ϟ

W. Mark Saltzman

Here are all the papers by W. Mark Saltzman that you can download and read on OA.mg.
W. Mark Saltzman’s last known institution is . Download W. Mark Saltzman PDFs here.

Claim this Profile →
DOI: 10.1038/nature13905
2014
Cited 716 times
MicroRNA silencing for cancer therapy targeted to the tumour microenvironment
MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.
DOI: 10.1016/s0022-3468(88)80529-3
1988
Cited 562 times
Selective cell transplantation using bioabsorbable artificial polymers as matrices
To date, selective cell transplantation has involved injecting cell suspensions into tissues or the vascular system. This study describes attaching cell preparations to bioerodable artificial polymers in cell culture and then implanting this polymer-cell scaffold into animals. Using standard techniques of cell harvest, single cells and clusters of fetal and adult rat and mouse hepatocytes, pancreatic islet cells, and small intestinal cells have been seeded onto biodegradable polymers of polyglactin 910, polyanhydrides, and polyorthoester. Sixty-five fetuses and 14 adult animals served as donors. One hundred fifteen polymer scaffolds were implanted into 70 recipient animals: 66 seeded with hepatocytes; 23 with intestinal cells and clusters; and 26 with pancreatic islet preparations. The cells remained viable in culture, and in the case of fetal intestine and fetal hepatocytes, appeared to proliferate while on the polymer. After four days in culture, the cell-polymer scaffolds were implanted into host animals, either in the omentum, the interscapular fat pad, or the mesentery. In three cases of fetal intestinal implantation coupled with partial hepatectomy, successful engraftment occurred in the omentum, one forming a visible 6.0 mm cyst. Three cases of hepatocyte implantation, one using adult cells and two using fetal cells, have also engrafted, showing viability of hepatocytes, mitotic figures, and vascularization of the cell mass. To date, no pancreatic islets have survived implantation. This method of cell transplantation, which we have termed "chimeric neomorphogenesis," is an alternative to current methods and requires further study.
DOI: 10.1073/pnas.0911465107
2010
Cited 507 times
Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling
Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are the earliest tissue-engineered vascular grafts (TEVGs) to be used clinically. These TEVGs transform into living blood vessels in vivo, with an endothelial cell (EC) lining invested by smooth muscle cells (SMCs); however, the process by which this occurs is unclear. To test if the seeded BMCs differentiate into the mature vascular cells of the neovessel, we implanted an immunodeficient mouse recipient with human BMC (hBMC)-seeded scaffolds. As in humans, TEVGs implanted in a mouse host as venous interposition grafts gradually transformed into living blood vessels over a 6-month time course. Seeded hBMCs, however, were no longer detectable within a few days of implantation. Instead, scaffolds were initially repopulated by mouse monocytes and subsequently repopulated by mouse SMCs and ECs. Seeded BMCs secreted significant amounts of monocyte chemoattractant protein-1 and increased early monocyte recruitment. These findings suggest TEVGs transform into functional neovessels via an inflammatory process of vascular remodeling.
DOI: 10.1038/78523
2000
Cited 466 times
Enhancement of transfection by physical concentration of DNA at the cell surface
DOI: 10.1016/j.addr.2011.12.006
2012
Cited 434 times
Polymeric nanoparticles for drug delivery to the central nervous system
The central nervous system (CNS) poses a unique challenge for drug delivery. The blood-brain barrier significantly hinders the passage of systemically delivered therapeutics and the brain extracellular matrix limits the distribution and longevity of locally delivered agents. Polymeric nanoparticles represent a promising solution to these problems. Over the past 40years, substantial research efforts have demonstrated that polymeric nanoparticles can be engineered for effective systemic and local delivery of therapeutics to the CNS. Moreover, many of the polymers used in nanoparticle fabrication are both biodegradable and biocompatible, thereby increasing the clinical utility of this strategy. Here, we review the major advances in the development of polymeric nanoparticles for drug delivery to the CNS.
DOI: 10.1038/nmat2444
2009
Cited 408 times
Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA
Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.
DOI: 10.1038/nrd4503
2015
Cited 384 times
A holistic approach to targeting disease with polymeric nanoparticles
Drug delivery methods that use targeted polymeric nanoparticles have the potential to increase local concentrations of a drug while reducing off-target accumulation. To best achieve this goal, Saltzman and colleagues argue that a holistic approach should be taken, in which anatomical, molecular and temporal aspects of the nanoparticle, drug and disease are taken into consideration. The primary goal of nanomedicine is to improve clinical outcomes. To this end, targeted nanoparticles are engineered to reduce non-productive distribution while improving diagnostic and therapeutic efficacy. Paradoxically, as this field has matured, the notion of targeting has been minimized to the concept of increasing the affinity of a nanoparticle for its target. This Opinion article outlines a holistic view of nanoparticle targeting, in which the route of administration, molecular characteristics and temporal control of the nanoparticles are potential design variables that must be considered simultaneously. This comprehensive vision for nanoparticle targeting will facilitate the integration of nanomedicines into clinical practice.
DOI: 10.1111/j.1365-2567.2005.02268.x
2005
Cited 377 times
Enhanced and prolonged cross‐presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles
Summary CD8 + T‐cell responses are critical in the immunological control of tumours and infectious diseases. To prime CD8 + T cells against these cell‐associated antigens, exogenous antigens must be cross‐presented by professional antigen‐presenting cells (APCs). While cross‐presentation of soluble antigens by dendritic cells is detectable in vivo , the efficiency is low, limiting the clinical utility of protein‐based vaccinations. To enhance the efficiency of presentation, we generated nanoparticles from a biodegradable polymer, poly( d , l ‐lactide‐co‐glycolide) (PLGA), to deliver antigen into the major histocompatibility complex (MHC) class I antigen presentation pathway. In primary mouse bone marrow‐derived dendritic cells (BMDCs), the MHC class I presentation of PLGA‐encapsulated ovalbumin (OVA) stimulated T cell interleukin‐2 secretion at 1000‐fold lower concentration than soluble antigen and 10‐fold lower than antigen‐coated latex beads. The microparticles also served as an intracellular antigen reservoir, leading to sustained MHC class I presentation of OVA for 72 hr, decreasing by only 20% after 96 hr, a time at which the presentation of soluble and latex bead‐associated antigens was undetectable. Cytosol extraction demonstrated that antigen delivery via PLGA particles increased the amount of protein that escaped from endosomes into the cytoplasm, thereby increasing the access of exogenous antigen to the classic MHC class I loading pathway. These data indicate that the unique properties of PLGA particle‐mediated antigen delivery dramatically enhance and sustain exogenous antigen presentation by MHC class I, potentially facilitating the clinical use of these particles in vaccination.
DOI: 10.1016/j.biomaterials.2009.01.057
2009
Cited 366 times
The uptake and intracellular fate of PLGA nanoparticles in epithelial cells
Biodegradable polymer nanoparticles (NPs) are a promising approach for intracellular delivery of drugs, proteins, and nucleic acids, but little is known about their intracellular fate, particularly in epithelial cells, which represent a major target. Rhodamine-loaded PLGA (polylactic-co-glycolic acid) NPs were used to explore particle uptake and intracellular fate in three different epithelial cell lines modeling the respiratory airway (HBE), gut (Caco-2), and renal proximal tubule (OK). To track intracellular fate, immunofluorescence techniques and confocal microscopy were used to demonstrate colocalization of NPs with specific organelles: early endosomes, late endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus. Confocal analysis demonstrated that NPs are capable of entering cells of all three types of epithelium. NPs appear to colocalize with the early endosomes at short times after exposure (∼2 h), but are also found in other compartments within the cytoplasm, notably Golgi and, possibly, ER, as time progressed over the period of 4–24 h. The rate and extent of uptake differed among these cell lines: at a fixed particle/cell ratio, cellular uptake was most abundant in OK cells and least abundant in Caco-2 cells. We present a model for the intracellular fate of particles that is consistent with our experimental data.
DOI: 10.1016/s0006-3495(94)80802-1
1994
Cited 353 times
Antibody diffusion in human cervical mucus
The mucosal immune system actively transports large quantities of antibodies into all mucus secretions, and these secreted antibodies help prevent infectious entry of many pathogens.Mucus is generally thought to protect epithelial cells by forming a diffusional barrier through which only small molecules can pass.However, electron microscopy indicates that the pore size in mucus is -100 nm, which suggests that antibodies as well as other large molecules might also diffuse through mucus.We measured the diffusion coefficients for antibodies and other proteins within human midcycle cervical mucus using two techniques: fluorescence imaging of concentration profiles and fluorescence photobleaching recovery.The two techniques are complementary, since the rates of diffusion are observed over millimeter distances with fluorescence imaging of concentration profiles and micron distances with fluorescence photobleaching recovery.Both methods yielded essentially the same diffusion coefficients.In contrast to previous reports indicating mucus significantly impedes diffusion of small molecules, antibody diffusion in mucus was relatively unimpeded.In our observations IgG, IgG fragments, IgA, and IgM diffused almost as rapidly in cervical mucus as in water (1.0 > Dmucus/Dwater > 0.7).Simple models for diffusion through water-filled pores suggest that the hydro- dynamic pore size for cervical mucus is -100 nm, smaller than the -1000 nm pore size of a collagen gel (at 1 mg/ml) and larger than the -10 nm pore size of gelatin (at 100 mg/ml).This estimated pore size is consistent both with electron micrographs and geometric models of interfiber spacing.Based on these results, we predict that particles as large as viruses can diffuse rapidly through human midcycle cervical mucus, provided the particle forms no adhesive interactions with mucus glycoproteins.
DOI: 10.1038/nmat3187
2011
Cited 352 times
Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery
Many synthetic polycationic vectors for non-viral gene delivery show high efficiency in vitro, but their usually excessive charge density makes them toxic for in vivo applications. Here we describe the synthesis of a series of high molecular weight terpolymers with low charge density, and show that they exhibit efficient gene delivery, some surpassing the efficiency of the commercial transfection reagents Polyethylenimine and Lipofectamine 2000. The terpolymers were synthesized via enzyme-catalyzed copolymerization of lactone with dialkyl diester and amino diol, and their hydrophobicity adjusted by varying the lactone content and by selecting a lactone comonomer of specific ring size. Targeted delivery of the pro-apoptotic TRAIL gene to tumour xenografts by one of the terpolymers results in significant inhibition of tumour growth, with minimal toxicity both in vitro and in vivo. Our findings suggest that the gene delivery ability of the terpolymers stems from their high molecular weight and increased hydrophobicity, which compensates for their low charge density.
DOI: 10.1073/pnas.1304504110
2013
Cited 223 times
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma
Current therapy for glioblastoma multiforme is insufficient, with nearly universal recurrence. Available drug therapies are unsuccessful because they fail to penetrate through the region of the brain containing tumor cells and they fail to kill the cells most responsible for tumor development and therapy resistance, brain cancer stem cells (BCSCs). To address these challenges, we combined two major advances in technology: (i) brain-penetrating polymeric nanoparticles that can be loaded with drugs and are optimized for intracranial convection-enhanced delivery and (ii) repurposed compounds, previously used in Food and Drug Administration-approved products, which were identified through library screening to target BCSCs. Using fluorescence imaging and positron emission tomography, we demonstrate that brain-penetrating nanoparticles can be delivered to large intracranial volumes in both rats and pigs. We identified several agents (from Food and Drug Administration-approved products) that potently inhibit proliferation and self-renewal of BCSCs. When loaded into brain-penetrating nanoparticles and administered by convection-enhanced delivery, one of these agents, dithiazanine iodide, significantly increased survival in rats bearing BCSC-derived xenografts. This unique approach to controlled delivery in the brain should have a significant impact on treatment of glioblastoma multiforme and suggests previously undescribed routes for drug and gene delivery to treat other diseases of the central nervous system.
DOI: 10.1089/ten.tea.2019.0201
2020
Cited 173 times
Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells
Multilayered skin substitutes comprising allogeneic cells have been tested for the treatment of nonhealing cutaneous ulcers. However, such nonnative skin grafts fail to permanently engraft because they lack dermal vascular networks important for integration with the host tissue. In this study, we describe the fabrication of an implantable multilayered vascularized bioengineered skin graft using 3D bioprinting. The graft is formed using one bioink containing human foreskin dermal fibroblasts (FBs), human endothelial cells (ECs) derived from cord blood human endothelial colony-forming cells (HECFCs), and human placental pericytes (PCs) suspended in rat tail type I collagen to form a dermis followed by printing with a second bioink containing human foreskin keratinocytes (KCs) to form an epidermis. In vitro, KCs replicate and mature to form a multilayered barrier, while the ECs and PCs self-assemble into interconnected microvascular networks. The PCs in the dermal bioink associate with EC-lined vascular structures and appear to improve KC maturation. When these 3D printed grafts are implanted on the dorsum of immunodeficient mice, the human EC-lined structures inosculate with mouse microvessels arising from the wound bed and become perfused within 4 weeks after implantation. The presence of PCs in the printed dermis enhances the invasion of the graft by host microvessels and the formation of an epidermal rete. Three Dimensional printing can be used to generate multilayered vascularized human skin grafts that can potentially overcome the limitations of graft survival observed in current avascular skin substitutes. Inclusion of human pericytes in the dermal bioink appears to improve both dermal and epidermal maturation.
DOI: 10.1016/j.jconrel.2014.04.048
2014
Cited 169 times
Controlled release for local delivery of drugs: barriers and models
Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.
DOI: 10.1038/nmat4422
2015
Cited 168 times
A sunblock based on bioadhesive nanoparticles
The majority of commercial sunblock preparations use organic or inorganic ultraviolet (UV) filters. Despite protecting against cutaneous phototoxicity, direct cellular exposure to UV filters has raised a variety of health concerns. Here, we show that the encapsulation of padimate O (PO)--a model UV filter--in bioadhesive nanoparticles (BNPs) prevents epidermal cellular exposure to UV filters while enhancing UV protection. BNPs are readily suspended in water, facilitate adherence to the stratum corneum without subsequent intra-epidermal or follicular penetration, and their interaction with skin is water resistant yet the particles can be removed via active towel drying. Although the sunblock based on BNPs contained less than 5 wt% of the UV-filter concentration found in commercial standards, the anti-UV effect was comparable when tested in two murine models. Moreover, the BNP-based sunblock significantly reduced double-stranded DNA breaks when compared with a commercial sunscreen formulation.
DOI: 10.1126/science.abo2523
2022
Cited 167 times
Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for vaccines that not only prevent disease but also prevent transmission. Parenteral vaccines induce robust systemic immunity but poor immunity at the respiratory mucosa. We developed a vaccine strategy that we call “prime and spike,” which leverages existing immunity generated by primary vaccination (prime) to elicit mucosal immune memory within the respiratory tract by using unadjuvanted intranasal spike boosters (spike). We show that prime and spike induces robust resident memory B and T cell responses, induces immunoglobulin A at the respiratory mucosa, boosts systemic immunity, and completely protects mice with partial immunity from lethal SARS-CoV-2 infection. Using divergent spike proteins, prime and spike enables the induction of cross-reactive immunity against sarbecoviruses.
DOI: 10.1038/ncomms13304
2016
Cited 144 times
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
The blood disorder, β-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the γ position plus stimulation of the stem cell factor (SCF)/c-Kit pathway yielded high levels of gene editing in haematopoietic stem cells (HSCs) in a mouse model of human β-thalassaemia. Injection of thalassemic mice with SCF plus nanoparticles containing γPNAs and donor DNAs ameliorated the disease phenotype, with sustained elevation of blood haemoglobin levels into the normal range, reduced reticulocytosis, reversal of splenomegaly and up to 7% β-globin gene correction in HSCs, with extremely low off-target effects. The combination of nanoparticle delivery, next generation γPNAs and SCF treatment may offer a minimally invasive treatment for genetic disorders of the blood that can be achieved safely and simply by intravenous administration.
DOI: 10.1038/s41586-021-03191-1
2021
Cited 88 times
The NIH Somatic Cell Genome Editing program
The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.
DOI: 10.1126/scitranslmed.abq0603
2023
Cited 20 times
Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine- co -ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein–encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
DOI: 10.1038/s41586-024-07130-8
2024
Cited 5 times
Compartmentalized ocular lymphatic system mediates eye–brain immunity
Abstract The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina 1 . Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.
DOI: 10.1038/nrd744
2002
Cited 294 times
Building drug delivery into tissue engineering design
DOI: 10.2165/00003088-200241060-00002
2002
Cited 253 times
Pharmacokinetics of the Carmustine Implant
DOI: 10.1021/mp8001254
2008
Cited 239 times
Controlled Surface Modification with Poly(ethylene)glycol Enhances Diffusion of PLGA Nanoparticles in Human Cervical Mucus
Drug delivery to mucosal epithelia is severely limited by the mucus gel, which is a physical diffusion barrier as well as an enzymatic barrier in some sites. Loading of drug into polymer particles can protect drugs from degradation and enhance their stability. To improve efficacy of nanoparticulate drug carriers, it has been speculated that polymers such as poly(ethylene)glycol (PEG) incorporated on the particle surface will enhance transport in mucus. In the present study, we demonstrate the direct influence of PEG on surface properties of poly(lactic-co-glycolic)acid (PLGA) nanoparticles (d = 170 ± 57 nm). PEG of various molecular weights (MW = 2, 5, 10 kDa) were incorporated at a range of densities from 5−100% on the particle surface. Our results indicate PEG addition improves dispersion, neutralize charge, and enhance particle diffusion in cervical mucus in a manner strongly dependent on polymer MW and density. Diffusion of PEGylated particles was 3−10× higher than that of unmodified PLGA particles. These findings improve the understanding of, and confirm a possible direction for, the rational design of effective carriers for mucosal drug/vaccine delivery.
DOI: 10.1016/s0169-409x(98)00021-0
1998
Cited 226 times
Materials for protein delivery in tissue engineering
The ability of protein agents to modulate cellular behaviors, such as motility, proliferation, adhesion and function, is the subject of intense research; new therapies involving proteins will likely result. Unfortunately, many proteins have short half-lives and the potential for toxicity after systemic delivery, so traditional routes of administration are not appropriate. Alternate methods for sustained delivery of these agents to the desired cells and tissues in biologically active conformations and concentrations are necessary. Techniques similar to those long used in the controlled delivery of drugs have been used to administer certain growth factors to cells and tissues; although clinical success has been limited to date, studies in animal models suggest the potential for tremendous advances in the near future. This review outlines the basic technology of controlled protein delivery using polymeric materials, and discusses some of the techniques under investigation for the efficient administration of proteins in tissue engineering.
DOI: 10.1016/j.biomaterials.2004.03.015
2005
Cited 212 times
The influence of microchannels on neurite growth and architecture
Microchannels were produced using a photolithographic technique to pattern polyimide walls (11 μm in height and 20–60 μm in width) onto a planar glass substrate. PC12 cells were seeded onto patterned surfaces. After 3 days of culture in NGF supplemented medium cells were viable and extended neurites. Culture in microchannels influenced the direction of neurite growth (θOrientation) and the complexity of PC12 cell architecture including neurite length (LNeurite), the number of neurites emerging per cell (NNeurites), and the angle at which neurites emerged from the cell soma (θSoma). In microchannels neurites oriented parallel to channel walls and the complexity of neuronal architecture was reduced. Both of these effects were strongest for cells located in channels 20–30 μm wide. Within each channel the magnitude of the effect on orientation and architecture was inversely proportional to the distance of the soma from the channel wall. Microtubule and actin filament mobility within the cytoplasm may underly effect on neurite orientation and cell architecture. By manipulating channel width the overall direction of neurite growth and the complexity of neuronal architecture was controlled. Results from these studies will be applied towards the development of biomaterials for microfluidic platforms and drug discovery studies and in neural regeneration research—two applications that would be significantly improved given the ability to control neurite orientation and the complexity of neuronal architecture.
DOI: 10.1016/j.biomaterials.2003.10.034
2004
Cited 201 times
Biomaterials with hierarchically defined micro- and nanoscale structure
Biomaterials and tissue engineering are becoming increasingly important in biomedical practice, particularly as the population ages. It is clear that cellular responses to materials depend on structural properties of the material at both the micrometer- and nanometer scale, but general methods for controlling material properties on both of these scales are lacking. Using a hierarchical approach that mimics natural material formation processes, we developed a method to produce materials with controlled physical structures at both the micrometer- and nanometer scale. Our method is based upon a pre-organized micropatterned template and conformal transformation of the architecture with nanostructured minerals, namely hydroxyapatite. The newly developed materials were biocompatible with bone cells, induced a range of desirable cellular responses, and may therefore have direct application in bone tissue engineering. In addition, the design principles employed in this study can be extrapolated to the other classes of biomedical materials, including polymers, metals, ceramics or hybrid combinations.
DOI: 10.1016/0006-8993(95)00261-n
1995
Cited 193 times
Distribution of nerve growth factor following direct delivery to brain interstitium
Several studies suggest the potential of nerve growth factor (NGF) in the treatment of patients with Alzheimer's disease. To characterize NGF transport within the brain interstitium, we implanted controlled release polymers containing NGF and [125I]NGF into the brains of adult male rats and measured spatial distributions of NGF for up to one week. NGF concentration in the brain was quantified using ELISA, radiation counting, and autoradiography. At 2 days post-implantation, quantities of NGF in excess of 50 pg per section were detected within thick (1 mm) coronal slices of the hemisphere ipsilateral to the site of implantation up to 3 mm rostral and caudal to the edge of the polymer. Lower levels of radioactivity (> 5 pg but < 50 pg NGF per section) could be detected throughout the rest of the brain. Levels were highest in the tissue sections containing the polymer, reaching 9.5 ng per section. Autoradiography of thin (20 μm) coronal sections indicated that local NGF concentrations immediately adjacent to the polymer approached 40 μg/ml. Analysis of sequential sections on the autoradiograph confirmed that NGF was transported only 2–3 mm from the polymer in any direction. At one week post-implantation, the pattern of NGF distribution was similar to that seen at 2 days, and concentrations remained high near the site of the implant. Comparison of local NGF concentration profiles to simple models of diffusion with first-order elimination suggests that the NGF moved through the tissue by diffusion through the interstitial space with a half-life on the order of 0.5 h. The limited range of NGF transport in brain tissue indicates that: (i) protein drug agents such as NGF will probably need to be delivered almost directly to the site of action for efficacy; and (ii) toxicities associated with delivery of NGF and other protein agents to non-target cells, as often occurs with systemic delivery of drugs, may be reduced by local, interstitial delivery since therapy can be restricted to a small volume of the brain.
DOI: 10.1093/oso/9780195141306.003.0009
2004
Cited 188 times
Cell Growth and Differentiation
The expansion in size of a region of tissue, often called growth, is critical to embryonic development and tissue repair. Growth of a tissue most often occurs by an increase in cell number. In fact, sequential cell division—and a resulting increase in total cell number—is the most important change of early development. As development proceeds, however, the rate of increase in cell number slows but the overall size of the organism continues to increase steadily. Growth throughout life can occur by a variety of mechanisms in addition to increased cell number; for example, increases in cell volume or extracellular volume also produce growth. The overall growth of an organ or tissue can involve multiple mechanisms. For example, in the nervous system, neurons increase in size, but not number, as a juvenile grows to adulthood. By contrast, glial cells within the nervous system divide and proliferate throughout life. Overall, however, cell proliferation (which occurs by the process of sequential cell division) is the most important feature of tissue growth. Growth is only one of the changes that occurs with development. As a child grows to adulthood, her increase in size is probably less astonishing than her overall change in behavior and ability. Underlying this overall change are dramatic alterations in function and operation of individual cells; this observation is related to the discussion in Chapter 3, in which the processes of cellular differentiation and specialization were introduced. The child develops by reference to a fixed instructional program, the genome, which somehow encodes all of the molecular signals that lead to increases in size, changes in shape, and inexorable dynamics of aging. But the child is also influenced by her environment and the opportunities for change that her environment presents. One child becomes a doctor and another a cellist; the factors and forces that nudge each down her path are not programmed by the genes alone. Similarly, differentiation of a cell is influenced by its genetic composition and the environment that surrounds it. This chapter begins with a discussion of mechanisms and kinetics of cell division. Later parts of the chapter consider some of the factors that influence cell differentiation. The relationship of cell growth during development of a normal organism and cell growth in culture is introduced in the final sections.
DOI: 10.1038/nmat1179
2004
Cited 182 times
Surface-mediated gene transfer from nanocomposites of controlled texture
DOI: 10.1016/j.biomaterials.2003.08.013
2004
Cited 182 times
Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification
Poly-d-lysine, poly-l-lysine, collagen, laminin, fibronectin, and Matrigel were compared with standard tissue grade polystyrene for their impact on the expansion and neuronal differentiation of mesenchymal stem cells (MSCs). Among these substrates, adsorption of Matrigel at 5 μg/cm2 did not enhance cell proliferation but gave rise to the highest percentage of MSC-derived neuron-like cells with the best morphological differentiation. Matrigel at a higher coating density of 50 μg/cm2 not only further enhanced the differentiation but also significantly improved cell expansion. In contrast, poly-d-lysine did not effectively support the growth of MSCs. Hence the expansion and neuronal differentiation of MSCs both depend on surface properties of the culture substrate. These results could lead to a culture process with improved yield of MSC-derived neuron-like cells and to novel biomaterials for tissue engineering.
DOI: 10.1016/j.biomaterials.2005.02.025
2005
Cited 176 times
Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting
We describe a general method for incorporating target ligands into the surface of biocompatible polyester poly(lactic-co-glycolic acid) (PLGA) 50/50 materials using fatty acids. Avidin-fatty acid conjugates were prepared and efficiently incorporated into PLGA. Avidin was chosen as an adaptor protein to facilitate the attachment of a variety of biotinylated ligands. We show that fatty acid preferentially associates with the hydrophobic PLGA matrix, rather than the external aqueous environment, facilitating a prolonged presentation of avidin over several weeks. We successfully applied this approach in both microspheres encapsulating a model protein, bovine serum albumin, and PLGA scaffolds fabricated by a salt-leaching method. Because of its ease, generality and flexibility, this strategy promises widespread utility in modifying the surface of PLGA-based materials for applications in drug delivery and tissue engineering.
DOI: 10.1016/s0169-409x(97)00036-7
1997
Cited 174 times
Polymeric implants for cancer chemotherapy
Cancer chemotherapy is not always effective. Difficulties in drug delivery to the tumor, drug toxicity to normal tissues, and drug stability in the body contribute to this problem. Polymeric materials provide an alternate means for delivering chemotherapeutic agents. When anticancer drugs are encapsulated in polymers, they can be protected from degradation. Implanted polymeric pellets or injected microspheres localize therapy to specific anatomic sites, providing a continuous sustained release of anticancer drugs while minimizing systemic exposure. In certain cases, polymeric microspheres delivered intravascularly can be targeted to specific organs or tumors. This article reviews the principles of chemotherapy using polymer implants and injectable microspheres, and summarizes recent preclinical and clinical studies of this new technology for treating cancer.
DOI: 10.1016/j.jconrel.2008.10.019
2009
Cited 173 times
Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking
Clinical application of therapeutic angiogenesis is hampered by a lack of viable systems that demonstrate controlled, sustained release of vascular endothelial growth factor (VEGF). Alginate has emerged as a popular material for VEGF delivery; however most alginate-based systems offer limited means to control the rate of VEGF release beyond reducing the VEGF:alginate ratio to suboptimal efficiency. This study describes methods to control the release of VEGF from small (< 10 μm mean diameter) alginate microparticles via the use of different ionic crosslinkers. Crosslinking with Zn2+ versus Ca2+ reduced VEGF diffusional release and the combination of discrete populations of either Zn2+- or Ca2+-crosslinked particles allowed for control over the sustained release profiles for VEGF. The particle preparations were non-toxic and VEGF was bioactive after release. These results demonstrate that ionic modulation of alginate crosslinking is a viable strategy for controlling release of VEGF while retaining the high protein:polymer ratio that makes alginate an attractive carrier for delivery of protein therapeutics.
DOI: 10.1016/j.biomaterials.2007.11.041
2008
Cited 172 times
Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model
The development of neotissue in tissue engineered vascular grafts remains poorly understood. Advances in mouse genetic models have been highly informative in the study of vascular biology, but have been inaccessible to vascular tissue engineers due to technical limitations on the use of mouse recipients. To this end, we have developed a method for constructing sub-1mm internal diameter (ID) biodegradable scaffolds utilizing a dual cylinder chamber molding system and a hybrid polyester sealant scaled for use in a mouse model. Scaffolds constructed from either polyglycolic acid or poly-l-lactic acid nonwoven felts demonstrated sufficient porosity, biomechanical profile, and biocompatibility to function as vascular grafts. The scaffolds implanted as either inferior vena cava or aortic interposition grafts in SCID/bg mice demonstrated excellent patency without evidence of thromboembolic complications or aneurysm formation. A foreign body immune response was observed with marked macrophage infiltration and giant cell formation by post-operative week 3. Organized vascular neotissue, consisting of endothelialization, medial generation, and collagen deposition, was evident within the internal lumen of the scaffolds by post-operative week 6. These results present the ability to create sub-1mm ID biodegradable tubular scaffolds that are functional as vascular grafts, and provide an experimental approach for the study of vascular tissue engineering using mouse models.
DOI: 10.1016/s0006-3495(97)78793-9
1997
Cited 166 times
Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration
Polymorphonuclear leukocyte (PMN) migration through tissue extracellular space is an essential step in the inflammatory response, but little is known about the factors influencing PMN migration through gels of extracellular matrix (ECM). In this study, PMN migration within reconstituted gels containing collagen type I or collagen type I supplemented with laminin, fibronectin, or heparin was measured by quantitative direct visualization, resulting in a random motility coefficient (mum a quantitative index for rate of cell dispersion) for the migrating cell population. The random motility coefficient in unsupplemented collagen (0.4 mg/ml) gels was approximately 9 x 10(-9) cm2/s. Supplementing gels with heparin or fibronectin produced a significant decrease in mu, even at the lowest concentrations studied (1 microgram/ml fibronectin or 0.4 microgram/ml heparin). At least 100 micrograms/ml of laminin, or 20% of the total gel protein, was required to produce a similar decrease in mu. Scanning electron microscopy revealed two different gel morphologies: laminin or fibronectin appeared to coat the 150-nm collagen fibers whereas heparin appeared to induce fiber bundle formation and, therefore, larger interstitial spaces. The decrease in mu observed in heparin-supplemented gels correlated with the increased mesh size of the fiber network, but the difference observed in mu for fibronectin- and laminin-supplemented gels did not correlate with either mesh size or the mechanical properties of the gel, as determined by rheological measurements. However, PMNs adhered to fibronectin-coated surfaces in greater numbers than to collagen- or laminin-coated surfaces, suggesting that changes in cell adhesion to protein fibers can also produce significant changes in cell motility within an ECM gel.
DOI: 10.1016/0009-2509(91)80036-x
1991
Cited 160 times
Drugs released from polymers: diffusion and elimination in brain tissue
By providing a long-term and localized source of active drug molecules, controlled release polymer implants may reduce the systematic side effects and dose-to-dose variability associated with conventional drug administration. Implants may be particularly relevant for delivery of drugs to the brain, where therapy is frequently limited by the blood brain barrier. To aid in the design and application of new delivery systems, we developed methods for modeling drug transport in tissue in the vicinity of a continuous source. Transport was assumed to occur by diffusion with elimination due to irreversible metabolism reversible binding to fixed tissue components, or partitioning into capillaries. For polymer implants where diffusion in the polymer determines the rate of drug release, the rate of drug release from the polymer, drug concentration in the tissue, and drug penetration depend on rates of elimination and diffusion. Qualitatively similar results were obtained for degradable polymers. Model predictions were also used to interpret previously published data on the delivery of the steroid dexamethasone from an ethylene—vinyl acetate copolymer implant in rat brain. In general, molecules that are water-soluble, slowly eliminated, and diffusible are the best candidates for polymeric delivery to brain tissues. In contrast to conventional modes of administration, rapid permeation of active molecules through brain capillaries is the most significant barrier to effective drug distribution in the brain.
DOI: 10.1016/j.biomaterials.2011.09.061
2012
Cited 159 times
Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors
Therapies based on RNA interference, using agents such as siRNA, are limited by the absence of safe, efficient vehicles for targeted delivery in vivo. The barriers to siRNA delivery are well known and can be individually overcome by addition of functional modules, such as conjugation of moieties for cell penetration or targeting. But, so far, it has been impossible to engineer multiple modules into a single unit. Here, we describe the synthesis of degradable nanoparticles that carry eight synergistic functions: 1) polymer matrix for stabilization/controlled release; 2) siRNA for gene knockdown; 3) agent to enhance endosomal escape; 4) agent to enhance siRNA potency; 5) surface-bound PEG for enhancing circulatory time; and surface-bound peptides for 6) cell penetration; 7) endosomal escape; and 8) tumor targeting. Further, we demonstrate that this approach can provide prolonged knockdown of PLK1 and control of tumor growth in vivo. Importantly, all elements in these octa-functional nanoparticles are known to be safe for human use and each function can be individually controlled, giving this approach to synthetic RNA-loaded nanoparticles potential in a variety of clinical applications.
DOI: 10.1016/j.jconrel.2003.11.019
2004
Cited 157 times
A self-assembled, modular DNA delivery system mediated by silica nanoparticles
Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via non-viral routes has become more desirable and advantageous. The ideal non-viral DNA delivery system should be a synthetic system that mimics viral vectors. It should also be biocompatible, efficient, and modular so that it is tunable to various applications in both research and clinical settings. The first successful step towards this modular synthetic DNA delivery system is demonstrated: a three-component transfection system mediated by silica nanoparticles. Dense silica nanoparticles serve as an uptake-enhancing component by physical concentration at the cell surface; enhanced transfection due to the particles is seen with almost every transfection reagent tested with little toxicity. In addition, a mathematical model has been built that successfully predicts several important parameters of transfection enhancement. This three-component transfection system lays the groundwork for a future multi-component modular synthetic DNA delivery system that may be useful in non-viral gene therapy and DNA vaccination.
DOI: 10.1016/s0006-3495(89)82788-2
1989
Cited 149 times
Transport rates of proteins in porous materials with known microgeometry
Many biological and biotechnological systems involve the diffusion of macromolecules through complicated macroporous (pore size on the order of 10-100 microns) environments. In this report, we present and evaluate an experimental system for measuring the rate of protein transport in an inert, macroporous membrane. For this particular membrane system, the microgeometry was characterized in terms of distribution of pore size, position, and orientation. Although the rate of protein desorption was much less than expected based on continuum diffusion models, we demonstrate that the measured transport rates are consistent with diffusion of protein in a complex, interconnected network of water-filled pores. The porous systems exhibit transitional behavior in quantitative agreement with the behavior of percolation lattices (mean square error 7%, n = 29). Predictive mathematical models of the diffusion process were developed: these models used percolation concepts to describe pore topology, continuum models of diffusion/dissolution to describe protein movement at each single pore, and measured pore size distributions. Effective diffusion coefficients for protein transport in aqueous, constricted macropores were predicted by this technique. Predicted diffusion coefficients, based on measured and derived microstructural parameters, agree with experimentally measured diffusion coefficients within a factor of 2. This approach may be useful in the design of porous polymer systems for biological applications and for evaluating other biological systems where conduction of mass, heat, momentum, or charge occurs in a heterogeneous environment.
DOI: 10.1016/s1369-7021(05)71033-6
2005
Cited 147 times
Targeted for drug delivery
The concept of targeted drugs is not new, but dates back to 1906 when Ehrlich1 first postulated the ‘magic bullet’. The durability of this concept is a strong indication of its appeal, but the ‘magic bullet’ continues to be a challenge to implement in the clinic. The challenge has been on three fronts: finding the proper target for a particular disease state; finding a drug that effectively treats this disease; and finding a means of carrying the drug in a stable form to specific sites while avoiding the immunogenic and nonspecific interactions that efficiently clear foreign material from the body. Nanoparticles are potentially useful as carriers of active drugs and, when coupled with targeting ligands, may fulfill many attributes of a ‘magic bullet’. This review focuses on targeted drug delivery using nanoparticles as a modality that couples a ligand to a nanosized, drug-loaded vehicle as a potential means to achieve increased efficacy of a drug at the site of interest.
DOI: 10.1021/ab500084g
2015
Cited 146 times
Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies
Cancer continues to be a prevalent and lethal disease, despite advances in tumor biology research and chemotherapy development. Major obstacles in cancer treatment arise from tumor heterogeneity, drug resistance, and systemic toxicities. Nanoscale delivery systems, or nanotherapies, are increasing in importance as vehicles for antineoplastic agents because of their potential for targeting and multifunctionality. We discuss the current field of cancer therapy and potential strategies for addressing obstacles in cancer treatment with nanotherapies. Specifically, we review the strategies for rationally designing nanoparticles for targeted, multimodal delivery of therapeutic agents.
DOI: 10.1002/app.1988.070350316
1988
Cited 145 times
Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal
Abstract A new method to prepare polyanhydride microspheres, namely via solvent removal, is presented. Polyanhydrides composed of the following diacids were used: sebacic acid (SA), bis ( p ‐carboxy‐phenoxy) propane (CPP), and dodecanedioic acid (DD). Polymers were characterized by infrared (IR) spectroscopy, X‐ray diffraction, viscosity, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Drug release was affected by polymer composition, physical properties of the microspheres, and type of drug. The potential for injectable microspheres (size range 1–300 μm) made of copolymer (CPP‐SA 50:50), as biodegradable polymer carriers for the controlled release of insulin in treating diabetes mellitus, was assessed. Both 5% and 10% w/w insulin‐loaded microspheres were prepared. The 10% loaded microspheres produced the best clinical response, demonstrating five days of urine glucose control and four days of serum glucose control in diabetic rats.
DOI: 10.1096/fj.11-182246
2011
Cited 137 times
Tissue‐engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel
We developed a tissue-engineered vascular graft composed of biodegradable scaffold seeded with autologous bone marrow-derived mononuclear cells (BMMCs) that is currently in clinical trial and developed analogous mouse models to study mechanisms of neovessel formation. We previously reported that seeded human BMMCs were rapidly lost after implantation into immunodeficient mice as host macrophages invaded the graft. As a consequence, the resulting neovessel was entirely of host cell origin. Here, we investigate the source of neotissue cells in syngeneic BMMC-seeded grafts, implanted into immunocompetent mouse recipients. We again find that seeded BMMCs are lost, declining to 0.02% at 14 d, concomitant with host macrophage invasion. In addition, we demonstrate using sex-mismatched chimeric hosts that bone marrow is not a significant source of endothelial or smooth muscle cells that comprise the neovessel. Furthermore, using composite grafts formed from seeded scaffold anastomosed to sex-mismatched natural vessel segments, we demonstrate that the adjacent vessel wall is the principal source of these endothelial and smooth muscle cells, forming 93% of proximal neotissue. These findings have important implications regarding fundamental mechanisms underlying neotissue formation; in this setting, the tissue-engineered construct functions by mobilizing the body's innate healing capabilities to “regenerate” neotissue from preexisting committed tissue cells.— Hibino, N., Villalona, G., Pietris, N., Duncan, D. R., Schoffner, A., Roh, J. D., Yi, T., Dobrucki, L. W., Mejias, D., Sawh-Martinez, R., Harrington, J. K., Sinusas, A., Krause, D. S., Kyriakides, T., Saltzman, W. M., Pober, J. S., Shin'oka, T., Breuer, C. K. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J. 25, 2731-2739 (2011). www.fasebj.org
DOI: 10.1158/0008-5472.can-15-2321
2016
Cited 132 times
miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer
Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype with no clinically proven biologically targeted treatment options. The molecular heterogeneity of TNBC and lack of high frequency driver mutations other than TP53 have hindered the development of new and effective therapies that significantly improve patient outcomes. miRNAs, global regulators of survival and proliferation pathways important in tumor development and maintenance, are becoming promising therapeutic agents. We performed miRNA-profiling studies in different TNBC subtypes to identify miRNAs that significantly contribute to disease progression. We found that miR-34a was lost in TNBC, specifically within mesenchymal and mesenchymal stem cell–like subtypes, whereas expression of miR-34a targets was significantly enriched. Furthermore, restoration of miR-34a in cell lines representing these subtypes inhibited proliferation and invasion, activated senescence, and promoted sensitivity to dasatinib by targeting the proto-oncogene c-SRC. Notably, SRC depletion in TNBC cell lines phenocopied the effects of miR-34a reintroduction, whereas SRC overexpression rescued the antitumorigenic properties mediated by miR-34a. miR-34a levels also increased when cells were treated with c-SRC inhibitors, suggesting a negative feedback exists between miR-34a and c-SRC. Moreover, miR-34a administration significantly delayed tumor growth of subcutaneously and orthotopically implanted tumors in nude mice, and was accompanied by c-SRC downregulation. Finally, we found that miR-34a and SRC levels were inversely correlated in human tumor specimens. Together, our results demonstrate that miR-34a exerts potent antitumorigenic effects in vitro and in vivo and suggests that miR-34a replacement therapy, which is currently being tested in human clinical trials, represents a promising therapeutic strategy for TNBC. Cancer Res; 76(4); 927–39. ©2015 AACR.
DOI: 10.1038/s41467-018-04894-2
2018
Cited 128 times
In utero nanoparticle delivery for site-specific genome editing
Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth. In utero introduction of nanoparticles containing peptide nucleic acids (PNAs) and donor DNAs corrects a disease-causing mutation in the β-globin gene in a mouse model of human β-thalassemia, yielding sustained postnatal elevation of blood hemoglobin levels into the normal range, reduced reticulocyte counts, reversal of splenomegaly, and improved survival, with no detected off-target mutations in partially homologous loci. This work may provide the basis for a safe and versatile method of fetal gene editing for human monogenic disorders.
DOI: 10.1038/ncomms7952
2015
Cited 119 times
Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium
Cystic fibrosis (CF) is a lethal genetic disorder most commonly caused by the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It is not readily amenable to gene therapy because of its systemic nature and challenges including in vivo gene delivery and transient gene expression. Here we use triplex-forming peptide nucleic acids and donor DNA in biodegradable polymer nanoparticles to correct F508del. We confirm modification with sequencing and a functional chloride efflux assay. In vitro correction of chloride efflux occurs in up to 25% of human cells. Deep-sequencing reveals negligible off-target effects in partially homologous sites. Intranasal delivery of nanoparticles in CF mice produces changes in the nasal epithelium potential difference assay, consistent with corrected CFTR function. Also, gene correction is detected in the nasal and lung tissue. This work represents facile genome engineering in vivo with oligonucleotides using a nanoparticle system to achieve clinically relevant levels of gene editing without off-target effects.
DOI: 10.1016/j.nurt.2009.01.018
2009
Cited 117 times
Nanotechnology for Delivery of Drugs to the Brain for Epilepsy
Epilepsy results from aberrant electrical activity that can affect either a focal area or the entire brain. In treating epilepsy with drugs, the aim is to decrease seizure frequency and severity while minimizing toxicity to the brain and other tissues. Antiepileptic drugs (AEDs) are usually administered by oral and intravenous routes, but these drug treatments are not always effective. Drug access to the brain is severely limited by a number of biological factors, particularly the blood—brain barrier, which impedes the ability of AEDs to enter and remain in the brain. To improve the efficacy of AEDs, new drug delivery strategies are being developed; these methods fall into the three main categories: drug modification, blood—brain barrier modification, and direct drug delivery. Recently, all three methods have been improved through the use of drug-loaded nanoparticles.
DOI: 10.1016/j.jconrel.2011.06.036
2011
Cited 116 times
In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery
Intravaginal (ivag) delivery, which is a proven way to confer local protection against STDs contracted via the reproductive tract, is complicated by the mucus gel barrier, the hormone cycle, and the harsh mucosal environment that leads to low residence-time for administered agents. Polymer delivery vehicles may be useful in overcoming these barriers. In this study, we explored the fate of nanoparticles (NP) made from poly(lactide-co-glycolide) (PLGA) in the mouse reproductive tract after ivag delivery. The nanoparticles were modified to display avidin (Avid–NP) or 2 kDa PEG (PEG–NP) on their surface. Vaginal retention fractions for both muco-adhesive Avid–NP and stealthy PEG–NP were 5× higher than unmodified PLGA particles (NP). The amount of particles associated with mucus differed across formulations (Avid–NP > NP > PEG–NP). PEG–NP was found at higher concentration in the tissue than Avid–NP and NP up to 6 h after delivery, and particles were found within epithelial cells, the underlying submucosal stromal and fibroblast cells of the vaginal tissue. Our results demonstrate that surface properties of nanoparticles can impact their fates following ivag delivery. Moreover, we show that the muco-evasive PEG-modified nanoparticles are the most effective among the delivery vehicles tested for this application.
DOI: 10.1016/j.biomaterials.2011.04.053
2011
Cited 112 times
Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides
We have developed a polymer nanoparticle-based siRNA delivery system that exploits a cell surface binding synergism between targeting ligands and cell-penetrating peptides. Nanoparticles were coated with folate and penetratin via a PEGylated phospholipid linker (DSPE-PEG): the combination of both of these ligands represents a strategy for enhancing intracellular delivery of attached polymer nanoparticles. Nanoparticles were characterized for size, morphology, density of surface modification, and ligand association and retention. The surface coverage achieved on DSPE-PEG-coated nanoparticles is as high as (or higher than) obtained with other ligand-modified nano-scale particulate systems (∼0.5-5 pmol ligand/cm²). Additionally, these nanoparticles were loaded with a high density of siRNA (∼130-140 pmol siRNA/mg nanoparticles), which is slowly released upon incubation in water. Synergies between the activity of surface binding and cell internalizing ligands on these siRNA-loaded nanoparticles impart delivery enhancements that improve their gene silencing efficacy both in culture and in tumor models. Traditionally, targeting ligands function by binding to cell surface receptors, while cell-penetrating peptides function by nonspecifically transporting across cell membranes. Interestingly, we have observed that improved delivery of these dual-functionalized nanoparticles was in part, a result of increased cell surface avidity afforded by both ligands. This siRNA delivery system presents an approach to surface modification of nanovehicles, in which multiple ligands function in parallel to enhance cell binding and uptake.
2012
Cited 107 times
Therapeutic siRNA: principles, challenges, and strategies.
RNA interference (RNAi) is a remarkable endogenous regulatory pathway that can bring about sequence-specific gene silencing. If harnessed effectively, RNAi could result in a potent targeted therapeutic modality with applications ranging from viral diseases to cancer. The major barrier to realizing the full medicinal potential of RNAi is the difficulty of delivering effector molecules, such as small interfering RNAs (siRNAs), in vivo. An effective delivery strategy for siRNAs must address limitations that include poor stability and non-targeted biodistribution, while protecting against the stimulation of an undesirable innate immune response. The design of such a system requires rigorous understanding of all mechanisms involved. This article reviews the mechanistic principles of RNA interference, its potential, the greatest challenges for use in biomedical applications, and some of the work that has been done toward engineering delivery systems that overcome some of the hurdles facing siRNA-based therapeutics.
DOI: 10.1016/j.nano.2016.01.013
2016
Cited 105 times
Cellular distribution of injected PLGA-nanoparticles in the liver
The cellular fate of nanoparticles in the liver is not fully understood. Because the effectiveness and safety of nanoparticles in liver therapy depends on targeting nanoparticles to the right cell populations, this study aimed to determine a relative distribution of PLGA-nanoparticles (sizes 271±1.4 nm) among liver cells in vivo. We found that Kupffer cells were the major cells that took up nanoparticles, followed by liver sinusoidal endothelial cells and hepatic stellate cells. Nanoparticles were found in only 7% of hepatocytes. Depletion of Kupffer cells by clodronate liposomes increased nanoparticle retention in liver sinusoidal endothelial cells and hepatic stellate cells, but not in hepatocytes. It is importantly suggested that studies of drug-loaded nanoparticle delivery to the liver have to demonstrate not only uptake of nanoparticles by the target cell type but also non-uptake by other cell types to assess their effect as well as ensure their safety.
DOI: 10.1126/scitranslmed.aam6764
2017
Cited 105 times
Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys
Anti-CD31 antibody conjugation can enhance nanoparticle accumulation in the vascular endothelium of human kidneys during ex vivo normothermic machine perfusion.
DOI: 10.1016/j.jconrel.2012.06.008
2012
Cited 98 times
Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection
Effective, low-cost, and safe treatments for sexually transmitted viral infections are urgently needed. Here, we show for the first time that intravaginal administration with nanoparticles of poly(lactic-co-glycolic acid) (PLGA) encapsulating short interfering RNA (siRNA) molecules is effective for prevention of genital HSV-2 infections in mice. PLGA nanoparticles (NPs) were designed to interfere with HSV-2 infection by siRNA-mediated knockdown of nectin, a host cell protein. NPs were characterized in vitro to determine the optimal formulation based on siRNA loading, controlled release profile, and mRNA knockdown. Mice inoculated intravaginally with a lethal dose of HSV-2, and treated with PLGA NPs, showed increased survival from ~ 9 days (in untreated mice) to > 28 days (in PLGA NP treated mice) — the longest survival ever observed with siRNA treatment in this mouse model. This work provides proof-of-concept that topical administration of NPs containing siRNA against a pathologically relevant host cell target can knockdown the gene in tissue and improve survival after HSV-2 infection. Furthermore, this system provides a safe delivery platform that employs materials that are already approved by the FDA and can be modified to enhance delivery of other microbicides.
DOI: 10.1016/j.biomaterials.2013.02.016
2013
Cited 88 times
An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds
We developed a multi-functional construct capable of controlled delivery of bioactive substances that can improve wound repair by supporting the intrinsic ability of the skin to heal. We synthesized electrospun scaffolds-composed of a blend of the degradable polymers poly(l-lactide) (PLA) or polycaprolactone (PCL)-that produce highly efficient non-viral in vivo gene delivery to cells in the wound bed, provide a protective barrier during early wound healing, and support cell migration and growth. This multi-functional material was tested for its influence on wound healing: scaffolds were loaded with plasmids encoding keratinocyte growth factor (KGF) and applied to full-thickness wounds in mice. Compared to scaffolds with control plasmids, animals receiving the KGF plasmid-loaded scaffold produced significant enhancements in wound healing, which was quantified by improvements in the rate of wound re-epithelialization, keratinocyte proliferation, and granulation response. Further, we quantified the expression level of endogenous and plasmid-derived KGF in wound samples: qRT-PCR on wound sections revealed a correlation between the levels of plasmid-derived protein expression and histological analysis of wound healing, revealing an inverse relationship between the expression level of exogenous KGF and the size of the unhealed epithelial layer in wounds. Our findings suggest that engineered nanofiber PLA/PCL scaffolds are capable of highly efficient controlled DNA delivery and are promising materials for treatment of cutaneous wounds.
DOI: 10.1016/j.actbio.2015.11.029
2016
Cited 81 times
Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization
The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2 h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24 h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery.
DOI: 10.1038/ncomms15322
2017
Cited 80 times
Surface chemistry governs cellular tropism of nanoparticles in the brain
Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with 'stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.
DOI: 10.1016/j.molmed.2018.05.003
2018
Cited 80 times
Focus on Fundamentals: Achieving Effective Nanoparticle Targeting
Successful molecular targeting of nanoparticle drug carriers can enhance therapeutic specificity and reduce systemic toxicity. Typically, ligands specific for cognate receptors expressed on the intended target cell type are conjugated to the nanoparticle surface. This approach, often called active targeting, seems to imply that the conjugated ligand imbues the nanoparticle with homing capacity. However, ligand-receptor interactions are mediated by short-range forces and cannot produce magnetic-like attraction over larger distances. Successful targeting actually involves two key characteristics: contact of the nanoparticle with the intended target cell and subsequent ligand-mediated retention at the site. Here we propose a conceptual framework, based on recent literature combined with basic principles of molecular interactions, to guide rational design of nanoparticle targeting strategies.
DOI: 10.1016/j.biomaterials.2019.02.016
2019
Cited 79 times
Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma
Glioblastoma (GBM) is the most common and deadly form of malignant brain tumor in the United States, and current therapies fail to provide significant improvement in survival. Local delivery of nanoparticles is a promising therapeutic strategy that bypasses the blood-brain barrier, minimizes systemic toxicity, and enhances intracranial drug distribution and retention. Here, we developed nanoparticles loaded with agents that inhibit miR-21, an oncogenic microRNA (miRNA) that is strongly overexpressed in GBM compared to normal brain tissue. We synthesized, engineered, and characterized two different delivery systems. One was designed around an anti-miR-21 composed of RNA and employed a cationic poly(amine-co-ester) (PACE). The other was designed around an anti-miR-21 composed of peptide nucleic acid (PNA) and employed a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). We show that both nanoparticle products facilitate efficient intracellular delivery and miR-21 suppression that leads to PTEN upregulation and apoptosis of human GBM cells. Further, when administered by convection-enhanced delivery (CED) to animals with intracranial gliomas, they both induced significant miR-21 knockdown and provided chemosensitization, resulting in improved survival when combined with chemotherapy. The challenges involved in optimizing the two delivery systems differed, and despite offering distinct advantages and limitations, results showed significant therapeutic efficacy with both methods of treatment. This study demonstrates the feasibility and promise of local administration of miR-21 inhibiting nanoparticles as an adjuvant therapy for GBM.
DOI: 10.1038/s41467-017-00297-x
2017
Cited 77 times
Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells
Human endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells. Here, we report the development of small interfering RNA-releasing poly(amine-co-ester) nanoparticles, distinguished by their high content of a hydrophobic lactone. We show that a single transfection of small interfering RNA targeting class II transactivator attenuates major histocompatibility complex class II expression on endothelial cells for at least 4 to 6 weeks after transplantation into immunodeficient mouse hosts. Furthermore, silencing of major histocompatibility complex class II reduces allogeneic T-cell responses in vitro and in vivo. These data suggest that poly(amine-co-ester) nanoparticles, potentially administered during ex vivo normothermic machine perfusion of human organs, could be used to modify endothelial cells with a sustained effect after transplantation.The use of gene silencing techniques in the treatment of post-transplantation host rejection is not long lasting and can have systemic effects. Here, the authors utilize a nanocarrier for siRNA for treatment of arteries ex vivo prior to implantation subsequently attenuating immune reaction in vivo.
DOI: 10.1021/acs.nanolett.9b04426
2020
Cited 63 times
Quantitating Endosomal Escape of a Library of Polymers for mRNA Delivery
Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine-co-ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency (R2 = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency in vitro also showed good transfection efficiency in vivo, and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.
DOI: 10.1016/j.jconrel.2021.05.038
2021
Cited 59 times
Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles
Non-viral vehicles hold therapeutic promise in advancing the delivery of a variety of cargos in vitro and in vivo, including small molecule drugs, biologics, and especially nucleic acids. However, their efficacy at the cellular level is limited by several delivery barriers, with endolysosomal degradation being most significant. The entrapment of vehicles and their cargo in the acidified endosome prevents access to the cytosol, nucleus, and other subcellular compartments. Understanding the factors that contribute to uptake and intracellular trafficking, especially endosomal entrapment and release, is key to overcoming delivery obstacles within cells. In this review, we summarize and compare experimental techniques for assessing the extent of endosomal escape of a variety of non-viral vehicles and describe proposed escape mechanisms for different classes of lipid-, polymer-, and peptide-based delivery agents. Based on this evaluation, we present forward-looking strategies utilizing information gained from mechanistic studies to inform the rational design of efficient delivery vehicles.
DOI: 10.1126/sciadv.abq7459
2023
Cited 12 times
Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy
Glioblastoma (GBM) is one of the most lethal malignancies with poor survival and high recurrence rates. Here, we aimed to simultaneously target oncomiRs 10b and 21, reported to drive GBM progression and invasiveness. We designed short (8-mer) γ-modified peptide nucleic acids (sγPNAs), targeting the seed region of oncomiRs 10b and 21. We entrapped these anti-miR sγPNAs in nanoparticles (NPs) formed from a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). The surface of the NPs was functionalized with aldehydes to produce bioadhesive NPs (BNPs) with superior transfection efficiency and tropism for tumor cells. When combined with temozolomide, sγPNA BNPs administered via convection-enhanced delivery (CED) markedly increased the survival (>120 days) of two orthotopic (intracranial) mouse models of GBM. Hence, we established that BNPs loaded with anti-seed sγPNAs targeting multiple oncomiRs are a promising approach to improve the treatment of GBM, with a potential to personalize treatment based on tumor-specific oncomiRs.
DOI: 10.1023/a:1014870102295
1999
Cited 152 times
Controlled DNA delivery systems.
DOI: 10.1016/s0168-3659(03)00133-0
2003
Cited 137 times
Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties
Dexamethasone-loaded poly(ethylene-co-vinyl acetate) (EVAc) nanocomposites were fabricated via solution-casting with three different organosilicates for study in a drug delivery system. X-ray diffraction (XRD) showed that all three nanocomposites were in an intercalated morphology. Release studies of dexamethasone into phosphate-buffered saline revealed that the presence of silicates reduced the rate of drug release, and this reduction was a function of volume fraction of silicate in the composite, as well as the aspect ratio of the silicate layers. It was also found that the presence of silicate in a nanocomposite resulted in an increase in the Young's modulus as compared to the pure polymer, and this increase was also a function of the volume fraction of silicate present as well as the aspect ratio of the silicate layers. Silicates are a viable additive to EVAc drug delivery systems, providing controlled release characteristics as well as enhanced mechanical properties in an economically and biologically safe manner.
DOI: 10.1038/nbt1001-934
2001
Cited 131 times
Transplantation of brain cells assembled around a programmable synthetic microenvironment
2001
Cited 128 times
Drug Delivery: Engineering Principles for Drug Therapy
Synthetic materials are a tremendous potential resource for treating human disease. For the rational design of many of these biomaterials it is necessary to have an understanding of polymer chemistry and polymer physics. Equally important to those two fields is a quantitative understanding of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations. This book is a synthesis of these principles, providing a working foundation for those in the field of drug delivery. It covers advanced drug delivery and contemporary biomaterials.
DOI: 10.1016/j.biomaterials.2004.09.053
2005
Cited 120 times
Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels
Hydrogels with tissue-like mechanical properties are highly attractive scaffolds for tissue engineering. In this study, copolymers containing vinyl phosphonic acid (VPA) and acrylamide (AM) were tested for their swelling, protein uptake in serum supplemented medium, and cell adhesion and proliferation. The swelling of the gels in serum containing culture medium increased with increasing VPA content. The presence of VPA also increased protein uptake of gels in medium; gels polymerized with more than 50% of VPA absorbed as much as 100 μg/cm2 of protein, twice the amount absorbed by gels made with only acrylamide. The adhesion and growth of the three types of cells, NIH 3T3 fibroblast, osteoblast-like MG-63 and Saos-2, were significantly improved on the gels made with 50% or more VPA; the number of adherent Mg-63 cells increased three-fold while the growth rate increased four-fold. Similar results were obtained for Saos-2 and 3T3 cells. The adhesion and growth of the three cell types on gels with sufficient phosphonate content were at least comparable to, or even better than, that on commercially available tissue culture plates. These results suggest great potential of anionic gels in bone tissue engineering.
DOI: 10.1016/s0142-9612(02)00074-1
2002
Cited 117 times
Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry
Controlling cell responses to an implantable material is essential to tissue engineering. Because the surface is in direct contact with cells, both chemical and topographical properties of a material surface can play a crucial role. In this study, parallel ridges/grooves were micropatterned on glass surfaces using photosensitive polyimide to create transparent substrates. The migratory behavior of live human neutrophils on the patterned surfaces was observed using a light microscope with transmitted light source. The width (2 microm) and length (400 microm) of the ridges were kept constant. The height (5 or 3 microm) and the repeat spacing (6-14 microm) of the ridges were systematically changed to investigate the effect of microgeometry on neutrophil migration. In addition, the effect of surface chemistry on neutrophil migration was studied by deposition of a thin layer of "inert", biocompatible metal such as Au-Pd alloy and titanium on patterned substrates. More than 95% of neutrophils moved in the direction of the long axis of ridges/grooves regardless of the topographical geometry and chemistry, consistent with a phenomenon termed "contact guidance". Therefore, cell migration was characterized using a one-dimensional persistent random walk. The rate of cell movement was strongly dependent on the topographical microgeometry of the ridges. The random motility coefficient mu, 9.8 x 10(-9) cm2/s, was the greatest at a ridge height of 5 microm and spacing of 10 microm, about 10 times faster than on smooth glass surface. The Au-Pd coating did not change neutrophil migratory behavior on patterned surfaces, whereas titanium decreased cell motility substantially. The results of this study suggest that optimization of both surface chemistry and topography may be important when designing biomaterials for tissue engineering. In addition, parallel ridges/grooves can be used to control the direction and rate of cell migration on the surface.
DOI: 10.1016/j.jconrel.2005.11.018
2006
Cited 116 times
Fabrication and characterization of microfluidic probes for convection enhanced drug delivery
Convection enhanced drug delivery (CED) is a promising therapeutic method for treating diseases of the brain by enhancing the penetration of drugs. Most controlled release delivery methods rely on diffusion from a source to transport drugs throughout tissue. CED relies on direct infusion of drugs into tissue at a sufficiently high rate so that convective transport of drug is at least as important as diffusive transport. This work describes the fabrication and characterization of microfluidic probes for CED protocols and the role diffusion plays in determining penetration. Microfluidic channels were formed on silicon substrates by employing a sacrificial photoresist layer encased in a parylene structural layer. Flow in the microchannels was characterized by applying constant upstream pressures from 35 to 310 kPa, which resulted in flow rates of 0.5-4.5 microL/min. The devices were used to infuse Evans Blue and albumin in hydrogel brain phantoms. The results of these infusions were compared to a simple convection-diffusion model for infusions into porous media. In vivo infusions of albumin were performed in the gray matter of rats at upstream pressures of 35, 70, and 140 kPa. The microfabricated probes show reduced evidence of backflow along the device-tissue interface when compared with conventional needles used for CED.
DOI: 10.1016/j.addr.2008.09.006
2009
Cited 107 times
Mathematical modeling of molecular diffusion through mucus
The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia.
DOI: 10.1021/bp049648w
2008
Cited 104 times
Cellular Fate of a Modular DNA Delivery System Mediated by Silica Nanoparticles
Development of efficient molecular medicines, including gene therapeutics, RNA therapeutics, and DNA vaccines, depends on efficient means of transfer of DNA or RNA into the cell. Potential problems, including toxicity and immunogenicity, surrounding viral methods of DNA delivery have necessitated the use of nonviral, synthetic carriers. To better design synthetic carriers, or transfection reagents, the modular design of viruses has inspired a modular approach to DNA and RNA delivery. Each modular component can be designed to circumvent each of the many barriers. The modular approach will allow modification of individual components for a specific application. By utilizing a dense silica nanoparticle to form a ternary complex, transfection efficiency of a DNA-transfection reagent complex was increased by a factor of approximately 10 by concentrating the DNA at the surface of cells. Surface modification of the silica nanoparticles allowed determination of the cellular uptake mechanism with only minor alteration of transfection efficiency. Nanoparticles are internalized by an endosome-lysosomal route followed by perinuclear accumulation. The modification mechanism confirms that surface modification of the modular system can allow specific moieties to be incorporated into the modular system without significant alteration of the transfection efficiency. By showing that the modular system based upon concentration of DNA at the level of the cell can be used to increase transfection efficiency, we have shown that further modification of the system may better target DNA delivery and overcome other barriers of DNA expression.
DOI: 10.1016/j.biomaterials.2009.06.061
2009
Cited 103 times
Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery
In this study, we show that degradable particles of a hydrophobic polymer can effectively deliver drugs to tumors after i.v. administration. Free-standing nanoparticles with diameters of 100-300 nm were successfully fabricated from highly hydrophobic, biodegradable poly(omega-pentadecalactone-co-butylene-co-succinate) (PPBS) copolyesters. PPBS copolymers with various compositions (20-80 mol% PDL unit contents) were synthesized via copolymerization of omega-pentadecalactone (PDL), diethyl succinate (DES), and 1,4-butanediol (BD) using Candida antarctica lipase B (CALB) as the catalyst. Camptothecin (CPT, 12-22%) was loaded into PPBS nanoparticles with high encapsulation efficiency (up to 96%) using a modified oil-in-water single emulsion technique. The CPT-loaded nanoparticles had a zeta potential of about -10 mV. PPBS particles were non-toxic in cell culture. Upon encapsulation, the active lactone form of CPT was remarkably stabilized and no lactone-to-carboxylate structural conversion was observed for CPT-loaded PPBS nanoparticles incubated in both phosphate-buffered saline (PBS, pH=7.4) and DMEM medium for at least 24 h. In PBS at 37 degrees C, CPT-loaded PPBS nanoparticles showed a low burst CPT release (20-30%) within the first 24 h followed by a sustained, essentially complete, release of the remaining drug over the subsequent 40 days. Compared to free CPT, CPT-loaded PPBS nanoparticles showed a significant enhancement of cellular uptake, higher cytotoxicity against Lewis lung carcinoma and 9L cell lines in vitro, a longer circulation time, and substantially better antitumor efficacy in vivo. These results demonstrate the potential of PPBS nanoparticles as long-term stable and effective drug delivery systems in cancer therapy.
DOI: 10.1016/j.biomaterials.2008.06.027
2008
Cited 101 times
Multilayer nanofilms as substrates for hepatocellular applications
Multilayer nanofilms, formed by the layer-by-layer (LbL) adsorption of positively and negatively charged polyelectrolytes, are promising substrates for tissue engineering. We investigate here the attachment and function of hepatic cells on multilayer films in terms of film composition, terminal layer, rigidity, charge, and presence of biofunctional species. Human hepatocellular carcinoma (HepG2) cells, adult rat hepatocytes (ARH), and human fetal hepatoblasts (HFHb) are studied on films composed of the polysaccharides chitosan (CHI) and alginate (ALG), the polypeptides poly(l-lysine) (PLL) and poly(l-glutamic acid) (PGA), and the synthetic polymers poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). The influence of chemical cross-linking following LbL assembly is also investigated. We find HepG2 to reach confluence after 7 days of culture on only 2 of 18 candidate multilayer systems: (PAH–PSS)n (i.e. nPAH–PSS bilayers) and cross-linked (PLL–ALG)n–PLL. Cross-linked PLL–ALG and PLL–PGA films support attachment and function of ARH, independently of the terminal layer, provided collagen is adsorbed to the top of the film. (PAH–PSS)n, cross-linked (PLL–ALG)n, and cross-linked (PLL–PGA)n–PLL films all support attachment, layer confluence, and function of HFHb, with the latter film promoting the greatest level of function at 8 days. Overall, film composition, terminal layer, and rigidity are key variables in promoting attachment and function of hepatic cells, while film charge and biofunctionality are somewhat less important. These studies reveal optimal candidate multilayer biomaterials for human liver tissue engineering applications.
DOI: 10.1016/j.jconrel.2008.04.002
2008
Cited 100 times
High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine
Poly(lactic-co-glycolic acid) (PLGA) particles have been widely explored as vehicles for delivery of plasmid DNA to mammalian cells both in vitro and in vivo. Achieving high incorporation efficiencies and control over release kinetics are significant challenges in encapsulating hydrophilic molecules such as DNA within submicron particles fabricated from PLGA. This study explored two modifications in the preparation of submicron particles to specifically address these challenges. Firstly, we compared homogenization and sonication as energy sources for emulsification. It was demonstrated that particles prepared with homogenization resulted in higher encapsulation efficiency and a linear release profile of DNA as compared to particles prepared with sonication, which exhibited lower encapsulation efficiency and a burst release. Also investigated was conjugation of poly-L-lysine to PLGA (PLGA–PLL) to create an electrostatically favorable interaction between the carrier material and the DNA. Particles fabricated with high weight percentages of PLGA–PLL/PLGA resulted in remarkably increased loading (> 90%). Additionally, the release profile could be dictated by the quantity of PLGA–PLL incorporated into the particles. Particles incubated in vitro on COS-7 cells were able to transfect cells. These results demonstrated that DNA encapsulation and release were modulated by the method of fabrication.
DOI: 10.1016/j.brainres.2007.08.050
2007
Cited 95 times
Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles
This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.
DOI: 10.1038/mt.2010.200
2011
Cited 85 times
Nanoparticles Deliver Triplex-forming PNAs for Site-specific Genomic Recombination in CD34+ Human Hematopoietic Progenitors
Triplex-forming peptide nucleic acids (PNAs) are powerful gene therapy agents that can enhance recombination of short donor DNAs with genomic DNA, leading to targeted and specific correction of disease-causing genetic mutations. Therapeutic use of PNAs is severely limited, however, by challenges in intracellular delivery, particularly in clinically relevant targets such as hematopoietic stem and progenitor cells. Here, we demonstrate efficient and nontoxic PNA-mediated recombination in human CD34(+) cells using poly(lactic-co-glycolic acid) (PLGA) nanoparticles for intracellular oligonucleotide delivery. Treatment of progenitor cells with nanoparticles loaded with PNAs and DNAs targeting the β-globin locus led to levels of site-specific modification in the range of 0.5-1% in a single treatment, without detectable loss in cell viability, resulting in a 60-fold increase in modified and viable cells as compared to nucleofection. As well, the differentiation capacity of the progenitor cells treated with nanoparticles did not change relative to untreated progenitor cells, indicating that nanoparticles are safe and minimally disruptive delivery vectors for PNAs and DNAs to mediate gene modification in human primary cells. This is the first demonstration of the use of biodegradable nanoparticles to deliver genome-editing agents to human primary cells, and provides a strong rationale for systemic delivery of complex nucleic acid mixtures designed for gene correction.
DOI: 10.1021/mp300081s
2012
Cited 83 times
Polymer Nanoparticle-Mediated Delivery of MicroRNA Inhibition and Alternative Splicing
The crux of current RNA-based therapeutics relies on association of synthetic nucleic acids with cellular RNA targets. Antisense oligonucleotide binding to mature microRNA and splicing junctions on pre-mRNA represent methods of gene therapy that respectively inhibit microRNA-mediated gene regulation and induce alternative splicing. We have developed biodegradable polymer nanoparticles, which are coated with cell-penetrating peptides, that can effectively deliver chemically modified oligonucleotide analogues to achieve these forms of gene regulation. We found that this nanoparticle system could block the activity of the oncogenic microRNA, miR-155, as well as modulate splicing to attenuate the expression of the proto-oncogene, Mcl-1. Regulation of these genes in human cancer cells reduced cell viability and produced pro-apoptotic effects. These findings establish polymer nanoparticles as delivery vectors for nonconventional forms of gene therapy activated by cellular delivery of RNA-targeted molecules, which have strong therapeutic implications.
DOI: 10.1016/j.biomaterials.2010.01.014
2010
Cited 78 times
Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization
Transplantation of endothelial cells (EC) for therapeutic vascularization is a promising approach in tissue engineering but has yet to be proven effective in clinical trials. This cell-based therapy is hindered by significant apoptosis of EC upon transplantation as well as poor recruitment of host mural cells to stabilize nascent vessels. Here, we address these deficiencies by augmenting endothelial cell transplantation with dual delivery of vascular endothelial growth factor (VEGF) - to improve survival of transplanted EC - and monocyte chemotactic protein-1 (MCP-1) - to induce mural cell recruitment. We produced alginate microparticles that deliver VEGF and MCP-1 with distinct release kinetics and that can be integrated into a collagen/fibronectin (protein) gel construct for delivery of EC. Combined delivery of VEGF and MCP-1 increased functional vessel formation from transplanted EC and also led to a higher number of smooth muscle cell-invested vessels than did EC therapy alone. Despite the well-known role of MCP-1 in inflammation, these beneficial effects were accomplished without a long-term increase in monocyte/macrophage recruitment or a shift to a pro-inflammatory (M1) macrophage phenotype. Overall, these data suggest a potential benefit of combined delivery of MCP-1 and VEGF from EC-containing hydrogels as a strategy for therapeutic vascularization.
DOI: 10.3109/1061186x.2015.1065833
2015
Cited 76 times
Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue
Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood–brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One NP produced significantly higher brain uptake (∼0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects.
DOI: 10.1016/j.jconrel.2012.09.020
2012
Cited 75 times
Surface modified poly(β amino ester)-containing nanoparticles for plasmid DNA delivery
The use of biodegradable polymers provides a potentially safe and effective alternative to viral and liposomal vectors for the delivery of plasmid DNA to cells for gene therapy applications. In this work we describe the formulation of a novel nanoparticle (NP) system containing a blend of poly(lactic-co-glycolic acid) and a representative poly(beta-amino) ester (PLGA and PBAE respectively) for use as gene delivery vehicles. Particles of different weight/weight (wt/wt) ratios of the two polymers were characterized for size, morphology, plasmid DNA (pDNA) loading and surface charge. NPs containing PBAE were more effective at cellular internalization and transfection (COS-7 and CFBE41o-) than NPs lacking the PBAE polymer. However, along with these delivery benefits, PBAE exhibited cytotoxic effects that presented an engineering challenge. Surface coating of these blended particles with the cell-penetrating peptides (CPPs) mTAT, bPrPp and MPG via a PEGylated phospholipid linker (DSPE-PEG2000) resulted in NPs that reduced surface charge and cellular toxicity to levels comparable with NPs formulated with only PLGA. Additionally, these coated nanoparticles showed an improvement in pDNA loading, intracellular uptake and transfection efficiency, when compared to NPs lacking the surface coating. Although all particles with a CPP coating outperformed unmodified NPs, respectively, bPrPp and MPG coating resulted in 3 and 4.5× more pDNA loading than unmodified particles and approximately an order of magnitude improvement on transfection efficiency in CFBE41o- cells. These results demonstrate that surface-modified PBAE containing NPs are a highly effective and minimally toxic platform for pDNA delivery.
DOI: 10.1038/gt.2012.82
2012
Cited 71 times
Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo
In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg-Prkdc(scid)IL2rγ(tm1Wjl) (abbreviated NOD-scid IL2rγ(null)) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules. In vitro screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human CCR5 gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed in vivo modification of the CCR5 gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous CCR2 gene was two orders of magnitude lower. We also induced specific modification in the β-globin gene using nanoparticles carrying β-globin-targeted PNAs/DNAs, demonstrating this method's versatility. In vivo testing in an enhanced green fluorescent protein-β-globin reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct in vivo gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated ex vivo.
DOI: 10.1161/circresaha.117.306290
2015
Cited 68 times
Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9
The participation of endothelial cells (EC) in many physiological and pathological processes is widely modeled using human EC cultures, but genetic manipulation of these untransformed cells has been technically challenging. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) technology offers a promising new approach. However, mutagenized cultured cells require cloning to yield homogeneous populations, and the limited replicative lifespan of well-differentiated human EC presents a barrier for doing so.To create a simple but highly efficient method using CRISPR/Cas9 to generate biallelic gene disruption in untransformed human EC.To demonstrate proof-of-principle, we used CRISPR/Cas9 to disrupt the gene for the class II transactivator. We used endothelial colony forming cell-derived EC and lentiviral vectors to deliver CRISPR/Cas9 elements to ablate EC expression of class II major histocompatibility complex molecules and with it, the capacity to activate allogeneic CD4(+) T cells. We show the observed loss-of-function arises from biallelic gene disruption in class II transactivator that leaves other essential properties of the cells intact, including self-assembly into blood vessels in vivo, and that the altered phenotype can be rescued by reintroduction of class II transactivator expression.CRISPR/Cas9-modified human EC provides a powerful platform for vascular research and for regenerative medicine/tissue engineering.
DOI: 10.1073/pnas.1523141113
2016
Cited 65 times
Improved i.p. drug delivery with bioadhesive nanoparticles
The i.p. administration of chemotherapy in ovarian and uterine serous carcinoma patients by biodegradable nanoparticles may represent a highly effective way to suppress peritoneal carcinomatosis. However, the efficacy of nanoparticles loaded with chemotherapeutic agents is currently hampered by their fast clearance by lymphatic drainage. Here, we show that a unique formulation of bioadhesive nanoparticles (BNPs) can interact with mesothelial cells in the abdominal cavity and significantly extend the retention of the nanoparticles in the peritoneal space. BNPs loaded with a potent chemotherapeutic agent [epothilone B (EB)] showed significantly lower systemic toxicity and higher therapeutic efficacy against i.p. chemotherapy-resistant uterine serous carcinoma-derived xenografts compared with free EB and non-BNPs loaded with EB.
DOI: 10.1016/j.biomaterials.2013.10.046
2014
Cited 63 times
The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus
Targeting dendritic cells with nanoparticles is an attractive modality for instigating immunity or inducing immunosuppression. An important aspect of successful delivery of antigen and immune modulators to these cells is the efficacy of nanoparticle internalization, which can dictate the strength and robustness of immune responses; optimizing particulate uptake is thus key. We compared the internalization of two nanoparticulate platforms: a vesicular "nanogel" platform with a lipid exterior, and the widely-used solid biodegradable poly(lactic-co-glycolic acid) (PLGA) system. We found that nanogels were more effectively internalized by dendritic cells in vitro, as demonstrated by fluorescent tracer measurements. Additionally, the magnitude of dendritic cell immunosuppression achieved by nanogels loaded with mycophenolic acid, an immunosuppressant, was greater than similarly drug-loaded PLGA. Although both types of particles could mitigate the production of inflammatory cytokines and the up-regulation of stimulatory surface markers, nanogels yielded greater reductions. These in vitro measurements correlated with in vivo efficacy, where immunosuppressive therapy with nanogels extended the survival of lupus-prone NZB/W F1 mice whereas PLGA particles did not. Our results highlight the importance of material on nanoparticle uptake by dendritic cells, which impacts the quality of therapeutic immunosuppression.
DOI: 10.1172/jci.insight.85293
2016
Cited 60 times
Blocking MHC class II on human endothelium mitigates acute rejection
Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell-mediated destruction in vivo. We conclude that human CD8+ TEM-mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules.
DOI: 10.1016/j.biomaterials.2017.08.029
2017
Cited 58 times
Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir
New methods for long-lasting protection against sexually transmitted disease, such as the human immunodeficiency virus (HIV), are needed to help reduce the severity of STD epidemics, especially in developing countries. Intravaginal delivery of therapeutics has emerged as a promising strategy to provide women with local protection, but residence times of such agents are greatly reduced by the protective mucus layer, fluctuating hormone cycle, and complex anatomical structure of the reproductive tract. Polymeric nanoparticles (NPs) capable of encapsulating the desired cargo, penetrating through the mucosal surfaces, and delivering agents to the site of action have been explored. However, prolonged retention of polymer carriers and their enclosed materials may also be needed to ease adherence and confer longer-lasting protection against STDs. Here, we examined the fate of two poly (lactic acid)-hyperbranched polyglycerols (PLA-HPG) NP formulations – 1) nonadhesive PLA-HPG NPs (NNPs) and 2) surface-modified bioadhesive NPs (BNPs) – loaded with the antiretroviral elvitegravir (EVG) after intravaginal administration. BNP distribution was widespread throughout the reproductive tract, and retention was nearly 5 times higher than NNPs after 24 h. Moreover, BNPs were found to be highly associated with submucosal leukocytes and epithelial cell populations for up to 48 h after topical application, and EVG was retained significantly better in the vaginal lumen when delivered with BNPs as opposed to NNPs over a 24 h period. Our results suggest that bioadhesive PLA-HPG NPs can greatly improve and prolong intravaginal delivery of agents, which may hold potential in providing sustained protection over longer durations.
DOI: 10.1016/j.omtn.2017.09.001
2017
Cited 58 times
Anti-tumor Activity of miniPEG-γ-Modified PNAs to Inhibit MicroRNA-210 for Cancer Therapy
MicroRNAs (miRs) are frequently overexpressed in human cancers. In particular, miR-210 is induced in hypoxic cells and acts to orchestrate the adaptation of tumor cells to hypoxia. Silencing oncogenic miRs such as miR-210 may therefore offer a promising approach to anticancer therapy. We have developed a miR-210 inhibition strategy based on a new class of conformationally preorganized antisense γ peptide nucleic acids (γPNAs) that possess vastly superior RNA-binding affinity, improved solubility, and favorable biocompatibility. For cellular delivery, we encapsulated the γPNAs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). Our results show that γPNAs targeting miR-210 cause significant delay in growth of a human tumor xenograft in mice compared to conventional PNAs. Further, histopathological analyses show considerable necrosis, fibrosis, and reduced cell proliferation in γPNA-treated tumors compared to controls. Overall, our work provides a chemical framework for a novel anti-miR therapeutic approach using γPNAs that should facilitate rational design of agents to potently inhibit oncogenic microRNAs.
DOI: 10.3390/molecules23030632
2018
Cited 56 times
Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing
Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies.
DOI: 10.1016/j.biomaterials.2016.07.037
2016
Cited 55 times
PEGylated squalenoyl-gemcitabine nanoparticles for the treatment of glioblastoma
New treatments for glioblastoma multiforme (GBM) are desperately needed, as GBM prognosis remains poor, mainly due to treatment resistance, poor distribution of therapeutics in the tumor tissue, and fast metabolism of chemotherapeutic drugs in the brain extracellular space. Convection-enhanced delivery (CED) of nanoparticles (NPs) has been shown to improve the delivery of chemotherapeutic drugs to the tumor bed, providing sustained release, and enhancing survival of animals with intracranial tumors. Here we administered gemcitabine, a nucleoside analog used as a first line treatment for a wide variety of extracranial solid tumors, within squalene-based NPs using CED, to overcome the above-mentioned challenges of GBM treatment. Small percentages of poly(ethylene) glycol (PEG) dramatically enhanced the distribution of squalene-gemcitabine nanoparticles (SQ-Gem NPs) in healthy animals and tumor-bearing animals after administration by CED. When tested in an orthotopic model of GBM, SQ-Gem-PEG NPs demonstrated significantly improved therapeutic efficacy compared to free gemcitabine, both as a chemotherapeutic drug and as a radiosensitizer. Furthermore, MR contrast agents were incorporated into the SQ-Gem-PEG NP formulation, providing a way to non-invasively track the NPs during infusion.
DOI: 10.1016/j.biomaterials.2018.05.043
2018
Cited 49 times
A “top-down” approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery
Gene delivery is known to be a complicated multi-step biological process. It has been observed that subtle differences in the structure and properties of polymeric materials used for gene delivery can lead to dramatic differences in transfection efficiency. Therefore, screening of properties is pivotal to optimizing the polymer. So far, most polymeric materials are built in a “bottom-up” manner, i.e. synthesized from monomers that allow modification of polymer composition or structural factors. With this method, we previously synthesized and screened a library of biodegradable poly(amine-co-ester) (PACE) terpolymers for optimized DNA delivery. However, it can be tedious and time consuming to synthesize a polymer library for screening, particularly when small changes of a factor need to be tested, when multiple factors are involved, and when the effects of different factors are synergistic. In the present work, we evaluate the potential of PACE to deliver mRNA. After observing that mRNA transfection efficiency was highly dependent on both end group composition and molecular weight (MW) of PACE in a synergistic manner, we developed a “top-down” process we called actuation, to simultaneously vary these two factors. Some of the actuated PACE (aPACE) materials presented superior mRNA delivery properties compared to regular PACE, with up to a 106-fold-increase in mRNA transfection efficiency in vitro. Moreover, when aPACE was used to deliver mRNA coding for erythropoietin (EPO) in vivo, it produced high levels of EPO in the blood for up to 48 h without inducing systemic toxicity. This polymer constitutes a new delivery vehicle for mRNA-based treatments that provides safe yet potent protein production.
DOI: 10.1158/0008-5472.can-18-0505
2018
Cited 48 times
Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors
Abstract Asparagine (N)-linked glycosylation is a posttranslational modification essential for the function of complex transmembrane proteins. However, targeting glycosylation for cancer therapy has not been feasible due to generalized effects on all glycoproteins. Here, we perform sensitivity screening of 94 lung cancer cell lines using NGI-1, a small-molecule inhibitor of the oligosaccharyltransferase (OST) that partially disrupts N-linked glycosylation, and demonstrate a selective loss of tumor cell viability. This screen revealed NGI-1 sensitivity in just 11 of 94 (12%) cell lines, with a significant correlation between OST and EGFR inhibitors. In EGFR-mutant non-small cell lung cancer with EGFR tyrosine kinase inhibitor (TKI) resistance (PC9-GR, HCC827-GR, and H1975-OR), OST inhibition maintained its ability to induce cell-cycle arrest and a proliferative block. Addition of NGI-1 to EGFR TKI treatment was synthetic lethal in cells resistant to gefitinib, erlotinib, or osimertinib. OST inhibition invariably disrupted EGFR N-linked glycosylation and reduced activation of receptors either with or without the T790M TKI resistance mutation. OST inhibition also dissociated EGFR signaling from other coexpressed receptors like MET via altered receptor compartmentalization. Translation of this approach to preclinical models was accomplished through synthesis and delivery of NGI-1 nanoparticles, confirmation of in vivo activity through molecular imaging, and demonstration of significant tumor growth delay in TKI-resistant HCC827 and H1975 xenografts. This therapeutic strategy breaks from kinase-targeted approaches and validates N-linked glycosylation as an effective target in tumors driven by glycoprotein signaling. Significance: EGFR-mutant NSCLC is incurable despite the marked sensitivity of these tumors to EGFR TKIs. These findings identify N-linked glycosylation, a posttranslational modification common to EGFR and other oncogenic signaling proteins, as an effective therapeutic target that enhances tumor responses for EGFR-mutant NSCLC. Cancer Res; 78(17); 5094–106. ©2018 AACR.
DOI: 10.3390/molecules25030735
2020
Cited 44 times
Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair
Unusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects. Advances in molecular design, chemical modification, and delivery have enabled systemic in vivo application of PNAs resulting in detectable editing in preclinical mouse models. In a model of β-thalassemia, treated animals demonstrated clinically relevant protein restoration and disease phenotype amelioration, suggesting a potential for curative therapeutic application of PNAs to monogenic disorders. This review discusses the rationale and advances of PNA technologies and their application to gene editing with an emphasis on structural biochemistry and repair.
DOI: 10.1016/j.jconrel.2019.09.020
2019
Cited 43 times
Optimizing biodegradable nanoparticle size for tissue-specific delivery
Nanoparticles (NPs) are promising vehicles for drug delivery because of their potential to target specific tissues [1]. Although it is known that NP size plays a critical role in determining their biological activity, there are few quantitative studies of the role of NP size in determining biodistribution after systemic administration. Here, we engineered fluorescent, biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs in a range of sizes (120-440nm) utilizing a microfluidic platform and used these NPs to determine the effect of diameter on bulk tissue and cellular distribution after systemic administration. We demonstrate that small NPs (∼120nm) exhibit enhanced uptake in bulk lung and bone marrow, while larger NPs are sequestered in the liver and spleen. We also show that small NPs (∼120nm) access specific alveolar cell populations and hematopoietic stem and progenitor cells more readily than larger NPs. Our results suggest that size of PLGA NPs can be used to tune delivery to certain tissues and cell populations in vivo.
DOI: 10.1016/j.biomaterials.2021.120780
2021
Cited 39 times
PEGylation of poly(amine-co-ester) polyplexes for tunable gene delivery
There is growing interest in PEGylation of cationic polymeric vehicles for gene delivery in order to improve vehicle stability and reduce toxicity, but little is known about the effects of PEG coatings on transfection. We used a polymer from the poly(amine-co-ester) (PACE) family blended with PEG-conjugated PACE at different ratios in order to explore the effects of polyplex PEGylation on the transfection efficiency of plasmid DNA, mRNA, and siRNA in vitro and mRNA in vivo. We discovered that concentrations of PACE-PEG as low as 0.25% by weight improved polyplex stability but also inhibited transfection in vitro. In vivo, the effect of PACE-PEG incorporation on mRNA transfection varied by delivery route; the addition of PACE-PEG improved local delivery to the lung, but PEGylation had little effect on intravenous systemic delivery. By both delivery routes, transfection was inhibited at concentrations higher than 5 wt% PACE-PEG. These results demonstrate that excess PEGylation can be detrimental to vehicle function, and suggest that PEGylation of cationic vehicles must be optimized by PEG content, cargo type, and delivery route.
DOI: 10.1073/pnas.2103099119
2022
Cited 18 times
Tuning protein half-life in mouse using sequence-defined biopolymers functionalized with lipids
The use of biologics in the treatment of numerous diseases has increased steadily over the past decade due to their high specificities, low toxicity, and limited side effects. Despite this success, peptide- and protein-based drugs are limited by short half-lives and immunogenicity. To address these challenges, we use a genomically recoded organism to produce genetically encoded elastin-like polypeptide-protein fusions containing multiple instances of para-azidophenylalanine (pAzF). Precise lipidation of these pAzF residues generated a set of sequence-defined synthetic biopolymers with programmable binding affinity to albumin without ablating the activity of model fusion proteins, and with tunable blood serum half-lives spanning 5 to 94% of albumin's half-life in a mouse model. Our findings present a proof of concept for the use of genetically encoded bioorthogonal conjugation sites for multisite lipidation to tune protein stability in mouse serum. This work establishes a programmable approach to extend and tune the half-life of protein or peptide therapeutics and a technical foundation to produce functionalized biopolymers endowed with programmable chemical and biophysical properties with broad applications in medicine, materials science, and biotechnology.
DOI: 10.1126/sciadv.abo0522
2022
Cited 17 times
In vivo correction of cystic fibrosis mediated by PNA nanoparticles
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We sought to correct the multiple organ dysfunction of the F508del CF-causing mutation using systemic delivery of peptide nucleic acid gene editing technology mediated by biocompatible polymeric nanoparticles. We confirmed phenotypic and genotypic modification in vitro in primary nasal epithelial cells from F508del mice grown at air-liquid interface and in vivo in F508del mice following intravenous delivery. In vivo treatment resulted in a partial gain of CFTR function in epithelia as measured by in situ potential differences and Ussing chamber assays and correction of CFTR in both airway and GI tissues with no off-target effects above background. Our studies demonstrate that systemic gene editing is possible, and more specifically that intravenous delivery of PNA NPs designed to correct CF-causing mutations is a viable option to ameliorate CF in multiple affected organs.
DOI: 10.1016/s0006-3495(92)81838-6
1992
Cited 98 times
Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration
Leukocytes must migrate through tissues to fulfill their role in the immune response, but direct methods for observing and quantifying cell motility have mostly been limited to migration on two-dimensional surfaces. We have now developed methods for examining neutrophil movement in a three-dimensional gel containing 0.1 to 0.7 mg/ml rat tail tendon collagen. Neutrophil-populated collagen gels were formed within flat glass capillary tubes, permitting direct observation with light microscopy. By following the tracks of individual cells over a 13.5-min observation period and comparing them to a stochastic model of cell movement, we quantified cell speed within a given gel by estimating a random motility coefficient (mu) and persistence time (P). The random motility coefficient changed significantly with collagen concentration in the gel, varying from 1.6 to 13.3 x 10(-9) cm2/s, with the maximum occurring at a collagen gel concentration of 0.3 mg/ml. The methods described may be useful for studying tissue dynamics and for evaluating the mechanism of cell movement in three-dimensional gels of extracellular matrix (ECM) molecules.
DOI: 10.1023/a:1018824324275
1999
Cited 98 times
Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems.
DOI: 10.1016/0006-8993(90)90612-f
1990
Cited 95 times
Controlled release of nerve growth factor from a polymeric implant
Recent studies suggest that neurotrophic factors applied directly to brain tissue may enhance regeneration in the central nervous system. Biocompatible polymeric implants providing a controlled release of nerve growth factor (NGF) for over one month were developed. The released nerve growth factor stimulated neurite sprouting in cultured PC12 cells. While a model polymer with demonstrated biocompatibility was used for the present study, the methods can be extended to other polymer systems. Controlled release implants may be useful in the treatment of Alzheimer's disease.
DOI: 10.1016/0006-8993(96)00378-2
1996
Cited 88 times
Transport and elimination of recombinant human NGF during long-term delivery to the brain
The gene for human nerve growth factor (NGF) has been cloned into a mammalian cell line and large quantities of recombinant human NGF (rhNGF) can now be produced for clinical use, but little is known about the fate of rhNGF following delivery to the brain. In this study, we implanted polymer matrices containing125l-labeled rhNGF into the brains of adult rats and measured spatial distributions of the released protein for 8 weeks after implantation. NGF content in the tissue was determined by counting gamma radiation in thick (1 mm) sections and by autoradiography of thin (20 μm) sections. For the first several days, the rate of NGF release from the polymer matrix was high ( ∼ 100 ng/day); maximal NGF concentrations, measured at the polymer-tissue interface, were correspondingly high (> 20 μg/ml) through day 4. At later times, the release rate decreased (2–10 ng/day) and lower maximal concentrations were observed (1–10 μg/ml). NGF levels were always highest in the tissue sections closest to the polymer; during the 8 weeks of the experiment, NGF levels measured in thick sections decreased 100-fold, from 30 ng/section at day 2 to 0.3 ng/section at day 54. The first 10-fold decrease occurred during the first 10 days of the study; a further 6 weeks was required to achieve the second 10-fold decrease. Throughout the experiment, the majority of NGF remained within a restricted zone around the polymer at all times; the mass of NGF decreased to 10% of the maximal level within 2–3 mm of the polymer matrix. At early times (< 1 week), radiolabel corresponding to > 20 pg of NGF was also detected in regions of the brain further removed from the polymer. Comparison of local rhNGF concentration profiles with a simple mathematical model indicated that rhNGF diffuses through the brain interstitial space and is eliminated with a half-life of ∼ 45 min, although elimination appears to be substantially slower in white matter regions. This limited ability of NGF to penetrate and be retained within the brain tissue indicates that NGF will need to be delivered almost directly to the target tissue for efficacy.