ϟ

Vincenzo Ciriolo

Here are all the papers by Vincenzo Ciriolo that you can download and read on OA.mg.
Vincenzo Ciriolo’s last known institution is . Download Vincenzo Ciriolo PDFs here.

Claim this Profile →
DOI: 10.1016/j.nima.2017.03.065
2017
Cited 11 times
On the timing performance of thin planar silicon sensors
We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, with depletion thicknesses 133, 211, and 285 µm, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.
DOI: 10.1016/j.nima.2017.10.002
2018
Cited 7 times
Response of microchannel plates in ionization mode to single particles and electromagnetic showers
Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20 ps and 30 ps are obtained.
DOI: 10.1088/1748-0221/12/08/c08014
2017
Cited 5 times
Micro-channel plates in ionization mode as a fast timing device for future hadron colliders
At the high luminosity LHC (HL-LHC) about 200 concurrent interactions are expected, with a spread between the interaction vertices of few centimeters in the beam direction and 200 ps in the collision time. A time of flight resolution of the order of 30 ps would be able to reduce neutral particles pile-up contamination at the calorimeter level of about one order of magnitude, restoring pile-up conditions similar to what is routinely sustained in the current run of the LHC . Micro-channel plates have been used in PMT configuration as fast charged particles detector (resolution of better than 20 ps have been achieved with commercial devices), however they are not particularly radiation tolerant, mostly due to the ion feedback on the photocathode. The possibility of using micro-channel plates without a photocathode (i-MCP) has been studied in several test beams. Different MCP geometries are compared with the goal to identify the optimal configuration. Efficiency of more then 70% with a time resolution of better than 40 ps are achieved for single charged particles, leading to an efficiency close to 100% for EM shower after few radiation lengths. This open the possibility to use i-MCPs as a timing layer in a sampling calorimeter or to use it in a pre-shower device independent from the calorimeter technology.
DOI: 10.1016/j.nima.2016.05.101
2017
Beam test results on the detection of single particles and electromagnetic showers with microchannel plates
I-MCP is an R&D project aimed at the exploitation of secondary emission of electrons from the surface of micro-channel plates (MCP) for single ionizing particles and fast timing of showers in high rate environments. Results from tests with electrons with energies up to 50 GeV of MCP devices with different characteristics are presented. In particular detection efficiency and time resolution are measured for a range of MCP prototypes: different MCP channel diameter and layers configuration are studied. Devices operated in I-MCP configuration, where the particle detection proceed through direct ionization of the MCP layers, are studied in comparison with the more usual PMT-MCP configuration. The results show efficiencies up to 70% for single charge particle detection for I-MCP devices with a time resolution of about 40 ps. The efficiency raise to 100% in response to high energy electromagnetic showers.
DOI: 10.1088/1748-0221/12/03/c03019
2017
A fast timing calorimetric layer using micro-channel plates in ionisation mode
Future high rate hadron colliders are expected to have hundreds of concurrent proton-proton interactions in the same bunch crossing, deteriorating the energy resolution and identification capabilities of calorimeters. The possibility to distinguish neutral particles coming from different interaction vertices is being pursued as a tool to reduce pile-up contamination in calorimeters, and restore optimal performance. A time of flight resolution of the order of 20 ps will be able to reduce neutral particles pile-up contamination at the calorimeter level by about one order of magnitude, restoring pile-up conditions similar to what is routinely sustained in the current run of the LHC . Micro-channel plates (MCP) can be used in PMT configuration as fast charged particles detector (resolution of better then 30 ps can be achieved with commercial devices). However they are not particularly radiation tolerant, mostly due to the ion feedback on the photocathode. The possibility of using micro-channel plates without a photocathode (i-MCP) has been studied in several test beams. Different MCP geometries are compared with the goal to identify the optimal configuration. Efficiency of more than 70% with a time resolution of better than 40 ps are achieved for single charged particles, leading to an efficiency close to 100% for EM shower after few radiation lengths. This opens the possibility to use i-MCPs as a timing layer in a sampling calorimeter or to use it in a pre-shower device independent from the calorimeter technology. Preliminary results on the radiation hardness of the i-MCP configuration will be also presented.
DOI: 10.1088/1742-6596/1162/1/012034
2019
Prospects for a precision timing upgrade of the CMS PbWO<sub>4</sub>crystal electromagnetic calorimeter for the HL-LHC
Particle detectors with a timing resolution of order 10 ps can improve event reconstruction at high-luminosity hadron colliders tremendously. The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High-Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high-energy photons and electrons. The benefits of precision timing for the ECAL event reconstruction at HL-LHC will be discussed in this presentation. Simulation and test beam studies carried out for the timing upgrade of the CMS ECAL will be presented and the prospects for a full implementation of this option will be discussed.
2019
Study of the Higgs boson associated production with a vector boson in theHiggs boson diphoton decay channel with the CMS detector