ϟ

Walaa Elmetenawee

Here are all the papers by Walaa Elmetenawee that you can download and read on OA.mg.
Walaa Elmetenawee’s last known institution is . Download Walaa Elmetenawee PDFs here.

Claim this Profile →
DOI: 10.48550/arxiv.2401.07650
2024
Summary of CMS Higgs Physics
Since the discovery of the Higgs boson in 2012, substantial advancements have been achieved in exploring its characteristics. The utilization of extensive data sets has facilitated recent results, enabling not only the determination of the Higgs boson mass and total production cross section in the most sensitive decay channels, but also measurements of fiducial and differential cross sections, as well as searches for rare or exotic processes. The study of the Higgs boson pair production which is fundamental to the study of the Higgs boson self-coupling, received a significant boost, too. These proceedings focus on the latest Higgs physics results achieved by the CMS Collaboration using the entire dataset collected during Run-2 of the LHC, corresponding to an integrated luminosity of approximately 140 fb$^{-1}$.
DOI: 10.22323/1.448.0074
2024
CMS tracking performance in Run 2 and early Run 3
A precise and efficient tracking is one of the critical components of the CMS physics program as it impacts the ability to reconstruct the physics objects needed to understand proton-proton collisions at the LHC. The CMS detector has undergone extensive improvements in preparation for Run 3 of the LHC to operate efficiently at the increased luminosity and pileup. Significant algorithmic enhancements have been implemented to enhance the performance of the CMS tracking system. These enhancements concentrate on refining both track finding and selection processes. Performance measurements of the track reconstruction both in simulation and collision data will be presented. The performance is assessed using LHC Run 2 at $\sqrt{s}$ = 13 TeV and early LHC Run 3 data at $\sqrt{s}$ = 13.6 TeV.
DOI: 10.1088/1748-0221/9/10/c10036
2014
Cited 18 times
Upgrade of the CMS muon system with triple-GEM detectors
The CMS collaboration considers upgrading the muon forward region which is particularly affected by the high-luminosity conditions at the LHC. The proposal involves Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs and its impact on the CMS performance.
DOI: 10.1016/j.nima.2023.168957
2024
Pressure correction study for the CMS iRPC detector
The improved Resistive Plate Chambers (iRPC) are designed using thin low resistivity High-Pressure Laminate (HPL) gaps. They are proposed to equip the very forward region of the Compact Muon Solenoid (CMS) detector, as they can stand rates ∼2kHz/cm2. To withstand 3 times higher rates than the installed CMS RPC chambers, the HPL electrode thickness was reduced from 2 mm to 1.4 mm. The gas gain of the detector is dependent on the gas pressure and temperature which requires correcting for the applied voltage to keep detector operational characteristics such as efficiency, cluster size and noise rate constant. Herein, we study the pressure correction at constant temperature for CMS iRPC and compare its correction coefficient with the one for the 2 mm RPC gap technology. Pressure correction parameters for both technologies are found compatible.
DOI: 10.1016/j.nima.2024.169075
2024
Improved resistive plate chambers for HL-LHC upgrade of CMS
In view of the High Luminosity LHC, the CMS Muon system will be upgraded to sustain its efficient muon triggering and reconstruction performance. Resistive Plate Chambers (RPC) are dedicated detectors for muon triggering due to their excellent timing resolution. The RPC system will be extended up to 2.4 in pseudorapidity. Before the LHC Long Shutdown 3, new RE3/1 and RE4/1 stations of the forward Muon system will be equipped with improved Resistive Plate Chambers (iRPC) having, compared to the present RPC system, a different design and geometry and 2D strip readout. This advanced iRPC geometry configuration allows the rate capability to improve and hence survive the harsh background conditions during the HL-LHC phase. Several iRPC demonstrator chambers were installed in CMS during the recently completed 2nd Long Shutdown to study the detector behaviour under real LHC conditions. This paper summarizes the iRPC project and its schedule, including the status of the iRPC production sites, details of the chamber quality control procedures and results of the commissioning of the demonstrator chambers.
DOI: 10.1016/j.nima.2024.169400
2024
CMS iRPC FEB development and validation
In view of the High Luminosity upgrade of the CERN LHC, the forward CMS Muon spectrometer will be extended with two new stations of improved Resistive Plate Chambers (iRPC) covering the pseudorapidity range from 1.8 to 2.4. Compared to the present RPC system, the gap thickness is reduced to lower the avalanche charge, and an innovative 2D strip readout geometry is proposed. These improvements will allow iRPC detector to cope with higher background rates. A new Front-End-Board (FEB) is designed to readout iRPC signals with a threshold as low as 30 fC and an integrated Time Digital Converter with a resolution of 30 ps. In addition, the communication bandwidth is significantly increased by using optical fibers. The history, final design, certification, and calibration of this FEB are presented.
DOI: 10.1088/1748-0221/11/01/c01023
2016
Cited 12 times
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown.
DOI: 10.1016/j.nima.2022.167734
2023
Implementation of the Cluster Counting and Timing technique on FPGA for the reduction of transferred data and stored information
Ultra-low mass and high granularity Drift Chambers fulfill the requirements of tracking systems for modern High Energy Physics experiments at future high luminosity accelerators (FCC or CEPC). The application of the Cluster Counting/Timing (CCT) technique adds a valuable particle identification capabilities with resolutions outperforming the traditional dE/dx technique. By measuring the arrival times of each individual ionization electron to the sense wire and by using suitable statistical tools it is possible to perform a bias free estimate of the impact parameter and a precise particle identification in drift chamber operating in a Helium based gas mixtures. The CCT technique consisting in identifying pulses due to different ionization electrons and in associating them in clusters according to their relative time delays, therefore it is necessary to have read-out interfaces capable of processing such high speed signals. This requires a data acquisition chain, able to manage the low amplitude signals from the sense wires (a ∼few mV) with a high bandwidth (∼1 GHz). Requirements on the drift chamber performance impose analog-to-digital conversions by a fast ADC at sample rates of at least 2 GS/s with 14-bit resolution. These constraints, together with maximum drift times and many readout channels, impose some sizeable data reduction strategy, while preserving all relevant information. Measuring both the amplitude and the arrival time of each peak in the signal associated to each ionization electron is the minimum requirement on the data transfer for storage to prevent any data loss. An electronic board including a Fast ADC and an FPGA for real-time processing of drift chamber signals is presented. The implementation of different algorithms for peaks finding are compared.
DOI: 10.1016/j.nima.2022.167969
2023
Particle identification with the cluster counting technique for the IDEA drift chamber
IDEA (Innovative Detector for an Electron–positron Accelerator) is a general-purpose detector concept, designed to study electron–positron collisions in a wide energy range in a very large circular leptonic collider. Its drift chamber is designed to provide an efficient tracking, a high precision momentum measurement and an excellent particle identification by exploiting the application of the cluster counting technique. To investigate the potential of the cluster counting techniques on physics events, a simulation of the ionization cluster generation is needed, therefore we developed an algorithm which can use the energy deposit information provided by the Geant4 toolkit to reproduce, in a fast and convenient way, the cluster number and cluster size distributions. The results obtained confirm that the cluster counting technique allows to reach a resolution two times better than the traditional dE/dx method. A beam test has been performed during November 2021 at CERN on the H8 beam line to validate the simulations results, to define the limiting effects for a fully efficient cluster counting and to count the number of electron clusters released by an ionizing track at a fixed βγ as a function of the track angle. The simulation and the beam test results will be described briefly in this issue.
DOI: 10.1088/1748-0221/10/03/c03039
2015
Cited 7 times
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised.
DOI: 10.1088/1748-0221/16/05/c05002
2021
Cited 6 times
Front-end electronics for CMS iRPC detectors
Abstract A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm -2 ) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6 mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work.
DOI: 10.22323/1.414.0335
2022
Cited 3 times
Particle identification with the cluster counting technique for the IDEA drift chamber
IDEA (Innovative Detector for an Electron-positron Accelerator) is a general-purpose detector concept, designed to study electron-positron collisions in a wide energy range from a very large circular leptonic collider.Its drift chamber is designed to provide an efficient tracking, a high precision momentum measurement, and an excellent particle identification by exploiting the cluster counting technique. The ionization process by charged particles is the primary mechanism used for particle identification (dE/dx). However, the significant uncertainties in the total energy deposition represent a limit to the particle separation capabilities. The cluster counting technique (dN/dx) takes advantage of the Poisson nature of the primary ionization process and offers a more statistically robust method to infer mass information. This paper will describe the simulation campaign and the two beam tests performed at CERN to investigate and prove the potentials of the cluster counting technique.
DOI: 10.1088/1748-0221/17/01/c01011
2022
Upgrade of the CMS resistive plate chambers for the high luminosity LHC
Abstract During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb −1 . The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented.
DOI: 10.1109/nssmic.2014.7431249
2014
Cited 3 times
Performance of a large-area GEM detector prototype for the upgrade of the CMS muon endcap system
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5 <| η |< 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 µrad pitch arranged in eight η-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20–120 GeV hadron beams at Fermilab using Ar/CO2 70∶30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 µrad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ± 0.2 (stat)]%. The azimuthal resolution is found to be [123.5 ± 1.6 (stat)] µrad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by ∼ 10 µrad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ± 2.5 stat] µrad is measured, consistent with the expected resolution of strip-pitch/equation µrad. Other η-sectors of the detector show similar response and performance.
DOI: 10.1088/1748-0221/15/10/c10027
2020
Cited 3 times
Experiences from the RPC data taking during the CMS RUN-2
The CMS experiment recorded 177.75 /fb of proton-proton collision data during the RUN-1 and RUN-2 data taking period. Successful data taking at increasing instantaneous luminosities with the evolving detector configuration was a big achievement of the collaboration. The CMS RPC system provided redundant information for the robust muon triggering, reconstruction, and identification. To ensure stable data taking, the CMS RPC collaboration has performed detector operation, calibration, and performance studies. Various software and related tools are developed and maintained accordingly. In this paper, the overall performance of the CMS RPC system and experiences of the data taking during the RUN-2 period are summarised.
DOI: 10.1016/j.nima.2016.01.059
2016
Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
DOI: 10.1088/1742-6596/2438/1/012122
2023
Signal to background discrimination for the production of double Higgs boson events via vector boson fusion mechanism in the decay channel with four charged leptons and two b-jets in the final state at the LHC experiment
Abstract At the CERN Large Hadron Collider experiment, the non-resonant double Higgs production via vector-boson fusion represents a unique mean to probe the VVHH (V=Z, W ± ) Higgs self-coupling at the current center of mass energies. Such a rare signal cannot be separated efficiently from huge backgrounds by applying a few-observables cut-based selection. Indeed, in this work, a Deep Learning algorithm is used to decide whether an event is more signal- or background-like. In particular, we report on two main aspects: results on a hyper-parameters parallel scanning strategy to distribute the training process across multiple nodes on the ReCaS-Bari data center computing resources and on the discriminating performance of a Deep Neural Network architecture.
DOI: 10.1016/j.nima.2023.168272
2023
The CMS RPC system readiness for LHC Run-3 data taking
During Run-3, the LHC is preparing to deliver instantaneous luminosity in the range from 5 × 1034 cm−2 s−1 to 7.5 × 1034 cm−2 s−1. To ensure stable data taking, providing redundant information for robust muon triggering, reconstruction and identification, the CMS RPC collaboration has used the opportunity given by the LHC long shutdown 2 (LS2), to perform a series of maintenance and preparation activities for the new data taking period. The overall performance of the RPC system after the LS2 commissioning period and the activities in preparation for future data taking will be presented.
DOI: 10.1016/j.nima.2023.168266
2023
RPC background studies at CMS experiment
During Run2 the high instantaneous luminosity, up to 2.21034cm−2s−1, lead to a substantial hit rate in the Compact Muon Solenoid experiment’s muon chambers due to multiple background sources to physics processes sought for at LHC. In this article we will describe the analysis method devised to measure and identify the contributions to such background in the Resistive Plate Chambers. Thorough understanding of the background rates provides the base for the upgrade of the muon detectors for the High-Luminosity LHC.
DOI: 10.48550/arxiv.2304.10806
2023
Cluster counting algorithms for particle identification at future colliders
Recognition of electron peaks and primary ionization clusters in real data-driven waveform signals is the main goal of research for the usage of the cluster counting technique in particle identification at future colliders. The state-of-the-art open-source algorithms fail in finding the cluster distribution Poisson behavior even in low-noise conditions. In this work, we present cutting-edge algorithms and their performance to search for electron peaks and identify ionization clusters in experimental data using the latest available computing tools and physics knowledge.
DOI: 10.1016/j.nima.2023.168451
2023
Aging studies for the CMS improved Resistive Plate Chambers
For the High Luminosity (HL-LHC) upgrade an upgrade of the CMS detector is foreseen. One of the main projects is the development of the improved Resistive Plate Chamber (iRPC) detectors that will be installed in the forward region of CMS. To validate the performance of the new detector gaps with HL-LHC radiation levels, experimental tests have been conducted at the CERN Gamma Irradiation Facility (GIF++). One chamber equipped with electronics is studied and its parameters are monitored as a function of the accumulated charge.
DOI: 10.48550/arxiv.2312.08017
2023
CMS tracking performance in Run 2 and early Run 3
A precise and efficient tracking is one of the critical components of the CMS physics program as it impacts the ability to reconstruct the physics objects needed to understand proton-proton collisions at the LHC. The CMS detector has undergone extensive improvements in preparation for Run 3 of the LHC to operate efficiently at the increased luminosity and pileup. Significant algorithmic enhancements have been implemented to enhance the performance of the CMS tracking system. These enhancements concentrate on refining both track finding and selection processes. Performance measurements of the track reconstruction both in simulation and collision data will be presented. The performance is assessed using LHC Run 2 at $\sqrt{s}$ = 13 TeV and early LHC Run 3 data at $\sqrt{s}$ = 13.6 TeV.
DOI: 10.31526/acp.bsm-2023.20
2023
Summary of CMS Higgs Physics
DOI: 10.1088/1748-0221/12/02/p02003
2017
The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade
The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.
DOI: 10.1088/1748-0221/16/04/c04005
2021
CMS RPC background — studies and measurements
Abstract The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity 1.9 &lt; |η| &lt; 2.4. Present results will be updated with the final geometry description, once it is available. The radiation background has been studied in terms of expected particle rates, absorbed dose and fluence. Two High Luminosity LHC (HL-LHC) scenarios have been investigated — after collecting 3000 and 4000 fb -1 . Estimations with safety factor of 3 have been considered, as well.
DOI: 10.1088/1748-0221/15/10/c10007
2020
RPC system in the CMS Level-1 Muon Trigger
The CMS experiment implements a two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High Level Trigger. To cope with the more challenging luminosity conditions, a new Level-1 architecture has been deployed during run II. This new architecture exploits in a better way the redundancy and complementarity of the three muon subsystems: Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC). The role of each subsystem in the Level-1 Muon Trigger is described here, highlighting the contribution from the RPC system. Challenges brought by the HL-LHC environment and new possibilities coming from detector and trigger upgrades are also discussed.
DOI: 10.1088/1748-0221/16/05/c05003
2021
CMS phase-II upgrade of the RPC Link System
Abstract The present RPC Link System has been servicing as one of the CMS subsystems since installation in 2008. Although the current Link System has been functioning well for the past 13 years, the aging of its electronic components and lack of radiation hard ASICs could present problems for future operations. Additionally, the needs to have a more robust control interface against electromagnetic interference, to improve the trigger performance with finer time granularity and to incorporate a higher bandwidth transmission lines led the idea of upgrading the Link System for the HL-LHC. This paper reviews the features of the recently developed prototype of the new Link System.
DOI: 10.1016/j.nima.2015.11.125
2016
Status report of the upgrade of the CMS muon system with Triple-GEM detectors
For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5<|η|<2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.
DOI: 10.1007/s41605-022-00340-6
2022
R &amp;D of back-end electronics for improved resistive plate chambers for the phase 2 upgrade of the CMS end-cap muon system
The Large Hadron Collider (LHC) at European Organization for Nuclear Research is planned to be upgraded to the high luminosity LHC. Increasing the luminosity makes muon triggering reliable and offline reconstruction very challenging. To enhance the redundancy of the Compact Muon Solenoid (CMS) Muon system and resolve the ambiguity of track reconstruction in the forward region, an improved Resistive Plate Chamber (iRPC) with excellent time resolution will be installed in the Phase-2 CMS upgrade. The iRPC will be equipped with Front-End Electronics (FEE), which can perform high-precision time measurements of signals from both ends of the strip. New Back-End Electronics (BEE) need to be researched and developed to provide sophisticated functionalities such as interacting with FEE with shared links for fast, slow control (SC) and data, in addition to trigger primitives (TPs) generation and data acquisition (DAQ). The BEE prototype uses a homemade hardware board compatible with the MTCA standard, the back-end board (BEB). BEE interacts with FEE via a bidirectional 4.8 Gbps optical paired-link that integrates clock, data, and control information. The clock and fast/slow control commands are distributed from BEB to the FEE via the downlink. The uplink is used for BEB to receive the time information of the iRPC’s fired strips and the responses to the fast/slow control commands. To have a pipelined detector data for cluster finding operation, recover (DeMux) the time relationship of which is changed due to the transmission protocol for the continuous incoming MUXed data from FEE. Then at each bunch crossing (BX), clustering fired strips that satisfy time and spatial constraints to generate TPs. Both incoming raw MUXed detector data and TPs in a time window and latency based on the trigger signal are read out to the DAQ system. Gigabit Ethernet (GbE) of SiTCP and commercial 10-GbE are used as link standards for SC and DAQ, respectively, for the BEB to interact with the server. The joint test results of the BEB with iRPC and Front-End Board (FEB) show a Bit Error Rate of the transmission links less than $$1\times {10^{-16}}$$ , a time resolution of the FEB Time-to-Digital Converter of 16 ps, and the resolution of the time difference between both ends of 160 ps which corresponding a spatial resolution of the iRPC of approximately 1.5 cm. Test results showed the correctness and stable running of the BEB prototype, of which the functionalities fulfill the iRPC requirements.
2014
Impact of the Radiation Background on the CMS muon high-eta upgrade for the LHC high luminosity scenario
The Compact Muon Solenoid (CMS) experiment at the LHC is planning an upgrade of its muon detection system aiming to extend the muon detection capabilities in the forward region with the installation of new muon stations based on Gas Electron Multiplier (GEM) and Resistive Plate Chambers (RPC) technologies during the so-called Phase-2 upgrade scenario. With the imminent increase on luminosity to 5 × 1034cm-2s-1 and center of mass collision energy of 14 TeV an unprecedented and hostile radiation environment will be created, the most affected detectors will be the ones located in the forward region where the intense flux of neutrons and photons could potentially degrade the detector performance. Using FLUKA simulation the expected radiation environment is estimated for the regions of interest, possible shielding scenarios are proposed and the effect on the detector performance is discussed.
DOI: 10.48550/arxiv.1412.0228
2014
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < \mid\eta\mid < 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $\mu$rad pitch arranged in eight $\eta$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $\mu$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\pm$ 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 $\pm$ 1.6 (stat)] $\mu$rad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by $\sim$ 10 $\mu$rad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 $\pm$ 2.5 stat] $\mu$rad is measured, consistent with the expected resolution of strip-pitch/$\sqrt{12}$ = 131.3 $\mu$rad. Other $\eta$-sectors of the detector show similar response and performance.
DOI: 10.1088/1748-0221/15/10/c10025
2020
CMS RPC activities during LHC LS-2
The second LHC long shutdown period (LS2) is an important opportunity for the CMS Resistive Plate Chambers (RPC) to complete their consolidation and upgrade projects. The consolidation includes detector maintenance for gas tightness, HV (high voltage), LV (low voltage) and slow control operation. All services for the RPC Phase-2 upgrade: improved RPC in stations RE3/1 and RE4/1, were anticipated for installation to LS2. This paper summarises the RPC system maintenance and upgrade activities.
DOI: 10.1088/1748-0221/15/10/c10009
2020
A new approach for CMS RPC current monitoring using Machine Learning techniques
The CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current is essential for the correct interpretation of its instabilities as they can be caused either by changes in external conditions or by malfunctioning of the detector in the ideal case. We propose a Machine Learning(ML) based approach to be used for monitoring the CMS RPC currents. The approach is crucial for the development of an automated monitoring system capable of warning for possible hardware problems at a very early stage, which will contribute further to the stable operation of the CMS RPC detector.
DOI: 10.1088/1748-0221/16/04/c04001
2021
Towards a two-dimensional readout of the improved CMS Resistive Plate Chamber with a new front-end electronics
Abstract As part of the Compact Muon Solenoid experiment Phase-II upgrade program, new resistive plate chambers will be installed in the region at low angle with respect to the beam collision axis, in order to improve the detection of muons with a low transverse momentum. High background conditions are expected in this region during the high-luminosity phase of the Large Hadron Collider, therefore an improved-RPC design has been proposed with a new front-end electronics to sustain a higher particle rate capability and better time resolution. A new technology is used in the front-end electronics resulting in low achievable signal detection of 1–20 fC. Crucial in the design of the improved-RPC is the capability of a two-dimensional readout in order to improve the spatial resolution, mainly motivated by trigger requirements. In this work, the first performance results towards this two-dimensional readout are presented, based on data taken on a real-size prototype chamber with two embedded readout planes with orthogonal strips.
DOI: 10.1007/s41605-020-00229-2
2021
Research and development of the back-end electronics for the two-dimensional improved resistive plate chambers in CMS upgrade
DOI: 10.1393/ncc/i2016-16260-7
2015
Impact of the GE1/1 upgrade on CMS muon system performance
During the future LHC upgrade planned in 2018, the forward endcap region of the CMS muon spectrometer will be upgraded with GEM chambers. GEM technology is able to withstand the radiation environment expected in the forward region. The GE1/1 station will be included in the muon L1 trigger, allowing to keep low p(T) threshold even at high luminosity. Moreover, it will bring detection redundancy in the most critical part of the CMS muon system, along with benefits to muon reconstruction performance.
DOI: 10.1393/ncc/i2016-16269-x
2016
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on cham design features and will discuss the performance of the upgraded detector.
DOI: 10.1109/nssmic.2014.7431236
2014
Status report on the CMS forward muon upgrade with large-size triple-GEM detectors
For the High-Luminosity LHC (HL-LHC) phase the CMS GEM Collaboration is planning to install new large-size (990×220–455mm2) triple-GEM detectors, equipped with a new readout system, in the forward region of the muon system (1.5< |η| <2.2) of the CMS detector. Combining triggering and tracking functionalities the new triple-foil Gas Electron Multiplier (GEM) chambers will improve both the performance of the CMS muon trigger and the muon reconstruction/identification in CMS experiment. The addition of triple-GEM chambers to the forward region of the CMS muon system will add a necessary layer of redundancy. Starting from 2009 the CMS GEM Collaboration has built several small and full-size prototypes with different geometries, keeping improving the assembly techniques. All these prototypes have been tested in laboratories as well as with beam tests at the CERN Super Proton Synchrotron (SPS) and at Fermi National Accelerator Laboratory. In this contribution we will report on the status of the CMS upgrade project with triple-GEM chambers and its impact on the CMS performance as well as the hardware architectures and expected capability of the CMS GEM readout system.
2015
Gas Detectors Performance in CMS and Excited Muon Search Feasibility Study at 14 TeV
DOI: 10.22323/1.213.0065
2015
The Triple-GEM Project for the Phase 2 Upgrade of the CMS Muon System
In view of the high-luminosity phase of the LHC, the CMS Collaboration is considering the use of Gas Electron Multiplier (GEM) detector technology for the upgrade of its muon system in the forward region. With their ability to handle the extreme particle rates expected in that area, such micro-pattern gas detectors can sustain a high performance and redundant muon trigger system. At the same time, with their excellent spatial resolution, they can improve the muon track reconstruction and identification capabilities of the forward detector, effectively combining tracking and triggering functions in one single device. The present status of the CMS GEM project will be reviewed, highlighting importants steps and achievements since the start of the R&D activities in 2009. The baseline design of the triple-GEM detectors proposed for installation in different stations of the CMS muon endcap system will be described, along with the associated frontend electronics and data-acquisition system. The expected impact on the performance of the CMS muon system will be discussed, and results from detector tests, both in the lab and in test beams will be presented.
DOI: 10.48550/arxiv.1512.08529
2015
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
2016
Excited Muon Search Feasibility Study Using two Muons plus Photon Signature at 14 TeV with the CMS Experiment
DOI: 10.48550/arxiv.2209.11649
2022
Signal to background discrimination for the production of double Higgs boson events via vector boson fusion mechanism in the decay channel with four charged leptons and two b-jets in the final state at the LHC experiment
At the CERN Large Hadron Collider experiment, the non-resonant double Higgs production via vector-boson fusion represents a unique mean to probe the VVHH (V=Z, W$^{\pm}$) Higgs self-coupling at the current center of mass energies. Such a rare signal cannot be separated efficiently from huge backgrounds by applying a few-observables cut-based selection. Indeed, in this work, a Deep Learning algorithm is used to decide whether an event is more signal- or background-like. In particular, we report on two main aspects: results of a hyper-parameters parallel scanning strategy to distribute the training process across multiple nodes on the ReCaS-Bari data center computing resources and the discriminating performance of a Deep Neural Network architecture.
DOI: 10.48550/arxiv.2211.04220
2022
Particle identification with the cluster counting technique for the IDEA drift chamber
IDEA (Innovative Detector for an Electron-positron Accelerator) is a general-purpose detector concept, designed to study electron-positron collisions in a wide energy range from a very large circular leptonic collider. Its drift chamber is designed to provide an efficient tracking, a high precision momentum measurement and an excellent particle identification by exploiting the application of the cluster counting technique. To investigate the potential of the cluster counting techniques on physics events, a simulation of the ionization clusters generation is needed, therefore we developed an algorithm which can use the energy deposit information provided by Geant4 toolkit to reproduce, in a fast and convenient way, the clusters number distribution and the cluster size distribution. The results obtained confirm that the cluster counting technique allows to reach a resolution 2 times better than the traditional dE/dx method. A beam test has been performed during November 2021 at CERN on the H8 to validate the simulations results, to define the limiting effects for a fully efficient cluster counting and to count the number of electron clusters released by an ionizing track at a fixed $βγ$ as a function of the track angle. The simulation and the beam test results will be described briefly in this issue.
DOI: 10.22323/1.414.0362
2022
The Tracking performance for the IDEA drift chamber
The IDEA detector concept for a future e$^{+}$e$^{-}$ collider adopts an ultra-low mass drift chamber as a central tracking system. The He-based ultra-low mass drift chamber is designed to provide efficient tracking, a high-precision momentum measurement, and excellent particle identification by exploiting the cluster counting technique. This paper describes the expected tracking performance, obtained with full and fast simulation, for track reconstruction on detailed simulated physics events. Moreover, the details of the construction parameters of the drift chamber, including the inspection of new material for the wires, new techniques for soldering the wires, the development of an improved schema for the drift cell, and the choice of a gas mixture, will be described.
DOI: 10.48550/arxiv.2211.12568
2022
The Tracking performance for the IDEA drift chamber
The IDEA detector concept for a future e$^{+}$e$^{-}$ collider adopts an ultra-low mass drift chamber as a central tracking system. The He-based ultra-low mass drift chamber is designed to provide efficient tracking, a high-precision momentum measurement, and excellent particle identification by exploiting the cluster counting technique. This paper describes the expected tracking performance, obtained with full and fast simulation, for track reconstruction on detailed simulated physics events. Moreover, the details of the construction parameters of the drift chamber, including the inspection of new material for the wires, new techniques for soldering the wires, the development of an improved schema for the drift cell, and the choice of a gas mixture, will be described.
DOI: 10.1088/1748-0221/15/09/c09025
2020
Effects of the electronic threshold on the performance of the RPC system of the CMS experiment
Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC) . In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage.
2020
arXiv : CMS RPC Background -- Studies and Measurements
DOI: 10.48550/arxiv.2005.09472
2020
Effects of the electronic threshold on the performance of the RPC system of the CMS experiment
Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC). In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage.
2020
CMS track reconstruction performance during Run 2 and developments for Run 3
An efficient and precise reconstruction of charged-particle tracks is crucial for the overall performance of the CMS experiment. During Run 2 of LHC, significant upgrades were made to the track reconstruction algorithms in order to accommodate for the high pileup environment and the installation of an upgraded pixel detector in 2017. This paper provides an overview of the iterative track reconstruction algorithm used in CMS during Run 2 and of the performance measured both with simulated and collision data. Developments are ongoing to further improve track reconstruction in Run 3, especially for what concerns the CMS high-level trigger, and the status of these improvements will be discussed.
DOI: 10.48550/arxiv.2012.07035
2020
CMS track reconstruction performance during Run 2 and developments for Run 3
An efficient and precise reconstruction of charged-particle tracks is crucial for the overall performance of the CMS experiment. During Run 2 of LHC, significant upgrades were made to the track reconstruction algorithms in order to accommodate for the high pileup environment and the installation of an upgraded pixel detector in 2017. This paper provides an overview of the iterative track reconstruction algorithm used in CMS during Run 2 and of the performance measured both with simulated and collision data. Developments are ongoing to further improve track reconstruction in Run 3, especially for what concerns the CMS high-level trigger, and the status of these improvements will be discussed.
DOI: 10.22323/1.390.0733
2021
CMS track reconstruction performance during Run 2 and developments for Run 3
An efficient and precise reconstruction of charged-particle tracks is crucial for the overall performance of the CMS experiment.During Run 2 of LHC, significant upgrades were made to the track reconstruction algorithms in order to accommodate for the high pileup environment and the installation of an upgraded pixel detector in 2017.This paper provides an overview of the iterative track reconstruction algorithm used in CMS during Run 2 and of the performance measured both with simulated and collision data.Developments are ongoing to further improve track reconstruction in Run 3, especially for what concerns the CMS high-level trigger, and the status of these improvements will be discussed.