ϟ

Sébastien Gagneux

Here are all the papers by Sébastien Gagneux that you can download and read on OA.mg.
Sébastien Gagneux’s last known institution is . Download Sébastien Gagneux PDFs here.

Claim this Profile →
DOI: 10.1073/pnas.0511240103
2006
Cited 890 times
Variable host–pathogen compatibility in <i>Mycobacterium tuberculosis</i>
Mycobacterium tuberculosis remains a major cause of morbidity and mortality worldwide. Studies have reported human pathogens to have geographically structured population genetics, some of which have been linked to ancient human migrations. However, no study has addressed the potential evolutionary consequences of such longstanding human-pathogen associations. Here, we demonstrate that the global population structure of M. tuberculosis is defined by six phylogeographical lineages, each associated with specific, sympatric human populations. In an urban cosmopolitan environment, mycobacterial lineages were much more likely to spread in sympatric than in allopatric patient populations. Tuberculosis cases that did occur in allopatric hosts disproportionately involved high-risk individuals with impaired host resistance. These observations suggest that mycobacterial lineages are adapted to particular human populations. If confirmed, our findings have important implications for tuberculosis control and vaccine development.
DOI: 10.1038/ng.2744
2013
Cited 872 times
Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans
Tuberculosis caused 20% of all human deaths in the Western world between the seventeenth and nineteenth centuries and remains a cause of high mortality in developing countries. In analogy to other crowd diseases, the origin of human tuberculosis has been associated with the Neolithic Demographic Transition, but recent studies point to a much earlier origin. We analyzed the whole genomes of 259 M. tuberculosis complex (MTBC) strains and used this data set to characterize global diversity and to reconstruct the evolutionary history of this pathogen. Coalescent analyses indicate that MTBC emerged about 70,000 years ago, accompanied migrations of anatomically modern humans out of Africa and expanded as a consequence of increases in human population density during the Neolithic period. This long coevolutionary history is consistent with MTBC displaying characteristics indicative of adaptation to both low and high host densities.
DOI: 10.1016/s1473-3099(07)70108-1
2007
Cited 658 times
Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development
New tools for controlling tuberculosis are urgently needed. Despite our emerging understanding of the biogeography of Mycobacterium tuberculosis, the implications for development of new diagnostics, drugs, and vaccines is unknown. M tuberculosis has a clonal genetic population structure that is geographically constrained. Evidence suggests strain-specific differences in virulence and immunogenicity in light of this global phylogeography. We propose a strain selection framework, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control.
DOI: 10.1038/ng.590
2010
Cited 630 times
Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved
Mycobacterium tuberculosis is an obligate human pathogen capable of persisting in individual hosts for decades. We sequenced the genomes of 21 strains representative of the global diversity and six major lineages of the M. tuberculosis complex (MTBC) at 40- to 90-fold coverage using Illumina next-generation DNA sequencing. We constructed a genome-wide phylogeny based on these genome sequences. Comparative analyses of the sequences showed, as expected, that essential genes in MTBC were more evolutionarily conserved than nonessential genes. Notably, however, most of the 491 experimentally confirmed human T cell epitopes showed little sequence variation and had a lower ratio of nonsynonymous to synonymous changes than seen in essential and nonessential genes. We confirmed these findings in an additional data set consisting of 16 antigens in 99 MTBC strains. These findings are consistent with strong purifying selection acting on these epitopes, implying that MTBC might benefit from recognition by human T cells.
DOI: 10.1126/science.1124410
2006
Cited 582 times
The Competitive Cost of Antibiotic Resistance in <i>Mycobacterium tuberculosis</i>
Mathematical models predict that the future of the multidrug-resistant tuberculosis epidemic will depend on the fitness cost of drug resistance. We show that in laboratory-derived mutants of Mycobacterium tuberculosis, rifampin resistance is universally associated with a competitive fitness cost and that this cost is determined by the specific resistance mutation and strain genetic background. In contrast, we demonstrate that prolonged patient treatment can result in multidrug-resistant strains with no fitness defect and that strains with low- or no-cost resistance mutations are also the most frequent among clinical isolates.
DOI: 10.1371/journal.pbio.0060311
2008
Cited 545 times
High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography
Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC). However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.
DOI: 10.1038/nature13591
2014
Cited 505 times
Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis
Three 1,000-year-old mycobacterial genomes from Peruvian human skeletons reveal that a member of the Mycobacterium tuberculosis complex derived from seals caused human disease before contact in the Americas. Mycobacterium tuberculosis has a long history as a human pathogen, but how and when this unfortunate relationship began is not clear. Although the strains found in the Americas today are closely related to those in Europe, archaeological evidence suggests that the disease was present in the New World before contact with Europeans. Johannes Krause and colleagues sequenced three approximately 1,000-year-old M. tuberculosis genomes from human remains in Peru, proving that the pathogen caused human disease in the pre-contact New World. The ancient DNA is most closely related to that found in strains adapted to seals and sea lions. The authors hypothesize that these sea mammals may have contracted the disease from an African host species and carried it across the oceans where exploitation of marine resources by coastal peoples of South America allowed zoonotic transfer. This strain of tuberculosis may have then adapted to humans before being replaced by European strains introduced post-contact. Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.
DOI: 10.1038/ng.1038
2011
Cited 486 times
Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes
Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis, the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro. Moreover, these mutations were associated with high fitness in vivo, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB.
DOI: 10.1038/ng.3195
2015
Cited 459 times
Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage
DOI: 10.1371/journal.ppat.1000034
2008
Cited 451 times
The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis
The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193-0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15-2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis.
DOI: 10.1038/nrmicro.2018.8
2018
Cited 408 times
Ecology and evolution of Mycobacterium tuberculosis
DOI: 10.1038/ng.2656
2013
Cited 407 times
Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis
Sarah Fortune and colleagues report that Mycobacterium tuberculosis strains from lineage 2 acquire drug resistance in vitro more rapidly than strains from lineage 4 and show that this correlates with a higher in vivo mutation rate, as estimated from whole-genome sequencing of clinical isolates. They develop a stochastic mathematical model of the within-host evolution of drug resistance, using these mutation rate estimates to predict the rates of emergence of resistance in individuals with tuberculosis. A key question in tuberculosis control is why some strains of M. tuberculosis are preferentially associated with resistance to multiple drugs. We demonstrate that M. tuberculosis strains from lineage 2 (East Asian lineage and Beijing sublineage) acquire drug resistances in vitro more rapidly than M. tuberculosis strains from lineage 4 (Euro-American lineage) and that this higher rate can be attributed to a higher mutation rate. Moreover, the in vitro mutation rate correlates well with the bacterial mutation rate in humans as determined by whole-genome sequencing of clinical isolates. Finally, using a stochastic mathematical model, we demonstrate that the observed differences in mutation rate predict a substantially higher probability that patients infected with a drug-susceptible lineage 2 strain will harbor multidrug-resistant bacteria at the time of diagnosis. These data suggest that interventions to prevent the emergence of drug-resistant tuberculosis should target bacterial as well as treatment-related risk factors.
DOI: 10.1038/ng.2747
2013
Cited 392 times
Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis
M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly sequenced and 7 previously sequenced M. tuberculosis whole genomes, we identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains. By searching for convergent evolution--the independent fixation of mutations in the same nucleotide position or gene--we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.
DOI: 10.1371/journal.pone.0007815
2009
Cited 384 times
Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies
Because genetically monomorphic bacterial pathogens harbour little DNA sequence diversity, most current genotyping techniques used to study the epidemiology of these organisms are based on mobile or repetitive genetic elements. Molecular markers commonly used in these bacteria include Clustered Regulatory Short Palindromic Repeats (CRISPR) and Variable Number Tandem Repeats (VNTR). These methods are also increasingly being applied to phylogenetic and population genetic studies. Using the Mycobacterium tuberculosis complex (MTBC) as a model, we evaluated the phylogenetic accuracy of CRISPR- and VNTR-based genotyping, which in MTBC are known as spoligotyping and Mycobacterial Interspersed Repetitive Units (MIRU)-VNTR-typing, respectively. We used as a gold standard the complete DNA sequences of 89 coding genes from a global strain collection. Our results showed that phylogenetic trees derived from these multilocus sequence data were highly congruent and statistically robust, irrespective of the phylogenetic methods used. By contrast, corresponding phylogenies inferred from spoligotyping or 15-loci-MIRU-VNTR were incongruent with respect to the sequence-based trees. Although 24-loci-MIRU-VNTR performed better, it was still unable to detect all strain lineages. The DNA sequence data showed virtually no homoplasy, but the opposite was true for spoligotyping and MIRU-VNTR, which was consistent with high rates of convergent evolution and the low statistical support obtained for phylogenetic groupings defined by these markers. Our results also revealed that the discriminatory power of the standard 24 MIRU-VNTR loci varied by strain lineage. Taken together, our findings suggest strain lineages in MTBC should be defined based on phylogenetically robust markers such as single nucleotide polymorphisms or large sequence polymorphisms, and that for epidemiological purposes, MIRU-VNTR loci should be used in a lineage-dependent manner. Our findings have implications for strain typing in other genetically monomorphic bacteria.
DOI: 10.1016/j.smim.2014.09.012
2014
Cited 363 times
Consequences of genomic diversity in Mycobacterium tuberculosis
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
DOI: 10.1098/rstb.2011.0316
2012
Cited 339 times
Host–pathogen coevolution in human tuberculosis
Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily 'modern' lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically 'modern' MTBC lineages are more successful in terms of their geographical spread compared with the 'ancient' lineages. Interestingly, the global success of 'modern' MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host.
DOI: 10.1038/ng.3704
2016
Cited 317 times
Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
DOI: 10.1093/femsre/fux011
2017
Cited 290 times
Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives
Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background.
DOI: 10.1056/nejmc1505196
2015
Cited 289 times
Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis
Treatment of multidrug-resistant Mycobacterium tuberculosis is a challenge. This letter describes the emergence of resistance to new therapies, bedaquiline and delamanid.
DOI: 10.1086/591504
2008
Cited 274 times
Progression to Active Tuberculosis, but Not Transmission, Varies by<i>Mycobacterium tuberculosis</i>Lineage in The Gambia
There is considerable variability in the outcome of Mycobacterium tuberculosis infection. We hypothesized that Mycobacterium africanum was less likely than M. tuberculosis to transmit and progress to tuberculosis disease.In a cohort study of patients with tuberculosis and their household contacts in The Gambia, we categorized 1808 HIV-negative tuberculosis contacts according to exposure to M. tuberculosis or M. africanum. Positive skin test results indicated transmission, and development of tuberculosis during 2 years of follow-up indicated progression to disease.Transmission rates were similar, but rates of progression to disease were significantly lower in contacts exposed to M. africanum than in those exposed to M. tuberculosis (1.0% vs. 2.9%; hazard ratio [HR], 3.1 [95% confidence interval {CI}, 1.1-8.7]). Within M. tuberculosis sensu stricto, contacts exposed to a Beijing family strain were most likely to progress to disease (5.6%; HR relative to M. africanum, 6.7 [95% CI, 2.0-22]).M. africanum and M. tuberculosis transmit equally well to household contacts, but contacts exposed to M. africanum are less likely to progress to tuberculosis disease than those exposed to M. tuberculosis. The variable rate of progression by lineage suggests that tuberculosis variability matters in clinical settings and should be accounted for in studies evaluating tuberculosis vaccines and treatment regimens for latent tuberculosis infection.
DOI: 10.1183/13993003.01354-2017
2017
Cited 269 times
A standardised method for interpreting the association between mutations and phenotypic drug resistance in<i>Mycobacterium tuberculosis</i>
A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.
DOI: 10.1038/s41579-019-0214-5
2019
Cited 250 times
Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting. Whole genome sequencing (WGS) offers new opportunities in the clinical management and surveillance of Mycobacterium tuberculosis. In this Review, Meehan and colleagues explore the current landscape of WGS pipelines and applications, and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.
DOI: 10.1371/journal.ppat.1001307
2011
Cited 243 times
Human Macrophage Responses to Clinical Isolates from the Mycobacterium tuberculosis Complex Discriminate between Ancient and Modern Lineages
The aim of the present study was to determine whether there is a correlation between phylogenetic relationship and inflammatory response amongst a panel of clinical isolates representative of the global diversity of the human Mycobacterium tuberculosis Complex (MTBC). Measurement of cytokines from infected human peripheral blood monocyte-derived macrophages revealed a wide variation in the response to different strains. The same pattern of high or low response to individual strains was observed for different pro-inflammatory cytokines and chemokines, and was conserved across multiple human donors. Although each major phylogenetic lineage of MTBC included strains inducing a range of cytokine responses, we found that overall inflammatory phenotypes differed significantly across lineages. In particular, comparison of evolutionarily modern lineages demonstrated a significant skewing towards lower early inflammatory response. The differential response to ancient and modern lineages observed using GM-CSF derived macrophages was also observed in autologous monocyte-derived dendritic cells and murine bone marrow-derived macrophages, but not in human unfractionated peripheral blood mononuclear cells. We hypothesize that the reduced immune responses to modern lineages contribute to more rapid disease progression and transmission, which might be a selective advantage in the context of expanding human populations. In addition to the lineage effects, the large strain-to-strain variation in innate immune responses elicited by MTBC will need to be considered in tuberculosis vaccine development.
DOI: 10.1111/imr.12264
2015
Cited 240 times
Co‐evolution of <i><scp>M</scp>ycobacterium tuberculosis</i> and <i><scp>H</scp>omo sapiens</i>
Summary The causative agent of human tuberculosis ( TB ), M ycobacterium tuberculosis , is an obligate pathogen that evolved to exclusively persist in human populations. For M . tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M . tuberculosis virulence has likely been a significant determinant of the association between M . tuberculosis and humans. Indeed, the evolutionary success of some M . tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co‐evolution occurred, humans would have counteracted to minimize the deleterious effects of M . tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter‐response. The genetic architecture underlying human resistance to M . tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M . tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB . Future ‘genome‐to‐genome’ studies, in which locally associated human and M . tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines.
DOI: 10.1371/journal.pntd.0000744
2010
Cited 236 times
Mycobacterium africanum—Review of an Important Cause of Human Tuberculosis in West Africa
Mycobacterium africanum consists of two phylogenetically distinct lineages within the Mycobacterium tuberculosis complex, known as M. africanum West African 1 and M. africanum West African 2. These lineages are restricted to West Africa, where they cause up to half of human pulmonary tuberculosis. In this review we discuss the definition of M. africanum, describe the prevalence and restricted geographical distribution of M. africanum West African 1 and 2, review the occurrence of M. africanum in animals, and summarize the phenotypic differences described thus far between M. africanum and M. tuberculosis sensu stricto.
DOI: 10.3201/eid1903.120256
2013
Cited 200 times
Mycobacterial Lineages Causing Pulmonary and Extrapulmonary Tuberculosis, Ethiopia
Molecular typing of 964 specimens from patients in Ethiopia with lymph node or pulmonary tuberculosis showed a similar distribution of Mycobacterium tuberculosis strains between the 2 disease manifestations and a minimal role for M. bovis. We report a novel phylogenetic lineage of M. tuberculosis strongly associated with the Horn of Africa.
DOI: 10.1128/aac.01541-12
2013
Cited 186 times
Putative Compensatory Mutations in the <i>rpoC</i> Gene of Rifampin-Resistant Mycobacterium tuberculosis Are Associated with Ongoing Transmission
Rifampin resistance in clinical isolates of Mycobacterium tuberculosis arises primarily through the selection of bacterial variants harboring mutations in the 81-bp rifampin resistance-determining region of the rpoB gene. While these mutations were shown to infer a fitness cost in the absence of antibiotic pressure, compensatory mutations in rpoA and rpoC were identified which restore the fitness of rifampin-resistant bacteria carrying mutations in rpoB. To investigate the epidemiological relevance of these compensatory mutations, we analyzed 286 drug-resistant and 54 drug-susceptible clinical M. tuberculosis isolates from the Western Cape, South Africa, a high-incidence setting of multidrug-resistant tuberculosis. Sequencing of a portion of the RpoA-RpoC interaction region of the rpoC gene revealed that 23.5% of all rifampin-resistant isolates tested carried a nonsynonymous mutation in this region. These putative compensatory mutations in rpoC were associated with transmission, as 30.8% of all rifampin-resistant isolates with an IS6110 restriction fragment length polymorphism (RFLP) pattern belonging to a recognized RFLP cluster harbored putative rpoC mutations. Such mutations were present in only 9.4% of rifampin-resistant isolates with unique RFLP patterns (P < 0.01). Moreover, these putative compensatory mutations were associated with specific strain genotypes and the rpoB S531L rifampin resistance mutation. Among isolates harboring this rpoB mutation, 44.1% also harbored rpoC mutations, while only 4.1% of the isolates with other rpoB mutations exhibited mutations in rpoC (P < 0.001). Our study supports a role for rpoC mutations in the transmission of multidrug-resistant tuberculosis and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.
DOI: 10.3389/fmicb.2018.02820
2018
Cited 135 times
A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex
Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely related to the human-adapted Mycobacterium africanum Lineage 6 than to other animal-adapted strains. Furthermore, we identified four main animal-adapted MTBC clades that might correspond to four main host shifts; two of these clades are hypothesized to reflect independent cattle domestication events. Contrary to what would be expected from an obligate pathogen, MTBC nucleotide diversity was not positively correlated with host phylogenetic distances, suggesting that host tropism in the animal-adapted MTBC seems to be driven by contact rates and demographic aspects of the host population rather by than host relatedness. By combining phylogenomics with ecological data, we propose an evolutionary scenario in which the ancestor of Lineage 6 and all animal-adapted MTBC ecotypes was a generalist pathogen that subsequently adapted to different host species. This study provides a new phylogenetic framework to better understand the evolution of the different ecotypes of the MTBC and guide future work aimed at elucidating the molecular mechanisms underlying host range.
DOI: 10.1038/s41467-020-16626-6
2020
Cited 134 times
A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region
Abstract The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.
DOI: 10.1099/mgen.0.000477
2021
Cited 107 times
Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history
Human tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). The MTBC comprises several human-adapted lineages known as M. tuberculosis sensu stricto , as well as two lineages (L5 and L6) traditionally referred to as Mycobacterium africanum . Strains of L5 and L6 are largely limited to West Africa for reasons unknown, and little is known of their genomic diversity, phylogeography and evolution. Here, we analysed the genomes of 350 L5 and 320 L6 strains, isolated from patients from 21 African countries, plus 5 related genomes that had not been classified into any of the known MTBC lineages. Our population genomic and phylogeographical analyses showed that the unclassified genomes belonged to a new group that we propose to name MTBC lineage 9 (L9). While the most likely ancestral distribution of L9 was predicted to be East Africa, the most likely ancestral distribution for both L5 and L6 was the Eastern part of West Africa. Moreover, we found important differences between L5 and L6 strains with respect to their phylogeographical substructure and genetic diversity. Finally, we could not confirm the previous association of drug-resistance markers with lineage and sublineages. Instead, our results indicate that the association of drug resistance with lineage is most likely driven by sample bias or geography. In conclusion, our study sheds new light onto the genomic diversity and evolutionary history of M. africanum , and highlights the need to consider the particularities of each MTBC lineage for understanding the ecology and epidemiology of TB in Africa and globally.
DOI: 10.1016/s2666-5247(22)00301-9
2023
Cited 25 times
Evaluation of Nanopore sequencing for Mycobacterium tuberculosis drug susceptibility testing and outbreak investigation: a genomic analysis
Mycobacterium tuberculosis whole-genome sequencing (WGS) has been widely used for genotypic drug susceptibility testing (DST) and outbreak investigation. For both applications, Illumina technology is used by most public health laboratories; however, Nanopore technology developed by Oxford Nanopore Technologies has not been thoroughly evaluated. The aim of this study was to determine whether Nanopore sequencing data can provide equivalent information to Illumina for transmission clustering and genotypic DST for M tuberculosis.In this genomic analysis, we analysed 151 M tuberculosis isolates from Madagascar, South Africa, and England, which were collected between 2011 and 2018, using phenotypic DST and matched Illumina and Nanopore data. Illumina sequencing was done with the MiSeq, HiSeq 2500, or NextSeq500 platforms and Nanopore sequencing was done on the MinION or GridION platforms. Using highly reliable PacBio sequencing assemblies and pairwise distance correlation between Nanopore and Illumina data, we optimise Nanopore variant filters for detecting single-nucleotide polymorphisms (SNPs; using BCFtools software). We then used those SNPs to compare transmission clusters identified by Nanopore with the currently used UK Health Security Agency Illumina pipeline (COMPASS). We compared Illumina and Nanopore WGS-based DST predictions using the Mykrobe software and mutation catalogue.The Nanopore BCFtools pipeline identified SNPs with a median precision of 99·3% (IQR 99·1-99·6) and recall of 90·2% (88·1-94·2) compared with a precision of 99·6% (99·4-99·7) and recall of 91·9% (87·6-98·6) using the Illumina COMPASS pipeline. Using a threshold of 12 SNPs for putative transmission clusters, Illumina identified 98 isolates as unrelated and 53 as belonging to 19 distinct clusters (size range 2-7). Nanopore reproduced 15 out of 19 clusters perfectly; two clusters were merged into one cluster, one cluster had a single sample missing, and one cluster had an additional sample adjoined. Illumina-based clusters were also closely replicated using a five SNP threshold and clustering accuracy was maintained using mixed Illumina and Nanopore datasets. Genotyping resistance variants with Nanopore was highly concordant with Illumina, having zero discordant SNPs across more than 3000 SNPs and four insertions or deletions (indels), across 60 000 indels.Illumina and Nanopore technologies can be used independently or together by public health laboratories performing M tuberculosis genotypic DST and outbreak investigations. As a result, clinical and public health institutions making decisions on which sequencing technology to adopt for tuberculosis can base the choice on cost (which varies by country), batching, and turnaround time.Academy for Medical Sciences, Oxford Wellcome Institutional Strategic Support Fund, and the Swiss South Africa Joint Research Award (Swiss National Science Foundation and South African National Research Foundation).
DOI: 10.1016/s1473-3099(22)00875-1
2023
Cited 18 times
Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
DOI: 10.1128/jcm.43.7.3185-3191.2005
2005
Cited 241 times
Genomic Deletions Classify the Beijing/W Strains as a Distinct Genetic Lineage of <i>Mycobacterium tuberculosis</i>
ABSTRACT Beijing/W strains of Mycobacterium tuberculosis are geographically widespread and hypervirulent. To enhance our understanding of their origin and evolution, we sought phylogenetically informative large sequence polymorphisms (LSPs) within the Beijing/W family. Comparative whole-genome hybridization of Beijing/W strains revealed 21 LSPs, 7 of which were previously unreported. We show that some of these LSPs are unique event polymorphisms that can be used to define and subdivide the Beijing/W family. One LSP (RD105) was seen in all Beijing/W strains and thus serves as a useful marker for the identification of this family of strains. Additional LSPs (RD142, RD150, and RD181) further divided this family into four monophyletic subgroups, demonstrating a deeper population structure than previously appreciated. All Beijing/W strains were also observed to have an intact pks15/1 gene that is involved in the biosynthesis of a phenolic glycolipid, a putative virulence factor. A simple PCR assay using these Beijing/W strain-defining deletions will facilitate molecular epidemiological studies and may assist in the identification of the molecular basis of phenotypes associated with this important lineage of M. tuberculosis .
DOI: 10.1128/jb.01670-06
2007
Cited 215 times
The W-Beijing Lineage of <i>Mycobacterium tuberculosis</i> Overproduces Triglycerides and Has the DosR Dormancy Regulon Constitutively Upregulated
The Beijing family of Mycobacterium tuberculosis strains has been associated with epidemic spread and an increased likelihood of developing drug resistance. The characteristics that predispose this family to such clinical outcomes have not been identified, although one potential candidate, the phenolic glycolipid PGL-tb, has been shown to mediate a fulminant lethal disease in mice and rabbits due to lipid-mediated immunosuppression. However, PGL-tb is not uniformly expressed throughout the Beijing lineage and may not be the only unique virulence trait associated with this family. In an attempt to define phenotypes common to all Beijing strains, we interrogated a carefully selected set of isolates representing the five extant lineages of the Beijing family. Comparison of lipid production in this set revealed that all Beijing strains accumulated large quantities of triacylglycerides in in vitro aerobic culture. This accumulation was found to be coincident with upregulation of Rv3130c, whose product was previously characterized as a triacylglyceride synthase. Rv3130c is a member of the DosR-controlled regulon of M. tuberculosis, and further examination revealed that several members of this regulon were upregulated throughout this strain family. The upregulation of the DosR regulon may confer an adaptive advantage for growth in microaerophilic or anaerobic environments encountered by the bacillus during infection and thus may be related to the epidemiological phenomena associated with this important strain lineage.
DOI: 10.1371/journal.ppat.0020061
2006
Cited 213 times
Impact of Bacterial Genetics on the Transmission of Isoniazid-Resistant Mycobacterium tuberculosis
Understanding the ecology of drug-resistant pathogens is essential for devising rational programs to preserve the effective lifespan of antimicrobial agents and to abrogate epidemics of drug-resistant organisms. Mathematical models predict that strain fitness is an important determinant of multidrug-resistant Mycobacterium tuberculosis transmission, but the effects of strain diversity have been largely overlooked. Here we compared the impact of resistance mutations on the transmission of isoniazid-resistant M. tuberculosis in San Francisco during a 9-y period. Strains with a KatG S315T or inhA promoter mutation were more likely to spread than strains with other mutations. The impact of these mutations on the transmission of isoniazid-resistant strains was comparable to the effect of other clinical determinants of transmission. Associations were apparent between specific drug resistance mutations and the main M. tuberculosis lineages. Our results show that in addition to host and environmental factors, strain genetic diversity can influence the transmission dynamics of drug-resistant bacteria.
DOI: 10.1086/431151
2005
Cited 194 times
An Outbreak of Serotype 1<i>Streptococcus pneumoniae</i>Meningitis in Northern Ghana with Features That Are Characteristic of<i>Neisseria meningitidis</i>Meningitis Epidemics
The Kassena-Nankana District (KND) of northern Ghana lies in the African meningitis belt, where epidemics of bacterial meningitis have been reoccurring every 8-12 years. These epidemics are generally caused by Neisseria meningitidis, an organism that is considered to be uniquely capable of causing meningitis epidemics.We recruited all patients with suspected meningitis in the KND between 1998 and 2003. Cerebrospinal fluid samples were collected and analyzed by standard microbiological techniques. Bacterial isolates were subjected to serotyping, multilocus sequence typing (MLST), and antibiotic-resistance testing.A continual increase in the incidence of pneumococcal meningitis was observed from 2000 to 2003. This outbreak exhibited strong seasonality, a broad host age range, and clonal dominance, all of which are characteristic of meningococcal meningitis epidemics in the African meningitis belt. The case-fatality rate for pneumococcal meningitis was 44.4%; the majority of pneumococcal isolates were antibiotic sensitive and expressed the serotype 1 capsule. MLST revealed that these isolates belonged to a clonal complex dominated by sequence type (ST) 217 and its 2 single-locus variants, ST303 and ST612.The S. pneumoniae ST217 clonal complex represents a hypervirulent lineage with a high propensity to cause meningitis, and our results suggest that this lineage might have the potential to cause an epidemic. Serotype 1 is not included in the currently licensed pediatric heptavalent pneumococcal vaccine. Mass vaccination with a less complex conjugate vaccine that targets hypervirulent serotypes should, therefore, be considered.
DOI: 10.1016/j.tig.2012.11.005
2013
Cited 161 times
The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis
Recent surveillance data of multidrug-resistant tuberculosis (MDR-TB) reported the highest rates of resistance ever documented. As further amplification of resistance in MDR strains of Mycobacterium tuberculosis occurs, extensively drug-resistant (XDR) and totally drug-resistant (TDR) TB are beginning to emerge. Although for the most part, the epidemiological factors involved in the spread of MDR-TB are understood, insights into the bacterial drivers of MDR-TB have been gained only recently, largely owing to novel technologies and research in other organisms. Herein, we review recent findings on how bacterial factors, such as persistence, hypermutation, the complex interrelation between drug resistance and fitness, compensatory evolution, and epistasis affect the evolution of multidrug resistance in M. tuberculosis. Improved knowledge of these factors will help better predict the future trajectory of MDR-TB, and contribute to the development of new tools and strategies to combat this growing public health threat. Recent surveillance data of multidrug-resistant tuberculosis (MDR-TB) reported the highest rates of resistance ever documented. As further amplification of resistance in MDR strains of Mycobacterium tuberculosis occurs, extensively drug-resistant (XDR) and totally drug-resistant (TDR) TB are beginning to emerge. Although for the most part, the epidemiological factors involved in the spread of MDR-TB are understood, insights into the bacterial drivers of MDR-TB have been gained only recently, largely owing to novel technologies and research in other organisms. Herein, we review recent findings on how bacterial factors, such as persistence, hypermutation, the complex interrelation between drug resistance and fitness, compensatory evolution, and epistasis affect the evolution of multidrug resistance in M. tuberculosis. Improved knowledge of these factors will help better predict the future trajectory of MDR-TB, and contribute to the development of new tools and strategies to combat this growing public health threat.
DOI: 10.1128/jcm.02180-07
2008
Cited 160 times
Relationship between <i>Mycobacterium tuberculosis</i> Genotype and the Clinical Phenotype of Pulmonary and Meningeal Tuberculosis
ABSTRACT We used large sequence polymorphisms to determine the genotypes of 397 isolates of Mycobacterium tuberculosis from human immunodeficiency virus-uninfected Vietnamese adults with pulmonary ( n = 235) or meningeal ( n = 162) tuberculosis. We compared the pretreatment radiographic appearances of pulmonary tuberculosis and the presentation, response to treatment, and outcome of tuberculous meningitis between the genotypes. Multivariate analysis identified variables independently associated with genotype and outcome. A higher proportion of adults with pulmonary tuberculosis caused by the Euro-American genotype had consolidation on chest X-ray than was the case with disease caused by other genotypes ( P = 0.006). Multivariate analysis revealed that meningitis caused by the East Asian/Beijing genotype was independently associated with a shorter duration of illness before presentation and fewer cerebrospinal fluid (CSF) leukocytes. Older age, fewer CSF leukocytes, and the presence of hemiplegia (but not strain lineage) were independently associated with death or severe disability, although the East Asian/Beijing genotype was strongly associated with drug-resistant tuberculosis. The genotype of M. tuberculosis influenced the presenting features of pulmonary and meningeal tuberculosis. The association between the East Asian/Beijing lineage and disease progression and CSF leukocyte count suggests the lineage may alter the presentation of meningitis by influencing the intracerebral inflammatory response. In addition, increased drug resistance among bacteria of the East Asian/Beijing lineage might influence the response to treatment. This study suggests the genetic diversity of M. tuberculosis has important clinical consequences.
DOI: 10.1371/journal.ppat.1000600
2009
Cited 158 times
The Past and Future of Tuberculosis Research
Renewed efforts in tuberculosis (TB) research have led to important new insights into the biology and epidemiology of this devastating disease. Yet, in the face of the modern epidemics of HIV/AIDS, diabetes, and multidrug resistance--all of which contribute to susceptibility to TB--global control of the disease will remain a formidable challenge for years to come. New high-throughput genomics technologies are already contributing to studies of TB's epidemiology, comparative genomics, evolution, and host-pathogen interaction. We argue here, however, that new multidisciplinary approaches--especially the integration of epidemiology with systems biology in what we call "systems epidemiology"--will be required to eliminate TB.
DOI: 10.1016/j.ddmec.2010.09.004
2010
Cited 143 times
Does M. tuberculosis genomic diversity explain disease diversity?
The outcome of tuberculosis infection and disease is highly variable. This variation has been attributed primarily to host and environmental factors, but better understanding of the global genomic diversity in the M. tuberculosis complex (MTBC) suggests that bacterial factors could also be involved. Review of nearly 100 published reports shows that MTBC strains differ in their virulence and immunogenicity in experimental models, but whether this phenotypic variation plays a role in human disease remains unclear. Given the complex interactions between the host, the pathogen and the environment, linking MTBC genotypic diversity to experimental and clinical phenotypes requires an integrated systems epidemiology approach embedded in a robust evolutionary framework.
DOI: 10.1073/pnas.1424063112
2015
Cited 138 times
Southern East Asian origin and coexpansion of <i>Mycobacterium tuberculosis</i> Beijing family with Han Chinese
The Beijing family is the most successful genotype of Mycobacterium tuberculosis and responsible for more than a quarter of the global tuberculosis epidemic. As the predominant genotype in East Asia, the Beijing family has been emerging in various areas of the world and is often associated with disease outbreaks and antibiotic resistance. Revealing the origin and historical dissemination of this strain family is important for understanding its current global success. Here we characterized the global diversity of this family based on whole-genome sequences of 358 Beijing strains. We show that the Beijing strains endemic in East Asia are genetically diverse, whereas the globally emerging strains mostly belong to a more homogenous subtype known as "modern" Beijing. Phylogeographic and coalescent analyses indicate that the Beijing family most likely emerged around 30,000 y ago in southern East Asia, and accompanied the early colonization by modern humans in this area. By combining the genomic data and genotyping result of 1,793 strains from across China, we found the "modern" Beijing sublineage experienced massive expansions in northern China during the Neolithic era and subsequently spread to other regions following the migration of Han Chinese. Our results support a parallel evolution of the Beijing family and modern humans in East Asia. The dominance of the "modern" Beijing sublineage in East Asia and its recent global emergence are most likely driven by its hypervirulence, which might reflect adaption to increased human population densities linked to the agricultural transition in northern China.
DOI: 10.1371/journal.pone.0007407
2009
Cited 136 times
Genomic Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with Identical DNA Fingerprints
Background Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Methodology/Principal Findings Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Conclusions Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs.
DOI: 10.1186/1471-2164-15-881
2014
Cited 132 times
KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes
High-throughput DNA sequencing produces vast amounts of data, with millions of short reads that usually have to be mapped to a reference genome or newly assembled. Both reference-based mapping and de novo assembly are computationally intensive, generating large intermediary data files, and thus require bioinformatics skills that are often lacking in the laboratories producing the data. Moreover, many research and practical applications in microbiology require only a small fraction of the whole genome data. We developed KvarQ, a new tool that directly scans fastq files of bacterial genome sequences for known variants, such as single nucleotide polymorphisms (SNP), bypassing the need of mapping all sequencing reads to a reference genome and de novo assembly. Instead, KvarQ loads “testsuites” that define specific SNPs or short regions of interest in a reference genome, and directly synthesizes the relevant results based on the occurrence of these markers in the fastq files. KvarQ has a versatile command line interface and a graphical user interface. KvarQ currently ships with two “testsuites” for Mycobacterium tuberculosis, but new “testsuites” for other organisms can easily be created and distributed. In this article, we demonstrate how KvarQ can be used to successfully detect all main drug resistance mutations and phylogenetic markers in 880 bacterial whole genome sequences. The average scanning time per genome sequence was two minutes. The variant calls of a subset of these genomes were validated with a standard bioinformatics pipeline and revealed >99% congruency. KvarQ is a user-friendly tool that directly extracts relevant information from fastq files. This enables researchers and laboratory technicians with limited bioinformatics expertise to scan and analyze raw sequencing data in a matter of minutes. KvarQ is open-source, and pre-compiled packages with a graphical user interface are available at http://www.swisstph.ch/kvarq .
DOI: 10.1016/j.chom.2015.10.008
2015
Cited 121 times
M. tuberculosis T Cell Epitope Analysis Reveals Paucity of Antigenic Variation and Identifies Rare Variable TB Antigens
Pathogens that evade adaptive immunity typically exhibit antigenic variation. By contrast, it appears that although the chronic human tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis needs to counter host T cell responses, its T cell epitopes are hyperconserved. Here we present an extensive analysis of the T cell epitopes of M. tuberculosis. We combined population genomics with experimental immunology to determine the number and identity of T cell epitope sequence variants in 216 phylogenetically diverse strains of M. tuberculosis. Antigen conservation is indeed a hallmark of M. tuberculosis. However, our analysis revealed a set of seven variable antigens that were immunogenic in subjects with active TB. These findings suggest that M. tuberculosis uses mechanisms other than antigenic variation to evade T cells. T cell epitopes that exhibit sequence variation may not be subject to the same evasion mechanisms, and hence vaccines that include such variable epitopes may be more efficacious.
DOI: 10.1371/journal.pone.0041253
2012
Cited 117 times
Two New Rapid SNP-Typing Methods for Classifying Mycobacterium tuberculosis Complex into the Main Phylogenetic Lineages
There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the "Beijing" sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.
DOI: 10.5588/ijtld.15.0221
2016
Cited 117 times
Clinical implications of molecular drug resistance testing for &lt;I&gt;Mycobacterium tuberculosis&lt;/I&gt;: a TBNET/RESIST-TB consensus statement
The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs. We ascertained consensus on the use of the results of molecular DST for clinical treatment decisions in TB patients. This document has been developed by TBNET and RESIST-TB groups to reach a consensus about reporting standards in the clinical use of molecular DST results. Review of the available literature and the search for evidence included hand-searching journals and searching electronic databases. The panel identified single nucleotide mutations in genomic regions of M. tuberculosis coding for katG, inhA, rpoB, embB, rrs, rpsL and gyrA that are likely related to drug resistance in vivo. Identification of any of these mutations in clinical isolates of M. tuberculosis has implications for the management of TB patients, pending the results of in vitro DST. However, false-positive and false-negative results in detecting resistance-associated mutations in drugs for which there is poor or unproven correlation between phenotypic and clinical drug resistance complicate the interpretation. Reports of molecular DST results should therefore include specific information on the mutations identified and provide guidance for clinicians on interpretation and on the choice of the appropriate initial drug regimen.
DOI: 10.1126/science.aag1006
2017
Cited 117 times
Reversion of antibiotic resistance in <i>Mycobacterium tuberculosis</i> by spiroisoxazoline SMARt-420
Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.
DOI: 10.1016/s1473-3099(18)30004-5
2018
Cited 116 times
A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study
The risk of tuberculosis outbreaks among people fleeing hardship for refuge in Europe is heightened. We describe the cross-border European response to an outbreak of multidrug-resistant tuberculosis among patients from the Horn of Africa and Sudan.On April 29 and May 30, 2016, the Swiss and German National Mycobacterial Reference Laboratories independently triggered an outbreak investigation after four patients were diagnosed with multidrug-resistant tuberculosis. In this molecular epidemiological study, we prospectively defined outbreak cases with 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) profiles; phenotypic resistance to isoniazid, rifampicin, ethambutol, pyrazinamide, and capreomycin; and corresponding drug resistance mutations. We whole-genome sequenced all Mycobacterium tuberculosis isolates and clustered them using a threshold of five single nucleotide polymorphisms (SNPs). We collated epidemiological data from host countries from the European Centre for Disease Prevention and Control.Between Feb 12, 2016, and April 19, 2017, 29 patients were diagnosed with multidrug-resistant tuberculosis in seven European countries. All originated from the Horn of Africa or Sudan, with all isolates two SNPs or fewer apart. 22 (76%) patients reported their travel routes, with clear spatiotemporal overlap between routes. We identified a further 29 MIRU-VNTR-linked cases from the Horn of Africa that predated the outbreak, but all were more than five SNPs from the outbreak. However all 58 isolates shared a capreomycin resistance-associated tlyA mutation.Our data suggest that source cases are linked to an M tuberculosis clone circulating in northern Somalia or Djibouti and that transmission probably occurred en route before arrival in Europe. We hypothesise that the shared mutation of tlyA is a drug resistance mutation and phylogenetic marker, the first of its kind in M tuberculosis sensu stricto.The Swiss Federal Office of Public Health, the University of Zurich, the Wellcome Trust, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), the Medical Research Council, BELTA-TBnet, the European Union, the German Center for Infection Research, and Leibniz Science Campus Evolutionary Medicine of the Lung (EvoLUNG).
DOI: 10.1186/s12859-018-2164-8
2018
Cited 115 times
Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity
Large sequence datasets are difficult to visualize and handle. Additionally, they often do not represent a random subset of the natural diversity, but the result of uncoordinated and convenience sampling. Consequently, they can suffer from redundancy and sampling biases.Here we present Treemmer, a simple tool to evaluate the redundancy of phylogenetic trees and reduce their complexity by eliminating leaves that contribute the least to the tree diversity.Treemmer can reduce the size of datasets with different phylogenetic structures and levels of redundancy while maintaining a sub-sample that is representative of the original diversity. Additionally, it is possible to fine-tune the behavior of Treemmer including any kind of meta-information, making Treemmer particularly useful for empirical studies.
DOI: 10.1371/journal.ppat.1008067
2019
Cited 113 times
The molecular clock of Mycobacterium tuberculosis
The molecular clock and its phylogenetic applications to genomic data have changed how we study and understand one of the major human pathogens, Mycobacterium tuberculosis (MTB), the etiologic agent of tuberculosis. Genome sequences of MTB strains sampled at different times are increasingly used to infer when a particular outbreak begun, when a drug-resistant clone appeared and expanded, or when a strain was introduced into a specific region. Despite the growing importance of the molecular clock in tuberculosis research, there is a lack of consensus as to whether MTB displays a clocklike behavior and about its rate of evolution. Here we performed a systematic study of the molecular clock of MTB on a large genomic data set (6,285 strains), covering different epidemiological settings and most of the known global diversity. We found that sampling times below 15-20 years were often insufficient to calibrate the clock of MTB. For data sets where such calibration was possible, we obtained a clock rate between 1x10-8 and 5x10-7 nucleotide changes per-site-per-year (0.04-2.2 SNPs per-genome-per-year), with substantial differences between clades. These estimates were not strongly dependent on the time of the calibration points as they changed only marginally when we used epidemiological isolates (sampled in the last 40 years) or three ancient DNA samples (about 1,000 years old) to calibrate the tree. Additionally, the uncertainty and the discrepancies in the results of different methods were sometimes large, highlighting the importance of using different methods, and of considering carefully their assumptions and limitations.
DOI: 10.1128/iai.00632-13
2013
Cited 108 times
Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus)
Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.
DOI: 10.1093/emph/eot003
2013
Cited 105 times
Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis
Background and objectives: Multidrug resistant (MDR) bacteria are a growing threat to global health. Studies focusing on single antibiotics have shown that drug resistance is often associated with a fitness cost in the absence of drug. However, little is known about the fitness cost associated with resistance to multiple antibiotics.
DOI: 10.1126/scitranslmed.aal3973
2018
Cited 104 times
High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds
The mode of action of new antimicrobial compounds can be predicted from changes in metabolome profiles in Mycobacterium .
DOI: 10.1128/aac.06460-11
2012
Cited 103 times
Effect of Mutation and Genetic Background on Drug Resistance in Mycobacterium tuberculosis
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
DOI: 10.1038/nrd4696
2015
Cited 101 times
Towards host-directed therapies for tuberculosis
The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.
DOI: 10.3201/eid1906.121012
2013
Cited 101 times
Novel<i>Mycobacterium tuberculosis</i>Complex Isolate from a Wild Chimpanzee
Tuberculosis (TB) is caused by gram-positive bacteria known as the Mycobacterium tuberculosis complex (MTBC). MTBC include several human-associated lineages and several variants adapted to domestic and, more rarely, wild animal species. We report an M. tuberculosis strain isolated from a wild chimpanzee in Côte d'Ivoire that was shown by comparative genomic and phylogenomic analyses to belong to a new lineage of MTBC, closer to the human-associated lineage 6 (also known as M. africanum West Africa 2) than to the other classical animal-associated MTBC strains. These results show that the general view of the genetic diversity of MTBC is limited and support the possibility that other MTBC variants exist, particularly in wild mammals in Africa. Exploring this diversity is crucial to the understanding of the biology and evolutionary history of this widespread infectious disease.
DOI: 10.1371/journal.pone.0030593
2012
Cited 97 times
Comparative Analysis of Mycobacterium tuberculosis pe and ppe Genes Reveals High Sequence Variation and an Apparent Absence of Selective Constraints
Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.
DOI: 10.1186/s13059-017-1196-0
2017
Cited 96 times
The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy
Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations.
DOI: 10.7554/elife.38200
2018
Cited 95 times
Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia
Bacterial factors favoring the unprecedented multidrug-resistant tuberculosis (MDR-TB) epidemic in the former Soviet Union remain unclear. We utilized whole genome sequencing and Bayesian statistics to analyze the evolutionary history, temporal emergence of resistance and transmission networks of MDR Mycobacterium tuberculosis complex isolates from Karakalpakstan, Uzbekistan (2001-2006). One clade (termed Central Asian outbreak, CAO) dating back to 1974 (95% HPD 1969-1982) subsequently acquired resistance mediating mutations to eight anti-TB drugs. Introduction of standardized WHO-endorsed directly observed treatment, short-course in Karakalpakstan in 1998 likely selected for CAO-strains, comprising 75% of sampled MDR-TB isolates in 2005/2006. CAO-isolates were also identified in a published cohort from Russia (2008-2010). Similarly, the presence of mutations supposed to compensate bacterial fitness deficits was associated with transmission success and higher drug resistance rates. The genetic make-up of these MDR-strains threatens the success of both empirical and standardized MDR-TB therapies, including the newly WHO-endorsed short MDR-TB regimen in Uzbekistan.
DOI: 10.1016/j.cub.2015.10.061
2015
Cited 91 times
Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa
Colonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a "virgin soil" for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3-6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9-11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20(th) century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a "virgin soil" fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa.
DOI: 10.1093/infdis/jiv568
2015
Cited 91 times
Transient Hyperglycemia in Patients With Tuberculosis in Tanzania: Implications for Diabetes Screening Algorithms
Diabetes mellitus (DM) increases tuberculosis risk while tuberculosis, as an infectious disease, leads to hyperglycemia. We compared hyperglycemia screening strategies in controls and patients with tuberculosis in Dar es Salaam, Tanzania.Consecutive adults with tuberculosis and sex- and age-matched volunteers were included in a case-control study between July 2012 and June 2014. All underwent DM screening tests (fasting capillary glucose [FCG] level, 2-hour CG [2-hCG] level, and glycated hemoglobin A1c [HbA1c] level) at enrollment, and cases were tested again after receipt of tuberculosis treatment. Association of tuberculosis and its outcome with hyperglycemia was assessed using logistic regression analysis adjusted for sex, age, body mass index, human immunodeficiency virus infection status, and socioeconomic status. Patients with tuberculosis and newly diagnosed DM were not treated for hyperglycemia.At enrollment, DM prevalence was significantly higher among patients with tuberculosis (n = 539; FCG level > 7 mmol/L, 4.5% of patients, 2-hCG level > 11 mmol/L, 6.8%; and HbA1c level > 6.5%, 9.3%), compared with controls (n = 496; 1.2%, 3.1%, and 2.2%, respectively). The association between hyperglycemia and tuberculosis disappeared after tuberculosis treatment (adjusted odds ratio [aOR] for the FCG level: 9.6 [95% confidence interval {CI}, 3.7-24.7] at enrollment vs 2.4 [95% CI, .7-8.7] at follow-up; aOR for the 2-hCG level: 6.6 [95% CI, 4.0-11.1] vs 1.6 [95% CI, .8-2.9]; and aOR for the HbA1c level, 4.2 [95% CI, 2.9-6.0] vs 1.4 [95% CI, .9-2.0]). Hyperglycemia, based on the FCG level, at enrollment was associated with tuberculosis treatment failure or death (aOR, 3.3; 95% CI, 1.2-9.3).Transient hyperglycemia is frequent during tuberculosis, and DM needs confirmation after tuberculosis treatment. Performance of DM screening at tuberculosis diagnosis gives the opportunity to detect patients at risk of adverse outcome.
DOI: 10.1128/jcm.00126-16
2016
Cited 89 times
Standard Genotyping Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country
ABSTRACT Immigrants from regions with a high incidence of tuberculosis (TB) are a risk group for TB in low-incidence countries such as Switzerland. In a previous analysis of a nationwide collection of 520 Mycobacterium tuberculosis isolates from 2000 to 2008, we identified 35 clusters comprising 90 patients based on standard genotyping (24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat [MIRU-VNTR] typing and spoligotyping). Here, we used whole-genome sequencing (WGS) to revisit these transmission clusters. Genome-based transmission clusters were defined as isolate pairs separated by ≤12 single nucleotide polymorphisms (SNPs). WGS confirmed 17/35 (49%) MIRU-VNTR typing clusters; the other 18 clusters contained pairs separated by &gt;12 SNPs. Most transmission clusters (3/4) of Swiss-born patients were confirmed by WGS, as opposed to 25% (4/16) of the clusters involving only foreign-born patients. The overall clustering proportion was 17% (90 patients; 95% confidence interval [CI], 14 to 21%) by standard genotyping but only 8% (43 patients; 95% CI, 6 to 11%) by WGS. The clustering proportion was 17% (67/401; 95% CI, 13 to 21%) by standard genotyping and 7% (26/401; 95% CI, 4 to 9%) by WGS among foreign-born patients and 19% (23/119; 95% CI, 13 to 28%) and 14% (17/119; 95% CI, 9 to 22%), respectively, among Swiss-born patients. Using weighted logistic regression, we found weak evidence of an association between birth origin and transmission (adjusted odds ratio of 2.2 and 95% CI of 0.9 to 5.5 comparing Swiss-born patients to others). In conclusion, standard genotyping overestimated recent TB transmission in Switzerland compared to WGS, particularly among immigrants from regions with a high TB incidence, where genetically closely related strains often predominate. We recommend the use of WGS to identify transmission clusters in settings with a low incidence of TB.
DOI: 10.1038/s41559-018-0680-6
2018
Cited 86 times
China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis
A small number of high-burden countries account for the majority of tuberculosis cases worldwide. Detailed data are lacking from these regions. To explore the evolutionary history of Mycobacterium tuberculosis in China-the country with the third highest tuberculosis burden-we analysed a countrywide collection of 4,578 isolates. Little genetic diversity was detected, with 99.4% of the bacterial population belonging to lineage 2 and three sublineages of lineage 4. The deeply rooted phylogenetic positions and geographic restriction of these four genotypes indicate that their populations expanded in situ following a small number of introductions to China. Coalescent analyses suggest that these bacterial subpopulations emerged in China around 1,000 years ago, and expanded in parallel from the twelfth century onwards, and that the whole population peaked in the late eighteenth century. More recently, sublineage L2.3, which is indigenous to China and exhibited relatively high transmissibility and extensive global dissemination, came to dominate the population dynamics of M. tuberculosis in China. Our results indicate that historical expansion of four M. tuberculosis strains shaped the current tuberculosis epidemic in China, and highlight the long-term genetic continuity of the indigenous M. tuberculosis population.
DOI: 10.1093/infdis/jiu601
2014
Cited 83 times
Tracking a Tuberculosis Outbreak Over 21 Years: Strain-Specific Single-Nucleotide Polymorphism Typing Combined With Targeted Whole-Genome Sequencing
Background. Whole-genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single-nucleotide polymorphism (SNP) typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. Methods. On the basis of genome sequences of 3 historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1642 patient isolates and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. Results. We identified 68 patients associated with the outbreak strain. Most received a tuberculosis diagnosis in 1991–1995, but cases were observed until 2011. Two thirds were homeless and/or substance abusers. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into 3 subclusters. Isolates from patients with confirmed epidemiological links differed by 0–11 SNPs. Conclusions. Strain-specific SNP genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real time and at high resolution.
DOI: 10.1038/s41598-018-33731-1
2018
Cited 82 times
Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase
Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) ( https://github.com/CPTR-ReSeqTB/UVP ) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis.
DOI: 10.1016/j.tube.2014.02.005
2014
Cited 81 times
PolyTB: A genomic variation map for Mycobacterium tuberculosis
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest.
DOI: 10.1371/journal.ppat.1006939
2018
Cited 80 times
TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities
Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.
DOI: 10.1016/j.cmi.2016.09.006
2017
Cited 74 times
Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria
The rpoB gene codes for the RNA polymerase β subunit, which is the target of rifampicin, an essential drug in the treatment of tuberculosis and other mycobacterial infections. This gene is present in all bacteria, but its length and nucleotide sequence vary between bacterial species, including mycobacteria. Mutations in the rpoB gene alter the structure of this protein and cause drug resistance. To describe the resistance-associated mutations, the scientific and medical communities have been using, since 1993, a numbering system based on the Escherichia coli sequence annotation. Using E. coli reference for describing mutations in mycobacteria leads to misunderstandings, particularly with the increasing use of whole genome sequencing, which brought an alternative numbering system based on the Mycobacterium tuberculosis rpoB sequence. We propose using a consensus numbering system for the reporting of resistance mutations based on the reference genomes from the species interrogated (such as strain H37Rv for M. tuberculosis). This manuscript provides the necessary figures and tables allowing researchers, microbiologists and clinicians to easily convert other annotation systems into one common language.
DOI: 10.1126/sciadv.aaw3307
2019
Cited 62 times
Genomic determinants of speciation and spread of the <i>Mycobacterium tuberculosis</i> complex
Emergence and global success of tuberculosis involve core pathogenesis functions under selection in epidemiological settings.
DOI: 10.1038/s41591-021-01358-x
2021
Cited 46 times
Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis
Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness costs in bacteria2-5. Experimental work indicates that these drug resistance-related fitness costs might be mitigated by compensatory mutations6-10. However, the clinical relevance of compensatory evolution remains poorly understood. Here we show that, in the country of Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient transmission. Compensatory mutations and patient incarceration were independently associated with transmission. Furthermore, compensatory mutations were overrepresented among isolates from incarcerated individuals that also frequently spilled over into the non-incarcerated population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as ecological drivers of fitness-compensated strains with high transmission potential.
DOI: 10.1038/s41467-022-32455-1
2022
Cited 29 times
Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis
Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.
DOI: 10.1038/s41467-023-37719-y
2023
Cited 14 times
The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot
Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.
DOI: 10.1073/pnas.061386098
2001
Cited 142 times
Fit genotypes and escape variants of subgroup III <i>Neisseria meningitidis</i> during three pandemics of epidemic meningitis
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine "genoclouds" were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
DOI: 10.1371/journal.pmed.0040101
2007
Cited 95 times
Clonal Waves of Neisseria Colonisation and Disease in the African Meningitis Belt: Eight- Year Longitudinal Study in Northern Ghana
The Kassena-Nankana District of northern Ghana lies in the African "meningitis belt" where epidemics of meningococcal meningitis have been reoccurring every eight to 12 years for the last 100 years. The dynamics of meningococcal colonisation and disease are incompletely understood, and hence we embarked on a long-term study to determine how levels of colonisation with different bacterial serogroups change over time, and how the patterns of disease relate to such changes.Between February 1998 and November 2005, pharyngeal carriage of Neisseria meningitidis in the Kassena-Nankana District was studied by twice-yearly colonisation surveys. Meningococcal disease was monitored throughout the eight-year study period, and patient isolates were compared to the colonisation isolates. The overall meningococcal colonisation rate of the study population was 6.0%. All culture-confirmed patient isolates and the majority of carriage isolates were associated with three sequential waves of colonisation with encapsulated (A ST5, X ST751, and A ST7) meningococci. Compared to industrialised countries, the colonising meningococcal population was less constant in genotype composition over time and was genetically less diverse during the peaks of the colonisation waves, and a smaller proportion of the isolates was nonserogroupable. We observed a broad age range in the healthy carriers, resembling that of meningitis patients during large disease epidemics.The observed lack of a temporally stable and genetically diverse resident pharyngeal flora of meningococci might contribute to the susceptibility to meningococcal disease epidemics of residents in the African meningitis belt. Because capsular conjugate vaccines are known to impact meningococcal carriage, effects on herd immunity and potential serogroup replacement should be monitored following the introduction of such vaccines.
DOI: 10.1111/j.1469-0691.2011.03556.x
2011
Cited 94 times
Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis
Mycobacterium tuberculosis harbours little DNA sequence diversity compared with other bacteria. However, there is mounting evidence that strain-to-strain variation in this organism has been underestimated. We review our current understanding of the genetic diversity among M. tuberculosis clinical strains and discuss the relevance of this diversity for the ongoing global epidemics of drug-resistant tuberculosis. Based on findings in other bacteria, we propose that epistatic interactions between pre-existing differences in strain genetic background, acquired drug-resistance-conferring mutations and compensatory changes could play a role in the emergence and spread of drug-resistant M. tuberculosis.
DOI: 10.1111/j.1469-0691.2008.02685.x
2009
Cited 90 times
Fitness cost of drug resistance inMycobacterium tuberculosis
Multidrug-resistant (MDR) – and extensively drug-resistant (XDR) – forms of tuberculosis are growing public health problems. Mathematical models predict that the future of the MDR and XDR tuberculosis epidemics depends in part on the competitive fitness of drug-resistant strains. Here, recent experimental and molecular epidemiological data that illustrate how heterogeneity among drug-resistant strains of Mycobacterium tuberculosis can influence the relative fitness and transmission of this pathogen are reviewed.
DOI: 10.1128/cvi.00250-12
2012
Cited 87 times
Beijing Sublineages of Mycobacterium tuberculosis Differ in Pathogenicity in the Guinea Pig
ABSTRACT The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.
2009
Cited 86 times
Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis.
Mathematical models predict that the future of the multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) epidemic will depend to a large extent on the transmission efficiency or relative fitness of drug-resistant Mycobacterium tuberculosis compared to drug-susceptible strains. Molecular epidemiological studies comparing the spread of drug-resistant to that of drug-susceptible strains have yielded conflicting results: MDR strains can be up to 10 times more or 10 times less transmissible than pan-susceptible strains. Experimental work performed with model organisms has highlighted a level of complexity in the biology of bacterial drug resistance that is generally not considered during standard epidemiological studies of TB transmission. Recent experimental studies in M. tuberculosis indicate that drug resistance in this organism could be equally complex. For example, the relative fitness of drug-resistant strains of M. tuberculosis can be influenced by the specific drug resistance-conferring mutation and strain genetic background. Furthermore, compensatory evolution, which has been shown to mitigate the fitness defects associated with drug resistance in other bacteria, could be an important factor in the emergence and spread of drug-resistant M. tuberculosis. However, much more work is needed to understand the detailed molecular mechanisms and evolutionary forces that drive drug resistance in this pathogen. Such increased knowledge will allow for better epidemiological predictions and assist in the development of new tools and strategies to fight drug-resistant TB.
DOI: 10.1128/mbio.00960-13
2014
Cited 78 times
Sequence Diversity in the <i>pe_pgrs</i> Genes of Mycobacterium tuberculosis Is Independent of Human T Cell Recognition
ABSTRACT The Mycobacterium tuberculosis genome includes the large family of pe_pgrs genes, whose functions are unknown. Because of precedents in other pathogens in which gene families showing high sequence variation are involved in antigenic variation, a similar role has been proposed for the pe_pgrs genes. However, the impact of immune selection on pe_pgrs genes has not been examined. Here, we sequenced 27 pe_pgrs genes in 94 clinical strains from five phylogenetic lineages of the M. tuberculosis complex (MTBC). We found that pe_pgrs genes were overall more diverse than the remainder of the MTBC genome, but individual members of the family varied widely in their nucleotide diversity and insertion/deletion (indel) content: some were more, and others were much less, diverse than the genome average. Individual pe_pgrs genes also differed in the ratio of nonsynonymous to synonymous mutations, suggesting that different selection pressures act on individual pe_pgrs genes. Using bioinformatic methods, we tested whether sequence diversity in pe_pgrs genes might be selected by human T cell recognition, the major mechanism of adaptive immunity to MTBC. We found that the large majority of predicted human T cell epitopes were confined to the conserved PE domain and experimentally confirmed the antigenicity of this domain in tuberculosis patients. In contrast, despite being genetically diverse, the PGRS domains harbored few predicted T cell epitopes. These results indicate that human T cell recognition is not a significant force driving sequence diversity in pe_pgrs genes, which is consistent with the previously reported conservation of human T cell epitopes in the MTBC. IMPORTANCE Recognition of Mycobacterium tuberculosis antigens by T lymphocytes is known to be important for immune protection against tuberculosis, but it is unclear whether human T cell recognition drives antigenic variation in M. tuberculosis . We previously discovered that the known human T cell epitopes in the M. tuberculosis complex are highly conserved, but we hypothesized that undiscovered epitopes with naturally occurring sequence variants might exist. To test this hypothesis, we examined the pe_pgrs genes, a large family of genes that has been proposed to function in immune evasion by M. tuberculosis . We found that the pe_pgrs genes exhibit considerable sequence variation, but the regions containing T cell epitopes and the regions of variation are distinct. These findings confirm that the majority of human T cell epitopes of M. tuberculosis are highly conserved and indicate that selection forces other than T cell recognition drive sequence variation in the pe_pgrs genes.
DOI: 10.1371/journal.pone.0058235
2013
Cited 75 times
Use of Whole Genome Sequencing to Determine the Microevolution of Mycobacterium tuberculosis during an Outbreak
Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods.To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain. METHOD AND MEASUREMENTS: We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina's sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing.We obtained an average of 95.7% (94.1-96.9%) coverage for each isolate and an average fold read depth of 73 (1 to 250). We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0-2 mutations per transmission event that resulted in a secondary case.Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0-2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission.
DOI: 10.1371/journal.pgen.1003318
2013
Cited 72 times
HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
DOI: 10.1016/j.tim.2011.07.002
2011
Cited 71 times
A role for systems epidemiology in tuberculosis research
Despite being a curable disease, tuberculosis (TB) killed more people in 2009 than during any previous year in history. Progress in TB research has been slow, and remains burdened by important gaps in our knowledge of the basic biology of Mycobacterium tuberculosis, the causative agent of TB, and its interaction with the human host. Fortunately, major systems biology initiatives have recently been launched that will help fill some of these gaps. However, to fully comprehend TB and control this disease globally, current systems biological approaches will not suffice. The influence of host and pathogen diversity, changes in human demography, and socioeconomic and environmental factors will also need to be considered. Such a multidisciplinary approach might be best described as ‘systems epidemiology’ in an effort to overcome the traditional boundaries between basic biology and classical epidemiology. Despite being a curable disease, tuberculosis (TB) killed more people in 2009 than during any previous year in history. Progress in TB research has been slow, and remains burdened by important gaps in our knowledge of the basic biology of Mycobacterium tuberculosis, the causative agent of TB, and its interaction with the human host. Fortunately, major systems biology initiatives have recently been launched that will help fill some of these gaps. However, to fully comprehend TB and control this disease globally, current systems biological approaches will not suffice. The influence of host and pathogen diversity, changes in human demography, and socioeconomic and environmental factors will also need to be considered. Such a multidisciplinary approach might be best described as ‘systems epidemiology’ in an effort to overcome the traditional boundaries between basic biology and classical epidemiology.
DOI: 10.1016/j.meegid.2011.08.010
2012
Cited 69 times
Old and new selective pressures on Mycobacterium tuberculosis
Tuberculosis (TB) has been affecting humans for millennia. There is increasing indication that human-adapted Mycobacterium tuberculosis complex (MTBC) has been co-evolving with different human populations. Some of the most important drivers of MTBC evolution have been the host immune response and human demography. These old selective forces have shaped many of the features of human TB we see today. Two new selective pressures have emerged only a few decades ago, namely HIV co-infection and the use of anti-TB drugs. Here we discuss how the emergence of HIV/TB and drug resistance could impact the long-term balance between MTBC and its human host, and how these changes might influence the future evolutionary trajectory of MTBC.
DOI: 10.1093/gbe/evt138
2013
Cited 69 times
Mapping of Genotype–Phenotype Diversity among Clinical Isolates of Mycobacterium tuberculosis by Sequence-Based Transcriptional Profiling
Genome sequencing has identified an extensive repertoire of single nucleotide polymorphisms among clinical isolates of Mycobacterium tuberculosis, but the extent to which these differences influence phenotypic properties of the bacteria remains to be elucidated. To determine whether these polymorphisms give rise to phenotypic diversity, we have integrated genome data sets with RNA sequencing to assess their impact on the comparative transcriptome profiles of strains belonging to M. tuberculosis Lineages 1 and 2. We observed clear correlations between genotype and transcriptional phenotype. These arose by three mechanisms. First, lineage-specific changes in amino acid sequence of transcriptional regulators were associated with alterations in their ability to control gene expression. Second, changes in nucleotide sequence were associated with alteration of promoter activity and generation of novel transcriptional start sites in intergenic regions and within coding sequences. We show that in some cases this mechanism is expected to generate functionally active truncated proteins involved in innate immune recognition. Finally, genes showing lineage-specific patterns of differential expression not linked directly to primary mutations were characterized by a striking overrepresentation of toxin-antitoxin pairs. Taken together, these findings advance our understanding of mycobacterial evolution, contribute to a systems level understanding of this important human pathogen, and more broadly demonstrate the application of state-of-the-art techniques to provide novel insight into mechanisms by which intergenic and silent mutations contribute to diversity.
DOI: 10.1371/journal.pntd.0001552
2012
Cited 68 times
The Genome of Mycobacterium Africanum West African 2 Reveals a Lineage-Specific Locus and Genome Erosion Common to the M. tuberculosis Complex
M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis.In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the "modern" M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle.The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa.
DOI: 10.1007/s40265-014-0248-y
2014
Cited 64 times
Evolution of Drug Resistance in Tuberculosis: Recent Progress and Implications for Diagnosis and Therapy
Drug-resistant tuberculosis is a growing threat to global public health. Recent efforts to understand the evolution of drug resistance have shown that changes in drug–target interactions are only the first step in a longer adaptive process. The emergence of transmissible drug-resistant Mycobacterium tuberculosis is the result of a multitude of additional genetic mutations, many of which interact, a phenomenon known as epistasis. The varied effects of these epistatic interactions include compensating for the reduction of the biological cost associated with the development of drug resistance, increasing the level of resistance, and possibly accommodating broader changes in the physiology of resistant bacteria. Knowledge of these processes and our ability to detect them as they happen informs the development of diagnostic tools and better control strategies. In particular, the use of whole genome sequencing combined with surveillance efforts in the field could provide a powerful instrument to prevent future epidemics of drug-resistant tuberculosis.
DOI: 10.1038/ng.3269
2015
Cited 64 times
DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader
Sarah Fortune, Meindert Lamers and colleagues show that, unlike Escherichia coli, Mycobacterium tuberculosis uses an exonuclease domain in polymerase DnaE1 to proofread DNA replication. Importantly, this proofreading mechanism renders mycobacteria sensitive to nucleoside analogs, a class of small molecules used to treat viral infections and cancer. The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis1. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication2; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3′–5′ exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain–mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.
DOI: 10.1371/journal.pntd.0003370
2015
Cited 61 times
Mycobacterium africanum Is Associated with Patient Ethnicity in Ghana
Mycobacterium africanum is a member of the Mycobacterium tuberculosis complex (MTBC) and an important cause of human tuberculosis in West Africa that is rarely observed elsewhere. Here we genotyped 613 MTBC clinical isolates from Ghana, and searched for associations between the different phylogenetic lineages of MTBC and patient variables. We found that 17.1% (105/613) of the MTBC isolates belonged to M. africanum, with the remaining belonging to M. tuberculosis sensu stricto. No M. bovis was identified in this sample. M. africanum was significantly more common in tuberculosis patients belonging to the Ewe ethnic group (adjusted odds ratio: 3.02; 95% confidence interval: 1.67-5.47, p<0.001). Stratifying our analysis by the two phylogenetic lineages of M. africanum (i.e. MTBC Lineages 5 and 6) revealed that this association was mainly driven by Lineage 5 (also known as M. africanum West Africa 1). Our findings suggest interactions between the genetic diversity of MTBC and human diversity, and offer a possible explanation for the geographical restriction of M. africanum to parts of West Africa.
DOI: 10.1371/journal.pbio.3000265
2019
Cited 57 times
Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis
Transition bias, an overabundance of transitions relative to transversions, has been widely reported among studies of the rates and spectra of spontaneous mutations. However, demonstrating the role of transition bias in adaptive evolution remains challenging. In particular, it is unclear whether such biases direct the evolution of bacterial pathogens adapting to treatment. We addressed this challenge by analyzing adaptive antibiotic-resistance mutations in the major human pathogen Mycobacterium tuberculosis (MTB). We found strong evidence for transition bias in two independently curated data sets comprising 152 and 208 antibiotic-resistance mutations. This was true at the level of mutational paths (distinct adaptive DNA sequence changes) and events (individual instances of the adaptive DNA sequence changes) and across different genes and gene promoters conferring resistance to a diversity of antibiotics. It was also true for mutations that do not code for amino acid changes (in gene promoters and the 16S ribosomal RNA gene rrs) and for mutations that are synonymous to each other and are therefore likely to have similar fitness effects, suggesting that transition bias can be caused by a bias in mutation supply. These results point to a central role for transition bias in determining which mutations drive adaptive antibiotic resistance evolution in a key pathogen.
DOI: 10.1128/aac.02175-18
2019
Cited 57 times
Whole-Genome Sequencing for Drug Resistance Profile Prediction in <i>Mycobacterium tuberculosis</i>
Whole-genome sequencing allows rapid detection of drug-resistant Mycobacterium tuberculosis isolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis isolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.
DOI: 10.1007/978-3-319-64371-7_1
2017
Cited 53 times
The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex
The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.
DOI: 10.1038/s41467-020-15832-6
2020
Cited 52 times
Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production
Genetic diversity of Mycobacterium tuberculosis affects immune responses and clinical outcomes of tuberculosis (TB). However, how bacterial diversity orchestrates immune responses to direct distinct TB severities is unknown. Here we study 681 patients with pulmonary TB and show that M. tuberculosis isolates from cases with mild disease consistently induce robust cytokine responses in macrophages across multiple donors. By contrast, bacteria from patients with severe TB do not do so. Secretion of IL-1β is a good surrogate of the differences observed, and thus to classify strains as probable drivers of different TB severities. Furthermore, we demonstrate that M. tuberculosis isolates that induce low levels of IL-1β production can evade macrophage cytosolic surveillance systems, including cGAS and the inflammasome. Isolates exhibiting this evasion strategy carry candidate mutations, generating sigA recognition boxes or affecting components of the ESX-1 secretion system. Therefore, we provide evidence that M. tuberculosis strains manipulate host-pathogen interactions to drive variable TB severities.
DOI: 10.1371/journal.pone.0195985
2018
Cited 50 times
Anemia in tuberculosis cases and household controls from Tanzania: Contribution of disease, coinfections, and the role of hepcidin
Tuberculosis (TB) induces a systemic inflammatory state affecting iron homeostasis. Patients with TB often have additional comorbidities such as anemia which can result in poorer treat outcomes. We studied the contribution of anemia and the role of the iron regulatory hormone hepcidin among TB patients and household contacts.We analyzed serum samples from 102 TB cases and 98 controls without TB, matched by age/sex, for hepcidin, iron, and inflammation parameters. Five controls developed TB within 12 months. We used linear regression to assess associations.Anemia of chronic disease (ACD) was more frequent among cases than controls (59.8% vs. 26.1%), but iron-deficiency anemia more frequent in controls (10% vs. 1%). The median hepcidin level was higher in cases than controls (63.7 vs. 14.2 ng/mL), but coinfections with HIV, helminths, and respiratory pathogens did not show cumulative effects. Hepcidin was associated with more severe TB symptom scoring (coefficient 0.8, 95% confidence interval [CI] 0.5-1.2) and higher mycobacterial load (0.7, 95% CI 0.4-1.0). Hepcidin was higher in TB cases and controls who developed TB compared to controls without TB (p<0.001), even when restricting to HIV-negative study participants.ACD was the predominate etiology in TB patients suggesting limited benefit from iron supplementation. Increased hepcidin levels long before active disease, indicating altered iron metabolism, may be a marker for developing disease among TB-exposed individuals. Clinical management of anemia and nutrition interventions in TB patients need to be considered to improve the clinical course and outcomes.
DOI: 10.1371/journal.pone.0214088
2019
Cited 47 times
Reference set of Mycobacterium tuberculosis clinical strains: A tool for research and product development
The Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and various other mammals. The human-adapted members of the MTBC comprise seven phylogenetic lineages that differ in their geographical distribution. There is growing evidence that this phylogeographic diversity modulates the outcome of TB infection and disease. For decades, TB research and development has focused on the two canonical MTBC laboratory strains H37Rv and Erdman, both of which belong to Lineage 4. Relying on only a few laboratory-adapted strains can be misleading as study results might not be directly transferrable to clinical settings where patients are infected with a diverse array of strains, including drug-resistant variants. Here, we argue for the need to expand TB research and development by incorporating the phylogenetic diversity of the MTBC. To facilitate such work, we have assembled a group of 20 genetically well-characterized clinical strains representing the seven known human-adapted MTBC lineages. With the “MTBC clinical strains reference set” we aim to provide a standardized resource for the TB community. We hope it will enable more direct comparisons between studies that explore the physiology of MTBC beyond the laboratory strains used thus far. We anticipate that detailed phenotypic analyses of this reference strain set will increase our understanding of TB biology and assist in the development of new control tools that are broadly effective.
DOI: 10.1371/journal.pgen.1008728
2020
Cited 47 times
Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
Genetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N = 113 and 121. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p = 0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p = 0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, consistent with host-pathogen coevolution in TB.
DOI: 10.1093/emph/eoaa005
2020
Cited 44 times
An African origin for Mycobacterium bovis
Mycobacterium bovis and Mycobacterium caprae are two of the most important agents of tuberculosis in livestock and the most important causes of zoonotic tuberculosis in humans. However, little is known about the global population structure, phylogeography and evolutionary history of these pathogens.We compiled a global collection of 3364 whole-genome sequences from M.bovis and M.caprae originating from 35 countries and inferred their phylogenetic relationships, geographic origins and age.Our results resolved the phylogenetic relationship among the four previously defined clonal complexes of M.bovis, and another eight newly described here. Our phylogeographic analysis showed that M.bovis likely originated in East Africa. While some groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world.Our results allow a better understanding of the global population structure of M.bovis and its evolutionary history. This knowledge can be used to define better molecular markers for epidemiological investigations of M.bovis in settings where whole-genome sequencing cannot easily be implemented.During the last few years, analyses of large globally representative collections of whole-genome sequences (WGS) from the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages have enhanced our understanding of the global population structure, phylogeography and evolutionary history of these pathogens. In contrast, little corresponding data exists for M. bovis, the most important agent of tuberculosis in livestock. Using whole-genome sequences of globally distributed M. bovis isolates, we inferred the genetic relationships among different M. bovis genotypes distributed around the world. The most likely origin of M. bovis is East Africa according to our inferences. While some M. bovis groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world driven by cattle movements.
DOI: 10.1038/s41586-021-03968-4
2021
Cited 38 times
Leprosy in wild chimpanzees
Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.
DOI: 10.1128/jcm.02362-21
2022
Cited 18 times
Whole-Genome Sequencing Has the Potential To Improve Treatment for Rifampicin-Resistant Tuberculosis in High-Burden Settings: a Retrospective Cohort Study
Treatment of multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB), although improved in recent years with shorter, more tolerable regimens, remains largely standardized and based on limited drug susceptibility testing (DST). More individualized treatment with expanded DST access is likely to improve patient outcomes. To assess the potential of TB drug resistance prediction based on whole-genome sequencing (WGS) to provide more effective treatment regimens, we applied current South African treatment recommendations to a retrospective cohort of MDR/RR-TB patients from Khayelitsha, Cape Town. Routine DST and clinical data were used to retrospectively categorize patients into a recommended regimen, either a standardized short regimen or a longer individualized regimen. Potential regimen changes were then described with the addition of WGS-derived DST. WGS data were available for 1274 MDR/RR-TB patient treatment episodes across 2008 to 2017. Among 834 patients initially eligible for the shorter regimen, 385 (46%) may have benefited from reduced drug dosage or removing ineffective drugs when WGS data were considered. A further 187 (22%) patients may have benefited from more effective adjusted regimens. Among 440 patients initially eligible for a longer individualized regimen, 153 (35%) could have been switched to the short regimen. Overall, 305 (24%) patients had MDR/RR-TB with second-line TB drug resistance, where the availability of WGS-derived DST would have allowed more effective treatment individualization. These data suggest considerable benefits could accrue from routine access to WGS-derived resistance prediction. Advances in culture-free sequencing and expansion of the reference resistance mutation catalogue will increase the utility of WGS resistance prediction.
DOI: 10.1016/s2666-5247(23)00172-6
2023
Cited 8 times
Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study
BackgroundBedaquiline is a life-saving tuberculosis drug undergoing global scale-up. People at risk of weak tuberculosis drug regimens are a priority for novel drug access despite the potential source of Mycobacterium tuberculosis-resistant strains. We aimed to characterise bedaquiline resistance in individuals who had sustained culture positivity during bedaquiline-based treatment.MethodsWe did a retrospective longitudinal cohort study of adults (aged ≥18 years) with culture-positive pulmonary tuberculosis who received at least 4 months of a bedaquiline-containing regimen from 12 drug-resistant tuberculosis treatment facilities in Cape Town, South Africa, between Jan 20, 2016, and Nov 20, 2017. Sputum was programmatically collected at baseline (ie, before bedaquiline initiation) and each month to monitor treatment response per the national algorithm. The last available isolate from the sputum collected at or after 4 months of bedaquiline was designated the follow-up isolate. Phenotypic drug susceptibility testing for bedaquiline was done on baseline and follow-up isolates in MGIT960 media (WHO-recommended critical concentration of 1 μg/mL). Targeted deep sequencing for Rv0678, atpE, and pepQ, as well as whole-genome sequencing were also done.FindingsIn total, 40 (31%) of 129 patients from an estimated pool were eligible for this study. Overall, three (8%) of 38 patients assessable by phenotypic drug susceptibility testing for bedaquiline had primary resistance, 18 (47%) gained resistance (acquired or reinfection), and 17 (45%) were susceptible at both baseline and follow-up. Several Rv0678 and pepQ single-nucleotide polymorphisms and indels were associated with resistance. Although variants occurred in Rv0676c and Rv1979c, these variants were not associated with resistance. Targeted deep sequencing detected low-level variants undetected by whole-genome sequencing; however, none were in genes without variants already detected by whole-genome sequencing. Patients with baseline fluoroquinolone resistance, clofazimine exposure, and four or less effective drugs were more likely to have bedaquiline-resistant gain. Resistance gain was primarily due to acquisition; however, some reinfection by resistant strains occurred.InterpretationBedaquiline-resistance gain, for which we identified risk factors, was common in these programmatically treated patients with sustained culture positivity. Our study highlights risks associated with implementing life-saving new drugs and shows evidence of bedaquiline-resistance transmission. Routine drug susceptibility testing should urgently accompany scale-up of new drugs; however, rapid drug susceptibility testing for bedaquiline remains challenging given the diversity of variants observed.FundingDoris Duke Charitable Foundation, US National Institute of Allergy and Infectious Diseases, South African Medical Research Council, National Research Foundation, Research Foundation Flanders, Stellenbosch University Faculty of Medicine Health Sciences, South African National Research Foundation, Swiss National Science Foundation, and Wellcome Trust.
DOI: 10.1086/339010
2002
Cited 110 times
Prospective Study of a Serogroup X<i>Neisseria meningitidis</i>Outbreak in Northern Ghana
After an epidemic of serogroup A meningococcal meningitis in northern Ghana, a gradual disappearance of the epidemic strain was observed in a series of five 6-month carriage surveys of 37 randomly selected households. As serogroup A Neisseria meningitidis carriage decreased, an epidemic of serogroup X meningococcal carriage occurred, which reached 18% (53/298) of the people sampled during the dry season of 2000, coinciding with an outbreak of serogroup X disease. These carriage patterns were unrelated to that of Neisseria lactamica. Multilocus sequence typing and pulsed-field gel electrophoresis of the serogroup X bacteria revealed strong similarity with other strains isolated in Africa during recent decades. Three closely related clusters with distinct patterns of spread were identified among the Ghanian isolates, and further microevolution occurred after they arrived in the district. The occurrence of serogroup X outbreaks argues for the inclusion of this serogroup into a multivalent conjugate vaccine against N. meningitidis.