ϟ

Taijoon Chung

Here are all the papers by Taijoon Chung that you can download and read on OA.mg.
Taijoon Chung’s last known institution is . Download Taijoon Chung PDFs here.

Claim this Profile →
DOI: 10.1105/tpc.111.090993
2011
Cited 262 times
The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in <i>Arabidopsis</i>
Autophagy is an intracellular recycling route in eukaryotes whereby organelles and cytoplasm are sequestered in vesicles, which are subsequently delivered to the vacuole for breakdown. The process is induced by various nutrient-responsive signaling cascades converging on the Autophagy-Related1 (ATG1)/ATG13 kinase complex. Here, we describe the ATG1/13 complex in Arabidopsis thaliana and show that it is both a regulator and a target of autophagy. Plants missing ATG13 are hypersensitive to nutrient limitations and senesce prematurely similar to mutants lacking other components of the ATG system. Synthesis of the ATG12-ATG5 and ATG8-phosphatidylethanolamine adducts, which are essential for autophagy, still occurs in ATG13-deficient plants, but the biogenesis of ATG8-decorated autophagic bodies does not, indicating that the complex regulates downstream events required for autophagosome enclosure and/or vacuolar delivery. Surprisingly, levels of the ATG1a and ATG13a phosphoproteins drop dramatically during nutrient starvation and rise again upon nutrient addition. This turnover is abrogated by inhibition of the ATG system, indicating that the ATG1/13 complex becomes a target of autophagy. Consistent with this mechanism, ATG1a is delivered to the vacuole with ATG8-decorated autophagic bodies. Given its responsiveness to nutrient demands, the turnover of the ATG1/13 kinase likely provides a dynamic mechanism to tightly connect autophagy to a plant's nutritional status.
DOI: 10.1111/j.1365-313x.2010.04166.x
2010
Cited 247 times
ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin-fold proteins Autophagy-related (ATG)-8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8-PE adduct, we also show that ATG8 lipidation requires the ATG12-ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12-ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12-ATG5 adduct is essential for ATG8-mediated autophagy in plants by promoting ATG8 lipidation.
DOI: 10.1105/tpc.113.120014
2014
Cited 245 times
AUTOPHAGY-RELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in <i>Arabidopsis</i>
Autophagy-mediated turnover removes damaged organelles and unwanted cytoplasmic constituents and thus plays critical roles in cellular housekeeping and nutrient recycling. This "self eating" is tightly regulated by the AUTOPHAGY-RELATED1/13 (ATG1/13) kinase complex, which connects metabolic and environmental cues to the vacuolar delivery of autophagic vesicles. Here, we describe the Arabidopsis thaliana accessory proteins ATG11 and ATG101, which help link the ATG1/13 complex to autophagic membranes. ATG11 promotes vesicle delivery to the vacuole but is not essential for synthesizing the ATG12-ATG5 and ATG8-phosphatidylethanolamine adducts that are central to autophagic vesicle assembly. ATG11, ATG101, ATG1, and ATG13 colocalize with each other and with ATG8, with ATG1 tethered to ATG8 via a canonical ATG8-interacting motif. Also, the presence of ATG11 encourages starvation-induced phosphorylation of ATG1 and turnover of ATG1 and ATG13. Like other atg mutants, ATG11-deficient plants senesce prematurely and are hypersensitive to nitrogen and fixed-carbon limitations. Additionally, we discovered that the senescence-induced breakdown of mitochondria-resident proteins and mitochondrial vesicles occurs via an autophagic process requiring ATG11 and other ATG components. Together, our data indicate that ATG11 (and possibly ATG101) provides important scaffolds connecting the ATG1/13 complex to both general autophagy and selective mitophagy.
DOI: 10.1105/tpc.15.00158
2015
Cited 201 times
Autophagic Recycling Plays a Central Role in Maize Nitrogen Remobilization
Autophagy is a primary route for nutrient recycling in plants by which superfluous or damaged cytoplasmic material and organelles are encapsulated and delivered to the vacuole for breakdown. Central to autophagy is a conjugation pathway that attaches AUTOPHAGY-RELATED8 (ATG8) to phosphatidylethanolamine, which then coats emerging autophagic membranes and helps with cargo recruitment, vesicle enclosure, and subsequent vesicle docking with the tonoplast. A key component in ATG8 function is ATG12, which promotes lipidation upon its attachment to ATG5. Here, we fully defined the maize (Zea mays) ATG system transcriptionally and characterized it genetically through atg12 mutants that block ATG8 modification. atg12 plants have compromised autophagic transport as determined by localization of a YFP-ATG8 reporter and its vacuolar cleavage during nitrogen or fixed-carbon starvation. Phenotypic analyses showed that atg12 plants are phenotypically normal and fertile when grown under nutrient-rich conditions. However, when nitrogen-starved, seedling growth is severely arrested, and as the plants mature, they show enhanced leaf senescence and stunted ear development. Nitrogen partitioning studies revealed that remobilization is impaired in atg12 plants, which significantly decreases seed yield and nitrogen-harvest index. Together, our studies demonstrate that autophagy, while nonessential, becomes critical during nitrogen stress and severely impacts maize productivity under suboptimal field conditions.
DOI: 10.1104/pp.108.126714
2008
Cited 190 times
The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability
Plants employ sophisticated mechanisms to recycle intracellular constituents needed for growth, development, and survival under nutrient-limiting conditions. Autophagy is one important route in which cytoplasm and organelles are sequestered in bulk into vesicles and subsequently delivered to the vacuole for breakdown by resident hydrolases. The formation and trafficking of autophagic vesicles are directed in part by associated conjugation cascades that couple the AUTOPHAGY-RELATED8 (ATG8) and ATG12 proteins to their respective targets, phosphatidylethanolamine and the ATG5 protein. To help understand the importance of autophagy to nutrient remobilization in cereals, we describe here the ATG8/12 conjugation cascades in maize (Zea mays) and examine their dynamics during development, leaf senescence, and nitrogen and fixed-carbon starvation. From searches of the maize genomic sequence using Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) counterparts as queries, we identified orthologous loci encoding all components necessary for ATG8/12 conjugation, including a five-member gene family expressing ATG8. Alternative splicing was evident for almost all Atg transcripts, which could have important regulatory consequences. In addition to free ATG8, its membrane-associated, lipidated form was detected in many maize tissues, suggesting that its conjugation cascade is active throughout the plant at most, if not all, developmental stages. Levels of Atg transcripts and/or the ATG8-phosphatidylethanolamine adduct increase during leaf senescence and nitrogen and fixed-carbon limitations, indicating that autophagy plays a key role in nutrient remobilization. The description of the maize ATG system now provides a battery of molecular and biochemical tools to study autophagy in this crop under field conditions.
DOI: 10.1105/tpc.110.082156
2011
Cited 125 times
Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells
Abstract Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.
DOI: 10.1105/tpc.114.135939
2015
Cited 111 times
The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents.
DOI: 10.1105/tpc.113.117960
2013
Cited 109 times
Autophagy-Related Proteins Are Required for Degradation of Peroxisomes in<i>Arabidopsis</i>Hypocotyls during Seedling Growth
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. One candidate mechanism is autophagy, a bulk degradation pathway targeting cytoplasmic constituents to the lytic vacuole. We present evidence supporting the autophagy of peroxisomes in Arabidopsis thaliana hypocotyls during seedling growth. Mutants defective in autophagy appeared to accumulate excess peroxisomes in hypocotyl cells. When degradation in the vacuole was pharmacologically compromised, both autophagic bodies and peroxisomal markers were detected in the wild-type vacuole but not in that of the autophagy-incompetent mutants. On the basis of the genetic and cell biological data we obtained, we propose that autophagy is important for the maintenance of peroxisome number and cell remodeling in Arabidopsis hypocotyls.
DOI: 10.1105/tpc.19.00066
2019
Cited 97 times
Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation
Under nutrient and energy-limiting conditions, plants up-regulate sophisticated catabolic pathways such as autophagy to remobilize nutrients and restore energy homeostasis. Autophagic flux is tightly regulated under these circumstances through the AuTophaGy-related1 (ATG1) kinase complex, which relays upstream nutrient and energy signals to the downstream components that drive autophagy. Here, we investigated the role(s) of the Arabidopsis (Arabidopsis thaliana) ATG1 kinase during autophagy through an analysis of a quadruple mutant deficient in all four ATG1 isoforms. These isoforms appear to act redundantly, including the plant-specific, truncated ATG1t variant, and like other well-characterized atg mutants, homozygous atg1abct quadruple mutants display early leaf senescence and hypersensitivity to nitrogen and fixed-carbon starvations. Although ATG1 kinase is essential for up-regulating autophagy under nitrogen deprivation and short-term carbon starvation, it did not stimulate autophagy under prolonged carbon starvation. Instead, an ATG1-independent response arose requiring phosphatidylinositol-3-phosphate kinase (PI3K) and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), possibly through phosphorylation of the ATG6 subunit within the PI3K complex by the catalytic KIN10 subunit of SnRK1. Together, our data connect ATG1 kinase to autophagy and reveal that plants engage multiple pathways to activate autophagy during nutrient stress, which include the ATG1 route as well as an alternative route requiring SnRK1 and ATG6 signaling.plantcell;31/12/2973/FX1F1fx1.
DOI: 10.1093/jxb/erz404
2019
Cited 68 times
Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins
Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.
DOI: 10.1007/s00122-008-0762-y
2008
Cited 87 times
Genetic analysis of opaque2 modifier loci in quality protein maize
DOI: 10.14348/molcells.2014.0042
2014
Cited 57 times
A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy
Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of autophagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.
DOI: 10.1007/s00299-018-2258-9
2018
Cited 53 times
Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis
DOI: 10.1007/s10059-012-0098-y
2012
Cited 54 times
Genes for Plant Autophagy: Functions and Interactions
Autophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed. In addition, growing evidence suggests that autophagy communicates with other cellular pathways such as the ubiquitin-proteasome system, protein secretory pathway, and endocytic pathway. An increase in our understanding of plant autophagy will undoubtedly help test the hypothesized functions of plant autophagy in programmed cell death, vacuole biogenesis, and responses to biotic, abiotic, and nutritional stresses. In this review, we summarize recent progress on these topics and suggest topics for future research, after inspecting common phenotypes of current Arabidopsis atg mutants.
DOI: 10.1104/pp.17.01297
2017
Cited 32 times
Vacuolar Trafficking Protein VPS38 Is Dispensable for Autophagy
Phosphatidylinositol 3-P (PI3P) is a signaling molecule that controls a variety of processes in endosomal, autophagic, and vacuolar/lysosomal trafficking in yeasts and mammals. Vacuolar protein sorting 34 (Vps34) is a conserved PI3K present in multiple complexes with specific functions and regulation. In yeast, the PI3K complex II consists of Vps34p, Vps15p, Vps30p/Atg6p, and Vps38p, and is essential for vacuolar protein sorting. Here, we describe the Arabidopsis (Arabidopsis thaliana) homolog of yeast Vps38p and human UV radiation resistance-associated gene protein. Arabidopsis VPS38 interacts with VPS30/ATG6 both in yeast and in planta. Although the level of PI3P in Arabidopsis vps38 mutants is similar to that in wild type, vps38 cells contain enlarged multivesicular endosomes and fewer organelles enriched in PI3P than the wild type. The vps38 mutants are defective in the trafficking of vacuolar cargo and its receptor VACUOLAR SORTING RECEPTOR2;1. The mutants also exhibit abnormal cytoplasmic distributions of endocytic cargo, such as auxin efflux carriers PINFORMED1 (PIN1) and PIN2. Constitutive autophagy is normal in the mutants but starvation-induced autophagy was slightly inhibited. We conclude that Arabidopsis VPS38 is dispensable for autophagy but essential for efficient targeting of biosynthetic and endocytic cargo to the vacuole.
DOI: 10.1093/plcell/koab263
2021
Cited 19 times
FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis
Abstract Autophagy is an intracellular trafficking mechanism by which cytosolic macromolecules and organelles are sequestered into autophagosomes for degradation inside the vacuole. In various eukaryotes including yeast, metazoans, and plants, the precursor of the autophagosome, termed the phagophore, nucleates in the vicinity of the endoplasmic reticulum (ER) with the participation of phosphatidylinositol 3-phosphate (PI3P) and the coat protein complex II (COPII). Here we show that Arabidopsis thaliana FYVE2, a plant-specific PI3P-binding protein, provides a functional link between the COPII machinery and autophagy. FYVE2 interacts with the small GTPase Secretion-associated Ras-related GTPase 1 (SAR1), which is essential for the budding of COPII vesicles. FYVE2 also interacts with ATG18A, another PI3P effector on the phagophore membrane. Fluorescently tagged FYVE2 localized to autophagic membranes near the ER and was delivered to vacuoles. SAR1 fusion proteins were also targeted to the vacuole via FYVE2-dependent autophagy. Either mutations in FYVE2 or the expression of dominant-negative mutant SAR1B proteins resulted in reduced autophagic flux and the accumulation of autophagic organelles. We propose that FYVE2 regulates autophagosome biogenesis through its interaction with ATG18A and the COPII machinery, acting downstream of ATG2.
DOI: 10.1104/pp.109.141705
2009
Cited 39 times
Plant SMU-1 and SMU-2 Homologues Regulate Pre-mRNA Splicing and Multiple Aspects of Development
In eukaryotes, alternative splicing of pre-mRNAs contributes significantly to the proper expression of the genome. However, the functions of many auxiliary spliceosomal proteins are still unknown. Here, we functionally characterized plant homologues of nematode suppressors of mec-8 and unc-52 (smu). We compared transcript profiles of maize (Zea mays) smu2 endosperm with those of wild-type plants and identified pre-mRNA splicing events that depend on the maize SMU2 protein. Consistent with a conserved role of plant SMU-2 homologues, Arabidopsis (Arabidopsis thaliana) smu2 mutants also show altered splicing of similar target pre-mRNAs. The Atsmu2 mutants occasionally show developmental phenotypes, including abnormal cotyledon numbers and higher seed weights. We identified AtSMU1 as one of the SMU2-interacting proteins, and Atsmu1 mutations cause similar developmental phenotypes with higher penetrance than Atsmu2. The AtSMU2 and AtSMU1 proteins are localized to the nucleus and highly prevalent in actively dividing tissues. Taken together, our data indicated that the plant SMU-1 and SMU-2 homologues appear to be involved in splicing of specific pre-mRNAs that affect multiple aspects of development.
DOI: 10.1007/s00299-015-1771-3
2015
Cited 27 times
Arabidopsis Qc-SNARE gene AtSFT12 is involved in salt and osmotic stress responses and Na+ accumulation in vacuoles
DOI: 10.1016/j.plantsci.2019.01.017
2019
Cited 20 times
How phosphoinositides shape autophagy in plant cells
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
DOI: 10.14348/molcells.2014.0224
2014
Cited 21 times
Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis
Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.
DOI: 10.3389/fpls.2014.00139
2014
Cited 15 times
Degradation of plant peroxisomes by autophagy
Peroxisomes play a critical role in many metabolic pathways during the plant life cycle. It has been proposed that the transition between different types of peroxisomes involves the degradation of obsolete peroxisomal enzymes via proteolytic activities in the peroxisome matrix, the cytosol, or the vacuole. Forward and reverse genetic studies recently provided evidence for autophagic degradation of peroxisomes in the vacuole of Arabidopsis seedlings. Here, we briefly review a model of pexophagy, or selective autophagy of peroxisomes, in plant cells.
DOI: 10.1007/s12374-011-9176-5
2011
Cited 13 times
See How I Eat My Greens—Autophagy in Plant Cells
DOI: 10.1104/pp.107.096214
2007
Cited 15 times
The Maize <i>Zmsmu2</i> Gene Encodes a Putative RNA-Splicing Factor That Affects Protein Synthesis and RNA Processing during Endosperm Development
We characterized two maize (Zea mays) mutants, zmsmu2-1 and zmsmu2-3, that result from insertion of a Mutator (Mu) transposable element in the first exon of a gene homologous to the nematode gene, smu-2, which is involved in RNA splicing. In addition to having a starchy endosperm with reduced levels of zein storage proteins, homozygous zmsmu2-1 mutants manifest a number of phenotypes, including defective meristem development. The zmsmu2 mutants have poor seedling viability and surviving plants are sterile. The gene encoding ZmSMU2 is expressed in the endosperm, embryo, and shoot apex, which explains the pleiotropic nature of the mutation. We found that proper expression of Zmsmu2 is required for efficient ribosomal RNA processing, ribosome biogenesis, and protein synthesis in developing endosperm. Based on the pleiotropic nature of the mutations and the known function of animal Zmsmu2 homologs, we propose a possible role for ZmSMU2 in the development of maize endosperm, as well as a mechanism by which misregulation of zmsmu2 causes the mutant phenotypes.
DOI: 10.14348/molcells.2019.0011
2019
Cited 10 times
Protein and RNA Quality Control by Autophagy in Plant Cells.
Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.
DOI: 10.4161/auto.27953
2014
Cited 8 times
Plant cell remodeling by autophagy
Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth.
DOI: 10.1007/s00299-021-02821-2
2022
Cited 4 times
Autophagy inducers lead to transient accumulation of autophagosomes in Arabidopsis roots
DOI: 10.3389/fpls.2023.1160162
2023
The phosphatidylinositol 3-phosphate effector FYVE3 regulates FYVE2-dependent autophagy in Arabidopsis thaliana
Phosphatidylinositol 3-phosphate (PI3P) is a signaling phospholipid that play a key role in endomembrane trafficking, specifically autophagy and endosomal trafficking. However, the mechanisms underlying the contribution of PI3P downstream effectors to plant autophagy remain unknown. Known PI3P effectors for autophagy in Arabidopsis thaliana include ATG18A (Autophagy-related 18A) and FYVE2 (Fab1p, YOTB, Vac1p, and EEA1 2), which are implicated in autophagosome biogenesis. Here, we report that FYVE3, a paralog of plant-specific FYVE2, plays a role in FYVE2-dependent autophagy. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we determined that the FYVE3 protein was associated with autophagic machinery containing ATG18A and FYVE2, by interacting with ATG8 isoforms. The FYVE3 protein was transported to the vacuole, and the vacuolar delivery of FYVE3 relies on PI3P biosynthesis and the canonical autophagic machinery. Whereas the fyve3 mutation alone barely affects autophagic flux, it suppresses defective autophagy in fyve2 mutants. Based on the molecular genetics and cell biological data, we propose that FYVE3 specifically regulates FYVE2-dependent autophagy.
DOI: 10.1007/s11103-018-0717-x
2018
Cited 7 times
BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction
DOI: 10.1007/s12374-020-09252-8
2020
Cited 6 times
Birth, Growth, Maturation, and Demise of Plant Autophagic Vesicles
DOI: 10.5352/jls.2014.24.2.209
2014
Cited 4 times
Overview of Autophagy in Plant Cells
In a variety of eukaryotic cells, autophagy sequesters a portion of the cytoplasm and targets it to a lytic compartment for degradation in bulk.Autophagy is a dynamic process for degrading cytoplasmic cargoes with various degrees of selectivity, and its activity is tightly regulated in a nutrient-and development-dependent manner.Autophagy research has drawn much attention since autophagy not only is an interesting cell biological phenomenon but also has great potential for medical and agricultural applications.For example, autophagy is associated with cancers and neurodegenerative diseases in human and mammalian cells and is also suggested in remobilization of nutrients during the senescence of plant leaves.In this general review, we describe genetic components of the core autophagic machinery conserved among yeast, animals, and plants and briefly explain how these components are responsible for major steps in plant autophagy.We discuss four common features of autophagic processes: (i) autophagy as a degradation pathway, (ii) the concept of flux in autophagy research, (iii) dependency on developmental and nutritional cues, and (iv) diversity of autophagy, focusing on selective types of autophagy.We also summarize cell biological and physiological functions of plant autophagy.Our intention is to provide a quick guide to autophagy for those who are new to autophagy research.
DOI: 10.1007/s12374-016-0448-y
2017
Autophagic flux analysis of Arabidopsis seedlings exposed to salt stress
DOI: 10.2139/ssrn.4638955
2023
Dehydration-Induced Phase Transition of Argonaute1 (Ago1) Attenuates Rna-Induced Silencing Complex (Risc) Activity
Water-deficit affects nearly every biological event in plants, and recent studies have shown that microRNA-functionality is associated with plant responses to water-deficiency. Liquid-liquid phase separation facilitates the condensation of biomolecules, which is driven by intrinsically disordered proteins and plays diverse roles in cellular processes. Here, we show that the prion-like domain (PrLD) of ARGONAUTE 1 is responsible for topological changes from liquid droplets to solid-condensations of AGO1 under dehydration. Unlike SERRATE, which forms functional RNP granules for miRNA biogenesis, AGO1 RNP granules are non-functional condensates, which is particularly facilitated by cytoplasmic calcium ions. We found that dehydration-induced AGO1 condensation inhibits RNA-induced Silencing Complex (RISC) activity. Following rewatering, the condensed AGO1 is degraded through three consecutive proteolytic processes, indicating that the liquid-to-solid phase transition of AGO1 is a reversible process. Overall, we propose that AGO1 phase transition may serve as a sensor for intense dehydration and attenuates the energy-consuming miRNA-regulatory pathway.
DOI: 10.1007/978-1-0716-0767-1_10
2020
Subcellular Localization of PI3P in Arabidopsis
Phosphatidylinositol-3-phosphate (PI3P) is a signaling phospholipid enriched in the membranes of late endosomes (LE) and vacuoles. PI3P mediates vacuolar and endosomal trafficking through recruiting PI3P-binding effector proteins to the LE. PI3P is produced from phosphatidylinositol by the PI 3-kinase complex containing VACUOLAR PROTEIN SORTING 34 (VPS34). The role of PI3P has been elucidated by using genetically encoded PI3P biosensors. We previously showed that Arabidopsis VPS38, a component of the VPS34 complex, localized at the LE and that VPS38 is essential for proper PI3P distribution in endosomal and vacuolar trafficking routes. In this chapter, we describe methods for microscopic imaging of PI3P using the PI3P biosensor citrine-2 × FYVE and the PI 3-kinase inhibitors.
DOI: 10.1093/plcell/koab212
2021
Corrigendum to: The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in Arabidopsis
2006
Role of SMU Homologues in Pre-mRNA Splicing During Maize and Arabidopsis Development