlichia sp., A. bovis , and A. centrale were also detected in Hemaphysalis longicornis ticks from Honshu Island. These results suggest that enzootic cycles of Ehrlichia and Anaplasma species distinct from those found in the United States or Europe have been established in wild deer and ticks in Japan.
DOI: 10.1099/00207713-51-3-891
2001
Cited 337 times
Proposal to transfer some members of the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with descriptions of 'Candidatus Mycoplasma haemofelis', 'Candidatus Mycoplasma haemomuris', 'Candidatus Mycoplasma haemosuis' and 'Candidatus Mycoplasma wenyonii'.
Cell-wall-less uncultivated parasitic bacteria that attach to the surface of host erythrocytes currently are classified in the order Rickettsiales, family Anaplasmataceae, in the genera Haemobartonella and Eperythrozoon. Recently 16S rRNA gene sequences have been determined for four of these species: Haemobartonella felis and Haemobartonella muris and Eperythrozoon suis and Eperythrozoon wenyonii. Phylogenetic analysis of these sequence data shows that these haemotrophic bacteria are closely related to species in the genus Mycoplasma (class Mollicutes). These haemotrophic bacteria form a new phylogenetic cluster within the so-called pneumoniae group of Mycoplasma and share properties with one another as well as with other members of the pneumoniae group. These studies clearly indicate that the classification of these taxa should be changed to reflect their phylogenetic affiliation and the following is proposed: (i) that Haemobartonella felis and Haemobartonella muris should be transferred to the genus Mycoplasma as 'Candidatus Mycoplasma haemofelis' and 'Candidatus Mycoplasma haemomuris' and (ii) that Eperythrozoon suis and Eperythrozoon wenyonii should be transferred to the genus Mycoplasma as 'Candidatus Mycoplasma haemosuis' and 'Candidatus Mycoplasma wenyonii'. The former Haemobartonella and Eperythrozoon species described here represent a new group of parasitic mycoplasmas that possess a pathogenic capacity previously unrecognized among the mollicutes. These haemotrophic mycoplasmas have been given the trivial name haemoplasmas. These results call into question the affiliation of the remaining officially named species of Haemobartonella and Eperythrozoon which should be considered species of uncertain affiliation pending the resolution of their phylogenetic status.
DOI: 10.1128/iai.71.9.5324-5331.2003
2003
Cited 252 times
<i>Ehrlichia chaffeensis</i> and <i>Anaplasma phagocytophilum</i> Lack Genes for Lipid A Biosynthesis and Incorporate Cholesterol for Their Survival
ABSTRACT Ehrlichia chaffeensis and Anaplasma phagocytophilum are agents of human monocytic and granulocytic ehrlichioses, respectively. They are extremely sensitive to mechanical stress and are pleomorphic gram-negative bacteria. Membrane incorporation of cholesterol from the eukaryotic host is known to be essential for other fragile and pleomorphic bacteria and mycoplasmas that lack a cell wall. Thus, we tested whether cholesterol is required for E. chaffeensis and A. phagocytophilum . Using a freeze fracture technique and biochemical analysis, these bacteria were found to contain significant levels of membrane cholesterol. These bacteria lack genes for cholesterol biosynthesis or modification. However, host cell-free bacteria had the ability to take up directly exogenous cholesterol or NBD-cholesterol, a fluorescent cholesterol derivative. Treatment of the bacteria with cholesterol extraction reagent methyl-β-cyclodextrin caused their ultrastructural changes. Furthermore, pretreatment of the bacteria with methyl-β-cyclodextrin or NBD-cholesterol deprived these bacteria of the ability to infect leukocytes, thus killing these obligate intracellular bacteria. Analysis of E. chaffeensis and A. phagocytophilum genome sequences revealed that these bacteria lack all genes for the biosynthesis of lipid A and most genes for the biosynthesis of peptidoglycan, which confer structural strength to gram-negative bacteria. Taken together, these results suggest that human ehrlichiosis agents became cholesterol dependent due to the loss of these genes. As the first report of gram-negative bacteria incorporating cholesterol for survival, these findings offer insight into the unique nature of their parasitism and imply that cholesterol is important in the control of human ehrlichioses.
DOI: 10.1128/jcm.34.9.2133-2139.1996
1996
Cited 213 times
Ehrlichia canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization
We report the first isolation and molecular and antigenic characterization of a human ehrlichial species in South America. A retrospective study was performed with serum specimens from 6 children with clinical signs suggestive of human ehrlichiosis and 43 apparently healthy adults who had a close contact with dogs exhibiting clinical signs compatible with canine ehrlichiosis. The evaluation was performed by the indirect fluorescent-antibody assay with Ehrlichia chaffeensis Arkansas, Ehrlichia canis Oklahoma, and Ehrlichia muris antigens. The sera from two apparently healthy humans were positive by the indirect fluorescent-antibody assay for all three antigens. Of the three antigens, samples from humans 1 and 2 showed the highest antibody titers against E. chaffeensis and E. muris, respectively. The remaining serum samples were negative for all three antigens. One year later examination of a blood sample from subject 1 revealed morulae morphologically resembling either E. canis, E. chaffeensis, or E. muris in monocytes in the blood smear. The microorganism, referred to here as Venezuelan human ehrlichia (VHE), was isolated from the blood of this person at 4 days after coculturing isolated blood leukocytes with a dog macrophage cell line (DH82). The organism was also isolated from mice 10 days after intraperitoneal inoculation of blood leukocytes from subject 1. Analysis by electron microscopy showed that the human isolate was ultrastructurally similar to E. canis, E. chaffeensis, and E. muris. When the virulence of VHE in mice was compared with those of E. chaffeensis, E. canis, and E. muris, only VHE and E. muris induced clinical signs in BALB/c mice at 4 and 10 days, respectively, after intraperitoneal inoculation. VHE was reisolated from peritoneal exudate cells of the mice. Only E. chaffeensis- and E. muris-infected mice developed significant splenomegaly. Western immunoblot analysis showed that serum from subject 1 reacted with major proteins of the VHE antigen of 110, 80, 76, 58, 43, 35, and 34 kDa. Human serum against E. chaffeensis reacted strongly with 58-, 54-, 52-, and 40-kDa proteins of the VHE antigen. Anti-E. canis dog serum reacted strongly with 26- and 24-kDa proteins of VHE. In contrast, anti-E. sennetsu rabbit and anti-E. muris mouse sera did not react with the VHE antigen. Serum from subject 1 reacted with major proteins of 90, 64, or 47 kDa of the E. chaffeensis, E. canis, and E. muris antigens. This reaction pattern suggests that this serum sample was similar to serum samples from E. chaffeensis-infected human patients in Oklahoma. The base sequence of the 16S rRNA gene of VHE was most closely related to that of E. canis Oklahoma. On the basis of these observations, we suggest that VHE is a new strain or a subspecies of E. canis which may cause asymptomatic persistent infection in humans.
DOI: 10.1099/ijs.0.63260-0
2004
Cited 196 times
Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks
A novel bacterium that infects laboratory rats was isolated from wild Rattus norvegicus rats in Japan. Transmission electron microscopy of the spleen tissue revealed small cocci surrounded by an inner membrane and a thin, rippled outer membrane in a membrane-bound inclusion within the cytoplasm of endothelial cells. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium found in R. norvegicus rats and Ixodes ovatus ticks in Japan revealed that the organism represents a novel clade in the family Anaplasmataceae, which includes the Schotti variant found in Ixodes ricinus ticks in the Netherlands and the Ehrlichia-like Rattus strain found in R. norvegicus rats from China. The novel clade was confirmed by phylogenetic analysis of groESL sequences found in R. norvegicus rats and Ixodes ovatus ticks in Japan. No serological cross-reactivity was detected between this bacterium and members of the genera Anaplasma, Ehrlichia or Neorickettsia in the family Anaplasmataceae. It is proposed that this new cluster of bacteria should be designated 'Candidatus Neoehrlichia mikurensis'.
DOI: 10.1128/cmr.00064-10
2011
Cited 194 times
Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum
SUMMARY Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
DOI: 10.1038/nrmicro2318
2010
Cited 181 times
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells
DOI: 10.1128/iai.66.1.132-139.1998
1998
Cited 180 times
Immunodominant Major Outer Membrane Proteins of <i>Ehrlichia chaffeensis</i> Are Encoded by a Polymorphic Multigene Family
Several immunodominant major proteins ranging from 23 to 30 kDa were identified in the outer membrane fractions of Ehrlichia chaffeensis and Ehrlichia canis. The N-terminal amino acid sequence of a 28-kDa protein of E. chaffeensis (one of the major proteins) was determined. The gene (p28), almost full length, encoding the 28-kDa protein was cloned by PCR with primers designed based on the N-terminal sequence of the E. chaffeensis 28-kDa protein and the consensus sequence between the C termini of the Cowdria ruminantium MAP-1 and Anaplasma marginale MSP-4 proteins. The p28 gene was overexpressed, and antibody to the recombinant protein was raised in a rabbit. The antibody and serum from a patient infected with E. chaffeensis reacted with the recombinant protein, three proteins (29, 28, and 25 kDa) of E. chaffeensis, and a 30-kDa protein of E. canis. Immunoelectron microscopy with the rabbit antibody revealed that the antigenic epitope of the 28-kDa protein was exposed on the surface of E. chaffeensis. Southern blot analysis with a 32P-labeled p28 gene probe revealed multiple copies of genes homologous to p28 in the E. chaffeensis genome. Six copies of the p28 gene were cloned and sequenced from the genomic DNA by using the same probe. The open reading frames of these gene copies were tandemly arranged with intergenic spaces. They were nonidentical genes and contained a semivariable region and three hypervariable regions in the predicted protein molecules. One of the gene copies encoded a protein with an internal amino acid sequence identical to the chemically determined N-terminal amino acid sequence of a 23-kDa protein of E. chaffeensis. Immunization with the recombinant P28 protein protected mice from infection with E. chaffeensis. These findings suggest that the 30-kDa-range proteins of E. chaffeensis represent a family of antigenically related homologous proteins encoded by a single gene family.
DOI: 10.1111/j.1462-5822.2007.00985.x
2007
Cited 175 times
Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection
Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium of granulocytes. A. phagocytophilum specifically induces tyrosine phosphorylation of a 160 kDa protein (P160) in host cells. However, identity of P160, kinases involved, and effects of tyrosine phosphorylation on bacterial infection remain largely unknown. Here, we demonstrated through proteomic analysis that P160, an abundant and rapidly tyrosine-phosphorylated protein throughout infection, was AnkA of bacterial origin. Differential centrifugation and confocal microscopy revealed that AnkA was rarely retained within A. phagocytophilum or its inclusion, but localized mainly in the cytoplasm of infected cells. Using Cre recombinase reporter assay of Agrobacterium tumefaciens, we proved that AnkA could be secreted by VirB/D4-dependent type IV secretion (T4S) system. Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that AnkA could bind to Abl-interactor 1 (Abi-1), an adaptor protein that interacts with Abl-1 tyrosine kinase, thus mediating AnkA phosphorylation. AnkA and Abl-1 were critical for bacterial infection, as infection was inhibited upon host cytoplasmic delivery of anti-AnkA antibody, Abl-1 knockdown with targeted siRNA, or treatment with a specific pharmacological inhibitor of Abl-1. These data establish AnkA as the first proven T4S substrate in members of obligate intracellular alpha-proteobacteria; furthermore, it demonstrated that AnkA plays an important role in facilitating intracellular infection by activating Abl-1 signalling pathway, and suggest a novel approach to treatment of human granulocytic anaplasmosis through inhibition of host cell signalling pathways.
DOI: 10.1128/jcm.35.7.1852-1855.1997
1997
Cited 172 times
Comparison of nested PCR with immunofluorescent-antibody assay for detection of Ehrlichia canis infection in dogs treated with doxycycline
A partial 16S rRNA gene was amplified in Ehrlichia canis-infected cells by nested PCR. The assay was specific and did not amplify the closely related Ehrlichia chaffeensis, Ehrlichia muris, Neorickettsia helminthoeca, and SF agent 16S rRNA genes. The assay was as sensitive as Southern hybridization, detecting as little as 0.2 pg of E. canis DNA. By this method, all blood samples from four dogs experimentally infected with E. canis were positive as early as day 4 postinoculation, which was before or at the time of seroconversion. One hundred five blood samples from dogs from Arizona and Texas (areas of E. canis endemicity) and 30 blood samples from dogs from Ohio (area of E. canis nonendemicity) were examined by nested PCR and immunofluorescent-antibody (IFA) test. Approximately 84% of dogs from Arizona and Texas had been treated with doxycycline before submission of blood specimens. Among Arizona and Texas specimens, 46 samples were PCR positive (44%) and 80 were IFA positive (76%). Forty-three of 80 IFA-positive samples (54%) were PCR positive, and 22 of 25 IFA-negative samples (88%) were negative in the nested PCR. None of the Ohio specimens were IFA positive, but 5 specimens were PCR positive (17%). Our results indicate that the nested PCR is highly sensitive and specific for detection of E. canis and may be more useful in assessing the clearance of the organisms after antibiotic therapy than IFA, especially in areas in which E. canis is endemic.
DOI: 10.1073/pnas.1218674109
2012
Cited 136 times
Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection
Autophagy, a cytoplasmic catabolic process, plays a critical role in defense against intracellular infection. In turn, evasion or inhibition of autophagy has emerged as an important virulence factor for intracellular pathogens. However, Anaplasma phagocytophilum, the obligatory intracellular bacterium that causes human granulocytic anaplasmosis, replicates in the membrane-bound compartment resembling early autophagosome. Here, we found that Anaplasma translocated substrate 1 (Ats-1), a type IV secretion effector, binds Beclin 1, a subunit of the class III PI3K and Atg14L, and it nucleates autophagosomes with markers of omegasomes, double FYVE-containing protein 1, Atg14L, and LC3. Ats-1 autophagy induction did not activate the starvation signaling pathway of mammalian target of rapamycin. These autophagy proteins were also localized to the Anaplasma inclusion. Ectopically expressed Ats-1 targeted the Anaplasma inclusions and enhanced infection, whereas host cytoplasmic delivery of anti-Ats-1 or Beclin 1 depletion by siRNA suppressed the infection; beclin 1 heterozygous-deficient mice were resistant to Anaplasma infection. Furthermore, Anaplasma growth arrest by the class III PI3K inhibitor 3-methyladenine was alleviated by essential amino acid supplementation. Thus, Anaplasma actively induces autophagy by secreting Ats-1 that hijacks the Beclin 1-Atg14L autophagy initiation pathway likely to acquire host nutrients for its growth.
DOI: 10.1371/journal.ppat.1000774
2010
Cited 125 times
Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, infects human neutrophils and inhibits mitochondria-mediated apoptosis. Bacterial factors involved in this process are unknown. In the present study, we screened a genomic DNA library of A. phagocytophilum for effectors of the type IV secretion system by a bacterial two-hybrid system, using A. phagocytophilum VirD4 as bait. A hypothetical protein was identified as a putative effector, hereby named Anaplasmatranslocated substrate 1 (Ats-1). Using triple immunofluorescence labeling and Western blot analysis of infected cells, including human neutrophils, we determined that Ats-1 is abundantly expressed by A. phagocytophilum, translocated across the inclusion membrane, localized in the host cell mitochondria, and cleaved. Ectopically expressed Ats-1 targeted mitochondria in an N-terminal 17 residue-dependent manner, localized in matrix or at the inner membrane, and was cleaved as native protein, which required residues 55-57. In vitro-translated Ats-1 was imported in a receptor-dependent manner into isolated mitochondria. Ats-1 inhibited etoposide-induced cytochrome c release from mitochondria, PARP cleavage, and apoptosis in mammalian cells, as well as Bax-induced yeast apoptosis. Ats-1(55-57) had significantly reduced anti-apoptotic activity. Bax redistribution was inhibited in both etoposide-induced and Bax-induced apoptosis by Ats-1. Taken together, Ats-1 is the first example of a bacterial protein that traverses five membranes and prevents apoptosis at the mitochondria.
DOI: 10.1099/00207713-52-2-683
2002
Cited 158 times
Revision of haemotrophic Mycoplasma species names.
The recently proposed transfer of four rickettsias from the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with the Candidatus status is herein revised. This is because the Candidatus designation is for new, incompletely described taxa, in order to give them a provisional status. Thus, 'Candidatus Mycoplasma haemofelis' is revised to Mycoplasma haemofelis comb. nov., nom. nov., 'Candidatus Mycoplasma haemomuris' is revised to Mycoplasma haemomuris comb. nov., nom. nov., 'Candidatus Mycoplasma haemosuis' is revised to Mycoplasma haemosuis comb. nov., nom. nov. and 'Candidatus Mycoplasma wenyonii' is revised to Mycoplasma wenyonii comb. nov.
DOI: 10.1128/iai.68.3.1125-1133.2000
2000
Cited 150 times
Intracellular Infection by the Human Granulocytic Ehrlichiosis Agent Inhibits Human Neutrophil Apoptosis
ABSTRACT In patients with human granulocytic ehrlichiosis (HGE), the HGE agent has been seen only in the peripheral blood granulocytes, which have a life span too short for ehrlichial proliferation. To determine if the HGE agent delays the apoptosis of human peripheral blood neutrophils for its advantage, peripheral blood granulocytes consisting mostly of neutrophils were incubated with freshly freed host cell-free HGE agent in vitro. The HGE agent induced a significant delay in morphological apoptosis and the cytoplasmic appearance of histone-associated DNA fragments in the granulocytes. This antiapoptotic effect was dose dependent. Although much weaker than the HGE agent freshly freed from the host cells, noninfectious purified HGE agent stored frozen and thawed also had antiapoptotic effect, which was lost with proteinase K treatment but not with periodate treatment. Treatment of neutrophils with a transglutaminase inhibitor, monodansylcadaverine, blocked the antiapoptotic effect of the HGE agent. Addition of oxytetracycline, however, did not prevent or reverse the antiapoptotic effect of the HGE agent. These results suggest that binding of a protein component(s) of the HGE agent to neutrophils and subsequent cross-linking and/or internalization of the receptor and ehrlichiae are required for antiapoptotic signaling, but ehrlichial protein synthesis and/or proliferation is not required. MG-132, a proteasome inhibitor, and cycloheximide accelerated the apoptosis of neutrophils and overrode the antiapoptotic effect of the HGE agent. Studies with specific inhibitors suggest that protein kinase A, NF-κB, and interleukin 1β are not involved in the antiapoptotic mechanism of the HGE agent.
DOI: 10.1128/jcm.35.4.823-829.1997
1997
Cited 140 times
Western immunoblot analysis of Haemobartonella muris and comparison of 16S rRNA gene sequences of H. muris, H. felis, and Eperythrozoon suis
Infectious agents were isolated from the spleens of three wild mice (Apodemus argenteus) by intraperitoneal inoculation of the spleen homogenate into laboratory mice. The laboratory mice developed clinical signs and splenomegaly, and three isolates were maintained by passage in mice. Tetracyclines were effective in preventing infection of mice with these agents, but streptomycin and penicillin were ineffective. The agents did not grow in bacterial growth media or chicken embryos. In smears of blood from infected mice stained by the Giemsa or the indirect immunofluorescence method, numerous organisms were found on the surfaces of erythrocytes. Electron microscopy revealed cell wall-less pleomorphic cocci of 350 to 700 nm in diameter. On the basis of these results, the isolates were identified as Haemobartonella muris. There was no antigenic cross-reactivity with Rickettsia or Ehrlichia spp. or other related organisms. Western immunoblot analysis of three strains of H. muris with mouse antisera to H. muris revealed identical major antigens of 118, 65, 53, 45, and 40 kDa. By heteroduplex analysis of the three PCR-amplified segments of the 16S rRNA genes, the three strains of H. muris were found to be identical. The 16S rRNA genes of one of the H. muris strains, four strains of H. felis, and two strains of Eperythrozoon suis were sequenced and compared. The sequences of two strains of H. felis from cats in California were identical, as were the sequences of a strain from a cat in Ohio and a strain from a cat in Florida, but the similarity of sequences between the California and the Ohio-Florida strains was only 85%. The sequence of an H. muris strain was unique and was more closely related to that of the Ohio-Florida strain of H. felis (89%) than to that of the California strain of H. felis (84%). The sequence of E. suis from a pig in Illinois was identical to that from another pig from Taiwan. The similarity of the 16S rRNA gene sequence of E. suis with those of three Haemobartonella strains was 84 to 92%, with that of E. suis being most similar to that of the H. felis strain from California. In the phylogenetic analysis based on 16S rRNA gene sequences, the Haemobartonella spp. and E. suis formed a distinct clade more closely related to Mycoplasma spp. (79 to 83% similarity) than to Anaplasma marginale (72 to 75% similarity). Our results suggest that the Haemobartonella spp. and E. suis may be reclassified in the same genus in the family Mycoplasmataceae.
DOI: 10.1128/jcm.38.4.1331-1338.2000
2000
Cited 130 times
New <i>Ehrlichia</i> Species Closely Related to <i>Ehrlichia chaffeensis</i> Isolated from <i>Ixodes ovatus</i> Ticks in Japan
ABSTRACT Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris , respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis , the Anan strain, and E. canis , respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup.
DOI: 10.1128/iai.62.11.4804-4810.1994
1994
Cited 128 times
Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin
Ehrlichia chaffeensis is an obligate intracellular bacterium which infects cells of the macrophage/monocyte lineage. To test whether gamma interferon (IFN-gamma) inhibits infection of monocytes with E. chaffeensis, human peripheral blood monocytes were incubated with recombinant human IFN-gamma for 3 h and then exposed to E. chaffeensis. With 2,000 U of IFN-gamma per ml, maximal inhibition of infection by E. chaffeensis was observed. THP-1 cells, a human monocyte cell line, pretreated with phorbol myristic acetate or not pretreated, were incubated with various concentrations of IFN-gamma. Maximum inhibition was obtained at 1,000 U of IFN-gamma per ml with phorbol myristic acetate-treated THP-1 cells. However, nontreated cells did not achieve a similar level of anti-ehrlichial activity even with 10,000 U of IFN-gamma per ml. IFN-gamma given within 6 h postinfection was effective in inhibiting E. chaffeensis. Nitric oxide production was not demonstrated in the monocyte medium incubated with IFN-gamma and E. chaffeensis. None of the reactive oxygen intermediate scavengers tested blocked the IFN-gamma-induced anti-ehrlichial activity. Deferoxamine, an intracellular iron chelator, at 15 microM completely inhibited the survival of E. chaffeensis. Iron-saturated transferrin at 1.67 mg/ml completely reversed the IFN-gamma-induced ehrlichial killing. These results indicate that (i) E. chaffeensis is sensitive to intracytoplasmic iron depletion, (ii) E. chaffeensis is sensitive to IFN-gamma-induced killing, and (iii) the anti-ehrlichial activity induced in human monocytes by IFN-gamma is mediated by limitation of available cytoplasmic iron and is not due to the generation of reactive oxygen intermediates or nitric oxide.
DOI: 10.1128/jcm.39.8.2788-2793.2001
2001
Cited 121 times
Molecular and Antigenic Comparison of <i>Ehrlichia canis</i> Isolates from Dogs, Ticks, and a Human in Venezuela
ABSTRACT We previously culture isolated a strain of Ehrlichia canis , the causative agent of canine ehrlichiosis, from a human in Venezuela. In the present study, we examined whether dogs and ticks are infected with E. canis in Venezuela and, if so, whether this is the same strain as the human isolate. PCR analysis using E. canis -specific primers revealed that 17 of the 55 dog blood samples (31%) and all three pools of four Rhipicephalus sanguineus ticks each were positive. An ehrlichial agent (Venezuelan dog Ehrlichia [VDE]) was isolated and propagated in cell culture from one dog sample and was further analyzed to determine its molecular and antigenic characteristics. The 16S rRNA 1,408-bp sequence of the new VDE isolate was identical to that of the previously reported Venezuelan human Ehrlichia isolate (VHE) and was closely related (99.9%) to that of E. canis Oklahoma. The 5′ (333-bp) and 3′ (653-bp) sequences of the variable regions of the 16S rRNA genes from six additional E. canis -positive dog blood specimens and from three pooled-tick specimens were also identical to those of VHE. Western blot analysis of serum samples from three dogs infected with VDE by using several ehrlichial antigens revealed that the antigenic profile of the VDE was similar to the profiles of VHE and E. canis Oklahoma. Identical 16S rRNA gene sequences among ehrlichial organisms from dogs, ticks, and a human in the same geographic region in Venezuela and similar antigenic profiles between the dog and human isolates suggest that dogs serve as a reservoir of human E. canis infection and that R. sanguineus , which occasionally bites humans residing or traveling in this region, serves as a vector. This is the first report of culture isolation and antigenic characterization of an ehrlichial agent from a dog in South America, as well as the first molecular characterization of E. canis directly from naturally infected ticks.
DOI: 10.1128/iai.65.4.1455-1461.1997
1997
Cited 117 times
Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor
Ehrlichia chaffeensis is an obligatory intracellular bacterium which infects macrophages and monocytes. Double immunofluorescence labeling was used to characterize the nature of E. chaffeensis inclusion in the human promyelocytic leukemia cell line THP-1. E. chaffeensis was labeled with dog anti-E. chaffeensis serum and fluorescein isothiocyanate-conjugated anti-dog immunoglobulin G (IgG). Lissamine rhodamine-conjugated anti-mouse IgG was used to label various mouse monoclonal antibodies. Ehrlichial inclusions did not fuse with lysosomes, since they were not labeled with anti-CD63 or anti-LAMP-1. The ehrlichial inclusions were slightly acidic, since they weakly accumulated 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine and stained weakly positive for vacuolar type H+ ATPase. Some ehrlichial inclusions were labeled positive with antibodies against HLA-DR, HLA-ABC, and beta2 microglobulin, while other inclusions in the same cell were labeled negative. The inclusions were labeled strongly positive for transferrin receptors (TfRs) and negative for the clathrin heavy chain. Time course labeling for TfRs showed that up to 3 h postinfection, most of the ehrlichial inclusions were negative for TfRs. After 6 h postinfection, 100% of the ehrlichial inclusions became TfR positive and the intensity of labeling was increased during the subsequent 3 days. Reverse transcription-PCR showed a gradual increase in the level of TfR mRNA postinfection, which reached a peak at 24 h postinfection. These results suggest that ehrlichial inclusions are early endosomes which selectively accumulate TfRs and that the ehrlichiae up-regulate TfR mRNA expression.
DOI: 10.1128/jcm.32.9.2107-2112.1994
1994
Cited 110 times
Western immunoblot analysis of Ehrlichia chaffeensis, E. canis, or E. ewingii infections in dogs and humans
Ehrlichia chaffeensis, E. canis, and E. ewingii are genetically closely related, as determined by 16S rRNA gene base sequence comparison, but they exhibit biologic differences. E. chaffeensis is the etiologic agent of human ehrlichiosis. E. canis and E. ewingii cause two distinctly different forms of canine ehrlichiosis and infect different types of leukocytes, monocytes and granulocytes, respectively. E. chaffeensis can also infect dogs. In the study, Western immunoblot analysis of sera from dogs inoculated with E. chaffeensis, E. canis, or E. ewingii was performed to determine antigenic specificity and the intensities of the reactions to purified E. chaffeensis and E. canis antigens. At 2 to 3 weeks postexposure, antisera from four dogs inoculated with E. chaffeensis reacted with 64-, 47-, 31-, and 29-kDa proteins of E. chaffeensis but reacted poorly with E. canis antigen. In contrast, at 2 to 3 weeks postexposure, antisera from four E. canis-inoculated dogs reacted strongly with the 30-kDa major antigen of E. canis but reacted poorly with proteins from E. chaffeensis. At 4 weeks postexposure, the sera from three E. ewingii-inoculated dogs showed weak binding to 64- and 47-kDa proteins of both E. chaffeensis and E. canis. Convalescent-phase sera from human ehrlichiosis patients and sera from dogs chronically infected with E. ewingii strongly reacted with similar sets of proteins of E. chaffeensis and E. canis with similar intensities. However, sera from dogs chronically infected with E. canis reacted more strongly with a greater number of E. canis proteins than with E. chaffeensis proteins. The protein specificity described in the report suggests that dogs with E. canis infections can be distinguished from E. chaffeensis-infected animals by Western immunoblot analysis with both E. canis and E. chaffeensis antigens.
DOI: 10.1093/infdis/163.3.564
1991
Cited 103 times
Serologic Diagnosis of Human Ehrlichiosis Using Two Ehrlichia canis Isolates
Ehrlichia canis or a closely related rickettsial organism has been implicated serologically and morphologically as the causative agent of human ehrlichiosis in the United States. Although E. canis has been serially propagated in primary canine monocytes, only a limited quantity of antigen is obtained by this method. A continuous canine macrophage cell line, DH82, supports the growth of a new isolate of E. canis established from the whole blood of a carrier dog in Oklahoma. Serologic comparison of the Oklahoma isolate in the continuous canine cell line with a Florida isolate in commercial antigen slides revealed 100% specificity and 87.5% sensitivity.
DOI: 10.1111/j.1462-5822.2007.01068.x
2008
Cited 102 times
Subversion of cellular autophagy by Anaplasma phagocytophilum
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligatory intracellular pathogen. After entry into host cells, the bacterium is diverted from the endosomal pathway and replicates in a membrane-bound compartment devoid of endosomal or lysosomal markers. Here, we show that several hallmarks of early autophagosomes can be identified in A. phagocytophilum replicative inclusions, including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related proteins Atg8 and Atg6 respectively. While the membrane-associated form of LC3, LC3-II, increased during A. phagocytophilum infection, A. phagocytophilum-containing inclusions enveloped with punctate GFP-LC3 did not colocalize with a lysosomal marker. Stimulation of autophagy by rapamycin favoured A. phagocytophilum infection. Inhibition of the autophagosomal pathway by 3-methyladenine did not inhibit A. phagocytophilum internalization, but reversibly arrested its growth. Although autophagy is considered part of the innate immune system that clears a variety of intracellular pathogens, our study implies that A. phagocytophilum subverts this system to establish itself in an early autophagosome-like compartment segregated from lysosomes to facilitate its proliferation.
DOI: 10.1111/j.1462-5822.2012.01775.x
2012
Cited 86 times
Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD
Summary Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two-hybrid screening of E. chaffeensis hypothetical proteins with positively charged C-terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host-cell cytoplasm and localized to mitochondria. Delivery of anti-ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax-induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis-infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825-transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS-induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.
DOI: 10.1016/j.mib.2009.12.008
2010
Cited 85 times
Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins
The obligatory intracellular bacterial pathogens Anaplasma and Ehrlichia infect leukocytes by hijacking host-cell components and processes. The type IV secretion system is up-regulated during infection. Among type IV secretion candidate substrates, an ankyrin repeat protein of Anaplasma phagocytophilum, AnkA, is delivered into the host cytoplasm via a complex that includes VirD4. AnkA is highly tyrosine phosphorylated and binds to the Abl interactor 1, SHP-1, and nuclear DNA fragments. Ehrlichia chaffeensis AnkA was recently reported to be translocated into host-cell nucleus. The recent discovery of several ankyrin repeat proteins secreted via the type IV secretion system of different intracellular bacteria suggests that a common strategy evolved to subvert host-cell functions.
DOI: 10.1099/ijsem.0.001896
2017
Cited 61 times
Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans
We have previously described a novel taxon of the genus Ehrlichia (type strain WisconsinT), closely related to Ehrlichia muris, that causes human ehrlichiosis among patients with exposures to ticks in the upper midwestern USA. DNA from this bacterium was also detected in Ixodes scapularis and Peromyscus leucopus collected in Minnesota and Wisconsin. To determine the relationship between the E. muris-like agent (EMLA) and other species of the genus Ehrlichia phenotypic, genotypic and epidemiologic comparisons were undertaken, including sequence analysis of eight gene loci (3906 nucleotides) for 39 EMLA DNA samples and the type strain of E. muris AS145T. Three loci were also sequenced from DNA of nine strains of E. muris from mouse spleens from Japan. All sequences from E. muris were distinct from homologous EMLA sequences, but differences between them were less than those observed among other species of the genus Ehrlichia. Phenotypic comparison of EMLA and E. muris revealed similar culture and electron microscopic characteristics, but important differences were noted in their geographic distribution, ecological associations and behavior in mouse models of infection. Based on these comparisons, we propose that type strain WisconsinT represents a novel subspecies, Ehrlichia murissubsp. eauclairensis,subsp. nov. This strain is available through the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (CRIRC EMU002T) and through the Collection de Souches de l'Unité des Rickettsies (CSURP2883 T). The subspecies Ehrlichia murissubsp. muris subsp. nov. is automatically created and the type strain AS145T is also available through the same collections (CRIRC EMU001T, CSUR E2T). Included is an emended description of E. muris.
DOI: 10.1146/annurev-micro-091014-104411
2015
Cited 60 times
Molecular Pathogenesis of <i>Ehrlichia chaffeensis</i> Infection
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
DOI: 10.1080/15548627.2016.1217369
2016
Cited 58 times
<i>Ehrlichia</i>secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.
DOI: 10.1073/pnas.2026598118
2021
Cited 36 times
Iron robbery by intracellular pathogen via bacterial effector–induced ferritinophagy
Iron is essential for survival and proliferation of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes an emerging zoonosis, human monocytic ehrlichiosis. However, how Ehrlichia acquires iron in the host cells is poorly understood. Here, we found that native and recombinant (cloned into the Ehrlichia genome) Ehrlichia translocated factor-3 (Etf-3), a previously predicted effector of the Ehrlichia type IV secretion system (T4SS), is secreted into the host cell cytoplasm. Secreted Etf-3 directly bound ferritin light chain with high affinity and induced ferritinophagy by recruiting NCOA4, a cargo receptor that mediates ferritinophagy, a selective form of autophagy, and LC3, an autophagosome biogenesis protein. Etf-3-induced ferritinophagy caused ferritin degradation and significantly increased the labile cellular iron pool, which feeds Ehrlichia Indeed, an increase in cellular ferritin by ferric ammonium citrate or overexpression of Etf-3 or NCOA4 enhanced Ehrlichia proliferation, whereas knockdown of Etf-3 in Ehrlichia via transfection with a plasmid encoding an Etf-3 antisense peptide nucleic acid inhibited Ehrlichia proliferation. Excessive ferritinophagy induces the generation of toxic reactive oxygen species (ROS), which could presumably kill both Ehrlichia and host cells. However, during Ehrlichia proliferation, we observed concomitant up-regulation of Ehrlichia Fe-superoxide dismutase, which is an integral component of Ehrlichia T4SS operon, and increased mitochondrial Mn-superoxide dismutase by cosecreted T4SS effector Etf-1. Consequently, despite enhanced ferritinophagy, cellular ROS levels were reduced in Ehrlichia-infected cells compared with uninfected cells. Thus, Ehrlichia safely robs host cell iron sequestered in ferritin. Etf-3 is a unique example of a bacterial protein that induces ferritinophagy to facilitate pathogen iron capture.
DOI: 10.3389/fcimb.2021.830180
2022
Cited 20 times
The “Biological Weapons” of Ehrlichia chaffeensis: Novel Molecules and Mechanisms to Subjugate Host Cells
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging, potentially fatal tick-borne infectious disease. The bacterium enters human cells via the binding of its unique outer-membrane invasin EtpE to the cognate receptor DNase X on the host-cell plasma membrane; this triggers actin polymerization and filopodia formation at the site of E. chaffeensis binding, and blocks activation of phagocyte NADPH oxidase that catalyzes the generation of microbicidal reactive oxygen species. Subsequently, the bacterium replicates by hijacking/dysregulating host-cell functions using Type IV secretion effectors. For example, the Ehrlichia translocated factor (Etf)-1 enters mitochondria and inhibits mitochondria-mediated apoptosis of host cells. Etf-1 also induces autophagy mediated by the small GTPase RAB5, the result being the liberation of catabolites for proliferation inside host cells. Moreover, Etf-2 competes with the RAB5 GTPase-activating protein, for binding to RAB5-GTP on the surface of E. chaffeensis inclusions, which blocks GTP hydrolysis and consequently prevents the fusion of inclusions with host-cell lysosomes. Etf-3 binds ferritin light chain to induce ferritinophagy to obtain intracellular iron. To enable E. chaffeensis to rapidly adapt to the host environment and proliferate, the bacterium must acquire host membrane cholesterol and glycerophospholipids for the purpose of producing large amounts of its own membrane. Future studies on the arsenal of unique Ehrlichia molecules and their interplay with host-cell components will undoubtedly advance our understanding of the molecular mechanisms of obligatory intracellular infection and may identify hitherto unrecognized signaling pathways of human hosts. Such data could be exploited for development of treatment and control measures for ehrlichiosis as well as other ailments that potentially could involve the same host-cell signaling pathways that are appropriated by E. chaffeensis.
DOI: 10.1128/iai.67.3.1368-1378.1999
1999
Cited 114 times
Human Granulocytic Ehrlichiosis Agent and<i>Ehrlichia chaffeensis</i>Reside in Different Cytoplasmic Compartments in HL-60 Cells
ABSTRACT The human granulocytic ehrlichiosis (HGE) agent resides and multiplies exclusively in cytoplasmic vacuoles of granulocytes. Double immunofluorescence labeling was used to characterize the nature of the HGE agent replicative inclusions and to compare them with inclusions containing the human monocytic ehrlichia, Ehrlichia chaffeensis , in HL-60 cells. Although both Ehrlichia spp. can coinfect HL-60 cells, they resided in separate inclusions. Inclusions of both Ehrlichia spp. were not labeled with either anti-lysosome-associated membrane protein 1 or anti-CD63. Accumulation of myeloperoxidase-positive granules were seen around HGE agent inclusions but not around E. chaffeensis inclusions. 3-(2,4-Dinitroanilino)-3′-amino- N -methyldipropylamine and acridine orange were not localized to either inclusion type. Vacuolar-type H + -ATPase was not colocalized with HGE agent inclusions but was weakly colocalized with E. chaffeensis inclusions. E. chaffeensis inclusions were labeled with the transferrin receptor, early endosomal antigen 1, and rab5, but HGE agent inclusions were not. Some HGE agent and E. chaffeensis inclusions colocalized with major histocompatibility complex class I and II antigens. These two inclusions were not labeled for annexins I, II, IV, and VI; α-adaptin; clathrin heavy chain; or β-coatomer protein. Vesicle-associated membrane protein 2 colocalized to both inclusions. The cation-independent mannose 6-phosphate receptor was not colocalized with either inclusion type. Endogenously synthesized sphingomyelin, from C 6 -NBD-ceramide, was not incorporated into either inclusion type. Brefeldin A did not affect the growth of either Ehrlichia sp. in HL-60 cells. These results suggest that the HGE agent resides in inclusions which are neither early nor late endosomes and does not fuse with lysosomes or Golgi-derived vesicles, while E. chaffeensis resides in an early endosomal compartment which accumulates the transferrin receptor.
DOI: 10.1128/jcm.36.9.2671-2680.1998
1998
Cited 110 times
Cloning and Characterization of Multigenes Encoding the Immunodominant 30-Kilodalton Major Outer Membrane Proteins of <i>Ehrlichia canis</i> and Application of the Recombinant Protein for Serodiagnosis
A 30-kDa major outer membrane protein of Ehrlichia canis, the agent of canine ehrlichiosis, is the major antigen recognized by both naturally and experimentally infected dog sera. The protein cross-reacts with a serum against a recombinant 28-kDa protein (rP28), one of the outer membrane proteins of a gene (omp-1) family of Ehrlichia chaffeensis. Two DNA fragments of E. canis were amplified by PCR with two primer pairs based on the sequences of E. chaffeensis omp-1 genes, cloned, and sequenced. Each fragment contained a partial 30-kDa protein gene of E. canis. Genomic Southern blot analysis with the partial gene probes revealed the presence of multiple copies of these genes in the E. canis genome. Three copies of the entire gene (p30, p30-1, and p30a) were cloned and sequenced from the E. canis genomic DNA. The open reading frames of the two copies (p30 and p30-1) were tandemly arranged with an intergenic space. The three copies were similar but not identical and contained a semivariable region and three hypervariable regions in the protein molecules. The following genes homologous to three E. canis 30-kDa protein genes and the E. chaffeensis omp-1 family were identified in the closely related rickettsiae: wsp from Wolbachia sp. , p44 from the agent of human granulocytic ehrlichiosis, msp-2 and msp-4 from Anaplasma marginale, and map-1 from Cowdria ruminantium. Phylogenetic analysis among the three E. canis 30-kDa proteins and the major surface proteins of the rickettsiae revealed that these proteins are divided into four clusters and the two E. canis 30-kDa proteins are closely related but that the third 30-kDa protein is not. The p30 gene was expressed as a fusion protein, and the antibody to the recombinant protein (rP30) was raised in a mouse. The antibody reacted with rP30 and a 30-kDa protein of purified E. canis. Twenty-nine indirect fluorescent antibody (IFA)-positive dog plasma specimens strongly recognized the rP30 of E. canis. To evaluate whether the rP30 is a suitable antigen for serodiagnosis of canine ehrlichiosis, the immunoreactions between rP30 and the whole purified E. canis antigen were compared in the dot immunoblot assay. Dot reactions of both antigens with IFA-positive dog plasma specimens were clearly distinguishable by the naked eye from those with IFA-negative plasma specimens. By densitometry with a total of 42 IFA-positive and -negative plasma specimens, both antigens produced results similar in sensitivity and specificity. These findings suggest that the rP30 antigen provides a simple, consistent, and rapid serodiagnosis for canine ehrlichiosis. Cloning of multigenes encoding the 30-kDa major outer membrane proteins of E. canis will greatly facilitate understanding pathogenesis and immunologic study of canine ehrlichosis and provide a useful tool for phylogenetic analysis.
DOI: 10.1128/iai.70.4.2128-2138.2002
2002
Cited 109 times
Characterization and Transcriptional Analysis of Gene Clusters for a Type IV Secretion Machinery in Human Granulocytic and Monocytic Ehrlichiosis Agents
ABSTRACT Anaplasma ( Ehrlichia ) phagocytophila and Ehrlichia chaffeensis , the etiologic agents of granulocytic and monocytic ehrlichioses, respectively, are obligatory intracellular bacteria that cause febrile systemic illness in humans. We identified and characterized clusters of genes for a type IV secretion machinery in these two bacteria, and analyzed their gene expression in cell culture and mammalian hosts. Eight virB and virD genes were found in each bacterial genome, and all of the genes were transcribed in cell culture. Although the gene order and orientation were similar to those found in other bacteria, the eight virB and virD genes were clustered at two separate loci in each genome. Five of the genes ( virB8 , virB9 , virB10 , virB11 , and virD4 ) were located downstream from a ribA gene. These five genes in both A. phagocytophila and E. chaffeensis were polycistronically transcribed and controlled through at least two tandem promoters located upstream of the virB8 gene in human leukemia cell lines. The virB9 gene of A. phagocytophila was transcriptionally active in peripheral blood leukocytes from human ehrlichiosis patients and experimentally infected animals. Three of the remaining genes ( virB3 , virB4 , and virB6 ) of both A. phagocytophila and E. chaffeensis were arranged downstream from a sodB gene and cotranscribed with the sodB gene through one or more sodB promoters in human leukocytes. This suggests that transcription of the three virB genes in these two Anaplasma and Ehrlichia spp. is regulated by factors that influence the sodB gene expression. This unique regulation of gene expression for the type IV secretion system may be associated with intracellular survival and replication of Anaplasma and Ehrlichia spp. in granulocytes or monocytes.
DOI: 10.1074/jbc.274.25.17828
1999
Cited 108 times
Multiple p44 Genes Encoding Major Outer Membrane Proteins Are Expressed in the Human Granulocytic Ehrlichiosis Agent
Human granulocytic ehrlichiosis (HGE) is caused by infection with an obligatory intracellular bacterium, the HGE agent. We previously cloned a gene encoding HGE agent 44-kDa major outer membrane protein and designated it <i>p44</i>. In this study, we (i) identified five different mRNAs that are transcribed from<i>p44</i>-homologous genes in the HGE agent cultivated in HL-60 cells; (ii) cloned genes corresponding to the mRNAs from the genomic DNA of the HGE agent; (iii) showed that the genes being expressed were not clustered in the HGE agent genome; (iv) estimated that a minimum copy number of the <i>p44</i>-homologous genes in the genome is 18; (v) detected two different P44-homologous proteins expressed by the HGE agent; and (vi) demonstrated existence of antibodies specific to the two proteins in sera from patients with HGE. These findings showed that <i>p44</i> multigenes have several active expression sites and the expression is regulated at transcriptional level, suggesting a potentially unique mechanism for generating the diversity in major antigenic outer membrane proteins of the HGE agent. Characterization of <i>p44</i>-homologous genes expressed by the HGE agent in a tissue culture would assist in understanding a role of the <i>p44</i> multigene family in pathogenesis and immune response in HGE.
DOI: 10.1128/jcm.36.6.1666-1673.1998
1998
Cited 105 times
Cloning and Expression of the 44-Kilodalton Major Outer Membrane Protein Gene of the Human Granulocytic Ehrlichiosis Agent and Application of the Recombinant Protein to Serodiagnosis
A 44-kDa major outer membrane protein of the human granulocytic ehrlichiosis (HGE) agent is an immunodominant antigen in human infection. A gene encoding this protein was cloned and sequenced. Southern blot results revealed the existence of multigenes homologous to the P44 gene in the genome of the HGE agent. The recombinant 44-kDa protein (rP44) was expressed by using expression vector pET30a. The reactivity of the affinity-purified rP44 was evaluated by Western immunoblot analysis and dot blot immunoassay. Western immunoblot analysis showed that mouse anti-rP44 serum reacted with 44- to 42-kDa proteins in six different HGE agent strains tested except strain 2, in which three proteins of 42, 40, and 38 kDa were recognized. Eleven HGE patient serum samples, a horse anti-HGE serum, and a horse anti-Ehrlichia equi serum recognized the rP44 protein. This suggests that rP44 is an HGE-E. equi group-specific antigen. Neither human anti-Ehrlichia chaffeensis serum nor rabbit anti-Borrelia burgdorferi serum reacted with rP44. Sera from two patients coinfected with the HGE agent and B. burgdorferi reacted positively with rP44 and the HGE agent. Sera from 20 HGE patients with indirect fluorescent-antibody (IFA) titers ranging from 1:20 to 1:2,560 gave distinct positive reactions in a dot immunoblot assay. There was a positive correlation between the color densities of the dot reactions and the IFA titers when greater than 50 ng of recombinant antigen per dot was used. The use of the affinity-purified rP44 protein as antigen would provide a more specific, consistent, and simpler serodiagnosis for HGE than the use of whole infected cells or purified HGE agents.
DOI: 10.1046/j.1462-5822.2003.00322.x
2003
Cited 101 times
Obligatory intracellular parasitism by<i>Ehrlichia chaffeensis</i>and<i>Anaplasma phagocytophilum</i>involves caveolae and glycosylphosphatidylinositol-anchored proteins
Obligatory intracellular, human ehrlichiosis agents Ehrlichia chaffeensis and Anaplasma phagocytophilum create unique replicative compartments devoid of lysosomal markers in monocytes/macrophages and granulocytes respectively. The entry of these bacteria requires host phospholipase C (PLC)-gamma2 and protein tyrosine kinases, but their entry route is still unclear. Here, using specific inhibitors, double immunofluorescence labelling and the fractionation of lipid rafts, we demonstrate that bacterial entry and intracellular infection involve cholesterol-rich lipid rafts or caveolae and glycosylphosphatidylinositol (GPI)-anchored proteins. By fluorescence microscopy, caveolar marker protein caveolin-1 was co-localized with both early and replicative bacterial inclusions. Additionally, tyrosine-phosphorylated proteins and PLC-gamma2 were found in bacterial early inclusions. In contrast, clathrin was not found in any inclusions from either bacterium. An early endosomal marker, transferrin receptor, was not present in the early inclusions of E. chaffeensis, but was found in replicative inclusions of E. chaffeensis. Furthermore, several bacterial proteins from E. chaffeensis and A. phagocytophilum were co-fractionated with Triton X-100-insoluble raft fractions. The formation of bacteria-encapsulating caveolae, which assemble and retain signalling molecules essential for bacterial entry and interact with the recycling endosome pathway, may ensure the survival of these obligatory intracellular bacteria in primary host defensive cells.
DOI: 10.1128/jcm.32.7.1658-1662.1994
1994
Cited 100 times
Comparison of PCR with other tests for early diagnosis of canine ehrlichiosis
The purpose of the study was to compare the sensitivity of PCR with those of cell culture reisolation of Ehrlichia canis, the indirect fluorescent antibody test (IFA), and Western immunoblotting (WI) in the early diagnosis of canine ehrlichiosis. Five German shepherd dogs were intravenously inoculated with 10(7) E. canis-infected DH82 cells. Blood was collected on alternate days during a 2-week postinoculation period. Mononuclear cell fractions were harvested and used for E. canis reisolation and DNA extraction for PCR. The plasma was used for assaying antibodies against E. canis. By PCR, the 16S rRNA gene of E. canis was detected in the mononuclear cell specimens collected as early as day 4 to 10 postexposure (PE). E. canis was reisolated from the blood starting on day 2 PE from all five dogs. The indirect fluorescent antibody test and Western immunoblotting could detect E. canis antibodies as early as 2 to 8 days PE. Cell culture reisolation proved to be the most sensitive and definitive for early diagnosis of ehrlichiosis, but it is not very convenient, since it takes a long time (14 to 34 days) to show up positive. The sensitivity of PCR is comparable to or slightly less than that of other established methods; however, the convenience, quickness, and direct nature of detecting E. canis DNA is expected to make PCR more useful for clinical diagnosis.
DOI: 10.1093/infdis/175.1.210
1997
Cited 100 times
Ultrastructural and Antigenic Characterization of a Granulocytic Ehrlichiosis Agent Directly Isolated and Stably Cultivated from a Patient in New York State
A human granulocytic ehrlichiosis (HGE) agent with 16S rDNA sequence identical to the published sequence of HGE agents was isolated from a patient from New York State by inoculation of the blood leukocyte fraction directly into a human promyelocytic leukemia cell line HL-60. The HGE agent was also isolated from the leukocyte fraction of the blood and bone marrow of a mouse inoculated with the leukocyte fraction of the patient's blood. The isolate has been passaged in tissue culture 30 times over 8 months. Electron microscopy revealed pleomorphic coccobacilli with a thin and highly rippled outer membrane in the clear inclusion matrix. Comparison of IFA reactivity of antisera obtained from a variety of sources with the cell-cultured HGE agent revealed that 3 HGE agent strains (New York isolate, Wisconsin [BDS] isolate, and a tick-derived isolate) are highly cross-reactive and there are diverse antigenic cross-reactivities between HGE agent and Ehrlichia chaffeensis.
DOI: 10.1099/00207713-45-2-250
1995
Cited 99 times
Ehrlichia muris sp. nov., Identified on the Basis of 16S rRNA Base Sequences and Serological, Morphological, and Biological Characteristics
The 16S rRNA gene of a new infectious agent, strain AS145T(T = type strain), which was isolated from a wild mouse in Japan, was amplified by using the PCR. The amplimers were directly sequenced by dideoxynucleotide methods with Taq DNA polymerase. Sequence comparisons with other members of the tribe Ehrlichieae and related species revealed that the infectious agent isolated from the mouse is a new species of the genus Ehrlichia that is most closely related to Ehrlichia chaffeensis (level of sequence similarity, 97.9%), an agent of human ehrlichiosis in the United States. This result was consistent with the results of an immunoblot analysis performed with immune sera against different ehrlichiosis agents. On the basis of these findings and other morphological, biological, and serological characteristics of the organism, we propose that ehrlichiae with these properties belong to a new species, Ehrlichia muris.
DOI: 10.1128/iai.49.3.513-517.1985
1985
Cited 90 times
Causative ehrlichial organisms in Potomac horse fever
An ehrlichia was consistently isolated from the peripheral blood leukocyte fraction of ponies that had been experimentally infected with Potomac horse fever by whole blood transfusion from naturally infected horses. The organism was propagated in a human histiocyte cell line for 3 to 5 weeks and then inoculated intravenously or intradermally into healthy adult ponies. Clinical signs of Potomac horse fever, which varied in the degree of severity, occurred 9 to 14 days post-inoculation in all of the ponies. One pony died 20 days post-inoculation. The ehrlichial organism was reisolated in the human histiocyte cell line from the blood leukocyte fraction of all of the experimental ponies on each day that samples were examined (days 9, 10, 11, 19, and 39). These organisms were identical to those originally detected in the wall of the intestine of ponies with clinically diagnosed Potomac horse fever when compared by light and electron microscopy and an immunofluorescence labeling technique. The immunofluorescent antibody titer became positive in a pony at 20 days postinjection. These results indicate that the ehrlichial organisms is the causative agent of Potomac horse fever.
DOI: 10.1128/jcm.32.7.1644-1649.1994
1994
Cited 89 times
Reisolation of Ehrlichia canis from blood and tissues of dogs after doxycycline treatment
We present evidence that supports the carrier status of dogs experimentally infected with Ehrlichia canis after treatment with doxycycline. Canine ehrlichiosis was induced in five dogs by intravenous inoculation with E. canis-infected DH82 cells. All animals developed mild clinical signs of transient fever, body weight loss, thrombocytopenia, and increased gamma globulin levels in plasma. An indirect fluorescent-antibody test (IFA) revealed that all dogs had seroconverted (titer, 5,120) by day 10 postinoculation (p.i.). E. canis was reisolated from blood samples collected at intervals throughout the 2-month period p.i. Doxycycline was administered orally once daily at 10 mg/kg of body weight per day for 1 week starting at 2 months p.i. Following treatment, gamma globulin levels in plasma were decreased. At necropsy on days 54 to 59 after the start of treatment, spleen, liver, kidney, and lymph nodes were collected for E. canis culture and histopathologic examination. Although the dogs did not show significant clinical signs during or after treatment with the antibiotic, E. canis was reisolated from the blood and tissue samples of three of five dogs. A 16-fold reduction in IFA titer was noted in two dogs which were negative for E. canis reisolation at day 49 after the start of treatment, whereas a zero- to fourfold reduction in IFA titer was seen in the remaining three dogs. Western immunoblot reactions to higher-molecular-size E. canis antigens in the sera of two dogs which were negative for E. canis on blood culture decreased, whereas they remained continuously high or only transiently decreased for the duration of the study for antigens in the sera of three dogs from which E. canis was reisolated. Histopathologically, prominent plasmacytosis in the kidney cortex was present in three dogs from which E. canis was reisolated, whereas the kidney cortices of two dogs had moderate to minor plasmacytosis. These findings pose questions regarding the efficacy, dosage and duration of doxycycline treatment in dogs with E. canis infection. In addition, it was shown that IFA and Western immunoblotting may aid in assessing the efficacy of antibiotic therapy when definitive reisolation procedures are not readily available.
DOI: 10.1016/j.vetpar.2005.04.030
2005
Cited 88 times
Transstadial and intrastadial experimental transmission of Ehrlichia canis by male Rhipicephalus sanguineus
The acquisition and transmission of rickettsial pathogens by different tick developmental stages has important epidemiological implications. The purpose of this study was to determine if male Rhipicephalus sanguineus can experimentally acquire and transmit Ehrlichia canis in the absence of female ticks. Two trials were performed where nymphal and male R. sanguineus were simultaneously acquisition fed on the same infected donor hosts, and transstadially or intrastadially exposed male ticks were fed on separate pathogen-free dogs as a test for transmission. A single-step p30-based PCR assay was used to test canine and tick hosts for E. canis infections before and after tick feeding. E. canis was detected after either intrastadial or transstadial passage in male ticks, the organism remained detectable in both tick groups after transmission feeding, and both tick groups transmitted the rickettsia to susceptible dogs. Infection of dogs via tick feeding resulted in milder clinical signs and lower antibody titers than intravenous inoculation of carrier blood, but further investigation is needed to understand the mechanisms responsible for this observation. These results demonstrate that male R. sanguineus can take multiple feedings, and that they can both acquire and transmit E. canis in the absence of female ticks. This tick development stage could be important in transmission of E. canis, and perhaps related pathogens, between vertebrate hosts under natural and experimental conditions.
DOI: 10.1016/j.mib.2005.12.003
2006
Cited 81 times
Ehrlichia subversion of host innate responses
Anaplasma (formerly Ehrlichia) phagocytophilum and Ehrlichia chaffeensis, upon infection of humans, replicate in host leukocyte granulocytes and monocytes/macrophages, respectively. These unusual Gram-negative bacteria lack genes for biosynthesis of the lipopolysaccharide and peptidoglycan that activate host leukocytes. Caveolae-mediated endocytosis directs A. phagocytophilum and E. chaffeensis to an intracellular compartment secluded from oxygen-dependent and -independent killing. Furthermore, these bacteria orchestrate a remarkable series of events that culminate in suppression of NADPH oxidase, phagocyte activation and differentiation pathways, apoptosis, and interferon-γ signaling in host leukocytes. They offer a fascinating example of how pathogens employ intricate strategies to usurp and subvert host cell function.
DOI: 10.1128/iai.56.12.3209-3215.1988
1988
Cited 76 times
Lack of lysosomal fusion with phagosomes containing Ehrlichia risticii in P388D1 cells: abrogation of inhibition with oxytetracycline
Fusion of lysosomes with phagosomes containing Ehrlichia risticii, an obligate intracellular parasite, was evaluated in P388D1 murine macrophagelike cells. Lysosomes in cells ranging in infectivity from 30 to 70% were labeled cytochemically with acid phosphatase or via endocytosis of thorium dioxide or cationized ferritin to document phagosome-lysosome (P-L) fusion in untreated cells and cells treated with oxytetracycline. Regardless of the marker used, P-L fusion was generally not observed in E. risticii-containing vacuoles in untreated cells, while significantly greater P-L fusion with ehrlichia-containing vacuoles was observed after oxytetracycline treatment. When latex beads were introduced into uninfected cell cultures, P-L fusion was observed with vacuoles containing latex. Fusion of lysosomes with latex-containing vacuoles in cells was significantly greater than fusion of lysosomes with ehrlichia-containing vacuoles in the same infected cells. These findings indicate that E. risticii is able to inhibit P-L fusion, whereas oxytetracycline deprives organisms of this ability.
DOI: 10.1128/iai.49.3.505-512.1985
1985
Cited 72 times
Ultrastructural study of ehrlichial organisms in the large colons of ponies infected with Potomac horse fever
Potomac horse fever is characterized by fever, anorexia, leukopenia, profuse watery diarrhea, dehydration, and high mortality. An ultrastructural investigation was made to search for any unusual microorganisms in the digestive system, lymphatic organs, and blood cells of ponies that had developed clinical signs after transfusion with whole blood from horses naturally infected with Potomac horse fever. A consistent finding was the presence of rickettsial organisms in the wall of the intestinal tract of these ponies. The organisms were found mostly in the wall of the large colon, but fewer organisms were found in the small colon, jejunum, and cecum. The organisms were also detected in cultured blood monocytes. In the intestinal wall, many microorganisms were intracytoplasmic in deep glandular epithelial cells and mast cells. Microorganisms were also found in macrophages migrating between glandular epithelial cells in the lamina propria and submucosa. The microorganisms were round, very pleomorphic, and surrounded by a host membrane. They contained fine strands of DNA and ribosomes and were surrounded by double bileaflet membranes. Their ultrastructure was very similar to that of the genus Ehrlichia, a member of the family Rickettsiaceae. The high frequency of detection of the organism in the wall of the intestinal tract, especially in the large colon, indicates the presence of organotrophism in this organism. Infected blood monocytes may be the vehicle for transmission between organs and between animals. The characteristic severe diarrhea may be induced by the organism directly by impairing epithelial cell functions or indirectly by perturbing infected macrophages and mast cells in the intestinal wall or by both.
DOI: 10.3389/fmicb.2011.00024
2011
Cited 60 times
Global Proteomic Analysis of Two Tick-Borne Emerging Zoonotic Agents: Anaplasma Phagocytophilum and Ehrlichia Chaffeensis
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of "hypothetical" proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
DOI: 10.1111/j.1365-2958.2011.07885.x
2011
Cited 59 times
Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen <i>Ehrlichia chaffeensis</i>
Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Ehrlichiae have a biphasic developmental cycle consisting of dense-cored cells (DCs) and reticulate cells (RCs). Isolated DCs are more stress resistant and infectious than RCs. Here, we report that a response regulator, CtrA was upregulated in human monocytes at the late growth stage when DCs develop. E. chaffeensis CtrA bound to the promoters of late-stage transcribed genes: ctrA, ompA (peptidoglycan-associated lipoprotein), bolA (stress-induced morphogen) and surE (stationary-phase survival protein), which contain CtrA-binding motifs, and transactivated ompA, surE and bolA promoter-lacZ fusions in Escherichia coli. OmpA was predominantly expressed in DCs. E. chaffeensis binding to and subsequent infection of monocytes were inhibited by anti-OmpA IgG. E. chaffeensis BolA bound to the promoters of genes encoding outer surface proteins TRP120 and ECH_1038, which were expressed in DCs, and transactivated trp120 and ECH_1038 promoter-lacZ fusions. E. chaffeensis bolA complemented a stress-sensitive E. coli bolA mutant. E. coli expressing E. chaffeensis SurE exhibited increased resistance to osmotic stress. Our results suggest that E. chaffeensis CtrA plays a role in co-ordinating development of the stress resistance for passage from the present to the next host cells through its regulon.
DOI: 10.1073/pnas.1806904115
2018
Cited 39 times
<i>Ehrlichia</i> type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation
Ehrlichia chaffeensis, an obligatory intracellular bacterium, infects monocytes/macrophages by sequestering a regulator of endosomal traffic, the small GTPase RAB5, on its membrane-bound inclusions to avoid routing to host-cell phagolysosomes. How RAB5 is sequestered on ehrlichial inclusions is poorly understood, however. We found that native Ehrlichia translocated factor-2 (Etf-2), a previously predicted effector of the Ehrlichia type IV secretion system, and recombinant Etf-2 (cloned into the Ehrlichia genome) are secreted into the host-cell cytoplasm and localize to ehrlichial inclusions. Ectopically expressed Etf-2-GFP also localized to inclusions and membranes of early endosomes marked with RAB5 and interacted with GTP-bound RAB5 but not with a GDP-bound RAB5. Etf-2, although lacking a RAB GTPase-activating protein (GAP) Tre2-Bub2-Cdc16 (TBC) domain, contains two conserved TBC domain motifs, namely an Arg finger and a Gln finger, and site-directed mutagenesis revealed that both Arg188 and Gln245 are required for Etf-2 localization to early endosomes. The yeast two-hybrid assay and microscale thermophoresis revealed that Etf-2 binds tightly to GTP-bound RAB5 but not to GDP-bound RAB5. However, Etf-2 lacks RAB5-specific GAP activity. Etf-2 localized to bead-containing phagosomes as well as endosomes containing beads coated with the C-terminal fragment of EtpE (entry-triggering protein of Ehrlichia), an Ehrlichia outer-membrane invasin, and significantly delayed RAB5 dissociation from and RAB7 localization to phagosomes/endosomes and RABGAP5 localization to endosomes. Thus, binding of Etf-2 to RAB5-GTP appears to delay RAB5 inactivation by impeding RABGAP5 localization to endosomes. This suggests a unique mechanism by which RAB5 is sequestered on ehrlichial inclusions to benefit bacterial survival and replication.
DOI: 10.1128/iai.69.4.2083-2091.2001
2001
Cited 86 times
Analysis of Transcriptionally Active Gene Clusters of Major Outer Membrane Protein Multigene Family in <i>Ehrlichia canis</i> and <i>E. chaffeensis</i>
ABSTRACT Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis . Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis , in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5′-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from −8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3′-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5′ and the 3′ sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them.
DOI: 10.1128/iai.68.12.6697-6703.2000
2000
Cited 79 times
Human Granulocytic Ehrlichiosis Agent Inhibits Superoxide Anion Generation by Human Neutrophils
ABSTRACT The human granulocytic ehrlichiosis (HGE) agent, which replicates in neutrophils, was found not to induce superoxide anion (O 2 − ) generation or extracellular release by human peripheral blood neutrophils, as measured by a luminol-dependent chemiluminescence assay or a cytochrome c reduction assay, respectively. Furthermore, the HGE agent completely prevented O 2 − release by neutrophils upon stimulation with phorbol myristate acetate (PMA), formylmethionyl-leucyl-phenylalanine, or Escherichia coli . The inhibition was HGE agent dose dependent, required ehrlichial contact with the host cells, and was reversible upon removal of the extracellular HGE agent bound to the host cells prior to PMA stimulation. Structural integrity of or new protein synthesis by the HGE agent was not required for the inhibition; carbohydrate but not surface protein of the HGE agent was required. The HGE agent did not prevent O 2 − generation in human peripheral blood monocytes derived from the same individual. This neutrophil-specific prevention of O 2 − generation by the HGE agent would be critical in survival of the HGE agent. This is the first demonstration of the rapid inhibition of preexisting NADPH oxidase in human neutrophils by the HGE agent.
DOI: 10.1128/jcm.37.4.1123-1129.1999
1999
Cited 79 times
Comparison of <i>Ehrlichia muris</i> Strains Isolated from Wild Mice and Ticks and Serologic Survey of Humans and Animals with <i>E. muris</i> as Antigen
ABSTRACT In metropolitan Tokyo, the Ehrlichia muris seropositivity rate of 24 wild mice was 63% in Hinohara Village, but in the surrounding areas, it was 0 to 5%. This finding suggests that the reservoir of E. muris is focal. Among the 15 seropositive mice, ehrlichiae were isolated from 9 Apodemus speciosus mice and 1 A. argenteus mouse, respectively. Five ehrlichial isolates were obtained from 10 ticks ( Haemaphysalis flava ) collected in Asuke Town, Aichi Prefecture, where the E. muris type strain had been isolated. These new isolates were compared with the E. muris type strain. The mouse virulence and ultrastructure of the new isolates were similar to those of the type strain, and all of them were cross-reactive with each other, as well as with the type strain, by indirect immunofluorescent-antibody test. The levels of similarity of the base sequences of the 16S rRNA gene of one of the A. speciosus isolates and one of the tick isolates to that of the E. muris type strain were 99.79 and 99.93%, respectively. We suggest that all of these isolates are E. muris ; that E. muris is not limited to Eothenomys kageus but infects other species of mice; and that E. muris is present at locations other than Aichi Prefecture. It appears that H. flava is a potential vector of E. muris . Twenty (1%) of 1803 humans from metropolitan Tokyo were found to be seropositive for E. muris antibodies. A serological survey revealed that exposure to E. muris or organisms antigenically cross-reactive to E. muris occurred among dogs, wild mice, monkeys, bears, deer, and wild boars in Gifu Prefecture, nearby prefectures, and Nagoya City, central Japan. However, human beings and Rattus norvegicus rats in this area were seronegative. These results indicate broader geographic distribution of and human and animal species exposure to E. muris or related Ehrlichia spp. in Japan.
DOI: 10.1128/jcm.30.1.143-148.1992
1992
Cited 78 times
Analyses of Ehrlichia canis and a canine granulocytic Ehrlichia infection
Ehrlichia canis and canine granulocytic Ehrlichia sp. (CGE) infect canine monocytes and granulocytes, respectively. E. canis has been cultured in vitro and used to develop an immunofluorescence assay. CGE has not been cultured, and a serologic assay is not available. The sera of dogs infected with CGE were reported to react with E. canis by immunofluorescence. In this study, the temporal response of immunoglobulin G (IgG) was determined by an enzyme-linked immunosorbent assay (ELISA) with purified E. canis antigen in four dogs experimentally infected with E. canis, in two dogs experimentally infected with CGE, and in one dog infected with E. canis and subsequently infected with CGE. E. canis-infected dogs developed an IgG ELISA result of 1.5 or greater for the optical density signal/noise ratio by 2 months postinfection. CGE challenge of a dog with a previous E. canis infection induced an anamnestic increase in the IgG ELISA result; however, CGE infection alone did not induce a significant IgG ELISA response. Western immunoblot analysis showed that dogs infected with E. canis developed antibodies initially that reacted with low-molecular-mass proteins (30, 24, and 21 kDa) and subsequently with higher-molecular-mass proteins (160, 100, 78, 64, 47, and 40 kDa). In contrast, CGE-infected dogs showed reactions with the same higher-molecular-mass proteins of E. canis but, unlike E. canis-infected dogs, not with the low-molecular-mass proteins of E. canis. Of 10 serum samples collected in the field of Indonesia from dogs with tropical canine pancytopenia, all had an optical density signal minus noise value of 2.54 or greater in the IgG ELISA and reacted with E. canis antigen in a pattern similar to that of serum samples from dogs experimentally infected with E. canis in Western immunoblotting. This study suggests that the IgG ELISA and Western immunoblotting with purified E. canis as the antigen are useful in distinguishing between E. canis and CGE infections in dogs.
DOI: 10.1128/jcm.32.4.912-917.1994
1994
Cited 76 times
C-reactive protein and alpha 1-acid glycoprotein levels in dogs infected with Ehrlichia canis
To elucidate whether acute-phase protein responses occur in dogs infected with Ehrlichia canis, C-reactive protein (CRP) and alpha 1-acid glycoprotein (AAG) levels were serially measured in the plasma of five dogs experimentally inoculated with E. canis and 10 sham-inoculated or noninoculated control dogs. The CRP concentration was measured by a canine-specific capture enzyme-linked immunosorbent assay, and the AAG concentration was measured by a canine-specific radial immunodiffusion method. In all E. canis-inoculated dogs, a 3.3- to 6.5-fold increase in the plasma CRP concentration and a 1.9- to 8.6-fold increase in the plasma AAG concentration over the preinoculation level occurred at days 4 to 6 postexposure. Despite the persistence of E. canis and high antibody titers, both CRP and AAG concentrations gradually declined to preexposure levels by day 34 postexposure. E. canis-infected dogs had mild and transient clinical signs which resolved without treatment by day 14 postexposure. The CRP and AAG concentrations in control inoculated or nontreated dogs remained within the normal range throughout the experimental period. Of 12 dogs naturally infected with E. canis, 75% had greater than 50 micrograms of CRP per ml and 83% had greater than 500 micrograms of AAG per ml. All of these 12 dogs had chronic and severe clinical signs of canine ehrlichiosis. Thus, elevations in the levels of acute-phase proteins occur in both acute and chronic canine ehrlichiosis. Determination of CRP and AAG concentrations may help in assessing the severity of inflammatory damage in dogs with E. canis infections.
DOI: 10.1128/jcm.31.1.89-96.1993
1993
Cited 72 times
Characterization of ehrlichial organisms isolated from a wild mouse
An infectious agent was isolated from the enlarged spleen of a wild mouse, Eothenomys kageus, by intraperitoneal inoculation of the spleen homogenate into laboratory mice. The laboratory mice developed splenomegaly, and the agent was maintained by serial passage of spleen homogenates in laboratory mice. The agent in the spleen homogenate was inactivated after incubation at 37 or 50 degrees C. Tetracyclines were effective in preventing infection of mice with this agent, but penicillin and sulfonamides were ineffective. Cytoplasmic inclusion bodies were observed in the peritoneal macrophages of infected mice. Electron microscopy revealed numerous small pleomorphic cocci within membrane-lined vacuoles in the cytoplasm of splenic macrophages. Morphologically similar to the ehrlichial organisms, each organism was surrounded by a distinct plasma membrane and rippled outer cell membrane without a distinct peptidoglycan layer. The agent did not grow in chicken embryos, and the Weil-Felix test result was negative. In the indirect fluorescent-antibody test, the agent reciprocally cross-reacted with Ehrlichia canis and cross-reacted somewhat with Ehrlichia sennetsu but did not cross-react with Ehrlichia risticii, Neorickettsia helminthoeca, Rickettsia tsutsugamushi, or Chlamydia spp. The mouse antiserum against this agent reacted with 64-, 47-, 46-, 44-, and 40-kDa proteins of E. canis by Western blotting (immunoblotting). Since E. canis and closely related Ehrlichia chaffeensis and Ehrlichia ewingii are not known to proliferate or cause splenomegaly in mice, these results suggest that the agent is a new species within the tribe Ehrlichieae of the family Rickettsiaceae. The finding suggests that wild rodents may serve as reservoirs for pathogenic ehrlichiae.
DOI: 10.1111/j.1462-5822.2004.00427.x
2004
Cited 71 times
Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation
The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.
DOI: 10.1111/j.1462-5822.2006.00720.x
2006
Cited 70 times
Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways
Summary Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.
DOI: 10.1002/ar.1092080302
1984
Cited 68 times
Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae
Abstract Guinea pig polymorphonuclear leukocytes (PMNs), rich in glycogen granules, were collected from sodium‐caseinate‐induced eritoneal exudate. When these cells were incubated with rickettsiae, many microogranisms were phagocytized within 30 minutes at 35 o C and vacuoles up to 5 μm in diameter containing glycogen granules were present. Contained within these vaculoes were phagocytized extracellular material and a dense, lysosomelike substance that was acid phosphatase positive. These vacuoles, which were interpreted to be autophagosomes, were absent from PMNs that had not been stimulated with microorganisms. The number of rickettsiae in the PMN did not appear to be related to the number of autophagosomes. About 8% and 80% of thin‐sectioned profiles of PMNs contained these vacuoles after 30 minutes and 4 hours incubation, respectively. After 4 hours, the PMNs contained multiple autophagosomes. Almost all of the glycogen granules were in autophagosomes in some of the cells. In some PMNs, discontinuous membranes encirlced some glycogen. When PMNs were initally incubated with thorium dioxide and ferritin, and extensively washed prior to incubation with rickettsiae, glycogen was found surrounded by flattened secondary lysosmes containing the dense tracers. Some autophagosomes also contained the electron‐dense tracers. These results suggest that rickettisae induce the rapid formation of glycogen‐containing autophagosomes in guinea pig peritoneal PMNs in vitro.
DOI: 10.1111/j.1462-2920.2004.00683.x
2005
Cited 68 times
<i>Neorickettsia risticii</i> is vertically transmitted in the trematode <i>Acanthatrium oregonense</i> and horizontally transmitted to bats
Potomac horse fever is known to be transmitted through the ingestion of caddisflies parasitized with Neorickettsia (formerly Ehrlichia) risticii-infected metacercaria. However, the species of trematode involved and how N. risticii is maintained in nature are unknown. In this study, gravid trematodes were recovered from the intestines of 12 out of 15 Eptesicus fuscus big brown bats and eight out of nine Myotis lucifugus little brown bats from various sites in Pennsylvania, USA. Trematode specimens isolated from six E. fuscus bats contained N. risticii DNA. The trematode was identified as Acanthatrium oregonense. N. risticii was detected within individual trematode eggs by polymerase chain reaction as well as by immunofluorescence labelling with an anti-N. risticii antibody, indicating that N. risticii is vertically transmitted (from adult to egg) in A. oregonense. Furthermore, N. risticii DNA was detected in the blood, liver or spleen of 23 out of 53 E. fuscus and M. lucifugus bats, suggesting that N. risticii can also be transmitted horizontally from trematode to bat. These results indicate that A. oregonense is a natural reservoir and probably a vector of N. risticii.
DOI: 10.1128/iai.60.9.3504-3508.1992
1992
Cited 68 times
L-arginine-dependent killing of intracellular Ehrlichia risticii by macrophages treated with gamma interferon
Thioglycolate-induced murine peritoneal macrophages infected with Ehrlichia risticii and treated in vitro with gamma interferon (IFN-gamma) developed antiehrlichial activity that eliminated the intracellular bacteria. This antiehrlichial activity was suppressed by NG-monomethyl-L-arginine, a competitive inhibitor of nitric oxide synthesis from L-arginine, but not by L-tryptophan. Increased levels of nitrite, an oxidative product of nitric oxide, were measured in cultures of infected macrophages treated with IFN-gamma. Sodium nitroprusside, which spontaneously releases nitric oxide, also showed the antiehrlichial activity. The antiehrlichial activity by reactive nitrogen intermediates was not mediated by elevation of the cellular concentration of cyclic GMP since the addition of 8-bromo-cyclic GMP itself had no influence on ehrlichial infection of macrophages. Addition of the intracellular iron chelator deferoxamine also inhibited E. risticii infection in vitro. These results suggest that intracellular E. risticii survival is iron dependent and that production of reactive nitrogen intermediates triggers iron loss from critical target enzymes of E. risticii, leading to lethal metabolic inhibition. However, addition of excess FeSO4, ferric citrate, or iron-saturated transferrin did not counteract the antiehrlichial effect induced by IFN-gamma.
DOI: 10.1128/jcm.29.9.2024-2029.1991
1991
Cited 67 times
Cross-reacting antigens between Neorickettsia helminthoeca and Ehrlichia species, shown by immunofluorescence and Western immunoblotting
Dogs orally infected with Neorickettsia helminthoeca developed immunoglobulin G titers against Erlichia risticii, Erlichia sennetsu, and Erlichia canis similar to those against N. helminthoeca antigen, as determined by immunofluorescence. Western immunoblotting showed that the major common antigens shared among the microorganisms were 80- or 78-kDa and 64-kDa polypeptides. In contrast, horse anti-E. risticii and anti-E. sennetsu and dog anti-E. canis sera reacted more weakly to N. helminthoeca antigen than to homologous antigens in both immunofluorescence and Western immunoblotting. Antisera raised in other species of animals, i.e., mouse anti-E. canis and rabbit anti-E. risticii and anti-E. sennetsu sera, however, all reacted with the 64-kDa antigen of N. helminthoeca. This strong antigenic cross-reactivity and similarity in Western immunoblotting reaction profiles indicate that N. helminthoeca is antigenically closely related to E. risticii and E. sennetsu and less so to E. canis. In both immunofluorescence and Western immunoblotting, E. canis shared fewer common antigens with E. risticii and E. sennetsu than N. helminthoeca did. It is reasonable to conclude that these results may have both diagnostic and taxonomic significance.
DOI: 10.1046/j.1462-5822.2003.00355.x
2004
Cited 67 times
<i>Ehrlichia chaffeensis</i>downregulates surface Toll-like receptors 2/4, CD14 and transcription factors PU.1 and inhibits lipopolysaccharide activation of NF-κB, ERK 1/2 and p38 MAPK in host monocytes
Microbial ligands, such as lipopolysaccharide (LPS), activate Toll-like receptors (TLRs) of mononuclear phagocytes, thus activating transcription factors including NF-κB and inducing antimicrobial activity. Ehrlichia chaffeensis, an obligatory intramonocytic Gram-negative bacterium, causes human monocytic ehrlichiosis. In the present study, we found that E. chaffeensis-infected human monocytes became progressively less responsive to Escherichia coli lipopolysaccharide (LPS) in activating NF-κB and mobilizing ehrlichiacidal activities. E. chaffeensis infection caused downregulation of the expression of several pattern recognition receptors, such as CD14, TLR2 and TLR4, as revealed by flow cytometry and/or reverse transcription polymerase chain reaction analysis. Electrophoretic mobility shift assay revealed that the activity of a transcription factor PU.1 was also downregulated by E. chaffeensis infection. ERK 1/2 and p38 MAPK were slightly activated at the early stage of E. chaffeensis infection; however, the activations of ERK 1/2 and p38 MAPK by LPS treatment were subsequently reduced in E. chaffeensis-infected monocytes compared with those in uninfected monocytes. Like E. chaffeensis, the p38 MAPK-specific inhibitor SB 203580 downregulated PU.1 activity and the expression of TLR2, TLR4 and CD14 in human monocytes, suggesting that the inhibition of p38 MAPK by E. chaffeensis is involved in the suppression of several downstream signalling pathways. These data point to a novel mechanism by which E. chaffeensis can survive by inhibiting critical signalling in monocyte activation pathways linked to pattern recognition receptors.
DOI: 10.1016/0024-3205(85)90623-x
1985
Cited 61 times
Gossypol in female fertility control: Ovum implantation and early pregnancy inhibited in rats
Intramuscular administration of gossypol to normally cycling female rats induced an irregularity of the cyclic pattern for as long as the treatment was continued. Furthermore, administration of gossypol from days 0 (day of sperm-positive vaginal smear) to 8 of pregnancy prevented the normal maintenance of pregnancy. Serum values of progesterone and estradiol 17 beta in gossypol-treated normally cycling and pregnant rats were significantly lower than the control levels. The supplement of a combination of exogenous progesterone and estradiol 17 beta eliminated the inhibitory effects of gossypol on ovum implantation and the maintenance of pregnancy. Our results indicate that gossypol may have some usefulness in female fertility control.
DOI: 10.1111/j.1462-5822.2006.00704.x
2006
Cited 59 times
Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel
The two-component system (TCS) composed of a pair of a sensor histidine kinase and a response regulator, allows bacteria to sense signals and respond to changes in their environment through specific gene activation or repression. The present study examined TCS in the obligatory intracellular bacteria Ehrlichia chaffeensis and Anaplasma phagocytophilum, that cause human monocytic ehrlichiosis (HME) and human granulocytic anaplasmosis (HGA) respectively. The genomes of E. chaffeensis and A. phagocytophilum were each predicted to encode three pairs of TCSs. All six genes encoding three histidine kinases and three response regulators were expressed in both E. chaffeensis and A. phagocytophilum cultured in human leukocytes. Pretreatment of host cell-free E. chaffeensis or A. phagocytophilum with closantel, an inhibitor of histidine kinases, completely blocked the infection of host cells. Treatment of infected cells 1 day post infection with closantel cleared infection in dose-dependent manner. All six genes in E. chaffeensis were cloned, recombinant proteins were expressed, and polyclonal antibodies were produced. Double immunofluorescence labelling and Western blot analysis revealed that all six proteins were expressed in cell culture. Autokinase activities of the three recombinant histidine kinases from E. chaffeensis were inhibited by closantel in vitro. A number of E. chaffeensis genes, including the six TCS genes, were downregulated within 5–60 min post closantel treatment. These results suggest that these TCSs play an essential role in infection and survival of E. chaffeensis and A. phagocytophilum in human leukocytes.
DOI: 10.1128/jb.01813-07
2008
Cited 58 times
Regulation of Type IV Secretion Apparatus Genes during <i>Ehrlichia chaffeensis</i> Intracellular Development by a Previously Unidentified Protein
The type IV secretion (T4S) system is critical for the virulence of several pathogens. In the rickettsial pathogen Ehrlichia chaffeensis, the virBD genes are split into two operons, the virB3-virB6 (preceded by sodB) and virB8-virD4 operons. Between these two operons, there are duplications of virB4, virB8, and virB9. In this study we found that transcription of all five loci was downregulated prior to the release of E. chaffeensis from host THP-1 cells and was upregulated at the initiation of exponential growth. Electrophoretic mobility shift assays revealed an E. chaffeensis-encoded protein that specifically bound to the promoter regions upstream of the virBD loci. The protein was purified from the bacterial lysate by affinity chromatography using a biotinylated promoter region upstream of sodB. Mass spectrometry identified the protein as an E. chaffeensis 12.3-kDa hypothetical protein, which was designated EcxR. Recombinant EcxR bound to the promoter regions upstream of five individual virBD loci. EcxR also activated transcription of all five virBD loci in lacZ reporter constructs. The expression of ecxR was positively autoregulated by EcxR. These results suggest that the five virBD loci are coordinately regulated by EcxR to allow developmental stage-specific expression of the T4S system in E. chaffeensis.
DOI: 10.1128/iai.00188-07
2007
Cited 58 times
Surface-Exposed Proteins of<i>Ehrlichia chaffeensis</i>
The surface proteins of Ehrlichia chaffeensis provide an important interface for pathogen-host interactions. To investigate the surface proteins of E. chaffeensis, membrane-impermeable, cleavable Sulfo-NHS-SS-Biotin was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin-agarose affinity purification. The affinity-captured proteins were separated by electrophoresis, and five relatively abundant protein bands containing immunoreactive proteins were subjected to capillary-liquid chromatography-nanospray tandem mass spectrometry analysis. Nineteen out of 22 OMP-1/P28 family proteins, including P28 (which previously was shown to be surface exposed), were detected in E. chaffeensis cultured in human monocytic leukemia THP-1 cells. For the first time, with the exception of P28 and P28-1, 17 OMP-1/P28 family proteins were demonstrated to be expressed at the protein level. The surface exposure of OMP-1A and OMP-1N was verified by immunofluorescence microscopy. OMP-1B was undetectable either by surface biotinylation or by Western blotting of the whole bacterial lysate, suggesting that it is not expressed by E. chaffeensis cultured in THP-1 cells. Additional E. chaffeensis surface proteins detected were OMP85, hypothetical protein ECH_0525 (here named Esp73), immunodominant surface protein gp47, and 11 other proteins. The identification of E. chaffeensis surface-exposed proteins provides novel insights into the E. chaffeensis surface and lays the foundation for rational studies on pathogen-host interactions and vaccine development.
DOI: 10.1128/jb.00866-07
2007
Cited 56 times
Identification of Novel Surface Proteins of<i>Anaplasma phagocytophilum</i>by Affinity Purification and Proteomics
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis (HGA), one of the major tick-borne zoonoses in the United States. The surface of A. phagocytophilum plays a crucial role in subverting the hostile host cell environment. However, except for the P44/Msp2 outer membrane protein family, the surface components of A. phagocytophilum are largely unknown. To identify the major surface proteins of A. phagocytophilum, a membrane-impermeable, cleavable biotin reagent, sulfosuccinimidyl-2-[biotinamido]ethyl-1,3-dithiopropionate (Sulfo-NHS-SS-Biotin), was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin agarose affinity purification and then separated by electrophoresis, followed by capillary liquid chromatography-nanospray tandem mass spectrometry analysis. Among the major proteins captured by affinity purification were five A. phagocytophilum proteins, Omp85, hypothetical proteins APH_0404 (designated Asp62) and APH_0405 (designated Asp55), P44 family proteins, and Omp-1A. The surface exposure of Asp62 and Asp55 was verified by immunofluorescence microscopy. Recombinant Asp62 and Asp55 proteins were recognized by an HGA patient serum. Anti-Asp62 and anti-Asp55 peptide sera partially neutralized A. phagocytophilum infection of HL-60 cells in vitro. We found that the Asp62 and Asp55 genes were cotranscribed and conserved among members of the family Anaplasmataceae. With the exception of P44-18, all of the proteins were newly revealed major surface-exposed proteins whose study should facilitate understanding the interaction between A. phagocytophilum and the host. These proteins may serve as targets for development of chemotherapy, diagnostics, and vaccines.
DOI: 10.1128/jb.00132-10
2010
Cited 56 times
Cyclic di-GMP Signaling Regulates Invasion by <i>Ehrlichia chaffeensis</i> of Human Monocytes
Cyclic di-GMP (c-di-GMP) is a bacterial second messenger produced by GGDEF domain-containing proteins. The genome of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, encodes a single protein that contains a GGDEF domain, called PleD. In this study, we investigated the effects of c-di-GMP signaling on E. chaffeensis infection of the human monocytic cell line THP-1. Recombinant E. chaffeensis PleD showed diguanylate cyclase activity as it generated c-di-GMP in vitro. Because c-di-GMP is not cell permeable, the c-di-GMP hydrophobic analog 2'-O-di(tert-butyldimethylsilyl)-c-di-GMP (CDGA) was used to examine intracellular c-di-GMP signaling. CDGA activity was first tested with Salmonella enterica serovar Typhimurium. CDGA inhibited well-defined c-di-GMP-regulated phenomena, including cellulose synthesis, clumping, and upregulation of csgD and adrA mRNA, indicating that CDGA acts as an antagonist in c-di-GMP signaling. [(32)P]c-di-GMP bound several E. chaffeensis native proteins and two E. chaffeensis recombinant I-site proteins, and this binding was blocked by CDGA. Although pretreatment of E. chaffeensis with CDGA did not reduce bacterial binding to THP-1 cells, bacterial internalization was reduced. CDGA facilitated protease-dependent degradation of particular, but not all, bacterial surface-exposed proteins, including TRP120, which is associated with bacterial internalization. Indeed, the serine protease HtrA was detected on the surface of E. chaffeensis, and TRP120 was degraded by treatment of E. chaffeensis with recombinant E. chaffeensis HtrA. Furthermore, anti-HtrA inhibited CDGA-induced TRP120 degradation. Our results suggest that E. chaffeensis invasion is regulated by c-di-GMP signaling, which stabilizes some bacterial surface-exposed proteins against proteases.
DOI: 10.1128/jb.01218-08
2009
Cited 56 times
The <i>Anaplasma phagocytophilum</i> PleC Histidine Kinase and PleD Diguanylate Cyclase Two-Component System and Role of Cyclic Di-GMP in Host Cell Infection
ABSTRACT Anaplasma phagocytophilum , the etiologic agent of human granulocytic anaplasmosis (HGA), has genes predicted to encode three sensor kinases, one of which is annotated PleC, and three response regulators, one of which is PleD. Prior to this study, the roles of PleC and PleD in the obligatory intracellular parasitism of A. phagocytophilum and their biochemical activities were unknown. The present study illustrates the relevance of these factors by demonstrating that both pleC and pleD were expressed in an HGA patient. During A. phagocytophilum development in human promyelocytic HL-60 cells, PleC and PleD were synchronously upregulated at the exponential growth stage and downregulated prior to extracellular release. A recombinant PleC kinase domain (rPleCHKD) has histidine kinase activity; no activity was observed when the conserved site of phosphorylation was replaced with alanine. A recombinant PleD (rPleD) has autokinase activity using phosphorylated rPleCHKD as the phosphoryl donor but not with two other recombinant histidine kinases. rPleCHKD could not serve as the phosphoryl donor for a mutant rPleD (with a conserved aspartic acid, the site of phosphorylation, replaced by alanine) or two other A. phagocytophilum recombinant response regulators. rPleD had diguanylate cyclase activity to generate cyclic (c) di-GMP from GTP in vitro. UV cross-linking of A. phagocytophilum lysate with c-di-[ 32 P]GMP detected an ∼47-kDa endogenous protein, presumably c-di-GMP downstream receptor. A new hydrophobic c-di-GMP derivative, 2′- O -di(tert-butyldimethylsilyl)-c-di-GMP, inhibited A. phagocytophilum infection in HL-60 cells. Our results suggest that the two-component PleC-PleD system is a diguanylate cyclase and that a c-di-GMP-receptor complex regulates A. phagocytophilum intracellular infection.
DOI: 10.1371/journal.ppat.1000329
2009
Cited 55 times
Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway
In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3' UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal-regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication.
DOI: 10.1084/jem.150.3.703
1979
Cited 55 times
Intracellular localization of Rickettsia tsutsugamushi in polymorphonuclear leukocytes.
Rickettsia tsutsugamushi (Gilliam strain) was serially propagated in BHK-21 cell cultures and incubated with guinea pig peritoneal polymorphonuclear leukocytes to study the ultrastructural features of rickettsial uptake and entry into the leukocytes. Significant numbers of rickettsiae were phagocytized selectively by these leukocytes within 30 min. About one-half of these rickettsiae remained sequestered in phagosomes but the other one-half were free from the phagosome and localized directly in the polymorphonuclear leukocyte cytoplasm. Various stages of rickettsial release from the phagosomes were observed. Once free within the polymorphonuclear leukocyte cytoplasm, the rickettsiae were preferentially localized in the glycogen-packed areas which are devoid of lysosomes and other cytoplasmic organelles. This study indicates that rickettsiae phagocytized by polymorphonuclear leukocytes can escape from the phagosome into the cytoplasm.
DOI: 10.1016/j.vetpar.2009.09.017
2010
Cited 53 times
Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-γ signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
DOI: 10.1016/j.micinf.2011.03.003
2011
Cited 44 times
Subversion of host cell signaling by Orientia tsutsugamushi
Progress has been made in deciphering the mechanisms on Orientia tsutsugamushi-host interaction. The genome sequencing, microarray and proteomic analyses of this ancient bacterium have provided a wealth of new information. This paper reviews the general characteristics of O. tsutsugamushi and recent developments especially in signaling events involved in the bacteria–host interaction.
DOI: 10.1371/journal.ppat.1003666
2013
Cited 43 times
Ehrlichia chaffeensis Uses Its Surface Protein EtpE to Bind GPI-Anchored Protein DNase X and Trigger Entry into Mammalian Cells
Ehrlichia chaffeensis, an obligatory intracellular rickettsial pathogen, enters and replicates in monocytes/macrophages and several non-phagocytic cells. E. chaffeensis entry into mammalian cells is essential not only for causing the emerging zoonosis, human monocytic ehrlichiosis, but also for its survival. It remains unclear if E. chaffeensis has evolved a specific surface protein that functions as an 'invasin' to mediate its entry. We report a novel entry triggering protein of Ehrlichia, EtpE that functions as an invasin. EtpE is an outer membrane protein and an antibody against EtpE (the C-terminal fragment, EtpE-C) greatly inhibited E. chaffeensis binding, entry and infection of both phagocytes and non-phagocytes. EtpE-C-immunization of mice significantly inhibited E. chaffeensis infection. EtpE-C-coated latex beads, used to investigate whether EtpE-C can mediate cell invasion, entered both phagocytes and non-phagocytes and the entry was blocked by compounds that block E. chaffeensis entry. None of these compounds blocked uptake of non-coated beads by phagocytes. Yeast two-hybrid screening revealed that DNase X, a glycosylphosphatidyl inositol-anchored mammalian cell-surface protein binds EtpE-C. This was confirmed by far-Western blotting, affinity pull-down, co-immunoprecipitation, immunofluorescence labeling, and live-cell image analysis. EtpE-C-coated beads entered bone marrow-derived macrophages (BMDMs) from wild-type mice, whereas they neither bound nor entered BMDMs from DNase X(-/-) mice. Antibody against DNase X or DNase X knock-down by small interfering RNA impaired E. chaffeensis binding, entry, and infection. E. chaffeensis entry and infection rates of BMDMs from DNase X(-/-) mice and bacterial load in the peripheral blood in experimentally infected DNase X(-/-) mice, were significantly lower than those from wild-type mice. Thus this obligatory intracellular pathogen evolved a unique protein EtpE that binds DNase X to enter and infect eukaryotic cells. This study is the first to demonstrate the invasin and its mammalian receptor, and their in vivo relevance in any ehrlichial species.
DOI: 10.1038/srep34850
2016
Cited 37 times
Efficient Enrichment of Bacterial mRNA from Host-Bacteria Total RNA Samples
Abstract Despite numerous advances in genomics and bioinformatics, technological hurdles remain to examine host-microbe transcriptomics. Sometimes the transcriptome of either or both can be ascertained merely by generating more sequencing reads. However, many cases exist where bacterial mRNA needs to be enriched further to enable cost-effective sequencing of the pathogen or endosymbiont. While a suitable method is commercially available for mammalian samples of this type, development of such methods has languished for invertebrate samples. Furthermore, a common method across multiple taxa would facilitate comparisons between bacteria in invertebrate vectors and their vertebrate hosts. Here, a method is described to concurrently remove polyadenylated transcripts, prokaryotic rRNA, and eukaryotic rRNA, including those with low amounts of starting material (e.g. 100 ng). In a Wolbachia-Drosophila system, this bacterial mRNA enrichment yielded a 3-fold increase in Wolbachia mRNA abundance and a concomitant 3.3-fold increase in the percentage of transcripts detected. More specifically, 70% of the genome could be recovered by transcriptome sequencing compared to 21% in the total RNA. Sequencing of similar bacterial mRNA-enriched samples generated from Ehrlichia -infected canine cells covers 93% of the Ehrlichia genome, suggesting ubiquitous transcription across the entire Ehrlichia chaffeensis genome. This technique can potentially be used to enrich bacterial mRNA in many studies of host-microbe interactions.
DOI: 10.1007/978-3-319-75241-9_12
2017
Cited 33 times
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
DOI: 10.1186/s12864-020-07309-z
2021
Cited 23 times
Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis
The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name.We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity.The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
DOI: 10.1093/pnasnexus/pgad017
2023
Cited 5 times
Inhibition of<i>Ehrlichia chaffeensis</i>infection by cell-permeable macrocyclic peptides that bind type IV secretion effector Etf-1
Abstract Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages, and causes human monocytic ehrlichiosis, an emerging life-threatening infectious disease. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system effector, is essential for Ehrlichia infection of host cells. Etf-1 translocates to mitochondria to block host apoptosis; furthermore, it can bind Beclin 1 (ATG6) to induce cellular autophagy and localize to E. chaffeensis-inclusion membrane to obtain host-cell cytoplasmic nutrients. In this study, we screened a synthetic library of over 320,000 cell-permeable macrocyclic peptides, which consist of an ensemble of random peptide sequences in the first ring and a small family of cell-penetrating peptides in the second ring, for Etf-1 binding. Library screening followed by hit optimization identified multiple Etf-1-binding peptides (with KD values of 1–10 μM) that efficiently enter the cytosol of mammalian cells. Peptides B7, C8, B7-131-5, B7-133-3, and B7-133-8 significantly inhibited Ehrlichia infection of THP-1 cells. Mechanistic studies revealed that peptide B7 and its derivatives inhibited the binding of Etf-1 to Beclin 1, and Etf-1 localization to E. chaffeensis-inclusion membranes, but not Etf-1 localization to the mitochondria. Our results not only affirm the critical role of Etf-1 functions in E. chaffeensis infection, but also demonstrate the feasibility of developing macrocyclic peptides as powerful chemical probes and potential treatment of diseases caused by Ehrlichia and other intracellular pathogens.
DOI: 10.1128/iai.66.6.2514-2520.1998
1998
Cited 71 times
Protein Kinase A-Mediated Inhibition of Gamma Interferon-Induced Tyrosine Phosphorylation of Janus Kinases and Latent Cytoplasmic Transcription Factors in Human Monocytes by<i>Ehrlichia chaffeensis</i>
Ehrlichia chaffeensis, an obligatory intracellular bacterium of monocytes or macrophages, is the etiologic agent of human monocytic ehrlichiosis. Our previous study showed that gamma interferon (IFN-gamma) added prior to or at early stage of infection inhibited infection of human monocytes with E. chaffeensis; however, after 24 h of infection, IFN-gamma had no antiehrlichial effect. To test whether ehrlichial infection disrupts Janus kinase (Jak) and signal transducer and activator of transcription (Stat) signaling induced by IFN-gamma, tyrosine phosphorylation of Stat1, Jak1, and Jak2 in E. chaffeensis-infected THP-1 cells was examined by immunoprecipitation followed by immunoblot analysis. Viable E. chaffeensis organisms blocked tyrosine phosphorylation of Stat1, Jak1, and Jak2 in response to IFN-gamma within 30 min of infection. Similar results were obtained with human peripheral blood monocytes infected with E. chaffeensis. Heat or proteinase K treatment but not periodate treatment of E. chaffeensis abrogated the inhibitory effect, suggesting that protein factor(s) of E. chaffeensis is responsible for the inhibition of IFN-gamma-induced tyrosine phosphorylation. Preincubation of E. chaffeensis with the Fab fragment of dog anti-E. chaffeensis immunoglobulin G also abrogated the inhibitory effect. On the other hand, monodansylcadaverine, which does not block binding but blocks internalization of ehrlichiae into macrophages, did not have any influence on the tyrosine phosphorylation. These results indicate that ehrlichial binding to host cells is sufficient to inhibit Stat1 tyrosine phosphorylation induced by IFN-gamma. Protein kinase A (PKA) activity in THP-1 cells increased approximately 25-fold within 30 min of infection with E. chaffeensis. In THP-1 cells pretreated with a PKA inhibitor, Rp isomer of adenosine 3',5'-cyclic phosphorothioate, E. chaffeensis-induced inhibition of Stat1 tyrosine phosphorylation was partially abrogated. These results suggest that E. chaffeensis blocks IFN-gamma-induced tyrosine phosphorylation of Jak and Stat through raising PKA activity in THP-1 cells, which may be an important survival mechanism of ehrlichiae within the host cell.
DOI: 10.1128/aem.64.8.2888-2893.1998
1998
Cited 68 times
Detection of <i>Ehrlichia risticii</i> , the Agent of Potomac Horse Fever, in Freshwater Stream Snails (Pleuroceridae: <i>Juga</i> spp.) from Northern California
Ehrlichia DNA was identified by nested PCR in operculate snails (Pleuroceridae: Juga spp.) collected from stream water in a northern California pasture in which Potomac horse fever (PHF) is enzootic. Sequencing of PCR-amplified DNA from a suite of genes (the 16S rRNA, groESL heat shock operon, 51-kDa major antigen genes) indicated that the source organism closely resembled Ehrlichia risticii, the causative agent of PHF. The minimum percentage of Juga spp. harboring the organism in the population studied was 3.5% (2 of 57 snails). No ehrlichia DNA was found in tissues of 123 lymnaeid, physid, and planorbid snails collected at the same site. These data suggest that pleurocerid stream snails may play a role in the life cycle of E. risticii in northern California.
DOI: 10.1128/iai.70.3.1359-1366.2002
2002
Cited 67 times
Effects of<i>Anaplasma phagocytophila</i>on NADPH Oxidase Components in Human Neutrophils and HL-60 Cells
ABSTRACT The human granulocytic ehrlichiosis agent, Anaplasma phagocytophila , resides and multiplies exclusively in cytoplasmic vacuoles of granulocytes. A. phagocytophila rapidly inhibits the superoxide anion (O 2 − ) generation by human neutrophils in response to various stimuli. To determine the inhibitory mechanism, the influence of A. phagocytophila on protein levels and localization of components of the NADPH oxidase were examined. A. phagocytophila decreased levels of p22 phox , but not gp91 phox , p47 phox , p67 phox , or P40 phox reactive with each component-specific antibody in human peripheral blood neutrophils and HL-60 cells. Double immunofluorescence labeling revealed that p47 phox , p67 phox , Rac2, and p22 phox did not colocalize with A. phagocytophila inclusions in neutrophils or HL-60 cells, and p22 phox levels were also reduced. A. phagocytophila did not prevent either membrane translocation of cytoplasmic p47 phox and p67 phox or phosphorylation of p47 phox upon stimulation by phorbol myristate acetate. The inhibitory signals for O 2 − generation was independent of several signals required for A. phagocytophila internalization. These results suggest that rapid alteration in p22 phox induced by binding of A. phagocytophila to neutrophils is involved in the inhibition of O 2 − generation. Absence of colocalization of NADPH oxidase components with the inclusion further protects A. phagocytophila from oxidative damage.
DOI: 10.1128/jcm.35.10.2606-2611.1997
1997
Cited 67 times
Comparison of major antigenic proteins of six strains of the human granulocytic ehrlichiosis agent by Western immunoblot analysis
The etiologic agent of human granulocytic ehrlichiosis (HGE) is an obligate intracellular bacterium. In 1996, blood specimens from 53 patients suspected of having HGE were examined by indirect fluorescent antibody (IFA) testing with the HGE agent no. 13 isolate as the antigen, by nested PCR, and by culture. All patients resided in Westchester County, N.Y. Twelve patient specimens were positive for IFA (titer &gt; or = 1:40). Seven of these were also positive by PCR. Of the seven specimens positive by both IFA testing and PCR, the HGE agent was isolated from four (no. 2, 3, 6, and 11) and continuously cultured in HL-60 cells. These were confirmed as the HGE agent by sequencing of 16S rDNA. Both purified whole-cell organisms and the outer membrane fractions of the new isolates were compared with no. 13 isolate and a tick (USG) isolate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western immunoblot analysis. No. 11 and 13 isolates had identical SDS-PAGE patterns with respect to 49- and 47-kDa proteins. No. 3 and USG isolates lacked the 47-kDa protein, and no. 6 isolate lacked the 49-kDa protein. Both 49- and 47-kDa bands were absent in no. 2 isolate. Western blot results with seven different sera, including five convalescent-phase sera from these patients, one dog anti-USG isolate, and one horse anti-BDS isolate, showed that all major antigens in six isolates were recognized by all sera. However, the molecular sizes and the numbers of major antigens recognized varied among the six isolates. Overall, HGE agent no. 3, 6, 11, and 13, and USG isolates had similar patterns, with 1 or 2 major antigens with molecular masses of around 49 and 47 kDa. No. 2 isolate was quite distinct in having a major antigen of 43 kDa. This indicates that although these antigenic epitopes are all cross-reactive among strains, the HGE agent has a strain pleomorphism in its major antigenic proteins. The major antigen profiles of the outer membrane protein fractions and of whole organisms of six HGE agent isolates were similar, suggesting that 49- and 47-kDa major antigens are the outer membrane proteins of the HGE agent.
DOI: 10.1128/iai.64.10.4211-4219.1996
1996
Cited 62 times
Absence of tumor necrosis factor alpha, interleukin-6 (IL-6), and granulocyte-macrophage colony-stimulating factor expression but presence of IL-1beta, IL-8, and IL-10 expression in human monocytes exposed to viable or killed Ehrlichia chaffeensis
Ehrlichia chaffeensis is a recently isolated minute gram-negative obligatory intracellular bacterium of monocytes/macrophages and is the etiologic agent of human monocytic ehrlichiosis. It is not known how macrophages respond when they encounter ehrlichiae in terms of cytokine production. In this study, we examined cytokine mRNA expression by incubating E. chaffeensis with THP-1 cells and performing competitive reverse transcription-PCR (RT-PCR). At 2 h postinfection, the levels of interleukin-1beta (IL-1beta), IL-8, and IL-10 mRNAs were significant but lower than those following Escherichia coli lipopolysaccharide (LPS) stimulation. Unlike the situation with E. coli LPS stimulation, however, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-alpha) mRNAs were not induced. Time course and dose-response studies confirmed the absence of IL-6, GM-CSF, and TNF-alpha mRNA induction with E. chaffeensis. Viable E. chaffeensis organisms were not required for IL-1beta IO, IL-8, and IL-10 mRNA induction, since heat-killed E. chaffeensis induced identical time course responses. IL-1beta, IL-8, and IL-10 mRNAs were detected for up to 21, 21, and 24 h postexposure with E. chaffeensis, respectively, which were shut off more rapidly than with LPS stimulation. Although heat treatment of E. chaffeensis had no effect, periodate treatment completely abolished the ability of E. chaffeensis to induce IL-1beta, IL-8, and IL-10 mRNAs. The capture enzyme-linked immunosorbent assay result corresponded with the RT-PCR results, showing that viable and heat-killed E. chaffeensis produced and secreted the same levels of IL-1beta and IL-8. IL-10 production was significantly reduced by heat treatment. Periodate-treated ehrlichiae did not induce production of any of the cytokines tested. Anti-CD14 monoclonal antibody and polymyxin B did not inhibit IL-1beta mRNA expression upon exposure to E. chaffeensis. The absence of TNF-alpha, IL-6, and GM-CSF mRNA induction may delay the development of a protective immune response, thereby allowing E. chaffeensis to set up residence in macrophages.
DOI: 10.1128/iai.67.5.2258-2265.1999
1999
Cited 62 times
<i>Ehrlichia chaffeensis</i> and <i>E. sennetsu</i> , but Not the Human Granulocytic Ehrlichiosis Agent, Colocalize with Transferrin Receptor and Up-Regulate Transferrin Receptor mRNA by Activating Iron-Responsive Protein 1
ABSTRACT Ehrlichia chaffeensis and E. sennetsu are genetically divergent obligatory intracellular bacteria of human monocytes and macrophages, and the human granulocytic ehrlichiosis (HGE) agent is an obligatory intracellular bacterium of granulocytes. Infection with both E. chaffeensis and E. sennetsu , but not HGE agent, in the acute monocytic leukemia cell line THP-1 almost completely inhibited by treatment with deferoxamine, a cell-permeable iron chelator. Transferrin receptors (TfRs) accumulated on both E. chaffeensis and E. sennetsu , but not HGE agent, inclusions in THP-1 cells or the cells of the promyelocytic leukemia cell line HL-60. Reverse transcription-PCR showed an increase in the level of TfR mRNA 6 h postinfection which peaked at 24 h postinfection with both E. chaffeensis and E. sennetsu infection in THP-1 or HL-60 cells. In contrast, HGE agent in THP-1 or HL-60 cells induced no increase in TfR mRNA levels. Heat treatment of E. chaffeensis or the addition of monodansylcadaverine, a transglutaminase inhibitor, 3 h prior to infection inhibited the up-regulation of TfR mRNA. The addition of oxytetracycline 6 h after E. chaffeensis infection caused a decrease in TfR mRNA which returned to the basal level by 24 h postinfection. These results indicate that both internalization and continuous proliferation of ehrlichial organisms or the production of ehrlichial proteins are required for the up-regulation of TfR mRNA. Results of electrophoretic mobility shift assays showed that both E. chaffeensis and E. sennetsu infection increased the binding activity of iron-responsive protein 1 (IRP-1) to the iron-responsive element at 6 h postinfection and remained elevated at 24 h postinfection. However, HGE agent infection had no effect on IRP-1 binding activity. This result suggests that activation of IRP-1 and subsequent stabilization of TfR mRNA comprise the mechanism of TfR mRNA up-regulation by E. chaffeensis and E. sennetsu infection.
DOI: 10.1128/iai.70.8.4132-4141.2002
2002
Cited 62 times
Roles of p38 Mitogen-Activated Protein Kinase, NF-κB, and Protein Kinase C in Proinflammatory Cytokine mRNA Expression by Human Peripheral Blood Leukocytes, Monocytes, and Neutrophils in Response to<i>Anaplasma phagocytophila</i>
ABSTRACT Anaplasma phagocytophila , an obligately intracellular bacterium of granulocytes, causes human granulocytic ehrlichiosis. Within 2 h after addition of A. phagocytophila , interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and IL-6 mRNAs are induced in human peripheral blood leukocytes (PBLs) or monocytes in vitro. However, neutrophils generate only IL-1β mRNA. In the present study, signaling pathways for induction of these three cytokines were examined. TNF-α and IL-6 mRNA expression by PBLs was inhibited with SB 203580 (a p38 mitogen-activated protein kinase [MAPK] inhibitor), MG-132 (a proteasome inhibitor), and SN-50 (an NF-κB inhibitor). Activation of p38 MAPK and NF-κB mRNAs in monocytes was detectable within 15 to 30 min after addition of A. phagocytophila . Expression of these two cytokine mRNAs in PBLs and monocytes was also dependent on protein kinase C (PKC), protein kinase A (PKA), and protein tyrosine kinase (PTK). IL-1β mRNA expression by neutrophils was not dependent on p38 MAPK, and p38 MAPK was not activated in neutrophils incubated with A. phagocytophila . IL-1β mRNA induction by PBLs, monocytes, and neutrophils was dependent on PKC and PKA. Neutrophil expression of IL-1β mRNA was dependent on transglutaminase, phospholipase C, and PTK, all of which are also required for internalization of A. phagocytophila . However, monocyte expression of IL-1β mRNA was less dependent on these enzymes. These results suggest that A. phagocytophila transduces different signals between its host neutrophils and monocytes for proinflammatory cytokine generation.
DOI: 10.1128/iai.70.2.889-898.2002
2002
Cited 61 times
Rapid Activation of Protein Tyrosine Kinase and Phospholipase C-γ2 and Increase in Cytosolic Free Calcium Are Required by<i>Ehrlichia chaffeensis</i>for Internalization and Growth in THP-1 Cells
ABSTRACT Ehrlichia chaffeensis , a bacterium that cannot survive outside the eukaryotic cell, proliferates exclusively in human monocytes and macrophages. In this study, signaling events required for ehrlichial infection of human monocytic cell line THP-1 were characterized. Entry and proliferation of E. chaffeensis in THP-1 cells were significantly blocked by various inhibitors that can regulate calcium signaling, including 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate and 2-aminoethoxydiphenyl borate (intracellular calcium mobilization inhibitors), verapamil and 1-{β-[3-(4-methoxyphenyl)propyl]-4-methoxyphenethyl}-1H-imidazole (SKF-96365) (calcium channel inhibitors), neomycin and 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122) (phospholipase C [PLC] inhibitors), monodansylcadaverine (a transglutaminase [TGase] inhibitor), and genistein (a protein tyrosine kinase [PTK] inhibitor). Addition of E. chaffeensis resulted in rapid increases in the level of inositol 1,4,5-trisphosphate (IP 3 ) and the level of cytosolic free calcium ([Ca 2+ ] i ) in THP-1 cells, which were prevented by pretreatment of THP-1 cells with inhibitors of TGase, PTK, and PLC. E. chaffeensis induced rapid tyrosine phosphorylation of PLC-γ2, and the presence of a PLC-γ2 antisense oligonucleotide in THP-1 cells significantly blocked ehrlichial infection. Furthermore, tyrosine-phosphorylated proteins and PLC-γ2 were colocalized with ehrlichial inclusions, as determined by double-immunofluorescence labeling. The heat-sensitive component of viable E. chaffeensis cells was essential for these signaling events. E. chaffeensis , therefore, can recruit interacting signal-transducing molecules and induce the following signaling events required for the establishment of infection in host cells: protein cross-linking by TGase, tyrosine phosphorylation, PLC-γ2 activation, IP 3 production, and an increase in [Ca 2+ ] i .
DOI: 10.1128/iai.70.8.4701-4704.2002
2002
Cited 60 times
The <i>omp-1</i> Major Outer Membrane Multigene Family of <i>Ehrlichia chaffeensis</i> Is Differentially Expressed in Canine and Tick Hosts
ABSTRACT Sixteen of 22 omp-1 paralogs encoding 28-kDa-range immunodominant outer membrane proteins of Ehrlichia chaffeensis were transcribed in blood monocytes of dogs throughout a 56-day infection period. Only one paralog was transcribed by E. chaffeensis in three developmental stages of Amblyomma americanum ticks before or after E. chaffeensis transmission to naïve dogs.
DOI: 10.1111/j.1749-6632.2003.tb07425.x
2003
Cited 58 times
Mechanisms to Create a Safe Haven by Members of the Family Anaplasmataceae
Members of the family Anaplasmataceae are obligatory intracellular bacteria with unique host cell specificities. Depending on each bacterial species, granulocytes, platelets, endothelial cells, monocytes, macrophages, red blood cells, and cells of invertebrates are specifically infected. This unique host cell specificity has been the major hurdle to overcome in order to cultivate this group of bacteria. Because these bacteria cannot survive outside host cells, once released from a host cell, they need to rapidly induce signals for their own internalization into another host cell unique to each species. How these bacteria enter and continue to survive and replicate within the host milieu, then exit the host cell is largely unknown. Recently, however, unique strategies employed by some of these bacteria for successful parasitism of mammalian leukocytes have begun to be uncovered. When these bacteria interact with host cells, signals are transduced both inside the host cells and inside the bacteria. These signals disable the alarm system, as well as microbicidal mechanisms, of the leukocytes and condition the host cells to accept these intruders to share space and nutrient resources. Signals transduced inside the bacteria allow them to finely tune their metabolism and physiology in the new host cell environment and to disguise themselves as "insiders" so that their sojourn does not upset the host cell physiology until they have sufficiently multiplied. This paper discusses our recent findings on these topics.
DOI: 10.1128/iai.00735-06
2006
Cited 57 times
Biochemical Activities of Three Pairs of <i>Ehrlichia chaffeensis</i> Two-Component Regulatory System Proteins Involved in Inhibition of Lysosomal Fusion
Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, replicates in early endosomes by avoiding lysosomal fusion in monocytes and macrophages. In E. chaffeensis we predicted three pairs of putative two-component regulatory systems (TCSs) designated PleC-PleD, NtrY-NtrX, and CckA-CtrA based on amino acid sequence homology. In the present study to determine biochemical pairs and specificities of the TCSs, the recombinant proteins of the three putative histidine kinase (HK) kinase domains (rPleCHKD, rNtrYHKD, and MBP-rCckAHKD) and the full-length forms of three putative response regulators (RRs) (rPleD, rNtrX, and rCtrA) as well as the respective mutant recombinant proteins (rPleCHKDH244A, rNtrYHKDH498A, MBP-rCckAHKDH449A, rPleDD53A, rNtrXD59A, and rCtrAD53A) were expressed and purified as soluble proteins. The in vitro HK activity, the specific His residue-dependent autophosphorylation of the kinase domain, was demonstrated in the three HKs. The specific Asp residue-dependent in vitro phosphotransfer from the kinase domain to the putative cognate RR was demonstrated in each of the three RRs. Western blot analysis of E. chaffeensis membrane and soluble fractions using antibodies specific for each recombinant protein detected PleC and CckA in the membrane fraction, whereas it detected NtrY, NtrX, and PleD in the soluble fraction. CtrA was found in the two fractions at similar levels. E. chaffeensis was sensitive to closantel, an HK inhibitor. Closantel treatment induced lysosomal fusion of the E. chaffeensis inclusion in a human monocytic leukemia cell line, THP-1 cells, implying that functional TCSs are essential in preventing lysosomal fusion of the E. chaffeensis inclusion compartment.
DOI: 10.1111/j.1462-5822.2005.00643.x
2006
Cited 54 times
Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway
Anaplasma phagocytophilum, an obligate intracellular bacterium, is the aetiologic agent of human granulocytic anaplasmosis (HGA). A. phagocytophilum virB/D operons encoding type IV secretion system are expressed in cell culture and in the blood of HGA patients. In the present study, their expression across the A. phagocytophilum intracellular developmental cycle was investigated. We found that mRNA levels of both virB9 and virB6 were upregulated during infection of human neutrophils in vitro. The antibody against the recombinant VirB9 protein was prepared and immunogold and immunofluorescence labelling were used to determine the VirB9 protein expression by individual organisms. Majority of A. phagocytophilum spontaneously released from the infected host cells poorly expressed VirB9. At 1 h post infection, VirB9 was not detectable on most bacteria associated with neutrophils. However, VirB9 was strongly expressed by A. phagocytophilum during proliferation in neutrophils. In contrast, with HL-60 cells, approximately 80% of A. phagocytophilum organisms associated at 1 h post infection expressed VirB9 protein and were colocalized with lysosome-associated membrane protein-1 (LAMP-1), whereas, VirB9-undetectable bacteria were not colocalized with LAMP-1. These results indicate developmental regulation of expression of components of type IV secretion system during A. phagocytophilum intracellular life cycle and suggest that bacterial developmental stages influence the nature of binding to the hosts and early avoidance of late endosome-lysosome pathway.
DOI: 10.1128/jcm.25.1.31-36.1987
1987
Cited 53 times
Enzyme-linked immunosorbent assay for Potomac horse fever disease
An enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) and IgM in natural and experimental infections of equids with Ehrlichia risticii was developed. Ehrlichial organisms purified from an infected mouse macrophage cell line were used as the antigen. IgM was separated from serum IgG by the expedient of spun-column chromatography, allowing the use of an indirect ELISA for quantitation of both IgG and IgM in the test sera. Among 16 paired sera from horses exhibiting clinical signs of Potomac horse fever, 8 were positive by the indirect fluorescent-antibody test (IFA), 11 were positive by the IgG ELISA, and 8 were positive by the IgM ELISA. All IFA-positive specimens were positive by the IgG ELISA, which appeared to be more sensitive than the IFA. In all cases, the IgG ELISA alone would have sufficed for diagnosis when acute- and convalescent-phase sera were available. When 26 single acute- or convalescent-phase serum samples were tested, the IFA detected 8, the IgG ELISA detected 10, and the IgM ELISA detected 6 positive serum specimens. The kinetics of IgG and IgM responses as determined by ELISA in two experimentally infected ponies which survived infection and challenges revealed that specific IgM was short-lived, falling to undetectable levels by day 60 postinoculation, whereas specific IgG persisted for more than 1 year. IgM and IgG were detected as early as days 1 and 10, respectively, postinoculation. The results suggest that the ELISA is more sensitive than the IFA and that the IgM ELISA may provide a means for early diagnosis of Potomac horse fever at or before the onset of clinical signs.
DOI: 10.1128/jb.02017-07
2008
Cited 51 times
Expression and Porin Activity of P28 and OMP-1F during Intracellular <i>Ehrlichia chaffeensis</i> Development
Ehrlichia chaffeensis, an obligatory intracellular gram-negative bacterium, must take up various nutrients and metabolic compounds because it lacks many genes involved in metabolism. Nutrient uptake by a gram-negative bacterium occurs primarily through pores or channels in the bacterial outer membrane. Here we demonstrate that isolated E. chaffeensis outer membranes have porin activities, as determined by a proteoliposome swelling assay. The activity was partially blocked by an antibody that recognizes the two most abundant outer membrane proteins, P28/OMP-19 and OMP-1F/OMP-18. Both proteins were predicted to have structural features characteristic of porins, including 12 transmembrane segments comprised of amphipathic and antiparallel beta-strands. The sodium dodecyl sulfate stability of the two proteins was consistent with a beta-barrel structure. Isolated native P28 and OMP-1F exhibited porin activities, with pore sizes similar to and larger than, respectively, that of OprF, which is the porin with the largest pore size known to date. E. chaffeensis experiences temperature changes during transmission by ticks. During the intracellular development of E. chaffeensis, both P28 and OMP-1F were expressed mostly in the mid-exponential growth phase at 37 degrees C and the late-exponential growth phase at 28 degrees C. The porin activity of proteoliposomes reconstituted with proteins from the outer membrane fractions derived from bacteria in the mid- and late-exponential growth phases at 28 degrees C and 37 degrees C correlated with the expression levels of P28 and OMP-1F. These results imply that P28 and OMP-1F function as porins with large pore sizes, suggesting that the differential expression of these two proteins might regulate nutrient uptake during intracellular E. chaffeensis development at both temperatures.
DOI: 10.1128/iai.00056-08
2008
Cited 49 times
Proteomic Analysis of and Immune Responses to <i>Ehrlichia chaffeensis</i> Lipoproteins
Ehrlichia chaffeensis is an obligately intracellular gram-negative bacterium and is the etiologic agent of human monocytic ehrlichiosis (HME). Although E. chaffeensis induces the generation of several cytokines and chemokines by leukocytes, E. chaffeensis lacks lipopolysaccharide and peptidoglycan. Bioinfomatic analysis of the E. chaffeensis genome, however, predicted genes encoding 15 lipoproteins and 3 posttranslational lipoprotein-processing enzymes. The present study showed that by use of multidimensional liquid chromatography followed by tandem mass spectrometry, all predicted lipoproteins as well as lipoprotein-processing enzymes were expressed by E. chaffeensis cultured in the human promyelocytic leukemia cell line HL-60. Consistent with this observation, a signal peptidase II inhibitor, globomycin, was found to inhibit E. chaffeensis infection and lipoprotein processing in HL-60 cell culture. To study in vivo E. chaffeensis lipoprotein expression and host immune responses to E. chaffeensis lipoproteins, 13 E. chaffeensis lipoprotein genes were cloned into a mammalian expression vector. When the DNA constructs were inoculated into naïve dogs, or when dogs were infected with E. chaffeensis, the animals developed delayed-type hypersensitivity reactions at cutaneous sites of the DNA construct deposition and serum antibodies to these lipoproteins. This is the first demonstration of lipoprotein expression and elicitation of immune responses by a member of the order Rickettsiales. Multiple lipoproteins expressed by E. chaffeensis in vitro and in vivo may play key roles in pathogenesis and immune responses in HME.
DOI: 10.1128/iai.38.1.343-350.1982
1982
Cited 47 times
Entry of Rickettsia tsutsugamushi into polymorphonuclear leukocytes
Factors involved in the phagocytosis and entry into polymorphonuclear leukocytes (PMNs) of Rickettsia tsutsugamushi were studied by electron microscopy. R. tsutsugamushi propagated in baby hamster kidney cell cultures was incubated with guinea pig peritoneal PMNs in vitro at 35 degrees C. Structurally intact and degenerating rickettsiae were found in phagosomes, but only intact rickettsiae escaped phagosomes and specifically entered the glycogen-rich cytoplasm. The extraphagosomal cytoplasmic rickettsiae were found within 30 min after incubation; continued incubation for 4 h increased the rickettsial entry about fourfold as seen in ultrathin sections. Most rickettsiae in phagosomes were degenerating after 4 h of incubation. When incubated at 25 degrees C, no entry and very few phagocytized rickettsiae were observed. At 40 degrees C, rickettsial entry was greatly reduced, but more rickettsiae were found in phagosomes than at 35 degrees C. Preincubation of rickettsiae at 56 degrees C for 20 min with trypsin or with 2,4-dinitrophenol inhibited entry, but many rickettsiae were in phagosomes. Glutaraldehyde or formaldehyde fixation of rickettsiae and addition of 2-deoxyglucose, iodoacetamide, cytochalasin B, colchicine, or vinblastine inhibited all rickettsial uptake by PMNs. Acid phosphatase cytochemistry of infected PMNs revealed the enzyme activity only in phagosomes with degenerated rickettsiae and not in those with intact rickettsiae. These observations indicated that rickettsiae are passively phagocytized by PMNs, and only those that are intact actively escape from phagosomes, which selectively inhibits lysosomal fusion.
DOI: 10.1111/j.1462-5822.2010.01500.x
2010
Cited 45 times
Microreview: Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum
Anaplasma phagocytophilum is an obligatory intracellular bacterium that infects neutrophils, the primary host defence cells. Consequent effects of infection on host cells result in a potentially fatal systemic disease called human granulocytic anaplasmosis. Despite ongoing reductive genome evolution and deletion of most genes for intermediary metabolism and amino acid biosynthesis, Anaplasma has also experienced expansion of genes encoding several components of the type IV secretion (T4S) apparatus. Two A. phagocytophilum T4S effector molecules are currently known; Anaplasma translocated substrate 1 (Ats-1) and ankyrin repeat domain-containing protein A (AnkA) have C-terminal positively charged amino acid residues that are recognized by the T4S coupling protein, VirD4. AnkA and Ats-1 contain eukaryotic protein motifs and are uniquely evolved in the family Anaplasmataceae; Ats-1 contains a mitochondria-targeting signal. They are abundantly produced and secreted into the host cytoplasm, are not toxic to host cells, and manipulate host cell processes to aid in the infection process. At the cellular level, the two effectors have distinct subcellular localization and signalling in host cells. Thus in this obligatory intracellular pathogen, the T4S system has evolved as a host-subversive survival factor.
DOI: 10.1093/nar/gkp642
2009
Cited 40 times
Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever
Neorickettsia risticii is an obligate intracellular bacterium of the trematodes and mammals. Horses develop Potomac horse fever (PHF) when they ingest aquatic insects containing encysted N. risticii-infected trematodes. The complete genome sequence of N. risticii Illinois consists of a single circular chromosome of 879 977 bp and encodes 38 RNA species and 898 proteins. Although N. risticii has limited ability to synthesize amino acids and lacks many metabolic pathways, it is capable of making major vitamins, cofactors and nucleotides. Comparison with its closely related human pathogen N. sennetsu showed that 758 (88.2%) of protein-coding genes are conserved between N. risticii and N. sennetsu. Four-way comparison of genes among N. risticii and other Anaplasmataceae showed that most genes are either shared among Anaplasmataceae (525 orthologs that generally associated with housekeeping functions), or specific to each genome (>200 genes that are mostly hypothetical proteins). Genes potentially involved in the pathogenesis of N. risticii were identified, including those encoding putative outer membrane proteins, two-component systems and a type IV secretion system (T4SS). The bipolar localization of T4SS pilus protein VirB2 on the bacterial surface was demonstrated for the first time in obligate intracellular bacteria. These data provide insights toward genomic potential of N. risticii and intracellular parasitism, and facilitate our understanding of PHF pathogenesis.
DOI: 10.1128/mbio.02141-14
2014
Cited 35 times
Ehrlichia chaffeensis Proliferation Begins with NtrY/NtrX and PutA/GlnA Upregulation and CtrA Degradation Induced by Proline and Glutamine Uptake
ABSTRACT How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA . Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter- lacZ fusions in E. coli . Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. IMPORTANCE Human monocytic ehrlichiosis (HME) is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. HME is caused by infection with E. chaffeensis , an obligatory intracellular bacterium in the order Rickettsiales , which includes several category B/C pathogens, such as those causing Rocky Mountain spotted fever and epidemic typhus. The limited understanding of the mechanisms that control bacterial growth within eukaryotic cells continues to impede the identification of new therapeutic targets against rickettsial diseases. Extracellular rickettsia cannot replicate, but rickettsial replication ensues upon entry into eukaryotic host cells. Our findings will provide insights into a novel mechanism of the two-component system that regulates E. chaffeensis growth initiation in human monocytes. The result is also important because little is known about the NtrY/NtrX two-component system in any bacteria, let alone obligatory intracellular bacteria. Our findings will advance the field’s current conceptual paradigm on regulation of obligatory intracellular nutrition, metabolism, and growth.