ϟ

W. Snoeys

Here are all the papers by W. Snoeys that you can download and read on OA.mg.
W. Snoeys’s last known institution is . Download W. Snoeys PDFs here.

Claim this Profile →
DOI: 10.1209/0295-5075/96/21002
2011
Cited 240 times
First measurement of the total proton-proton cross-section at the LHC energy of \chem{\sqrt{s} = 7\,TeV}
TOTEM has measured the differential cross-section for elastic proton-proton scattering at the LHC energy of analysing data from a short run with dedicated large-β* optics. A single exponential fit with a slope B=(20.1±0.2stat±0.3syst) GeV−2 describes the range of the four-momentum transfer squared |t| from 0.02 to 0.33 GeV2. After the extrapolation to |t|=0, a total elastic scattering cross-section of (24.8±0.2stat±1.2syst) mb was obtained. Applying the optical theorem and using the luminosity measurement from CMS, a total proton-proton cross-section of (98.3±0.2stat±2.8syst) mb was deduced which is in good agreement with the expectation from the overall fit of previously measured data over a large range of center-of-mass energies. From the total and elastic pp cross-section measurements, an inelastic pp cross-section of was inferred.
DOI: 10.1209/0295-5075/101/21002
2013
Cited 223 times
Measurement of proton-proton elastic scattering and total cross-section at \chem{\sqrt {s} = 7\,TeV}
At the LHC energy of , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σbeam) in a dedicated run with β* = 90 m, |t|-values down to 5·10−3 GeV2 were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV−2 over the large |t|-range from 0.005 to 0.2 GeV2 describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).
DOI: 10.1103/physrevlett.111.012001
2013
Cited 200 times
Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
The TOTEM collaboration has measured the proton-proton total cross section at √s=8 TeV using a luminosity-independent method. In LHC fills with dedicated beam optics, the Roman pots have been inserted very close to the beam allowing the detection of ~90% of the nuclear elastic scattering events. Simultaneously the inelastic scattering rate has been measured by the T1 and T2 telescopes. By applying the optical theorem, the total proton-proton cross section of (101.7±2.9) mb has been determined, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: σ(el)=(27.1±1.4) mb; σ(inel)=(74.7±1.7) mb.
DOI: 10.1209/0295-5075/101/21004
2013
Cited 174 times
Luminosity-independent measurements of total, elastic and inelastic cross-sections at \chem{\sqrt {s} = 7\,TeV}
The TOTEM experiment at the LHC has performed the first luminosity-independent determination of the total proton-proton cross-section at . This technique is based on the optical theorem and requires simultaneous measurements of the inelastic rate – accomplished with the forward charged-particle telescopes T1 and T2 in the range 3.1 < |η| < 6.5 – and of the elastic rate by detecting the outcoming protons with Roman Pot detectors. The data presented here were collected in a dedicated run in 2011 with special beam optics (β* = 90 m) and Roman Pots approaching the beam close enough to register elastic events with squared four-momentum transfers |t| as low as 5·10−3 GeV2. The luminosity-independent results for the elastic, inelastic and total cross-sections are σel = (25.1 ± 1.1) mb, σinel = (72.9 ± 1.5) mb and σtot = (98.0 ± 2.5) mb, respectively. At the same time this method yields the integrated luminosity, in agreement with measurements by CMS. TOTEM has also determined the total cross-section in two complementary ways, both using the CMS luminosity measurement as an input. The first method sums the elastic and inelastic cross-sections and thus does not depend on the ρ parameter. The second applies the optical theorem to the elastic-scattering measurements only and therefore is free of the T1 and T2 measurement uncertainties. The methods, having very different systematic dependences, give results in excellent agreement. Moreover, the ρ-independent measurement makes a first estimate for the ρ parameter at possible: |ρ| = 0.145 ± 0.091.
DOI: 10.1016/j.nuclphysb.2015.08.010
2015
Cited 154 times
Evidence for non-exponential elastic proton–proton differential cross-section at low |t| and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math> by TOTEM
The TOTEM experiment has made a precise measurement of the elastic proton–proton differential cross-section at the centre-of-mass energy s=8TeV based on a high-statistics data sample obtained with the β⁎=90m optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027<|t|<0.2GeV2 with a significance greater than 7σ. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t=0, and further applying the optical theorem, yields total cross-section estimates of (101.5±2.1)mb and (101.9±2.1)mb, respectively, in agreement with previous TOTEM measurements.
DOI: 10.1016/j.nima.2017.07.046
2017
Cited 147 times
A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance
For the upgrade of its Inner Tracking System, the ALICE experiment plans to install a new tracker fully constructed with monolithic active pixel sensors implemented in a standard 180 nm CMOS imaging sensor process, with a deep pwell allowing full CMOS within the pixel. Reverse substrate bias increases the tolerance to non-ionizing energy loss (NIEL) well beyond 10131MeVneq∕cm2, but does not allow full depletion of the sensitive layer and hence full charge collection by drift, mandatory for more extreme radiation tolerance. This paper describes a process modification to fully deplete the epitaxial layer even with a small charge collection electrode. It uses a low dose blanket deep high energy n-type implant in the pixel array and does not require significant circuit or layout changes so that the same design can be fabricated both in the standard and modified process. When exposed to a 55Fe source at a reverse substrate bias of −6 V, pixels implemented in the standard and the modified process in a low and high dose variant for the deep n-type implant respectively yield a signal of about 115 mV, 110 mV and 90 mV at the output of a follower circuit. Signal rise times heavily affected by the speed of this circuit are 27.8+∕−5 ns, 23.2+∕−4.2 ns, and 22.2+∕−3.7 ns rms, respectively. In a different setup, the single pixel signal from a 90Sr source only degrades by less than 20% for the modified process after a 1015 1MeVneq∕cm2 irradiation, while the signal rise time only degrades by about 16+∕−2 ns to 19+∕−2.8 ns rms. From sensors implemented in the standard process no useful signal could be extracted after the same exposure. These first results indicate the process modification maintains low sensor capacitance, improves timing performance and increases NIEL tolerance by at least an order of magnitude.
DOI: 10.1109/23.819140
1999
Cited 327 times
Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects
We discuss design issues related to the extensive use of Enclosed Layout Transistors (ELT's) and guard rings in deep submicron CMOS technologies in order to improve radiation tolerance of ASIC's designed for the LHC experiments (the Large Hadron Collider at present under construction at CERN). We present novel aspects related to the use of ELT's: noise measured before and after irradiation up to 100 Mrad (SiO/sub 2/), a model to calculate the W/L ratio and matching properties of these devices. Some conclusions concerning the density and the speed of IC's conceived with this design approach are finally drawn.
DOI: 10.1109/23.682629
1998
Cited 242 times
A readout chip for a 64/spl times/64 pixel matrix with 15-bit single photon counting
A single Photon Counting pixel detector readout Chip (PCC) has been derived from previous work in the CERN RD19 collaboration for particle physics tracking devices, recently developed for high energy physics experiments. The readout chip is a 64/spl times/64 matrix of identical 170 /spl mu/m/spl times/170 /spl mu/m cells. It is to be bump-bonded to an equally segmented 1 cm matrix of semiconductor sensors, e.g., Si or GaAs. Each readout cell comprises a preamplifier, a discriminator and a 15-bit counter. The input noise is 170 e-rms. At the lowest nominal threshold of 1400 e- (5.1 keV in Si) the cells exhibit a threshold distribution with a spread before adjustment of 350 e-rms. Each cell has a 5-bit register which allows masking, test-enable and 3-bit individual threshold adjust. After adjustment the threshold spread is reduced to 80 e-rms. Absolute calibration of the electrically measured equivalent charge can be done once the readout chip is bump-bonded to a detector.
DOI: 10.1088/1748-0221/3/08/s08007
2008
Cited 153 times
The TOTEM Experiment at the CERN Large Hadron Collider
The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 ⩽ |η| ⩽ 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.
DOI: 10.1209/0295-5075/95/41001
2011
Cited 139 times
Proton-proton elastic scattering at the LHC energy of \chem{\sqrt{s} = 7\,TeV}
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of . In this letter, first results of the differential cross-section are presented covering a |t|-range from 0.36 to 2.5 GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6 ± 0.5stat ± 0.4syst) GeV−2, followed by a significant diffractive minimum at |t| = (0.53 ± 0.01stat ± 0.01syst) GeV2. For |t|-values larger than ∼1.5 GeV2, the cross-section exhibits a power law behaviour with an exponent of −7.8 ± 0.3stat ± 0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.
DOI: 10.1140/epjc/s10052-016-4399-8
2016
Cited 98 times
Measurement of elastic pp scattering at $$\sqrt{\hbox {s}} = \hbox {8}$$ s = 8 TeV in the Coulomb–nuclear interference region: determination of the $$\mathbf {\rho }$$ ρ -parameter and the total cross-section
The TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy $$\sqrt{s}=8\,$$ TeV and four-momentum transfers squared, |t|, from $$6\times 10^{-4}$$ to 0.2 GeV $$^{2}$$ . Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the $$\rho $$ -parameter is found to be $$0.12 \pm 0.03$$ . The results for the total hadronic cross-section are $$\sigma _\mathrm{tot} = (102.9 \pm 2.3)$$ mb and $$(103.0 \pm 2.3)$$ mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.
DOI: 10.1140/epjc/s10052-019-6567-0
2019
Cited 88 times
First measurement of elastic, inelastic and total cross-section at $$\sqrt{s}=13$$ s = 13 TeV by TOTEM and overview of cross-section data at LHC energies
The TOTEM collaboration has measured the proton–proton total cross section at $$\sqrt{s}=13~\hbox {TeV}$$ with a luminosity-independent method. Using dedicated $$\beta ^{*}=90~\hbox {m}$$ beam optics, the Roman Pots were inserted very close to the beam. The inelastic scattering rate has been measured by the T1 and T2 telescopes during the same LHC fill. After applying the optical theorem the total proton–proton cross section is $$\sigma _\mathrm{tot}=(110.6~\pm ~3.4$$ ) mb, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: $$\sigma _\mathrm{el}=(31.0~\pm ~1.7)~\hbox {mb}$$ and $$\sigma _\mathrm{inel}=(79.5~\pm ~1.8)~\hbox {mb}$$ .
DOI: 10.1140/epjc/s10052-019-7223-4
2019
Cited 82 times
First determination of the $${\rho }$$ parameter at $${\sqrt{s} = 13}$$ TeV: probing the existence of a colourless C-odd three-gluon compound state
Abstract The TOTEM experiment at the LHC has performed the first measurement at $$\sqrt{s} = 13\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> of the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $$t=0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> , obtaining the following results: $$\rho = 0.09 \pm 0.01$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.09</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:math> and $$\rho = 0.10 \pm 0.01$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.10</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:math> , depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> measurement, combined with the TOTEM total cross-section measurements in an energy range larger than $$10\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>10</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> (from 2.76 to $$13\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>13</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> ), has implied the exclusion of all the models classified and published by COMPETE. The $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> results obtained by TOTEM are compatible with the predictions, from other theoretical models both in the Regge-like framework and in the QCD framework, of a crossing-odd colourless 3-gluon compound state exchange in the t -channel of the proton–proton elastic scattering. On the contrary, if shown that the crossing-odd 3-gluon compound state t -channel exchange is not of importance for the description of elastic scattering, the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-| t | reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton–proton cross-section measurement $$\sigma _{\mathrm{tot}} = (110.3 \pm 3.5)\,\mathrm{mb}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>tot</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>110.3</mml:mn><mml:mo>±</mml:mo><mml:mn>3.5</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /><mml:mi>mb</mml:mi></mml:mrow></mml:math> , completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $$\sigma _{\mathrm{tot}} = (110.5 \pm 2.4)\,\mathrm{mb}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>tot</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>110.5</mml:mn><mml:mo>±</mml:mo><mml:mn>2.4</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /><mml:mi>mb</mml:mi></mml:mrow></mml:math> .
DOI: 10.1088/1748-0221/14/05/c05013
2019
Cited 67 times
Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance
CMOS pixel sensors with a small collection electrode combine the advantages of a small sensor capacitance with the advantages of a fully monolithic design. The small sensor capacitance results in a large ratio of signal-to-noise and a low analogue power consumption, while the monolithic design reduces the material budget, cost and production effort. However, the low electric field in the pixel corners of such sensors results in an increased charge collection time, that makes a fully efficient operation after irradiation and a timing resolution in the order of nanoseconds challenging for pixel sizes larger than approximately forty micrometers. This paper presents the development of concepts of CMOS sensors with a small collection electrode to overcome these limitations, using three-dimensional Technology Computer Aided Design simulations. The studied design uses a 0.18 μm process implemented on a high-resistivity epitaxial layer.
DOI: 10.1016/j.nima.2023.168589
2023
Cited 11 times
Digital pixel test structures implemented in a 65 nm CMOS process
The ALICE ITS3 (Inner Tracking System 3) upgrade project and the CERN EP R&D on monolithic pixel sensors are investigating the feasibility of the Tower Partners Semiconductor Co. 65 nm process for use in the next generation of vertex detectors. The ITS3 aims to employ wafer-scale Monolithic Active Pixel Sensors thinned down to 20–40 µm and bent to form truly cylindrical half barrels. Among the first critical steps towards the realisation of this detector is to validate the sensor technology through extensive characterisation both in the laboratory and with in-beam measurements. The Digital Pixel Test Structure (DPTS) is one of the prototypes produced in the first sensor submission in this technology and has undergone a systematic measurement campaign whose details are presented in this article. The results confirm the goals of detection efficiency and non-ionising and ionising radiation hardness up to the expected levels for ALICE ITS3 and also demonstrate operation at +20 °C and a detection efficiency of 99 % for a DPTS irradiated with a dose of 1015 1 MeV neq cm-2. Furthermore, spatial, timing and energy resolutions were measured at various settings and irradiation levels.
DOI: 10.1016/s0370-2693(99)00140-9
1999
Cited 160 times
Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 A GeV/c
KS0, Λ, Ξ, Ω and negative particle yields and transverse mass spectra have been measured at central rapidity in Pb–Pb and p–Pb collisions at 158 A GeV/c. Yields are studied as a function of the number of nucleons participating in the collision Npart, which is estimated with the Glauber model. From p–Pb to Pb–Pb collisions the particle yields per participant increase substantially. The enhancement is more pronounced for multistrange particles, and exceeds an order of magnitude for the Ω. For a number of participants, Npart, greater than 100, however, all yields per participant appear to be constant.
DOI: 10.1016/s0168-9002(99)00899-2
2000
Cited 154 times
Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip
A new pixel readout prototype has been developed at CERN for high-energy physics applications. This full mixed mode circuit has been implemented in a commercial 0.5 μm CMOS technology. Its radiation tolerance has been enhanced by designing all NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The technique is explained and its effectiveness demonstrated on various irradiation measurements on individual transistors and on the prototype. Circuit performance started to degrade only after a total dose of 600 krad–1.7 Mrad depending on the type of radiation. 10 keV X-rays, 60Co gamma-rays, 6.5 MeV protons, and minimum ionizing particles were used. Implications of this layout approach on the circuit design and perspectives for even deeper submicron technologies are discussed.
DOI: 10.1016/s0370-2693(98)00689-3
1998
Cited 118 times
Enhancement of central Λ, Ξ and yields in Pb-Pb collisions at 158 A GeV/c
Λ, Ξ and Ω yields and transverse mass spectra have been measured in Pb-Pb and p-Pb collisions at 158 A GeV/c. The yields in Pb-Pb interactions are presented as a function of the collision centrality and compared with those obtained from p-Pb collisions. Strangeness enhancement is observed which increases with centrality and with the strangeness content of the hyperon.
DOI: 10.1088/0954-3899/32/4/003
2006
Cited 100 times
Enhancement of hyperon production at central rapidity in 158<i>A</i>GeV/<i>c</i>Pb–Pb collisions
Results are presented on hyperon and antihyperon production in Pb–Pb, pPb and pBe collisions at 158 GeV/c per nucleon. Λ, Ξ and Ω yields have been measured at central rapidity and medium transverse momentum as functions of the centrality of the collision. Comparing the yields in Pb–Pb to those in pBe interactions, strangeness enhancement is observed. The enhancement increases with the centrality and with the strangeness content of the hyperons, reaching a factor of about 20 for the Ω in the central Pb–Pb collisions.
DOI: 10.1088/1748-0221/12/06/p06008
2017
Cited 69 times
First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors
The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].
DOI: 10.1209/0295-5075/101/21003
2013
Cited 67 times
Measurement of proton-proton inelastic scattering cross-section at \chem{\sqrt {s} = 7\,{\mathrm {TeV}}}
The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle was determined to be (70.5 ± 2.9) mb. This cross-section includes all central diffractive events of which maximally 0.25 mb is estimated to escape the detection of the telescopes. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be (73.7 ± 3.4) mb. An upper limit of 6.31 mb at 95% confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle.
DOI: 10.1088/1748-0221/13/01/c01023
2018
Cited 52 times
Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment
The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.
DOI: 10.1140/epjc/s10052-019-7346-7
2019
Cited 51 times
Elastic differential cross-section measurement at $$\sqrt{s}=13$$ TeV by TOTEM
Abstract The TOTEM collaboration has measured the elastic proton-proton differential cross section $$\mathrm{d}\sigma /\mathrm{d}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> at $$\sqrt{s}=13$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV LHC energy using dedicated $$\beta ^{*}=90$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>β</mml:mi><mml:mrow><mml:mrow /><mml:mo>∗</mml:mo></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>90</mml:mn></mml:mrow></mml:math> m beam optics. The Roman Pot detectors were inserted to 10 $$\sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>σ</mml:mi></mml:math> distance from the LHC beam, which allowed the measurement of the range [0.04 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> ; 4 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> $$]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>]</mml:mo></mml:math> in four-momentum transfer squared | t |. The efficient data acquisition allowed to collect about 10 $$^{9}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>9</mml:mn></mml:msup></mml:math> elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-| t | tail. The average nuclear slope has been found to be $$B=(20.40 \pm 0.002^{\mathrm{stat}} \pm 0.01^{\mathrm{syst}})~$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>B</mml:mi><mml:mo>=</mml:mo><mml:mo>(</mml:mo><mml:mn>20.40</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>002</mml:mn><mml:mi>stat</mml:mi></mml:msup><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>syst</mml:mi></mml:msup><mml:mo>)</mml:mo><mml:mspace /></mml:mrow></mml:math> GeV $$^{-2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mrow><mml:mo>-</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> in the | t |-range 0.04–0.2 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> . The dip position is $$|t_{\mathrm{dip}}|=(0.47 \pm 0.004^{\mathrm{stat}} \pm 0.01^{\mathrm{syst}})~$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mi>dip</mml:mi></mml:msub><mml:mrow><mml:mo>|</mml:mo><mml:mo>=</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>0.47</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>004</mml:mn><mml:mi>stat</mml:mi></mml:msup><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>syst</mml:mi></mml:msup><mml:mo>)</mml:mo></mml:mrow><mml:mspace /></mml:mrow></mml:math> GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> . The differential cross section ratio at the bump vs. at the dip $$R=1.77\pm 0.01^{\mathrm{stat}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:mn>1.77</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>stat</mml:mi></mml:msup></mml:mrow></mml:math> has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.
DOI: 10.1088/1748-0221/15/02/p02005
2020
Cited 43 times
Mini-MALTA: radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC
Depleted Monolithic Active Pixel Sensor (DMAPS) prototypes developed in the TowerJazz 180 nm CMOS imaging process have been designed in the context of the ATLAS upgrade Phase-II at the HL-LHC. The pixel sensors are characterized by a small collection electrode (3 $\mu$m) to minimize capacitance, a small pixel size ($36.4\times 36.4$ $\mu$m), and are produced on high resistivity epitaxial p-type silicon. The design targets a radiation hardness of $1\times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$, compatible with the outermost layer of the ATLAS ITK Pixel detector. This paper presents the results from characterization in particle beam tests of the Mini-MALTA prototype that implements a mask change or an additional implant to address the inefficiencies on the pixel edges. Results show full efficiency after a dose of $1\times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$.
DOI: 10.1140/epjc/s10052-020-7654-y
2020
Cited 38 times
Elastic differential cross-section $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ at $$\sqrt{s}=2.76\hbox { TeV}$$ and implications on the existence of a colourless C-odd three-gluon compound state
Abstract The proton–proton elastic differential cross section $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> has been measured by the TOTEM experiment at $$\sqrt{s}=2.76\hbox { TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mspace /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math> energy with $$\beta ^{*}=11\hbox { m}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>β</mml:mi><mml:mrow><mml:mrow /><mml:mo>∗</mml:mo></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>11</mml:mn><mml:mspace /><mml:mtext>m</mml:mtext></mml:mrow></mml:math> beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (| t |) from 0.36 to $$0.74\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.74</mml:mn><mml:mspace /><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> . The differential cross-section can be described with an exponential in the | t |-range between 0.36 and $$0.54\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.54</mml:mn><mml:mspace /><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> , followed by a diffractive minimum (dip) at $$|t_{\mathrm{dip}}|=(0.61\pm 0.03)\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mi>dip</mml:mi></mml:msub><mml:mrow><mml:mo>|</mml:mo><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>0.61</mml:mn><mml:mo>±</mml:mo><mml:mn>0.03</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /></mml:mrow><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> and a subsequent maximum (bump). The ratio of the $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> at the bump and at the dip is $$1.7\pm 0.2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.7</mml:mn><mml:mo>±</mml:mo><mml:mn>0.2</mml:mn></mml:mrow></mml:math> . When compared to the proton–antiproton measurement of the D0 experiment at $$\sqrt{s} = 1.96\hbox { TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>1.96</mml:mn><mml:mspace /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math> , a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t -channel of the proton–proton and proton–antiproton elastic scattering.
DOI: 10.1016/j.nima.2013.05.073
2013
Cited 57 times
Monolithic pixel detectors for high energy physics
Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio (Q/C). It is shown that monolithic detectors can achieve Q/C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining sufficient Q/C, collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.
DOI: 10.1109/tns.2023.3299333
2023
Cited 6 times
A Compact Front-End Circuit for a Monolithic Sensor in a 65-nm CMOS Imaging Technology
This paper presents the design of a front-end circuit for monolithic active pixel sensors. The circuit operates with a sensor featuring a small, low-capacitance (< 2 fF) collection electrode and is integrated in the DPTS chip, a proof-of-principle prototype of 1.5 mm × 1.5 mm including a matrix of 32 × 32 pixels with a pitch of 15 μm. The chip is implemented in the 65 nm imaging technology from the Tower Partners Semiconductor Co. foundry and was developed in the framework of the EP-R&D program at CERN to explore this technology for particle detection. The front-end circuit has an area of 42 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and can operate with a power consumption as low as 12 nW. Measurements on the prototype relevant to the front-end will be shown to support its design.
DOI: 10.1088/1748-0221/18/01/c01044
2023
Cited 5 times
Development of a Stitched Monolithic Pixel Sensor prototype (MOSS chip) towards the ITS3 upgrade of the ALICE Inner Tracking system
Abstract The MOnolithic Stitched Sensor (MOSS) is a development prototype chip towards the ITS3 vertexing detector for the ALICE experiment at the LHC. Designed using a 65 nm CMOS Imaging technology, it aims at profiting from the stitching technique to construct a single-die monolithic pixel detector of 1.4 cm × 26 cm. The MOSS prototype is one of the prototypes developed within the CERN-EP R&amp;D framework to learn how to make stitched wafer-scale sensors with satisfactory yield. This contribution will describe some of the design challenges of a stitched pixel sensor and the techniques adopted during the development of this prototype.
DOI: 10.1088/1748-0221/18/02/c02025
2023
Cited 5 times
Design and readout architecture of a monolithic binary active pixel sensor in TPSCo 65 nm CMOS imaging technology
Abstract The Digital Pixel Test Structure (DPTS) is a monolithic active pixel sensor prototype chip designed to explore the TPSCo 65 nm ISC process in the framework of the CERN-EP R&amp;D on monolithic sensors and the ALICE ITS3 upgrade. It features a 32 × 32 binary pixel matrix at 15 μm pitch with event-driven readout, with GHz range time-encoded digital signals including Time-Over-Threshold. The chip proved fully functional and efficient in testbeam allowing early verification of the complete sensor to readout chain. This paper focuses on the design, in particular the digital readout and its perspectives with some supporting results.
DOI: 10.1140/epjc/s10052-023-11760-z
2023
Cited 5 times
Performance of the MALTA telescope
MALTA is part of the Depleted Monolithic Active Pixel sensors designed in Tower 180nm CMOS imaging technology. A custom telescope with six MALTA planes has been developed for test beam campaigns at SPS, CERN, with the ability to host several devices under test. The telescope system has a dedicated custom readout, online monitoring integrated into DAQ with realtime hit map, time distribution and event hit multiplicity. It hosts a dedicated fully configurable trigger system enabling to trigger on coincidence between telescope planes and timing reference from a scintillator. The excellent time resolution performance allows for fast track reconstruction, due to the possibility to retain a low hit multiplicity per event which reduces the combinatorics. This paper reviews the architecture of the system and its performance during the 2021 and 2022 test beam campaign at the SPS North Area.
DOI: 10.1016/j.physletb.2004.05.025
2004
Cited 75 times
Energy dependence of hyperon production in nucleus–nucleus collisions at SPS
A measurement of strange baryon and antibaryon production in Pb–Pb collisions has been carried out by the NA57 experiment at the CERN SPS, with 40 and 158 A GeV/c beam momentum. Results on Λ, Ξ and Ω hyperon yields at mid-rapidity in the most central 53% of Pb–Pb collisions at 40 A GeV/c are presented and compared with those obtained at higher energy, in the same collision centrality range. The Λ and Ξ− yields per unit rapidity stay roughly constant while those of Ω−, Λ̄, Ξ̄+ and Ω̄+ increase when going to the higher SPS energy. Hyperon yields at the SPS are compared with those from the STAR experiment in sNN=130 GeV Au–Au collisions at RHIC.
DOI: 10.1016/s0168-9002(96)00658-4
1996
Cited 75 times
LHC1: A semiconductor pixel detector readout chip with internal, tunable delay providing a binary pattern of selected events
The Omega3/LHC1 pixel detector readout chip comprises a matrix of 128 × 16 readout cells of 50 μm × 500 μm and peripheral functions with 4 distinct modes of initialization and operation, together more than 800 000 transistors. Each cell contains a complete chain of amplifier, discriminator with adjustable threshold and fast-OR output, a globally adjustable delay with local fine-tuning, coincidence logic and memory. Every cell can be individually addressed for electrical test and masking. First results have been obtained from electrical tests of a chip without detector as well as from source measurements. The electronic noise without detector is ∼ 100 e− rms. The lowest threshold setting is close to 2000 e− and non-uniformity has been measured to be better than 450 e− rms at 5000 e− threshold. A timewalk of < 10 ns and a precision of < 6 ns rms on a delay of 2 μs have been measured. The results may be improved by further optimization.
DOI: 10.1088/1748-0221/8/12/c12041
2013
Cited 40 times
Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system
ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.
DOI: 10.1103/physrevlett.111.262001
2013
Cited 38 times
Double Diffractive Cross-Section Measurement in the Forward Region at the LHC
The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .
DOI: 10.1088/1748-0221/18/01/c01065
2023
Cited 4 times
Design of an analog monolithic pixel sensor prototype in TPSCo 65 nm CMOS imaging technology
Abstract A series of monolithic active pixel sensor prototypes (APTS chips) were manufactured in the TPSCo 65 nm CMOS imaging process in the framework of the CERN-EP R&amp;D on monolithic sensors and the ALICE ITS3 upgrade project. Each APTS chip contains a 4 × 4 pixel matrix with fast analog outputs buffered to individual pads. To explore the process and sensor characteristics, various pixel pitches (10 µm–25 µm), geometries and reverse biasing schemes were included. Prototypes are fully functional with detailed sensor characterization ongoing. The design will be presented with some experimental results also correlating to some transistor measurements.
DOI: 10.22323/1.420.0083
2023
Cited 4 times
Optimization of a 65 nm CMOS imaging process for monolithic CMOS sensors for high energy physics
The long term goal of the CERN Experimental Physics Department R&D on monolithic sensors is the development of sub-100nm CMOS sensors for high energy physics. The first technology selected is the TPSCo 65nm CMOS imaging technology. A first submission MLR1 included several small test chips with sensor and circuit prototypes and transistor test structures. One of the main questions to be addressed was how to optimize the sensor in the presence of significant in-pixel circuitry. In this paper this optimization is described as well as the experimental results from the MLR1 run confirming its effectiveness. A second submission investigating wafer-scale stitching has just been completed. This work has been carried out in strong synergy with the ITS3 upgrade of the ALICE experiment.
DOI: 10.1016/0168-9002(94)91411-7
1994
Cited 63 times
A prototype monolithic pixel detector
The performance of a monolithic pixel detector with both detecting elements and readout circuitry in the same piece of high-resistivity silicon and providing three-dimensional position information is described. The basic pixel cell is 34 × 125 μm2. The most-probable signal for a minimum-ionizing particle was observed to be 65 times the single-channel, root-mean-square noise in a muon beam. With different off-chip electronics, used with a gamma-ray source, the noise was found to be 2.3 times lower. A spatial resolution of 2.0 μm was obtained in the direction of 34 μm pitch for normally incident high-momentum muons. For tracks of up to 56° to the normal the spatial resolution was under 7 μm. Results of a simulation program for calculating charge spreading and drift times are presented and compared with observations.
DOI: 10.1109/tns.2002.801534
2002
Cited 61 times
A new NMOS layout structure for radiation tolerance
A new transistor structure is presented to obtain radiation tolerance in commercial submicron CMOS technology without any process modifications. The NMOS transistor and field leakage normally induced by ionizing irradiation is remedied by acting on the work function of the transistor gate at the transistor edges. The technique also works in a CMOS process where transistor source and drains are silicided. Contrary to the enclosed layout transistor (ELT) previously proposed for this purpose, this new transistor structure does not limit the transistor width over transistor length (W/L) ratios to large values and thereby eliminates one of the most stringent constraints in the design of radiation tolerant circuits in standard CMOS. Measurements on fabricated devices demonstrate the functionality of the transistor structure and its radiation tolerance up to 40 Mrad(SiO/sub 2/).
DOI: 10.1209/0295-5075/98/31002
2012
Cited 34 times
Measurement of the forward charged-particle pseudorapidity density in <i>pp</i> collisions at √s = 7 TeV with the TOTEM experiment
The TOTEM experiment has measured the charged-particle pseudorapidity density dNch/dη in pp collisions at for 5.3<|η|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward η region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ∼3.4 GeV/c2, corresponding to about 95% of the total inelastic cross-section. The dNch/dη has been found to decrease with |η|, from 3.84 ± 0.01(stat) ± 0.37(syst) at |η|=5.375 to 2.38±0.01(stat)±0.21(syst) at |η|=6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.
DOI: 10.1088/1748-0221/11/02/c02042
2016
Cited 27 times
Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade
ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.
DOI: 10.1088/1748-0221/14/06/c06019
2019
Cited 27 times
MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade
The ATLAS collaboration is currently investigating CMOS monolithic pixel sensors for the outermost layer of the upgrade of its Inner Tracker (ITk). For this application, two large scale prototypes featuring small collection electrode have been produced in a radiation-hard process modification of a standard 0.18 μm CMOS imaging technology: the MALTA, with a novel asynchronous readout, and the TJ MONOPIX, based on the well established "column-drain" architecture. The MALTA chip is the first full-scale prototype suitable for the development of a monolithic module for the ITk. It features a fast and low-power front-end, an architecture designed to cope with an hit-rate up to 2 MHz/mm2 without clock distribution over the matrix, hence reducing total power consumption, and LVDS drivers. Laboratory tests confirmed the performance of the asynchronous architecture expected from simulations. Extensive testbeam measurements have proved an average detection efficiency of 96% before irradiation at a threshold of ∼230 e− with dispersion of ∼36 e− and ENC lower than 10 e−. A non fully functional pixel masking scheme, forces operation at relatively high thresholds, causing inefficiency. A severe degradation of efficiency has been measured after neutron irradiation at a fluence 1 × 1015 1 MeV neq/cm2. Consistent results have been produced with the TJ MONOPIX. A correlation with inefficiency plots and pixel layout has triggered TCAD simulations, ending up to two possible solutions, implemented in a new prototype, the MiniMALTA.
DOI: 10.1109/tns.2022.3170729
2022
Cited 10 times
A 1-<i>μ</i>W Radiation-Hard Front-End in a 0.18-<i>μ</i>m CMOS Process for the MALTA2 Monolithic Sensor
In this article, a low-power, radiation-hard front-end circuit for monolithic pixel sensors, designed to meet the requirements of low noise and low pixel-to-pixel variability, the key features to achieve high detection efficiencies, is presented. The sensor features a small collection electrode to achieve a small capacitance (<5 fF) and allows full CMOS in-pixel circuitry. The circuit is implemented in the 180-nm CMOS imaging technology from the TowerJazz foundry and integrated into the MALTA2 chip, which is part of a development that targets the specifications of the outer pixel layer of the ATLAS Inner Tracker upgrade at the LHC. One of the main challenges for monolithic sensors is a radiation hardness up to 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> 1-MeV <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {n}_{\text {eq}}/\text {cm}^{{2}}$ </tex-math></inline-formula> non-ionizing energy loss (NIEL) and 80 Mrad total ionizing dose (TID) required for this application. Tests up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${3} \cdot {10}^{15}$ </tex-math></inline-formula> 1-MeV <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {n}_{\text {eq}}/\text {cm}^{{2}}$ </tex-math></inline-formula> and 100 Mrad were performed on the MALTA2 sensor and front-end circuit, which still show good performance even after these levels of irradiation, promising for even more demanding applications such as the future experiments at the high-luminosity large hadron collider (HL-LHC).
DOI: 10.1016/s0920-5632(99)00615-5
1999
Cited 58 times
Deep submicron CMOS technologies for the LHC experiments
The harsh radiation environment at the Large Hadron Collider (LHC) requires radiation hard ASICs. This paper presents how a high tolerance for total ionizing dose can be obtained in commercial deep submicron technologies by using enclosed NMOS devices and guard rings. The method is explained, demonstrated on transistor and circuit level, and design implications are discussed. A model for the effective W/L of an enclosed transistor is given, a radiation-tolerant standard cell library is presented, and single event effects are discussed.
DOI: 10.1109/16.2529
1988
Cited 46 times
A new uniaxial accelerometer in silicon based on the piezojunction effect
A uniaxial accelerometer with virtually no cross-sensitivity is realized using a combination of micromachining techniques and the piezojunction effect in bipolar transistors. The piezojunction phenomenon quantifies the changes in transistor characteristics under mechanical stress. Experiments revealed a linear relationship between VBE change and stress in the base-emitter junction. This approach enables the performance of stress measurements at lower power consumption. Selective etching techniques are used to micromachine a seismic mass in the center of the chip, which is suspended by four beams. The realization of high resonant frequencies in every axis was emphasized. By using an electrical cross-coupling technique of the four piezojunction transistors, transverse sensitivity can be reduced to <1%. The accelerometers have been developed for airborne and robotic applications and measure less than 4 mm*4 mm. They are designed for an acceleration range between 1 and 100 g, depending on the processing parameters, and a resolution of better than four decades.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>
DOI: 10.1109/nssmic.2010.5874104
2010
Cited 32 times
Second generation monolithic full-depletion radiation sensor with integrated CMOS circuitry
A second-generation monolithic silicon radiation sensor has been built and characterized. This pixel detector has CMOS circuitry fabricated directly in the high-resistivity floatzone substrate. The bulk is fully depleted from bias applied to the backside diode. Within the array, PMOS pixel circuitry forms the first stage amplifiers. Full CMOS circuitry implementing further amplification as well as column and row logic is located in the periphery of the pixel array. This allows a sparse-field readout scheme where only pixels with signals above a certain threshold are readout. We describe the fabrication process, circuit design, system performance, and results of gamma-ray radiation tests.
DOI: 10.1016/j.nima.2015.02.063
2015
Cited 25 times
Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system
Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.
DOI: 10.1088/1748-0221/13/03/c03039
2018
Cited 23 times
Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade
Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.
DOI: 10.1088/1748-0221/14/06/c06006
2019
Cited 22 times
The Monopix chips: depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade
Two different depleted monolithic CMOS active pixel sensor (DMAPS) prototypes with a fully synchronous column-drain read-out architecture were designed and tested: LF-Monopix and TJ-Monopix. These chips are part of a R&D effort towards a suitable implementation of a CMOS DMAPS for the HL-LHC ATLAS Inner Tracker. LF-Monopix was developed using a 150nm CMOS process on a highly resistive substrate (>2 k$\Omega\,$cm), while TJ-Monopix was fabricated using a modified 180 nm CMOS process with a 1 k$\Omega\,$cm epi-layer for depletion. The chips differ in their front-end design, biasing scheme, pixel pitch, dimensions of the collecting electrode relative to the pixel size (large and small electrode design, respectively) and the placement of read-out electronics within such electrode. Both chips were operational after thinning down to 100 $\mathrm{\mu}$m and additional back-side processing in LF-Monopix for total bulk depletion. The results in this work include measurements of their leakage current, noise, threshold dispersion, response to minimum ionizing particles and efficiency in test beam campaigns. In addition, the outcome from measurements after irradiation with neutrons up to a dose of $1\times10^{15}\,\mathrm{n_{eq} / cm}^{2}$ and its implications for future designs are discussed.
DOI: 10.1109/23.775506
1999
Cited 46 times
A pixel readout chip for 10-30 MRad in standard 0.25 /spl mu/m CMOS
A radiation tolerant pixel detector readout chip has been developed in a commercial 0.25 /spl mu/m CMOS process. The chip is a matrix of two columns of 65 identical cells. Each readout cell comprises a preamplifier, a shaper filter, a discriminator, a delay line and readout logic. The chip occupies 10 mm/sup 2/, and contains about 50000 transistors. Electronic noise (/spl sim/220 e rms) and threshold dispersion (/spl sim/160 e rms) allow operation at 1500 e average threshold. The radiation tolerance of this mixed mode analog-digital circuit has been enhanced by designing NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The chip, which was developed at CERN for the ALICE and LHCb experiments, was still operational after receiving 3.6/spl times/10/sup 13/ protons over an area of 2 mm /spl times/2 mm. Other chips were irradiated with X-rays and remained fully functional up to 30 Mrad(SiO2) with only minor changes in analog parameters. These results indicate that careful use of deep submicron CMOS technologies can lead to circuits with high radiation tolerance.
DOI: 10.1016/s0168-9002(01)00388-6
2001
Cited 43 times
Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector
The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LHB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 μm×425 μm pixel cells in the 256×32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32×32 array of 400 μm×425 μm cells. The circuit is currently being manufactured in a commercial 0.25 μm CMOS technology.
DOI: 10.1088/0954-3899/37/4/045105
2010
Cited 27 times
Strangeness enhancements at central rapidity in 40 A GeV/<i>c</i>Pb–Pb collisions
Results are presented on neutral kaon, hyperon and antihyperon production in Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern follows the same hierarchy as seen in the higher energy data - the enhancement increases with the strangeness content of the hyperons and with the centrality of collision. The centrality dependence of the Pb-Pb yields and enhancements is steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness enhancements at mid-rapidity is discussed.
DOI: 10.1143/ptps.193.180
2012
Cited 24 times
Elastic Scattering and Total Cross-Section in p+p Reactions
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √s = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV2. Extending the range of data to low t values from 0.02 to 0.33 GeV2, and utilizing the luminosity measurements of CMS, the total proton-proton cross section at √s = 7 TeV is measured to be (98.3 ±0.2stat ±2.8syst) mb.
DOI: 10.1142/s0217751x13300469
2013
Cited 23 times
PERFORMANCE OF THE TOTEM DETECTORS AT THE LHC
The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.
DOI: 10.1016/j.nima.2014.07.017
2014
Cited 22 times
CMOS monolithic active pixel sensors for high energy physics
Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics.Two major requirements are radiation tolerance and low power consumption.For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit.Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1].Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps.More conventional solutions up to now require a simple in-pixel readout circuit.Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes.The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost.This paper tries to give an overview.
DOI: 10.1088/1748-0221/12/03/p03007
2017
Cited 22 times
Diamond detectors for the TOTEM timing upgrade
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.
DOI: 10.1016/j.nima.2019.162404
2020
Cited 16 times
Measurement results of the MALTA monolithic pixel detector
MALTA is a full scale monolithic pixel detector implemented in TowerJazz 180 nm CMOS technology. The small pixel electrode allowed for the implementation of a fast, low noise and low power front-end, which is sensitive to the charge released by ionizing radiation in a 20–25 μm deep depleted region. The novel asynchronous matrix architecture is designed to ensure low power consumption and high rate capability. Such features make MALTA a possible candidate for the outer layer of ATLAS Inner Tracker (ITk) upgrade. Unirradiated and irradiated MALTA sensors have been extensively tested in laboratory and with high energy particle beams. Results of this measurements campaign are shown, and the further improvements that are being implemented in the next versions of the chip are discussed.
DOI: 10.1016/j.nima.2020.164381
2021
Cited 13 times
Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC
The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 × 50μm) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total silicon thickness of only 50μm. Furthermore monolithic CMOS sensors can substantially reduce detector costs. These well-known advantages of CMOS sensor for performance and costs can only be exploited in pp-collisions at HL-LHC if the DMAPS sensors are designed to be radiation hard, capable of high hit rates and have a fast signal response to satisfy the 25 ns bunch crossing structure of LHC. Through the development of the MALTA and Mini-MALTA sensors we show the necessary steps to achieve radiation hardness at 1015 neq/cm2 for DMAPS with small electrode designs. The sensors combine high granularity (pitch 36.4x36.4μm2), low detector capacitance (<5fF/pixel) of the charge collection electrode (3μm), low noise (ENC≈10 e−) and low power operation (1μW/pixel) with a fast signal response (25 ns bunch crossing). The sensors feature arrays of 512 × 512 (MALTA) and 16 × 64 (Mini-MALTA) pixels. To cope with high hit rates expected at HL-LHC (>200 MHz/cm2) we have implemented a novel high-speed asynchronous readout architecture. The paper summarises the optimisation of the pixel design to achieve radiation hard pixel designs with full efficiency after irradiation at >98% after 1015 neq/cm2).
DOI: 10.3390/instruments6010013
2022
Cited 8 times
Performance of the FASTPIX Sub-Nanosecond CMOS Pixel Sensor Demonstrator
Within the ATTRACT FASTPIX project, a monolithic pixel sensor demonstrator chip has been developed in a modified 180 nm CMOS imaging process, targeting sub-nanosecond timing measurements for single ionizing particles. It features a small collection electrode design on a 25 micron thick epitaxial layer and contains 32 mini matrices of 68 hexagonal pixels each, with pixel pitches ranging from 8.66 to 20 micron. Four pixels are transmitting an analog output signal and 64 are transmitting binary hit information. Various design variations are explored, aiming at accelerating the charge collection and making the timing of the charge collection more uniform over the pixel area. Signal treatment of the analog waveforms, as well as reconstruction of time and charge information, is carried out off-chip. This contribution introduces the design of the sensor and readout system and presents the first performance results for 10 μm and 20 μm pixel pitch achieved in measurements with particle beams.
DOI: 10.1109/16.293300
1994
Cited 39 times
PIN detector arrays and integrated readout circuitry on high-resistivity float-zone silicon
A new silicon pin-diode-based pixel detector for ionizing particles integrating a two-dimensional array of detecting elements with readout circuitry has been developed and extensively tested. The signal charge is collected on a low-capacitance electrode avoiding loss of charge into the local readout circuitry within each pixel. The spatial resolution for a given circuitry size is optimized. The approach required back side patterning of the wafer, the only nonconventional part in the Stanford BiCMOS based manufacturing process. Thirteen masks on the front side of the wafer and three on the back yielded both CMOS readout circuitry and detecting elements. A gettering step helped obtain a high minority carrier lifetime (500 /spl mu/s). Test results obtained by infrared illumination, gamma rays, and high-energy particles, which have been described in detail elsewhere, are summarized. They include a signal to single-channel-noise performance of about 150 to 1 for a minimum ionizing particle, which is an order of magnitude better than silicon strip detectors currently used, and a record-breaking spatial resolution in the direction of smallest pixel pitch (standard deviation of about 1.8 /spl mu/m). We describe the device and chip operation of the new detector in detail.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>
DOI: 10.1109/tns.2005.856910
2005
Cited 32 times
Planar edgeless silicon detectors for the TOTEM experiment
Silicon detectors for the Roman Pots of the large hadron collider TOTEM experiment aim for full sensitivity at the edge where a terminating structure is required for electrical stability. This work provides an innovative approach reducing the conventional width of the terminating structure to less than 100 microns, still using standard planar fabrication technology. The objective of this new development is to decouple the electric behaviour of the surface from the sensitive volume within tens of microns. The explanation of the basic principle of this new approach together with the experimental confirmation via electric measurements and beam test are presented in this paper, demonstrating that silicon detectors with this new terminating structure are fully operational and efficient to under 60 microns from the die cut.
DOI: 10.1140/epjc/s10052-015-3343-7
2015
Cited 17 times
Measurement of the forward charged particle pseudorapidity density in pp collisions at $$\sqrt{s} = 8$$ s = 8 TeV using a displaced interaction point
The pseudorapidity density of charged particles dN $$_{ ch }$$ /d $$\eta $$ is measured by the TOTEM experiment in proton–proton collisions at $$\sqrt{s} = 8$$ TeV within the range $$3.9<\eta <4.7$$ and $$-6.95<\eta <-6.9$$ . Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with $$p_T>0$$ MeV/c, produced in inelastic interactions with at least one charged particle in $$-7<\eta <-6$$ or $$3.7<\eta <4.8$$ . The dN $$_{ ch }$$ /d $$\eta $$ has been found to decrease with $$|\eta |$$ , from 5.11 $$\pm $$ 0.73 at $$\eta =3.95$$ to 1.81 $$\pm $$ 0.56 at $$\eta =-$$ 6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement.
DOI: 10.1016/j.nima.2018.09.100
2019
Cited 17 times
CMOS monolithic pixel sensors based on the column-drain architecture for the HL-LHC upgrade
Depleted Monolithic Active Pixel Sensors (DMAPS) constitute a promising low cost alternative for the outer layers of the ATLAS experiment Inner Tracker (ITk). Realizations in modern, high resistivity CMOS technologies enhance their radiation tolerance by achieving substantial depletion of the sensing volume. Two DMAPS prototypes that use the same “column-drain” readout architecture and are based on different sensor implementation concepts named LF-Monopix and TJ-Monopix have been developed for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). LF-Monopix was fabricated in the LFoundry 150 nm technology and features pixel size of 50×250μm2 and large collection electrode opted for high radiation tolerance. Detection efficiency up to 99% has been measured after irradiation to 1⋅1015neq∕cm2. TJ-Monopix is a large scale (1×2cm2) prototype featuring pixels of 36×40μm2 size. It was fabricated in a novel TowerJazz 180 nm modified process that enables full depletion of the sensitive layer, while employing a small collection electrode that is less sensitive to crosstalk. The resulting small sensor capacitance (≤3 fF) is exploited by a compact, low power front end optimized to meet the 25 ns timing requirement. Measurement results demonstrate the sensor performance in terms of Equivalent Noise Charge (ENC) ≈11e−, threshold ≈300e−, threshold dispersion ≈30e− and total power consumption lower than 120 mW/cm2.
DOI: 10.1016/j.nima.2022.166747
2022
Cited 7 times
Progress in DMAPS developments and first tests of the Monopix2 chips in 150 nm LFoundry and 180 nm TowerJazz technology
Depleted Monolithic Active Pixel Sensors (DMAPS) are monolithic pixel detectors with high-resistivity substrates designed for use in high-rate and high-radiation environments. They are produced in commercial CMOS processes, resulting in relatively low production costs and short turnaround times, and offer a low material budget. LF-Monopix1 and TJ-Monopix1 are large DMAPS prototypes produced in 150 nm LFoundry and 180 nm TowerJazz technology, respectively, that follow two different design concepts regarding the charge collection electrode . Prototypes of both development lines have been extensively tested and characterized over the last years. The second-generation Monopix prototypes, Monopix2, were recently produced. They were designed to address the shortcomings of their predecessors, in particular related to radiation hardness and cross talk, and further improve upon their performance. The latest measurements with LF-Monopix1 and TJ-Monopix1 concerning hit efficiency, depletion, and radiation hardness as well as the initial test results of the new Monopix2 prototypes are presented.
DOI: 10.1088/1748-0221/18/02/c02036
2023
Measurements of total ionizing dose effects in TPSCo 65 nm and influence of NMOS bulk bias
Abstract The CERN EP R&amp;D WP 1.2 aims to develop state-of-art monolithic pixel detectors using modern CMOS processes. The TPSCo 65 nm process is a suitable candidate and its radiation tolerance and sensor performance are therefore being studied. The impact of the back bias on the transistor behavior has also been measured to provide the designers with accurate models. This process shows sensitivity to radiation and degradation mechanisms similar to previously studied 65 nm CMOS technologies, strongly dependent on the geometry of the transistors. This paper presents preliminary characterization results of this technology that can serve as a guideline for designers.
DOI: 10.22323/1.420.0080
2023
Charge collection and efficiency measurements of the TJ-Monopix2 DMAPS in 180 nm CMOS technology
Monolithic CMOS pixel detectors have emerged as competitive contenders in the field of high-energy particle physics detectors. By utilizing commercial processes they offer high-volume production of such detectors. A series of prototypes has been designed in a 180$\,$nm Tower process with depletion of the sensor material and a column-drain readout architecture. The latest iteration, TJ-Monopix2, features a large 2$\,$cm x 2$\,$cm matrix consisting of 512 x 512 pixels with 33.04$\,$um pitch. A small collection electrode design aims at low power consumption and low noise while the radiation tolerance for high-energy particle detector applications needs extra attention. With a goal to reach radiation tolerance to levels of $10^{15}\,1\,$MeV n$_\text{eq}\,$cm$^{-2}$ of NIEL damage a modification of the standard process has been implemented by adding a low-dosed n-type silicon implant across the pixel in order to allow for homogeneous depletion of the sensor volume. Recent lab measurements and beam tests were conducted for unirradiated modules to study electrical characteristics and hit detection efficiency.
DOI: 10.48550/arxiv.2308.13231
2023
Radiation Hardness of MALTA2 Monolithic CMOS Sensors on Czochralski Substrates
MALTA2 is the latest full-scale prototype of the MALTA family of Depleted Monolithic Active Pixel Sensors (DMAPS) produced in Tower Semiconductor 180 nm CMOS technology. In order to comply with the requirements of High Energy Physics (HEP) experiments, various process modifications and front-end changes have been implemented to achieve low power consumption, reduce Random Telegraph Signal (RTS) noise, and optimise the charge collection geometry. Compared to its predecessors, MALTA2 targets the use of a high-resistivity, thick Czochralski (Cz) substrates in order to demonstrate radiation hardness in terms of detection efficiency and timing resolution up to 3E15 1 MeV neq/cm2 with backside metallisation to achieve good propagation of the bias voltage. This manuscript shows the results that were obtained with non-irradiated and irradiated MALTA2 samples on Cz substrates from the CERN SPS test beam campaign from 2021-2023 using the MALTA telescope.
DOI: 10.48550/arxiv.2402.12153
2024
Cross talk of a large-scale depleted monolithic active pixel sensor (DMAPS) in 180 nm CMOS technology
Monolithic pixel detectors combine readout electronics and sensor in a single entity of silicon, which simplifies the production procedure and lowers the material budget compared to conventional hybrid pixel detector concepts. Benefiting from the advances in commercial CMOS processes towards large biasing voltage capabilities and the increasing availability of high-resistivity substrates, depleted monolithic active pixel sensors (DMAPS) are able to cope with the high-rate and high-radiation environments faced in modern high-energy physics experiments. TJ-Monopix2 is the latest iteration of a DMAPS development line designed in 180 nm TowerSemicondutor technology, which features a large scale (2 x 2) cm$^2$ chip divided into (512 x 512) pixels with a pitch of (33 x 33) um$^2$. All in-pixel electronics are separated from its small collection electrode and process modifications are implemented to improve charge collection efficiency especially after irradiation. The latest laboratory measurements and investigations of a threshold variation observed for TJ-Monopix2 in typical operating conditions are presented.
DOI: 10.1088/1748-0221/19/02/c02033
2024
Prototype measurement results in a 65 nm technology and TCAD simulations towards more radiation tolerant monolithic pixel sensors
Abstract Early measurements on monolithic pixel sensor prototypes in the TPSCo 65 nm technology indicate a different response and radiation tolerance (up to 5×10 15 1 MeV n eq cm) for different sensor layout and process variants, illustrating the importance of layout and process in the path towards increased sensor radiation tolerance. Using these measurement results, TCAD simulations provide more insight to link the macroscopic behaviour of specific sensor variants to the details of its structure. With this insight we can propose a new variant combining the advantages of several measured variants as a path to even better radiation tolerance for the next iteration.
DOI: 10.48550/arxiv.2402.14524
2024
Simulations and Performance Studies of a MAPS in 65 nm CMOS Imaging Technology
Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ~fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of technology demonstrators have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Technology demonstrators of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying performance parameters such as cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach.
DOI: 10.1140/epjc/s10052-024-12601-3
2024
Radiation hardness of MALTA2 monolithic CMOS imaging sensors on Czochralski substrates
DOI: 10.48550/arxiv.2403.08952
2024
Characterisation of analogue Monolithic Active Pixel Sensor test structures implemented in a 65 nm CMOS imaging process
Analogue test structures were fabricated using the Tower Partners Semiconductor Co. CMOS 65 nm ISC process. The purpose was to characterise and qualify this process and to optimise the sensor for the next generation of Monolithic Active Pixels Sensors for high-energy physics. The technology was explored in several variants which differed by: doping levels, pixel geometries and pixel pitches (10-25 $\mu$m). These variants have been tested following exposure to varying levels of irradiation up to 3 MGy and $10^{16}$ 1 MeV n$_\text{eq}$ cm$^{-2}$. Here the results from prototypes that feature direct analogue output of a 4$\times$4 pixel matrix are reported, allowing the systematic and detailed study of charge collection properties. Measurements were taken both using $^{55}$Fe X-ray sources and in beam tests using minimum ionizing particles. The results not only demonstrate the feasibility of using this technology for particle detection but also serve as a reference for future applications and optimisations.
DOI: 10.1016/j.nima.2024.169262
2024
Depletion depth studies with the MALTA2 sensor, a depleted monolithic active pixel sensor
MALTA2 is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower 180 nm CMOS imaging process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors both in terms of increased tracking performance due to lower material budget but also in terms of ease of integration and construction costs due to the monolithic design. Current research and development efforts are aimed towards radiation-hard designs up to 100 Mrad in Total Ionizing Dose and 3×1015 1 MeV neq/cm2 in Non-Ionizing Energy Loss. One important property of a sensor's radiation hardness is the depletion depth at which efficient charge collection is achieved via drift movement. Grazing angle test-beam data was taken during the 2023 SPS CERN test beam with the MALTA telescope and Edge Transient Current Technique studies were performed at DESY in order to develop a quantitative study of the depletion depth for un-irradiated, epitaxial MALTA2 samples. The study is planned to be extended for irradiated and Czochralski MALTA2 samples.
DOI: 10.1109/pacet60398.2024.10497069
2024
Timing performance of a monolithic CMOS pixel detector front-end in 180nm technology
DOI: 10.1016/j.nima.2024.169381
2024
Cross-talk of a large-scale depleted monolithic active pixel sensor (DMAPS) in 180 nm CMOS technology
DOI: 10.22323/1.448.0048
2024
Development of the radiation-hard MALTA CMOS sensor for tracking applications
The MALTA family of Depleted Monolithic Active Pixel Sensors (DMAPS) is produced using Tower 180 nm CMOS technology, specifically targeting radiation-hard applications in the HL-LHC and beyond. Several process modifications have resulted in radiation hardness up to ${3 \times 10^{15}~1 ~\text{MeV}~\text{n}_{\text{eq}} /\text{cm}^2}$ and time resolution below 2 ns, with uniform charge collection efficiency across the chip formed of $512 \times 224$ pixels with a size of $36.4 \times 36.4~\mu\text{m}^2$. This is achieved when adopting high-resistivity Czochralski substrates with backside metallisation to obtain a good propagation of the bias voltage. This contribution will show the most recent results obtained on MALTA2 chip demonstrators, including signal efficiency, noise occupancy and time resolution, at different levels of irradiation as well as the performance of the MALTA telescope permanently installed at the SPS at CERN and used in the test beam campaign in 2021-2023.
DOI: 10.1016/j.nima.2024.169306
2024
Quad-Module characterization with the MALTA monolithic pixel chip
DOI: 10.1016/j.nima.2024.169414
2024
Simulations and performance studies of a MAPS in 65 nm CMOS imaging technology
Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ∼fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of technology demonstrators have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Technology demonstrators of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying performance parameters such as cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach.
DOI: 10.1117/12.330288
1998
Cited 34 times
&lt;title&gt;Performance of a 4096-pixel photon counting chip&lt;/title&gt;
A 4096 pixel Photon Counting Chip (PCC) has been developed and tested. It is aimed primarily at medical imaging although it can be used for other applications involving particle counting. The readout chip consists of a matrix of 64 by 64 identical square pixels, whose side measures 170 micrometers and is bump-bonded to a similar matrix of GaAs or Si pixel diodes covering a sensitive area of 1.18 cm2. The electronics in each cell comprises a preamplifier, a discriminator with variable threshold and a 3-bit threshold tune as well as a 15-bit counter. Each pixel can be individually addressed for electrical test or masked during acquisition. A shutter allows for switching between the counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting rate of up to 2 MHz in each pixel. The minimum reachable threshold is 1400 e with a variation of 350 e rms that can be reduced to 80 e rms after tuning with the 3-bit adjustment. Electrical noise at the input is 170 e rms. Several read-out chips have been bump bonded to 200 micrometers thick GaAs pixel detectors. Test with (gamma) -ray and (beta) sources have been carried out. A number of objects have been imaged and a 260 micrometers thick aluminum foil which represents a contrast to the surrounding air of only 1.9 percent has been correctly imaged.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
DOI: 10.1109/4.890318
2000
Cited 33 times
Integrated circuits for particle physics experiments
High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 /spl mu/m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ area has been designed.
DOI: 10.1016/s0168-9002(99)01448-5
2000
Cited 32 times
First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout
We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.
DOI: 10.1109/nssmic.2008.4774696
2008
Cited 24 times
VFAT2 : A front-end “system on chip” providing fast trigger information and digitized data storage for the charge sensitive readout of multi-channel silicon and gas particle detectors.
The architecture, key design parameters and results for a highly integrated front-end readout system fabricated as a single ASIC are presented. The chip (VFAT2) comprises complex analog and digital functions traditionally designed as separate components. VFAT2 contains very low noise 128 channel front-end amplification with programmable internal calibration, intelligent “fast OR” trigger building outputs, digital data tagging and storage, data formatting and data packet transmission with error protection. VFAT2 is designed to work in the demanding radiation environments posed by modern high energy physics experiments, in particular the Large Hadron Collider at CERN. Measured results are presented demonstrating full functionality and excellent analog performance despite intensive digital activity on the same piece of silicon.
DOI: 10.1016/j.nima.2012.10.098
2013
Cited 16 times
LePIX: First results from a novel monolithic pixel sensor
We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics.
DOI: 10.1088/1367-2630/16/10/103041
2014
Cited 16 times
LHC optics measurement with proton tracks detected by the Roman pots of the TOTEM experiment
Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.
DOI: 10.1109/trpms.2018.2825499
2018
Cited 16 times
iMPACT: An Innovative Tracker and Calorimeter for Proton Computed Tomography
This contribution describes the first results obtained within the iMPACT project, which aims to build a novel proton computed-tomography (pCT) scanner for protons of energy up to 230 MeV, as used in hadron therapy. The iMPACT pCT scanner will improve the current state-of-the-art in proton tracking at all levels: speed, spatial resolution, material budget, and cost. We will first describe the design of the iMPACT scanner, which is composed by a tracker and a range calorimeter. We will then illustrate the results of a test with the ALPIDE sensor, a monolithic active pixels sensor, developed by the ALICE collaboration, which will equip the iMPACT tracker in this first phase. We finally detail the characterization building elements of the prototype of the range calorimeter, which is composed of segmented scintillator fingers readout by SiPMs. Reported beam-test data will highlight how the technological choices we made well address the performances of a state-of-the-art pCT system.
DOI: 10.1016/j.nima.2020.164461
2020
Cited 12 times
Monolithic CMOS sensors for sub-nanosecond timing
In the ATTRACT project FASTPIX we investigate monolithic pixel sensors with small collection electrodes in CMOS technologies for fast signal collection and precise timing in the sub-nanosecond range. Deep submicron CMOS technologies allow tiny, sub-femtofarad collection electrodes, and large signal-to-noise ratios, essential for very precise timing. However, complex in-pixel circuits require some area, and one of the key limitations for precise timing is the longer drift time of signal charge generated near the pixel borders. Laying out the collection electrodes on a hexagonal grid and reducing the pixel pitch minimize the maximum distance from the pixel border to the collection electrode. The electric field optimized with TCAD simulations pulls the signal charge away from the pixel border towards the collection electrode as fast as possible. This also reduces charge sharing and maximizes the seed pixel signal hence reducing time-walk effects. Here the hexagonal geometry also contributes by limiting charge sharing at the pixel corners to only three pixels instead of four. We reach pixel pitches down to about 8.7μm between collection electrodes in this 180 nm technology by placing only a minimum amount of circuitry in the pixel and the rest at the matrix periphery. Consuming several tens of micro-ampere per pixel from a 1.8 V supply offers a time jitter of only a few tens of picoseconds. This allows detailed characterization of the sensor timing performance in a prototype chip with several mini matrices of 64 pixels each with amplifier, comparator and digital readout and 4 additional pixels with analog buffers. The aim is to prove sensor concepts before moving to a much finer line width technology and fully integrate the readout within the pixel at lower power consumption.
DOI: 10.1140/epjc/s10052-022-10065-x
2022
Cited 6 times
Characterisation of the dip-bump structure observed in proton–proton elastic scattering at $$\sqrt{s}$$ = 8 TeV
Abstract The TOTEM collaboration at the CERN LHC has measured the differential cross-section of elastic proton–proton scattering at $$\sqrt{s} = 8\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>8</mml:mn> <mml:mspace /> <mml:mi>TeV</mml:mi> </mml:mrow> </mml:math> in the squared four-momentum transfer range $$0.2\,\mathrm{GeV^{2}}&lt; |t| &lt; 1.9\,\mathrm{GeV^{2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.2</mml:mn> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>&lt;</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>&lt;</mml:mo> <mml:mn>1.9</mml:mn> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> . This interval includes the structure with a diffractive minimum (“dip”) and a secondary maximum (“bump”) that has also been observed at all other LHC energies, where measurements were made. A detailed characterisation of this structure for $$\sqrt{s} = 8\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>8</mml:mn> <mml:mspace /> <mml:mi>TeV</mml:mi> </mml:mrow> </mml:math> yields the positions, $$|t|_{\mathrm{dip}} = (0.521 \pm 0.007)\,\mathrm{GeV^2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>dip</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0.521</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.007</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|t|_{\mathrm{bump}} = (0.695 \pm 0.026)\,\mathrm{GeV^2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>bump</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0.695</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.026</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> , as well as the cross-section values, $$\left. {\mathrm{d}\sigma /\mathrm{d}t}\right| _{\mathrm{dip}} = (15.1 \pm 2.5)\,\mathrm{{\mu b/GeV^2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mfenced> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>σ</mml:mi> <mml:mo>/</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>dip</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>15.1</mml:mn> <mml:mo>±</mml:mo> <mml:mn>2.5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mi>b</mml:mi> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> and $$\left. {\mathrm{d}\sigma /\mathrm{d}t}\right| _{\mathrm{bump}} = (29.7 \pm 1.8)\,\mathrm{{\mu b/GeV^2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mfenced> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>σ</mml:mi> <mml:mo>/</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>bump</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>29.7</mml:mn> <mml:mo>±</mml:mo> <mml:mn>1.8</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mi>b</mml:mi> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> , for the dip and the bump, respectively.
DOI: 10.1016/s0168-9002(01)00590-3
2001
Cited 28 times
Pixel readout chips in deep submicron CMOS for ALICE and LHCb tolerant to 10Mrad and beyond
The ALICE1LHCB chip is a mixed-mode integrated circuit designed to read out silicon pixel detectors for two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 μm×425 μm pixel cells in the 256×32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32×32 array of 400 μm×425 μm cells. Radiation tolerance was enhanced through special circuit layout. Sensitivity to coupling of digital signals into the analog front end was minimized. System issues such as testability and uniformity further constrained the design. The circuit is currently being manufactured in a commercial 0.25 μm CMOS technology.
DOI: 10.1109/23.173188
1992
Cited 28 times
A new integrated pixel detector for high energy physics
The authors have fabricated integrated pixel devices which have the high-resistivity, signal-charge collecting volume and the readout circuitry in a single piece of silicon. The device and its circuitry are described. They present noise measurements illustrating the excellent signal to single-channel noise performance of this device of about 150 to 1 for a minimum ionizing particle, which is an order to magnitude better than silicon strip detectors currently used. A setup was made for packaged devices. Gamma irradiation measurement results obtained with this setup illustrate the high signal to noise performance, and good uniformity in sensitivity over the different pixels.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>
DOI: 10.1016/j.nima.2009.01.056
2009
Cited 19 times
Characteristics of edgeless silicon detectors for the Roman Pots of the TOTEM experiment at the LHC
TOTEM Roman Pot (RP) microstrip edgeless silicon detectors, fabricated with standard planar technology, reach full sensitivity within 50 μm from the cut edge and can operate with high bias voltage at room temperature. These detectors use a newly developed terminating structure, which prevents breakdown and surface current injection at high bias, while simultaneously providing extremely reduced dead zones at the edges. Moreover, radiation hardness studies indicate that when operated under moderate cooling, the detectors remain fully efficient up to a fluence of about 1.5×1014 p cm−2. The mass production of these detectors for the TOTEM Experiment is being completed and their installation in the Roman Pots is ongoing. When the installation is complete and the LHC will be operational, these detectors will allow the TOTEM Experiment to detect leading protons at distance of ∼1 mm from the beam centre at the LHC. This work presented here is a survey of this recently developed device and its most up-to-date characterisations.
DOI: 10.1016/j.nima.2009.08.083
2010
Cited 16 times
The TOTEM detector at LHC
Abstract The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton–proton cross-sections with a luminosity-independent method and to the study of elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the IP5 interaction point, two tracking telescopes, T1 and T2, will be installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot stations will be placed at distances of 147 and 220 m from IP5. The telescope closest to the interaction point (T1, centred at z=9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centred at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the Roman Pots are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an essential feature. It maximizes the experimental acceptance for protons scattered elastically or interactively at polar angles down to a few micro-radians at IP5. To measure protons at the lowest possible emission angles, special beam optics have been conceived to optimize proton detection in terms of acceptance and resolution. The read-out of all TOTEM subsystems is based on the custom-developed digital VFAT chip with trigger capability.
DOI: 10.1109/nssmic.2013.6829475
2013
Cited 15 times
Radiation hardness and detector performance of new 180nm CMOS MAPS prototype test structures developed for the upgrade of the ALICE Inner Tracking System
The features of the 180nm TowerJazz <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> CMOS technology allow for the first time the use of CMOS Monolithic Active Pixel Sensors (MAPS) under the harsh operational conditions of the LHC experiments. The stringent requirements of the ALICE Inner Tracking System (ITS) in terms of material budget, radiation hardness, readout speed and a low power consumption have thus lead to the choice of MAPS as baseline technology option for the recently approved upgrade of the ITS and are the key drivers for R&D efforts on basic transistor and Explorer and MIMOSA pixel sensor prototypes produced in TowerJazz technology. Though the radiation loads expected for the ITS are below those of ATLAS and CMS, it is however necessary to assess the radiation hardness for ITS MAPS prototypes. Total Ionizing Dose (TID) radiation hardness has been established for basic transistor structures using a 60keV X-ray machine. The main operational characteristics and detection properties such as noise, charge collection efficiency and signal over noise ratio of Explorer-0 and MIMOSA32 and MIMOSA34 pixel sensor prototypes have been studied using X-rays ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">55</sup> Fe) and test beams at CERN and DESY before and after Non Ionizing Energy Loss (NIEL) and TID irradiation. In this paper the results of these R&D activities will be presented and discussed.
DOI: 10.1088/1748-0221/10/03/c03030
2015
Cited 13 times
MAPS development for the ALICE ITS upgrade
Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.
DOI: 10.1016/j.nima.2014.05.027
2014
Cited 13 times
Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade
Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0 in total for each inner layer) and higher granularity (~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.
DOI: 10.1016/j.nima.2016.03.074
2016
Cited 13 times
A novel source–drain follower for monolithic active pixel sensors
Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/Ceff or decrease the effective sensing node capacitance Ceff because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source–drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to Ceff. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to Ceff, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a 55Fe source. Increasing reverse substrate bias from −1 V to −6 V reduces Ceff by 38% and the equivalent noise charge (ENC) by 22% for the standard SF. The SDF provides a further 9% improvement for Ceff and 25% for ENC. The SDF circuit with additional shielding provides 18% improvement for Ceff, and combined with −6 V reverse bias yields almost a factor 2.
DOI: 10.1088/1748-0221/18/03/c03011
2022
Cited 5 times
Timing performance of radiation hard MALTA monolithic pixel sensors
Abstract The MALTA family of Depleted Monolithic Active Pixel Sensor (DMAPS) produced in Tower 180 nm CMOS technology targets radiation hard applications for the HL-LHC and beyond. Several process modifications and front-end improvements have resulted in radiation hardness up to 2 × 10 15 1 MeV n eq /cm 2 and time resolution below 2 ns, with uniform charge collection efficiency across the pixel of size 36.4 × 36.4 μm 2 with a 3 μm 2 electrode size. The MALTA2 demonstrator produced in 2021 on high-resistivity epitaxial silicon and on Czochralski substrates implements a new cascoded front-end that reduces the RTS noise and has a higher gain. This contribution shows results from MALTA2 on timing resolution at the nanosecond level from the CERN SPS test-beam campaign of 2021.
DOI: 10.1016/0168-9002(93)90344-h
1993
Cited 27 times
First beam test results from a monolithic silicon pixel detector
We have tested a telescope of four monolithic pixel detectors in a 300–600 GeV muon beam at Fermilab. The detectors were 300 μm thick and had 30 × 10 pixels of 34 by 125 μm2. The signal to single channel noise was 55 to 1 in the beam test. The position resolution in the 34 μm direction had a σ = 2.2 μm. In an efficiency test the detectors did not miss any of 2665 minimum ionizing particle hits.
DOI: 10.1088/0954-3899/27/3/317
2001
Cited 26 times
Determination of the event centrality in the WA97 and NA57 experiments
The procedure employed by the WA97 and NA57 experiments to determine the number of wounded nucleons in different Pb + Pb centrality classes is discussed. We will also compare different centrality scales and their influence on the measurement of the centrality dependence of strange particle yields.
DOI: 10.1016/s0168-9002(02)02019-3
2003
Cited 24 times
First results from the ALICE silicon pixel detector prototype
System prototyping of the ALICE silicon pixel detector (SPD) is well underway. The ALICE SPD consists of two barrel layers with 9.83 million channels in total. These are read out by the ALICE1LHCb pixel chip, which has been developed in a commercial 0.25μm process with radiation hardening by design layout. The readout chip contains 8192 pixel cells each with a fast analog preamplifier and shaper followed by a discriminator and digital delay lines. Test results show a pixel cell noise of about 110 electrons rms and a mean minimum threshold of about 1000 electrons rms before threshold fine tuning. Several readout chips have been flip-chip bonded to detectors using two different bump-bonding techniques (solder, indium). Results of radioactive source measurements of these assemblies are presented for 90Sr and 55Fe sources. Several chip-detector assemblies have been tested in a 150GeV/c pion beam at CERN where an online efficiency of about 99% across a wide range of detector bias and threshold settings was observed. All preliminary investigations confirm the functionality of the chip and the chip-detector assemblies for the ALICE experiment.
DOI: 10.1016/s0168-9002(01)00829-4
2001
Cited 24 times
Measurements with Si and GaAs pixel detectors bonded to photon counting readout chips
Detectors fabricated with SI-GaAs and Si bulk material were bonded to Photon Counting Chips (PCC), developed in the framework of the MEDIPIX Collaboration. The PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube at room temperature. The image homogeneity and the mean count rate were determined via flood exposure images and compared. Exposures for GaAs detectors exhibit a 3 times larger spread in count rate per image in comparison to Si detectors. This also results in a 3 times worse signal to noise ratio. IV-characteristics and X-ray images at different values of the detectors bias voltage were also taken and show a 30 times higher leakage current for GaAs. The Si detector is fully active beginning from 70 V, whereas the GaAs detector does not reach full charge collection. The presampling modulation transfer function of both assembly types was measured via slit images and gives a spatial resolution of 4.3 lp/mm for both detector systems.
DOI: 10.1016/j.physletb.2005.07.040
2005
Cited 21 times
Central-to-peripheral nuclear modification factors in Pb–Pb collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mi mathvariant="normal">NN</mml:mi></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>17.3</mml:mn><mml:mtext> </mml:mtext><mml:mtext>GeV</mml:mtext></mml:math>
We present central-to-peripheral nuclear modification factors, R_CP, for the p_T distributions of K^0_S, Lambda, Anti-Lambda, and negatively charged particles, measured at central rapidity in Pb-Pb collisions at top SPS energy. The data cover the 55% most central fraction of the inelastic cross section. The K^0_S and Lambda R_CP(p_T) are similar in shape to those measured at sqrt{s_NN} = 200 GeV at RHIC, though they are larger in absolute value. We have compared our K^0_S R_CP data to a theoretical calculation. The prediction overestimates the data at p_T \approx 3-4 GeV/c, unless sizeable parton energy loss is included in the calculation.