ϟ

Seishi Ogawa

Here are all the papers by Seishi Ogawa that you can download and read on OA.mg.
Seishi Ogawa’s last known institution is . Download Seishi Ogawa PDFs here.

Claim this Profile →
DOI: 10.1038/nature10496
2011
Cited 1,780 times
Frequent pathway mutations of splicing machinery in myelodysplasia
DOI: 10.1038/leu.2013.336
2013
Cited 1,277 times
Landscape of genetic lesions in 944 patients with myelodysplastic syndromes
High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0-12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model ('Model-1') separating patients into four risk groups ('low', 'intermediate', 'high', 'very high risk') with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a 'gene-only model' ('Model-2') was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.
DOI: 10.1038/ng.2699
2013
Cited 974 times
Integrated molecular analysis of clear-cell renal cell carcinoma
DOI: 10.1182/blood.2022015850
2022
Cited 942 times
International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
DOI: 10.1038/nature07399
2008
Cited 830 times
Oncogenic mutations of ALK kinase in neuroblastoma
DOI: 10.1038/nm.2644
2012
Cited 734 times
KIF5B-RET fusions in lung adenocarcinoma
The authors report a new type of genetic alteration in lung adenocarcinoma. Fusions of KIF5B with RET kinase are found in 1–2% of lung cancer patients, segregate from other known alterations and can potentially be targeted using RET kinase inhibitors. We identified in-frame fusion transcripts of KIF5B (the kinesin family 5B gene) and the RET oncogene, which are present in 1–2% of lung adenocarcinomas (LADCs) from people from Japan and the United States, using whole-transcriptome sequencing. The KIF5B-RET fusion leads to aberrant activation of RET kinase and is considered to be a new driver mutation of LADC because it segregates from mutations or fusions in EGFR, KRAS, HER2 and ALK, and a RET tyrosine kinase inhibitor, vandetanib, suppresses the fusion-induced anchorage-independent growth activity of NIH3T3 cells.
DOI: 10.1038/ng.3273
2015
Cited 708 times
Mutational landscape and clonal architecture in grade II and III gliomas
DOI: 10.1038/ng.3415
2015
Cited 660 times
Integrated molecular analysis of adult T cell leukemia/lymphoma
DOI: 10.1002/j.1460-2075.1994.tb06684.x
1994
Cited 631 times
A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner.
p47v-crk (v-Crk), a transforming gene product containing Src homology (SH)-2 and -3 domains, induces an elevated level of tyrosine phosphorylation of several cellular proteins. Among these proteins, a 125-135 kDa protein (p130) shows marked phosphorylation at tyrosines and tight association with v-Crk, suggesting a direct signal mediator of v-Crk. Here we report the molecular cloning of rat p130 by immunoaffinity purification. The p130 is a novel SH3-containing signaling molecule with a cluster of multiple putative SH2-binding motifs of v-Crk. Immunochemical analyses revealed that p130 is highly phosphorylated at tyrosines during transformation by p60v-src (v-Src), as well as by v-Crk, forming stable complexes with these oncoproteins. The p130 behaves as an extremely potent substrate of kinase activity included in the complexes and it is a major v-Src-associated substrate of the Src kinase by partial peptidase mapping. Subcellular fractionation demonstrated that the cytoplasmic p130 could move to the membrane upon tyrosine phosphorylation. The p130 (designated Cas for Crk-associated substrate) is a common cellular target of phosphorylation signal via v-Crk and v-Src oncoproteins, and its unique structure indicates the possible role of p130Cas in assembling signals from multiple SH2-containing molecules.
DOI: 10.1158/0008-5472.can-05-0465
2005
Cited 621 times
A Robust Algorithm for Copy Number Detection Using High-Density Oligonucleotide Single Nucleotide Polymorphism Genotyping Arrays
We have developed a robust algorithm for copy number analysis of the human genome using high-density oligonucleotide microarrays containing 116,204 single-nucleotide polymorphisms. The advantages of this algorithm include the improvement of signal-to-noise (S/N) ratios and the use of an optimized reference. The raw S/N ratios were improved by accounting for the length and GC content of the PCR products using quadratic regressions. The use of constitutional DNA, when available, gives the lowest SD values (0.16 +/- 0.03) and also enables allele-based copy number detection in cancer genomes, which can unmask otherwise concealed allelic imbalances. In the absence of constitutional DNA, optimized selection of multiple normal references with the highest S/N ratios, in combination with the data regressions, dramatically improves SD values from 0.67 +/- 0.12 to 0.18 +/- 0.03. These improvements allow for highly reliable comparison of data across different experimental conditions, detection of allele-based copy number changes, and more accurate estimations of the range and magnitude of copy number aberrations. This algorithm has been implemented in a software package called Copy Number Analyzer for Affymetrix GeneChip Mapping 100K arrays (CNAG). Overall, these enhancements make CNAG a useful tool for high-resolution detection of copy number alterations which can help in the understanding of the pathogenesis of cancers and other diseases as well as in exploring the complexities of the human genome.
DOI: 10.1038/nm997
2004
Cited 567 times
AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
DOI: 10.1038/ng.2872
2014
Cited 535 times
Somatic RHOA mutation in angioimmunoblastic T cell lymphoma
DOI: 10.1038/nature18294
2016
Cited 529 times
Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers
DOI: 10.1038/ng.2935
2014
Cited 519 times
Genomic and molecular characterization of esophageal squamous cell carcinoma
De-Chen Lin, Ming-Rong Wang and colleagues report exome sequencing, RNA sequencing, and copy number analyses of esophageal squamous cell carcinoma. They identified recurrent mutations in FAT1, FAT2, ZNF750, EP300 and KMT2D. Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide and particularly common in certain regions of Asia. Here we report the whole-exome or targeted deep sequencing of 139 paired ESCC cases, and analysis of somatic copy number variations (SCNV) of over 180 ESCCs. We identified previously uncharacterized mutated genes such as FAT1, FAT2, ZNF750 and KMT2D, in addition to those already known (TP53, PIK3CA and NOTCH1). Further SCNV evaluation, immunohistochemistry and biological analysis suggested their functional relevance in ESCC. Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic regulation are frequently dysregulated by multiple molecular mechanisms in this cancer. Our approaches also uncovered many druggable candidates, and XPO1 was further explored as a therapeutic target because it showed both gene mutation and protein overexpression. Our integrated study unmasks a number of novel genetic lesions in ESCC and provides an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.
DOI: 10.1038/nature07969
2009
Cited 512 times
Frequent inactivation of A20 in B-cell lymphomas
DOI: 10.1056/nejmoa1414799
2015
Cited 505 times
Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia
In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia.
DOI: 10.1038/s41586-018-0811-x
2019
Cited 472 times
Age-related remodelling of oesophageal epithelia by mutated cancer drivers
Clonal expansion in aged normal tissues has been implicated in the development of cancer. However, the chronology and risk dependence of the expansion are poorly understood. Here we intensively sequence 682 micro-scale oesophageal samples and show, in physiologically normal oesophageal epithelia, the progressive age-related expansion of clones that carry mutations in driver genes (predominantly NOTCH1), which is substantially accelerated by alcohol consumption and by smoking. Driver-mutated clones emerge multifocally from early childhood and increase their number and size with ageing, and ultimately replace almost the entire oesophageal epithelium in the extremely elderly. Compared with mutations in oesophageal cancer, there is a marked overrepresentation of NOTCH1 and PPM1D mutations in physiologically normal oesophageal epithelia; these mutations can be acquired before late adolescence (as early as early infancy) and significantly increase in number with heavy smoking and drinking. The remodelling of the oesophageal epithelium by driver-mutated clones is an inevitable consequence of normal ageing, which-depending on lifestyle risks-may affect cancer development.
DOI: 10.1016/s1074-7613(03)00117-1
2003
Cited 446 times
Notch1 but Not Notch2 Is Essential for Generating Hematopoietic Stem Cells from Endothelial Cells
Hematopoietic stem cells (HSCs) are thought to arise in the aorta-gonad-mesonephros (AGM) region of embryo proper, although HSC activity can be detected in yolk sac (YS) and paraaortic splanchnopleura (P-Sp) when transplanted in newborn mice. We examined the role of Notch signaling in embryonic hematopoiesis. The activity of colony-forming cells in the YS from Notch1(-/-) embryos was comparable to that of wild-type embryos. However, in vitro and in vivo definitive hematopoietic activities from YS and P-Sp were severely impaired in Notch1(-/-) embryos. The population representing hemogenic endothelial cells, however, did not decrease. In contrast, Notch2(-/-) embryos showed no hematopoietic deficiency. These data indicate that Notch1, but not Notch2, is essential for generating hematopoietic stem cells from endothelial cells.
DOI: 10.1038/s41591-020-1008-z
2020
Cited 386 times
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6-8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response.
DOI: 10.1182/blood-2017-01-763425
2017
Cited 383 times
Clinical significance of somatic mutation in unexplained blood cytopenia
Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms.
DOI: 10.1038/nature08240
2009
Cited 376 times
Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms
DOI: 10.1016/j.ccell.2015.03.017
2015
Cited 342 times
Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms
Most cases of adult myeloid neoplasms are routinely assumed to be sporadic. Here, we describe an adult familial acute myeloid leukemia (AML) syndrome caused by germline mutations in the DEAD/H-box helicase gene DDX41. DDX41 was also found to be affected by somatic mutations in sporadic cases of myeloid neoplasms as well as in a biallelic fashion in 50% of patients with germline DDX41 mutations. Moreover, corresponding deletions on 5q35.3 present in 6% of cases led to haploinsufficient DDX41 expression. DDX41 lesions caused altered pre-mRNA splicing and RNA processing. DDX41 is exemplary of other RNA helicase genes also affected by somatic mutations, suggesting that they constitute a family of tumor suppressor genes.
DOI: 10.1038/ng.3742
2016
Cited 341 times
Dynamics of clonal evolution in myelodysplastic syndromes
Jaroslaw Maciejewski, Seishi Ogawa and colleagues examine the clonal dynamics of myelodysplastic syndromes (MDS) by analyzing whole-exome and targeted sequencing data from a large patient collection. They find that progression steps previously defined by pathologic criteria are accompanied by distinct molecular changes, and they show that driver genes can be classified into molecular subtypes differentially associated with low-risk MDS, high-risk MDS or secondary acute myeloid leukemia. To elucidate differential roles of mutations in myelodysplastic syndromes (MDS), we investigated clonal dynamics using whole-exome and/or targeted sequencing of 699 patients, of whom 122 were analyzed longitudinally. Including the results from previous reports, we assessed a total of 2,250 patients for mutational enrichment patterns. During progression, the number of mutations, their diversity and clone sizes increased, with alterations frequently present in dominant clones with or without their sweeping previous clones. Enriched in secondary acute myeloid leukemia (sAML; in comparison to high-risk MDS), FLT3, PTPN11, WT1, IDH1, NPM1, IDH2 and NRAS mutations (type 1) tended to be newly acquired, and were associated with faster sAML progression and a shorter overall survival time. Significantly enriched in high-risk MDS (in comparison to low-risk MDS), TP53, GATA2, KRAS, RUNX1, STAG2, ASXL1, ZRSR2 and TET2 mutations (type 2) had a weaker impact on sAML progression and overall survival than type-1 mutations. The distinct roles of type-1 and type-2 mutations suggest their potential utility in disease monitoring.
DOI: 10.1038/ng.2731
2013
Cited 330 times
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms
DOI: 10.1002/j.1460-2075.1994.tb06288.x
1994
Cited 324 times
Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia.
Research Article1 February 1994free access Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. K. Mitani K. Mitani Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author S. Ogawa S. Ogawa Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author T. Tanaka T. Tanaka Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Miyoshi H. Miyoshi Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author M. Kurokawa M. Kurokawa Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Mano H. Mano Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author Y. Yazaki Y. Yazaki Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author M. Ohki M. Ohki Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Hirai H. Hirai Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author K. Mitani K. Mitani Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author S. Ogawa S. Ogawa Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author T. Tanaka T. Tanaka Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Miyoshi H. Miyoshi Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author M. Kurokawa M. Kurokawa Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Mano H. Mano Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author Y. Yazaki Y. Yazaki Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author M. Ohki M. Ohki Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author H. Hirai H. Hirai Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. Search for more papers by this author Author Information K. Mitani1, S. Ogawa1, T. Tanaka1, H. Miyoshi1, M. Kurokawa1, H. Mano1, Y. Yazaki1, M. Ohki1 and H. Hirai1 1Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan. The EMBO Journal (1994)13:504-510https://doi.org/10.1002/j.1460-2075.1994.tb06288.x PDFDownload PDF of article text and main figures. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info The t(3;21)(q26;q22) translocation, which is one of the consistent chromosomal abnormalities found in blastic crisis of chronic myelocytic leukemia (CML), is thought to play an important role in the leukemic progression of CML to an acute blastic crisis phase. The AML1 gene, which is located at the translocation breakpoint of the t(8;21)(q22;q22) translocation found in acute myelocytic leukemia, was also rearranged by the t(3;21)(q26;q22) translocation. Screening of a cDNA library of the t(3;21)-carrying leukemic cell line cells (SKH1) resulted in the isolation of two potentially complete AML1-EVI-1 chimeric cDNAs of 6 kb. Two species of AML1-EVI-1 fusion transcripts of 8.2 and 7.0 kb were detected in SKH1 cells. These cells expressed the 180 kDa AML1-EVI-1 fusion protein containing an N-terminal half of AML1 including a runt homology domain which is fused to the entire zinc finger EVI-1 protein. The AML1-EVI-1 fusion transcript was consistent in all three cases of the t(3;21)-carrying leukemia examined by RNA-based PCR. These findings strongly suggest that the t(3;21) translocation results in the formation of a new class of chimeric transcription factor which could contribute to the leukemic progression of CML through interference with cell growth and differentiation. Previous ArticleNext Article Volume 13Issue 31 February 1994In this issue RelatedDetailsLoading ...
DOI: 10.1038/ng.2759
2013
Cited 321 times
The landscape of somatic mutations in Down syndrome–related myeloid disorders
DOI: 10.1056/evidoa2200008
2022
Cited 314 times
Molecular International Prognostic Scoring System for Myelodysplastic Syndromes
MDS Molecular International Prognostic Scoring SystemSamples from over 2500 patients with MDS were profiled for gene mutations and used to develop the International Prognostic Scoring System-Molecular (IPSS-M). TP53multihit, FLT3 mutations, and MLLPTD were identified as top genetic predictors of adverse outcomes. IPSS-M improves prognostic discrimination across all clinical end points versus prior versions.
DOI: 10.1038/ng.3006
2014
Cited 306 times
The genomic landscape of nasopharyngeal carcinoma
DOI: 10.1016/j.ccr.2011.12.015
2012
Cited 298 times
Polycomb-Mediated Loss of miR-31 Activates NIK-Dependent NF-κB Pathway in Adult T Cell Leukemia and Other Cancers
Constitutive NF-κB activation has causative roles in adult T cell leukemia (ATL) caused by HTLV-1 and other cancers. Here, we report a pathway involving Polycomb-mediated miRNA silencing and NF-κB activation. We determine the miRNA signatures and reveal miR-31 loss in primary ATL cells. MiR-31 negatively regulates the noncanonical NF-κB pathway by targeting NF-κB inducing kinase (NIK). Loss of miR-31 therefore triggers oncogenic signaling. In ATL cells, miR-31 level is epigenetically regulated, and aberrant upregulation of Polycomb proteins contribute to miR-31 downregulation in an epigenetic fashion, leading to activation of NF-κB and apoptosis resistance. Furthermore, this emerging circuit operates in other cancers and receptor-initiated NF-κB cascade. Our findings provide a perspective involving the epigenetic program, inflammatory responses, and oncogenic signaling.
DOI: 10.1182/blood-2012-01-404863
2012
Cited 273 times
SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML)
We analyzed the mutational hotspot region of SRSF2 (Pro95) in 275 cases with chronic myelomonocytic leukemia (CMML). In addition, ASXL1, CBL, EZH2, JAK2V617F, KRAS, NRAS, RUNX1, and TET2 mutations were investigated in subcohorts. Mutations in SRSF2 (SRSF2mut) were detected in 47% (129 of 275) of all cases. In detail, 120 cases had a missense mutation at Pro95, leading to a change to Pro95His, Pro95Leu, Pro95Arg, Pro95Ala, or Pro95Thr. In 9 cases, 3 new in/del mutations were observed: 7 cases with a 24-bp deletion, 1 case with a 3-bp duplication, and 1 case with a 24-bp duplication. In silico analyses predicted a damaging character for the protein structure of SRSF2 for all mutations. SRSF2mut was correlated with higher age, less pronounced anemia, and normal karyotype. SRSF2mut and EZH2mut were mutually exclusive, but SRSF2mut was associated with TET2mut. In the total cohort, no effect of SRSF2mut on survival was observed. However, in the RUNX1mut subcohort, SRSF2 Pro95His had a favorable effect on overall survival. This comprehensive mutation analysis found that 93% of all patients with CMML carried at least 1 somatic mutation in 9 recurrently mutated genes. In conclusion, these data show the importance of SRSF2mut as new diagnostic marker in CMML.
DOI: 10.1182/blood-2016-12-754796
2017
Cited 273 times
Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation
Key Points TP53 and RAS-pathway mutations predict very poor survival, when seen with CK and MDS/MPNs, respectively. For patients with mutated TP53 or CK alone, long-term survival could be obtained with stem cell transplantation.
DOI: 10.1038/ncomms2378
2013
Cited 268 times
Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells
A method for stimulating the differentiation of human pluripotent stem cells into kidney lineages remains to be developed. Most cells in kidney are derived from an embryonic germ layer known as intermediate mesoderm. Here we show the establishment of an efficient system of homologous recombination in human pluripotent stem cells by means of bacterial artificial chromosome-based vectors and single-nucleotide polymorphism array-based detection. This system allowed us to generate human-induced pluripotent stem cell lines containing green fluorescence protein knocked into OSR1, a specific intermediate mesoderm marker. We have also established a robust induction protocol for intermediate mesoderm, which produces up to 90% OSR1(+) cells. These human intermediate mesoderm cells can differentiate into multiple cell types of intermediate mesoderm-derived organs in vitro and in vivo, thereby supplying a useful system to elucidate the mechanisms of intermediate mesoderm development and potentially providing a cell source for regenerative therapies of the kidney.
DOI: 10.1016/j.stemcr.2014.07.005
2014
Cited 267 times
Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells
No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported.Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1 + ''ventralized'' anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs.Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM + cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs.Moreover, 3D coculture differentiation of CPM + cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation.Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.
DOI: 10.1016/j.stem.2008.06.002
2008
Cited 263 times
Evi-1 Is a Critical Regulator for Hematopoietic Stem Cells and Transformed Leukemic Cells
Evi-1 has been recognized as one of the dominant oncogenes associated with murine and human myeloid leukemia. Here, we show that hematopoietic stem cells (HSCs) in Evi-1-deficient embryos are severely reduced in number with defective proliferative and repopulating capacity. Selective ablation of Evi-1 in Tie2+ cells mimics Evi-1 deficiency, suggesting that Evi-1 function is required in Tie2+ hematopoietic stem/progenitors. Conditional deletion of Evi-1 in the adult hematopoietic system revealed that Evi-1-deficient bone marrow HSCs cannot maintain hematopoiesis and lose their repopulating ability. In contrast, Evi-1 is dispensable for blood cell lineage commitment. Evi-1+/− mice exhibit the intermediate phenotype for HSC activity, suggesting a gene dosage requirement for Evi-1. We further demonstrate that disruption of Evi-1 in transformed leukemic cells leads to significant loss of their proliferative activity both in vitro and in vivo. Thus, Evi-1 is a common and critical regulator essential for proliferation of embryonic/adult HSCs and transformed leukemic cells.
DOI: 10.1053/j.gastro.2016.01.035
2016
Cited 259 times
Genomic Landscape of Esophageal Squamous Cell Carcinoma in a Japanese Population
Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer in Japan. Smoking and drinking alcohol are environmental risk factors for ESCC, whereas single nucleotide polymorphisms in ADH1B and ALDH2, which increase harmful intermediates produced by drinking alcohol, are genetic risk factors. We conducted a large-scale genomic analysis of ESCCs from patients in Japan to determine the mutational landscape of this cancer.We performed whole-exome sequence analysis of tumor and nontumor esophageal tissues collected from 144 patients with ESCC who underwent surgery at 5 hospitals in Japan. We also performed single-nucleotide polymorphism array-based copy number profile and germline genotype analyses of polymorphisms in ADH1B and ALDH2. Polymorphisms in CYP2A6, which increase harmful effects of smoking, were analyzed. Functions of TET2 mutants were evaluated in KYSE410 and HEK293FT cells.A high proportion of mutations in the 144 tumor samples were C to T substitution in CpG dinucleotides (called the CpG signature) and C to G/T substitutions with a flanking 5' thymine (called the APOBEC signature). Based on mutational signatures, patients were assigned to 3 groups, which associated with environmental (drinking and smoking) and genetic (polymorphisms in ALDH2 and CYP2A6) factors. Many tumors contained mutations in genes that regulate the cell cycle (TP53, CCND1, CDKN2A, FBXW7); epigenetic processes (MLL2, EP300, CREBBP, TET2); and the NOTCH (NOTCH1, NOTCH3), WNT (FAT1, YAP1, AJUBA) and receptor-tyrosine kinase-phosphoinositide 3-kinase signaling pathways (PIK3CA, EGFR, ERBB2). Mutations in EP300 and TET2 correlated with shorter survival times, and mutations in ZNF750 associated with an increased number of mutations of the APOBEC signature. Expression of mutant forms of TET2 did not increase cellular levels of 5-hydroxymethylcytosine in HEK293FT cells, whereas knockdown of TET2 increased the invasive activity of KYSE410 ESCC cells. Computational analyses associated the mutations in NFE2L2 we identified with transcriptional activation of its target genes.We associated environmental and genetic factors with base substitution patterns of somatic mutations and provide a registry of genes and pathways that are disrupted in ESCCs. These findings might be used to design specific treatments for patients with esophageal squamous cancers.
DOI: 10.1038/ng.585
2010
Cited 247 times
Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk
Using data from a genome-wide association study of 907 individuals with childhood acute lymphoblastic leukemia (cases) and 2,398 controls and with validation in samples totaling 2,386 cases and 2,419 controls, we have shown that common variation at 9p21.3 (rs3731217, intron 1 of CDKN2A) influences acute lymphoblastic leukemia risk (odds ratio = 0.71, P = 3.01 x 10(-11)), irrespective of cell lineage.
DOI: 10.1182/blood-2018-10-844621
2019
Cited 244 times
Genetics of MDS
Abstract Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
DOI: 10.1038/ng.2696
2013
Cited 225 times
Somatic SETBP1 mutations in myeloid malignancies
Jaroslaw Maciejewski and colleagues report whole-exome sequencing of 20 cases of myeloid malignancies, with follow up of SETBP1 in 727 further cases of myeloid malignancies. They identify SETBP1 mutations in 52 cases (7.2%). Here we report whole-exome sequencing of individuals with various myeloid malignancies and identify recurrent somatic mutations in SETBP1, consistent with a recent report on atypical chronic myeloid leukemia (aCML)1. Closely positioned somatic SETBP1 mutations encoding changes in Asp868, Ser869, Gly870, Ile871 and Asp880, which match germline mutations in Schinzel-Giedion syndrome (SGS)2, were detected in 17% of secondary acute myeloid leukemias (sAML) and 15% of chronic myelomonocytic leukemia (CMML) cases. These results from deep sequencing demonstrate a higher mutational detection rate than reported with conventional sequencing methodology3,4,5. Mutant cases were associated with advanced age and monosomy 7/deletion 7q (–7/del(7q)) constituting poor prognostic factors. Analysis of serially collected samples indicated that SETBP1 mutations were acquired during leukemic evolution. Transduction with mutant Setbp1 led to the immortalization of mouse myeloid progenitors that showed enhanced proliferative capacity compared to cells transduced with wild-type Setbp1. Somatic mutations of SETBP1 seem to cause gain of function, are associated with myeloid leukemic transformation and convey poor prognosis in myelodysplastic syndromes (MDS) and CMML.
DOI: 10.1093/neuonc/nox132
2017
Cited 224 times
Prognostic relevance of genetic alterations in diffuse lower-grade gliomas
Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown.Using Cox proportional hazards regression modeling, we investigated the subtype-specific effects of genetic alterations and clinicopathological factors on survival in each LGG subtype, in a Japanese cohort of LGG cases fully genotyped for driver mutations and copy number variations associated with LGGs (n = 308). The results were validated using a dataset from 414 LGG cases available from The Cancer Genome Atlas (TCGA).In Oligodendroglioma, IDH-mutant and 1p/19q codeleted, NOTCH1 mutations (P = 0.0041) and incomplete resection (P = 0.0019) were significantly associated with shorter survival. In Astrocytoma, IDH-mutant, PIK3R1 mutations (P = 0.0014) and altered retinoblastoma pathway genes (RB1, CDKN2A, and CDK4) (P = 0.013) were independent predictors of poor survival. In IDH-wildtype LGGs, co-occurrence of 7p gain, 10q loss, mutation in the TERT promoter (P = 0.024), and grade III histology (P < 0.0001) independently predicted poor survival. IDH-wildtype LGGs without any of these factors were diagnosed at a younger age (P = 0.042), and were less likely to have genetic lesions characteristic of glioblastoma, in comparison with other IDH-wildtype LGGs, suggesting that they likely represented biologically different subtypes. These results were largely confirmed in the cohort of TCGA.Subtype-specific genetic lesions can be used to stratify patients within each LGG subtype. enabling better prognostication and management.
DOI: 10.1182/blood-2009-10-248997
2010
Cited 221 times
Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens
Abstract The adoptive transfer of donor T cells that recognize recipient minor histocompatibility antigens (mHAgs) is a potential strategy for preventing or treating leukemic relapse after allogeneic hematopoietic cell transplantation (HCT). A total of 7 patients with recurrent leukemia after major histocompatibility complex (MHC)–matched allogeneic HCT were treated with infusions of donor-derived, ex vivo–expanded CD8+ cytotoxic T lymphocyte (CTL) clones specific for tissue-restricted recipient mHAgs. The safety of T-cell therapy, in vivo persistence of transferred CTLs, and disease response were assessed. Molecular characterization of the mHAgs recognized by CTL clones administered to 3 patients was performed to provide insight into the antileukemic activity and safety of T-cell therapy. Pulmonary toxicity of CTL infusion was seen in 3 patients, was severe in 1 patient, and correlated with the level of expression of the mHAg-encoding genes in lung tissue. Adoptively transferred CTLs persisted in the blood up to 21 days after infusion, and 5 patients achieved complete but transient remissions after therapy. The results of these studies illustrate the potential to selectively enhance graft-versus-leukemia activity by the adoptive transfer of mHAg-specific T-cell clones and the challenges for the broad application of this approach in allogeneic HCT. This study has been registered at http://clinicaltrials.gov as NCT00107354.
DOI: 10.1158/2159-8290.cd-14-0104
2014
Cited 215 times
Acquired Initiating Mutations in Early Hematopoietic Cells of CLL Patients
Appropriate cancer care requires a thorough understanding of the natural history of the disease, including the cell of origin, the pattern of clonal evolution, and the functional consequences of the mutations. Using deep sequencing of flow-sorted cell populations from patients with chronic lymphocytic leukemia (CLL), we established the presence of acquired mutations in multipotent hematopoietic progenitors. Mutations affected known lymphoid oncogenes, including BRAF, NOTCH1, and SF3B1. NFKBIE and EGR2 mutations were observed at unexpectedly high frequencies, 10.7% and 8.3% of 168 advanced-stage patients, respectively. EGR2 mutations were associated with a shorter time to treatment and poor overall survival. Analyses of BRAF and EGR2 mutations suggest that they result in deregulation of B-cell receptor (BCR) intracellular signaling. Our data propose disruption of hematopoietic and early B-cell differentiation through the deregulation of pre-BCR signaling as a phenotypic outcome of CLL mutations and show that CLL develops from a pre-leukemic phase.The origin and pathogenic mechanisms of CLL are not fully understood. The current work indicates that CLL develops from pre-leukemic multipotent hematopoietic progenitors carrying somatic mutations. It advocates for abnormalities in early B-cell differentiation as a phenotypic convergence of the diverse acquired mutations observed in CLL.
DOI: 10.1038/ng.2698
2013
Cited 202 times
Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia
DOI: 10.1182/blood.2020004850
2020
Cited 202 times
<i>SF3B1</i>-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS
Abstract The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts &amp;lt;5% and peripheral blood blasts &amp;lt;1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overt MDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement.
DOI: 10.1038/leu.2014.55
2014
Cited 196 times
Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients
To clarify the cooperative roles of recurrently identified mutations and to establish a more precise risk classification system in acute myeloid leukemia (AML), we comprehensively analyzed mutations in 51 genes, as well as cytogenetics and 11 chimeric transcripts, in 197 adult patients with de novo AML who were registered in the Japan Adult Leukemia Study Group AML201 study. We identified a total of 505 mutations in 44 genes, while only five genes, FLT3, NPM1, CEBPA, DNMT3A and KIT, were mutated in more than 10% of the patients. Although several cooperative and exclusive mutation patterns were observed, the accumulated mutation number was higher in cytogenetically normal AML and lower in AML with RUNX1-RUNX1T1 and CBFB-MYH11, indicating a strong potential of these translocations for the initiation of AML. Furthermore, we evaluated the prognostic impacts of each sole mutation and the combinations of mutations and/or cytogenetics, and demonstrated that AML patients could be clearly stratified into five risk groups for overall survival by including the mutation status of DNMT3A, MLL-PTD and TP53 genes in the risk classification system of the European LeukemiaNet. These results indicate that the prognosis of AML could be stratified by the major mutation status in combination with cytogenetics.
DOI: 10.1038/ncomms7042
2015
Cited 189 times
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome
Somatic mutations in the spliceosome gene ZRSR2-located on the X chromosome-are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3'-splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here we characterize ZRSR2 as an essential component of the minor spliceosome (U12 dependent) assembly. shRNA-mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns and RNA-sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns, while splicing of the U2-type introns remain mostly unaffected. ZRSR2-deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS.
DOI: 10.1093/nar/gkt126
2013
Cited 184 times
An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
Recent advances in high-throughput sequencing technologies have enabled a comprehensive dissection of the cancer genome clarifying a large number of somatic mutations in a wide variety of cancer types. A number of methods have been proposed for mutation calling based on a large amount of sequencing data, which is accomplished in most cases by statistically evaluating the difference in the observed allele frequencies of possible single nucleotide variants between tumours and paired normal samples. However, an accurate detection of mutations remains a challenge under low sequencing depths or tumour contents. To overcome this problem, we propose a novel method, Empirical Bayesian mutation Calling (https://github.com/friend1ws/EBCall), for detecting somatic mutations. Unlike previous methods, the proposed method discriminates somatic mutations from sequencing errors based on an empirical Bayesian framework, where the model parameters are estimated using sequencing data from multiple non-paired normal samples. Using 13 whole-exome sequencing data with 87.5-206.3 mean sequencing depths, we demonstrate that our method not only outperforms several existing methods in the calling of mutations with moderate allele frequencies but also enables accurate calling of mutations with low allele frequencies (≤ 10%) harboured within a minor tumour subpopulation, thus allowing for the deciphering of fine substructures within a tumour specimen.
DOI: 10.1038/s41375-018-0351-2
2019
Cited 183 times
TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups
Risk stratification is critical in the care of patients with myelodysplastic syndromes (MDS). Approximately 10% have a complex karyotype (CK), defined as more than two cytogenetic abnormalities, which is a highly adverse prognostic marker. However, CK-MDS can carry a wide range of chromosomal abnormalities and somatic mutations. To refine risk stratification of CK-MDS patients, we examined data from 359 CK-MDS patients shared by the International Working Group for MDS. Mutations were underrepresented with the exception of TP53 mutations, identified in 55% of patients. TP53 mutated patients had even fewer co-mutated genes but were enriched for the del(5q) chromosomal abnormality (p < 0.005), monosomal karyotype (p < 0.001), and high complexity, defined as more than 4 cytogenetic abnormalities (p < 0.001). Monosomal karyotype, high complexity, and TP53 mutation were individually associated with shorter overall survival, but monosomal status was not significant in a multivariable model. Multivariable survival modeling identified severe anemia (hemoglobin < 8.0 g/dL), NRAS mutation, SF3B1 mutation, TP53 mutation, elevated blast percentage (>10%), abnormal 3q, abnormal 9, and monosomy 7 as having the greatest survival risk. The poor risk associated with CK-MDS is driven by its association with prognostically adverse TP53 mutations and can be refined by considering clinical and karyotype features.
DOI: 10.1182/blood-2015-05-646240
2015
Cited 182 times
Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse
Key Points MLL3 acts as tumor suppressor in FLT3-ITD AML. The existence of DNMT3A mutations in remission samples implies that the DNMT3A mutant clone can survive induction chemotherapy.
DOI: 10.1016/j.ajhg.2013.01.015
2013
Cited 178 times
ACTN1 Mutations Cause Congenital Macrothrombocytopenia
Congenital macrothrombocytopenia (CMTP) is a heterogeneous group of rare platelet disorders characterized by a congenital reduction of platelet counts and abnormally large platelets, for which CMTP-causing mutations are only found in approximately half the cases. We herein performed whole-exome sequencing and targeted Sanger sequencing to identify mutations that cause CMTP, in which a dominant mode of transmission had been suspected but for which no known responsible mutations have been documented. In 13 Japanese CMTP-affected pedigrees, we identified six (46%) affected by ACTN1 variants cosegregating with CMTP. In the entire cohort, ACNT1 variants accounted for 5.5% of the dominant forms of CMTP cases and represented the fourth most common cause in Japanese individuals. Individuals with ACTN1 variants presented with moderate macrothrombocytopenia with anisocytosis but were either asymptomatic or had only a modest bleeding tendency. ACTN1 encodes α-actinin-1, a member of the actin-crosslinking protein superfamily that participates in the organization of the cytoskeleton. In vitro transfection experiments in Chinese hamster ovary cells demonstrated that altered α-actinin-1 disrupted the normal actin-based cytoskeletal structure. Moreover, transduction of mouse fetal liver-derived megakaryocytes with disease-associated ACTN1 variants caused a disorganized actin-based cytoskeleton in megakaryocytes, resulting in the production of abnormally large proplatelet tips, which were reduced in number. Our findings provide an insight into the pathogenesis of CMTP.
DOI: 10.1038/ncomms10767
2016
Cited 178 times
Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents
The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
DOI: 10.1126/science.1252328
2014
Cited 176 times
Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome
Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing's syndrome, providing insights into the diagnosis and therapeutics of this syndrome.
DOI: 10.1200/jco.2018.79.2184
2019
Cited 170 times
Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation
Purpose Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT). Methods We collected blood samples from 500 healthy, related HSCT donors (age ≥ 55 years) at the time of stem-cell donation for targeted sequencing with a 66-gene panel. The effect of donor CHIP was assessed on recipient outcomes, including graft-versus-host disease (GVHD), cumulative incidence of relapse/progression (CIR/P), and overall survival (OS). Results A total of 92 clonal mutations with a median variant allele frequency of 5.9% were identified in 80 (16.0%) of 500 donors. CHIP prevalence was higher in donors related to patients with myeloid compared with lymphoid malignancies (19.2% v 6.3%; P ≤ .001). In recipients allografted with donor CHIP, we found a high cumulative incidence of chronic GVHD (cGVHD; hazard ratio [HR], 1.73; 95% CI, 1.21 to 2.49; P = .003) and lower CIR/P (univariate: HR, 0.62; 95% CI, 0.40 to 0.97; P = .027; multivariate: HR, 0.63; 95% CI, 0.41 to 0.98; P = .042) but no effect on nonrelapse mortality. Serial quantification of 25 mutations showed engraftment of 24 of 25 clones and disproportionate expansion in half of them. Donor-cell leukemia was observed in two recipients. OS was not affected by donor CHIP status (HR, 0.88; 95% CI, 0.65 to 1.321; P = .434). Conclusion Allogeneic HSCT from donors with CHIP seems safe and results in similar survival in the setting of older, related donors. Future studies in younger and unrelated donors are warranted to extend these results. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that donor CHIP might foster cGVHD development and reduce relapse/progression risk.
DOI: 10.1038/s41586-019-1856-1
2019
Cited 163 times
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis
Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.
DOI: 10.1038/s41375-019-0473-1
2019
Cited 155 times
Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling
Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) is a diagnosis of exclusion, being the most common entity in mature T-cell neoplasms, and its molecular pathogenesis remains significantly understudied. Here, combining whole-exome and targeted-capture sequencing, gene-expression profiling, and immunohistochemical analysis of tumor samples from 133 cases, we have delineated the entire landscape of somatic alterations, and discovered frequently affected driver pathways in PTCL, NOS, with and without a T-follicular helper (TFH) cell phenotype. In addition to previously reported mutational targets, we identified a number of novel recurrently altered genes, such as KMT2C, SETD1B, YTHDF2, and PDCD1. We integrated these genetic drivers using hierarchical clustering and identified a previously undescribed molecular subtype characterized by TP53 and/or CDKN2A mutations and deletions in non-TFH PTCL, NOS. This subtype exhibited different prognosis and unique genetic features associated with extensive chromosomal instability, which preferentially affected molecules involved in immune escape and transcriptional regulation, such as HLA-A/B and IKZF2. Taken together, our findings provide novel insights into the molecular pathogenesis of PTCL, NOS by highlighting their genetic heterogeneity. These results should help to devise a novel molecular classification of PTCLs and to exploit a new therapeutic strategy for this group of aggressive malignancies.
DOI: 10.1038/ncomms8557
2015
Cited 153 times
Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS.
DOI: 10.1182/blood-2016-01-636381
2016
Cited 151 times
Clonal hematopoiesis in acquired aplastic anemia
Abstract Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA.
DOI: 10.1038/s41564-018-0334-0
2019
Cited 148 times
Defective Epstein–Barr virus in chronic active infection and haematological malignancy
Epstein-Barr virus (EBV) infection is highly prevalent in humans and is implicated in various diseases, including cancer1,2. Chronic active EBV infection (CAEBV) is an intractable disease classified as a lymphoproliferative disorder in the 2016 World Health Organization lymphoma classification1,2. CAEBV is characterized by EBV-infected T/natural killer (NK) cells and recurrent/persistent infectious mononucleosis-like symptoms3. Here, we show that CAEBV originates from an EBV-infected lymphoid progenitor that acquires DDX3X and other mutations, causing clonal evolution comprising multiple cell lineages. Conspicuously, the EBV genome in CAEBV patients harboured frequent intragenic deletions (27/77) that were also common in various EBV-associated neoplastic disorders (28/61), including extranodal NK/T-cell lymphoma and EBV-positive diffuse large B-cell lymphoma, but were not detected in infectious mononucleosis or post-transplant lymphoproliferative disorders (0/47), which suggests a unique role of these mutations in neoplastic proliferation of EBV-infected cells. These deletions frequently affected BamHI A rightward transcript microRNA clusters (31 cases) and several genes that are essential for producing viral particles (20 cases). The deletions observed in our study are thought to reactivate the lytic cycle by upregulating the expression of two immediate early genes, BZLF1 and BRLF14-7, while averting viral production and subsequent cell lysis. In fact, the deletion of one of the essential genes, BALF5, resulted in upregulation of the lytic cycle and the promotion of lymphomagenesis in a xenograft model. Our findings highlight a pathogenic link between intragenic EBV deletions and EBV-associated neoplastic proliferations.
DOI: 10.1038/s41375-018-0047-7
2018
Cited 140 times
Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis
DOI: 10.1038/s41467-018-06063-x
2018
Cited 140 times
Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia
Spliceosome mutations are frequently found in myelodysplasia. Splicing alterations induced by these mutations, their precise targets, and the effect at the transcript level have not been fully elucidated. Here we report transcriptomic analyses of 265 bone marrow samples from myelodysplasia patients, followed by a validation using CRISPR/Cas9-mediated gene editing and an assessment of nonsense-mediated decay susceptibility. Small but widespread reduction of intron-retaining isoforms is the most frequent splicing alteration in SF3B1-mutated samples. SF3B1 mutation is also associated with 3' splice site alterations, leading to the most pronounced reduction of canonical transcripts. Target genes include tumor suppressors and genes of mitochondrial iron metabolism or heme biosynthesis. Alternative exon usage is predominant in SRSF2- and U2AF1-mutated samples. Usage of an EZH2 cryptic exon harboring a premature termination codon is increased in both SRSF2- and U2AF1-mutated samples. Our study reveals a landscape of splicing alterations and precise targets of various spliceosome mutations.
DOI: 10.1038/s41568-021-00335-3
2021
Cited 134 times
Clonal expansion in non-cancer tissues
DOI: 10.1038/s41591-021-01411-9
2021
Cited 85 times
Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis
Clonal hematopoiesis (CH) in apparently healthy individuals is implicated in the development of hematological malignancies (HM) and cardiovascular diseases. Previous studies of CH analyzed either single-nucleotide variants and indels (SNVs/indels) or copy number alterations (CNAs), but not both. Here, using a combination of targeted sequencing of 23 CH-related genes and array-based CNA detection of blood-derived DNA, we have delineated the landscape of CH-related SNVs/indels and CNAs in 11,234 individuals without HM from the BioBank Japan cohort, including 672 individuals with subsequent HM development, and studied the effects of these somatic alterations on mortality from HM and cardiovascular disease, as well as on hematological and cardiovascular phenotypes. The total number of both types of CH-related lesions and their clone size positively correlated with blood count abnormalities and mortality from HM. CH-related SNVs/indels and CNAs exhibited statistically significant co-occurrence in the same individuals. In particular, co-occurrence of SNVs/indels and CNAs affecting DNMT3A, TET2, JAK2 and TP53 resulted in biallelic alterations of these genes and was associated with higher HM mortality. Co-occurrence of SNVs/indels and CNAs also modulated risks for cardiovascular mortality. These findings highlight the importance of detecting both SNVs/indels and CNAs in the evaluation of CH. Analysis of single-nucleotide variants and copy number alterations gives a more complete picture of clonal hematopoiesis and its impact on hematological malignancy and cardiovascular disease.
DOI: 10.1182/blood.2022015853
2022
Cited 83 times
Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
DOI: 10.1182/blood.2022018221
2023
Cited 55 times
Germ line<i>DDX41</i>mutations define a unique subtype of myeloid neoplasms
Abstract Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.
DOI: 10.1038/s41556-022-00852-9
2022
Cited 49 times
Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome
Abstract Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis 1 . Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype 2 , mini tRFs containing a 5′ terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1) 3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5′ untranslated region (UTR), including 5′ terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer 4 . Significantly, mTOG dysregulation leads to aberrantly increased translation of 5′ PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML).
DOI: 10.1182/blood.2021013568
2022
Cited 48 times
Whole-genome landscape of adult T-cell leukemia/lymphoma
Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types. Long but not short isoform-specific inactivation of Cic selectively increased CD4+CD25+Foxp3+ T cells in vivo. We also found recurrent (13%) 3'-truncations of REL, which induce transcriptional upregulation and generate gain-of-function proteins. More importantly, REL truncations are also common in diffuse large B-cell lymphoma, especially in germinal center B-cell-like subtype (12%). In the non-coding genome, we identified recurrent mutations in regulatory elements, particularly splice sites, of several driver genes. In addition, we characterized the different mutational processes operative in clustered hypermutation sites within and outside immunoglobulin/T-cell receptor genes and identified the mutational enrichment at the binding sites of host and viral transcription factors, suggesting their activities in ATL. By combining the analyses for coding and noncoding mutations, structural variations, and copy number alterations, we discovered 56 recurrently altered driver genes, including 11 novel ones. Finally, ATL cases were classified into 2 molecular groups with distinct clinical and genetic characteristics based on the driver alteration profile. Our findings not only help to improve diagnostic and therapeutic strategies in ATL, but also provide insights into T-cell biology and have implications for genome-wide cancer driver discovery.
DOI: 10.1128/jcm.42.6.2733-2741.2004
2004
Cited 282 times
Prospective Comparison of the Diagnostic Potential of Real-Time PCR, Double-Sandwich Enzyme-Linked Immunosorbent Assay for Galactomannan, and a (1→3)-β- <scp>d</scp> -Glucan Test in Weekly Screening for Invasive Aspergillosis in Patients with Hematological Disorders
ABSTRACT The establishment of an optimal noninvasive method for diagnosing invasive aspergillosis (IA) is needed to improve the management of this life-threatening infection in patients with hematological disorders, and a number of noninvasive tests for IA that target different fungal components, including galactomannan, (1→3)-β- d -glucan (BDG), and Aspergillus DNA, have been developed. In this study, we prospectively evaluated the diagnostic potential of three noninvasive tests for IA that were used in a weekly screening strategy: the double-sandwich enzyme-linked immunosorbent assay (ELISA) for galactomannan (Platelia Aspergillus), a real-time PCR assay for Aspergillus DNA (GeniQ-Asper), and an assay for BDG (β-glucan Wako). We analyzed 149 consecutive treatment episodes in 96 patients with hematological disorders who were at high risk for IA and diagnosed 9 proven IA cases, 2 probable IA cases, and 13 possible invasive fugal infections. In a receiver-operating characteristic (ROC) analysis, the area under the ROC curve was greatest for ELISA, using two consecutive positive results (0.97; P = 0.036 for ELISA versus PCR, P = 0.055 for ELISA versus BDG). Based on the ROC curve, the cutoff for the ELISA could be reduced to an optical density index (O.D.I.) of 0.6. With the use of this cutoff for ELISA and cutoffs for PCR and BDG that give a comparable level of specificity, the sensitivity/specificity/positive predictive value/negative predictive value of the ELISA and the PCR and BDG tests were 1.00/0.93/0.55/1.00, 0.55/0.93/0.40/0.96, and 0.55/0.93/0.40/0.96, respectively. In conclusion, among these weekly screening tests for IA, the double-sandwich ELISA test was the most sensitive at predicting the diagnosis of IA in high-risk patients with hematological disorders, using a reduced cutoff of 0.6 O.D.I.
DOI: 10.1086/323337
2001
Cited 235 times
Use of Real‐Time PCR on Blood Samples for Diagnosis of Invasive Aspergillosis
We developed a new quantitative system for diagnosis of invasive pulmonary aspergillosis (IPA) using real-time automated polymerase chain reaction (PCR). Intra-assay and interassay precision rates for in vitro examination were 2.53% and 2.20%, respectively, and the linearity of this assay was obtained when there were >20 copies/well. We examined 323 samples taken from 122 patients with hematological malignancies, including 33 patients with IPA and 89 control patients. Blood samples were subjected to PCR antigen detection methods, using enzyme-linked immunosorbent assay (ELISA) and determination of plasma (1-->3)-beta-D-glucan (BDG) concentration. The sensitivities of PCR, ELISA, and BDG measurement for diagnosis of IPA were 79%, 58%, and 67%, respectively; the specificities were 92%, 97%, and 84%. Positive findings on PCR preceded those of computed tomography by -0.3+/-6.6 days, those of BDG measurement by 6.5+/-4.9 days, and those of ELISA by 2.8+/-4.1 days. Real-time PCR was sensitive for IPA diagnosis, and quantitation was accurate.
DOI: 10.1086/518809
2007
Cited 234 times
Highly Sensitive Method for Genomewide Detection of Allelic Composition in Nonpaired, Primary Tumor Specimens by Use of Affymetrix Single-Nucleotide–Polymorphism Genotyping Microarrays
Loss of heterozygosity (LOH), either with or without accompanying copy-number loss, is a cardinal feature of cancer genomes that is tightly linked to cancer development. However, detection of LOH is frequently hampered by the presence of normal cell components within tumor specimens and the limitation in availability of constitutive DNA. Here, we describe a simple but highly sensitive method for genomewide detection of allelic composition, based on the Affymetrix single-nucleotide–polymorphism genotyping microarray platform, without dependence on the availability of constitutive DNA. By sensing subtle distortions in allele-specific signals caused by allelic imbalance with the use of anonymous controls, sensitive detection of LOH is enabled with accurate determination of allele-specific copy numbers, even in the presence of up to 70%–80% normal cell contamination. The performance of the new algorithm, called “AsCNAR” (allele-specific copy-number analysis using anonymous references), was demonstrated by detecting the copy-number neutral LOH, or uniparental disomy (UPD), in a large number of acute leukemia samples. We next applied this technique to detection of UPD involving the 9p arm in myeloproliferative disorders (MPDs), which is tightly associated with a homozygous JAK2 mutation. It revealed an unexpectedly high frequency of 9p UPD that otherwise would have been undetected and also disclosed the existence of multiple subpopulations having distinct 9p UPD within the same MPD specimen. In conclusion, AsCNAR should substantially improve our ability to dissect the complexity of cancer genomes and should contribute to our understanding of the genetic basis of human cancers. Loss of heterozygosity (LOH), either with or without accompanying copy-number loss, is a cardinal feature of cancer genomes that is tightly linked to cancer development. However, detection of LOH is frequently hampered by the presence of normal cell components within tumor specimens and the limitation in availability of constitutive DNA. Here, we describe a simple but highly sensitive method for genomewide detection of allelic composition, based on the Affymetrix single-nucleotide–polymorphism genotyping microarray platform, without dependence on the availability of constitutive DNA. By sensing subtle distortions in allele-specific signals caused by allelic imbalance with the use of anonymous controls, sensitive detection of LOH is enabled with accurate determination of allele-specific copy numbers, even in the presence of up to 70%–80% normal cell contamination. The performance of the new algorithm, called “AsCNAR” (allele-specific copy-number analysis using anonymous references), was demonstrated by detecting the copy-number neutral LOH, or uniparental disomy (UPD), in a large number of acute leukemia samples. We next applied this technique to detection of UPD involving the 9p arm in myeloproliferative disorders (MPDs), which is tightly associated with a homozygous JAK2 mutation. It revealed an unexpectedly high frequency of 9p UPD that otherwise would have been undetected and also disclosed the existence of multiple subpopulations having distinct 9p UPD within the same MPD specimen. In conclusion, AsCNAR should substantially improve our ability to dissect the complexity of cancer genomes and should contribute to our understanding of the genetic basis of human cancers. Genomewide detection of loss of heterozygosity (LOH), as well as copy-number (CN) alterations in cancer genomes, has drawn recent attention in the field of cancer genetics,1Mei R Galipeau PC Prass C Berno A Ghandour G Patil N Wolff RK Chee MS Reid BJ Lockhart DJ Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays.Genome Res. 2000; 10: 1126-1137Crossref PubMed Scopus (173) Google Scholar, 2Horvath A Boikos S Giatzakis C Robinson-White A Groussin L Griffin KJ Stein E Levine E Delimpasi G Hsiao HP et al.A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia.Nat Genet. 2006; 38: 794-800Crossref PubMed Scopus (237) Google Scholar, 3Lindblad-Toh K Tanenbaum DM Daly MJ Winchester E Lui WO Villapakkam A Stanton SE Larsson C Hudson TJ Johnson BE et al.Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays.Nat Biotechnol. 2000; 18: 1001-1005Crossref PubMed Scopus (236) Google Scholar because LOH has been closely related to the pathogenesis of cancers, in that it is a common mechanism for inactivation of tumor suppressor genes in Knudson’s paradigm.4Knudson AG Two genetic hits (more or less) to cancer.Nat Rev Cancer. 2001; 1: 157-162Crossref PubMed Scopus (728) Google Scholar Moreover, the recent discovery of the activating Janus kinase 2 gene (JAK2 [MIM *147796]) mutation that is tightly associated with the common 9p LOH with neutral CNs, or uniparental disomy (UPD), in myeloproliferative disorders (MPDs)5Baxter EJ Scott LM Campbell PJ East C Fourouclas N Swanton S Vassiliou GS Bench AJ Boyd EM Curtin N et al.Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar, 6James C Ugo V Le Couedic JP Staerk J Delhommeau F Lacout C Garcon L Raslova H Berger R Bennaceur-Griscelli A et al.A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.Nature. 2005; 434: 1144-1148Crossref PubMed Scopus (2715) Google Scholar, 7Kralovics R Passamonti F Buser AS Teo SS Tiedt R Passweg JR Tichelli A Cazzola M Skoda RC A gain-of-function mutation of JAK2 in myeloproliferative disorders.N Engl J Med. 2005; 352: 1779-1790Crossref PubMed Scopus (2751) Google Scholar, 8Levine RL Wadleigh M Cools J Ebert BL Wernig G Huntly BJ Boggon TJ Wlodarska I Clark JJ Moore S et al.Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.Cancer Cell. 2005; 7: 387-397Abstract Full Text Full Text PDF PubMed Scopus (2295) Google Scholar uncovered a new paradigm—that a dominant oncogenic mutation may be further potentiated by duplication of the mutant allele and/or exclusion of the wild-type allele—underscoring the importance of simultaneous CN detection with LOH analysis. On this point, Affymetrix GeneChip SNP-detection arrays, originally developed for large-scale SNP typing,9Kennedy GC Matsuzaki H Dong S Liu WM Huang J Liu G Su X Cao M Chen W Zhang J et al.Large-scale genotyping of complex DNA.Nat Biotechnol. 2003; 21: 1233-1237Crossref PubMed Scopus (444) Google Scholar provide a powerful platform for both genomewide LOH analysis and CN detection.10Zhao X Li C Paez JG Chin K Janne PA Chen TH Girard L Minna J Christiani D Leo C et al.An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays.Cancer Res. 2004; 64: 3060-3071Crossref PubMed Scopus (441) Google Scholar, 11Huang J Wei W Zhang J Liu G Bignell GR Stratton MR Futreal PA Wooster R Jones KW Shapero MH Whole genome DNA copy number changes identified by high density oligonucleotide arrays.Hum Genomics. 2004; 1: 287-299Crossref PubMed Scopus (231) Google Scholar, 12Bignell GR Huang J Greshock J Watt S Butler A West S Grigorova M Jones KW Wei W Stratton MR et al.High-resolution analysis of DNA copy number using oligonucleotide microarrays.Genome Res. 2004; 14: 287-295Crossref PubMed Scopus (301) Google Scholar On this platform, the use of large numbers of SNP-specific probes showing linear hybridization kinetics allows not only for high-resolution LOH analysis at ∼2,500–150,000 heterozygous SNP loci but also for accurate determination of the CN state at each LOH region.12Bignell GR Huang J Greshock J Watt S Butler A West S Grigorova M Jones KW Wei W Stratton MR et al.High-resolution analysis of DNA copy number using oligonucleotide microarrays.Genome Res. 2004; 14: 287-295Crossref PubMed Scopus (301) Google Scholar, 13Wang ZC Buraimoh A Iglehart JD Richardson AL Genome-wide analysis for loss of heterozygosity in primary and recurrent phyllodes tumor and fibroadenoma of breast using single nucleotide polymorphism arrays.Breast Cancer Res Treat. 2006; 97: 301-309Crossref PubMed Scopus (37) Google Scholar, 14Zhou X Mok SC Chen Z Li Y Wong DT Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array.Hum Genet. 2004; 115: 327-330Crossref PubMed Scopus (72) Google Scholar Unfortunately, however, the sensitivity of the currently available algorithm for LOH detection by use of SNP arrays may be greatly reduced when they are applied to primary tumor specimens that are frequently heterogeneous and contain significant normal cell components. In this article, we describe a simple but highly sensitive method to detect allelic dosage (CNs) in primary tumor specimens on a GeneChip platform, with its validations, and some interesting applications to the analyses of primary hematological tumor samples. It does not require paired constitutive DNA of tumor specimens or a large set of normal reference samples but uses only a small number of anonymous controls for accurate determination of allele-specific CN (AsCN) even in the presence of significant proportions of normal cell components, thus enabling reliable genomewide detection of LOH in a wide variety of primary cancer specimens. Genomic DNA extracted from a lung cancer cell line (NCI-H2171) was intentionally mixed with DNA from its paired lymphoblastoid cell line (LCL) (NCI-BL2171) to generate a dilution series, in which tumor contents started at 10% and increased by 10% up to 90%. The ratios of admixture were validated using measurements of a microsatellite (D3S1279) within a UPD region on chromosome 3 (data not shown). The nine mixed samples, together with nonmixed original DNAs (0% and 100% tumor contents), were analyzed with GeneChip 50K Xba SNP arrays (Affymetrix). Microarray data corresponding to 5%, 15%, 25%,…, and 95% tumor content were interpolated by linearly superposing two adjacent microarray data sets after adjusting the mean array signals of the two sets. Both cell lines were obtained from the American Type Culture Collection (ATCC). Genomic DNA was also extracted from 85 primary leukemia samples, including 39 acute myeloid leukemia (AML [MIM 601626]) samples and 46 acute lymphoblastic leukemia (ALL) samples, and was subjected to analysis with 50K Xba SNP arrays. Of the 85 samples, 34 were analyzed with their matched complete-remission bone marrow samples. DNA from 53 MPD samples—13 polycythemia vera (PV [MIM 263300]), 21 essential thrombocythemia (ET [MIM 187950]), and 19 idiopathic myelofibrosis (IMF [MIM 254450])—43 of which had been studied for JAK2 mutations,8Levine RL Wadleigh M Cools J Ebert BL Wernig G Huntly BJ Boggon TJ Wlodarska I Clark JJ Moore S et al.Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.Cancer Cell. 2005; 7: 387-397Abstract Full Text Full Text PDF PubMed Scopus (2295) Google Scholar were also analyzed with 50K Xba SNP arrays. Microarray analyses were performed according to the manufacturer’s protocol,15Matsuzaki H Dong S Loi H Di X Liu G Hubbell E Law J Berntsen T Chadha M Hui H et al.Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays.Nat Methods. 2004; 1: 109-111Crossref PubMed Scopus (345) Google Scholar except with the use of LA Taq (Takara) for adaptor-mediated PCR. Also, DNA from 96 normal volunteers was used for the analysis. All clinical specimens were made anonymous and were incorporated into this study in accordance with the approval of the institutional review boards of the University of Tokyo and Harvard Medical School. SNP typing on the GeneChip platform uses two discrete sets of SNP-specific probes, which are arbitrarily but consistently named “type A” and “type B” SNPs, at every SNP locus, each consisting of an equal number of perfectly matched probes (PMAs or PMBs) and mismatched probes (MMAs or MMBs). For AsCN analysis, the sums of perfectly matched probes (PMAs or PMBs) for the ith SNP locus in the tumor (tum) sample and reference samples (ref1, ref2,…, refN),SA,itum=∑PMA,itum ,SB,itum=∑PMB,itumandSA,irefI=∑PMA,irefI ,SB,irefI=∑PMB,irefI ,(I=1,2,3,…,N) ,are compared separately at each SNP locus, according to the concordance of the SNP calls in the tumor sample (Otumi) and the SNP calls in a given reference sample (OrefIi),RA,irefI=SA,itumSA,irefIRB,irefI=SB,itumSB,irefI(for Oitum=OirefI),and the total CN ratio is calculated as follows:RAB,irefI= {RA,irefIfor Oitum=OirefI=AARB,irefIfor Oitum=OirefI=BB (I=1,2,3,…,N).12(RA,irefI+RB,irefI)for Oitum=OirefI=ABFor CN estimations, however, RrefIAB,i, RrefIA,i, and RrefIB,i are biased by differences in mean array signals and different PCR conditions between the tumor sample and each reference sample and need to be compensated for these effects to obtain their adjusted valuesRˆrefIAB,i,RˆrefIA,i, andRˆrefIB,i, respectively (appendix A).16Nannya Y Sanada M Nakazaki K Hosoya N Wang L Hangaishi A Kurokawa M Chiba S Bailey DK Kennedy GC et al.A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays.Cancer Res. 2005; 65: 6071-6079Crossref PubMed Scopus (556) Google Scholar These values are next averaged over the references that have a concordant genotype for each SNP in a given set of references (K), and we obtainR˜KAB,i,R˜KA,i, andR˜KB,i. Note thatR˜KA,i andR˜KB,i are calculated only for heterozygous SNPs in the tumor sample (see appendix A for more details). A provisional total CN profile ΛK is provided byΛK={K¯K},and provisional AsCN profiles are obtained byΛKlarge={max(R˜A,iK,R˜B,iK)}ΛKsmall={min(R˜A,iK,R˜B,iK)} .These provisional analyses, however, assume that the tumor genome is diploid and has no gross CN alterations, when the coefficients are calculated in regressions. In the next step, the regressions are iteratively performed using a diploid region that is truly or is expected to be diploid, to determine the coefficients on the basis of the provisional total CN, and then the CNs are recalculated. Finally, the optimized set of references is selected that minimizes the SD of total CN at the diploid region by stepwise reference selection, as described in appendix A. Allele-specific analysis using a constitutive reference, refSelf, is provided byΛlarge={max(RˆA,irefSelf,RˆB,irefSelf)}andΛsmall={min(RˆA,irefSelf,RˆB,irefSelf) }.Computational details of AsCNAR are provided in appendix A. dChip17Beroukhim R Lin M Park Y Hao K Zhao X Garraway LA Fox EA Hochberg EP Mellinghoff IK Hofer MD et al.Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP arrays.PLoS Comput Biol. 2006; 2: e41Crossref PubMed Scopus (124) Google Scholar and PLASQ18Laframboise T Harrington D Weir BA PLASQ: a generalized linear model-based procedure to determine allelic dosage in cancer cells from SNP array data.Biostatistics. 2007; 8: 323-336Crossref PubMed Scopus (38) Google Scholar were downloaded from their sites, and the identical microarray data were analyzed using these programs. Since PLASQ requires both Xba and Hind array data, microarray data of mixed tumor contents for Hind arrays were simulated by linearly superimposing the tumor cell line (NCI-H2171) and LCL (NCI-BL2171) data at indicated proportions. Significance of the presence of allelic imbalance (AI) in a given region, Γ, called as having AI by the hidden Markov model (HMM), was statistically tested by calculating t statistics for the difference in AsCNs, |log2R˜KA,i-log2R˜KB,i|, between Γ and a normal diploid region, where the tests were unilateral. Significance between the numbers of UPDs detected by the SNP call–based method and by AsCNAR was tested by one-tailed binominal tests. P values for AI detection by allele-specific PCR were calculated by one-tailed t tests, comparing triplicates of the target sample and triplicates of five normal samples that have heterozygous alleles in the SNP. The JAK2 V617F mutation was examined by a restriction enzyme–based analysis, in which PCR-amplified JAK2 exon 12 fragments were digested with BsaXI, and the presence of the undigested fragment was examined by gel electrophoresis.5Baxter EJ Scott LM Campbell PJ East C Fourouclas N Swanton S Vassiliou GS Bench AJ Boyd EM Curtin N et al.Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet. 2005; 365: 1054-1061Abstract Full Text Full Text PDF PubMed Scopus (2296) Google Scholar Relative allele dose between wild-type and mutated JAK2 was determined by measuring allele-specific PCR products for wild-type and mutated JAK2 alleles by capillary electrophoresis by use of the 3100 Genetic Analyzer (Applied Biosystems), as described in the literature.19Kralovics R Teo SS Li S Theocharides A Buser AS Tichelli A Skoda RC Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders.Blood. 2006; 108: 1377-1380Crossref PubMed Scopus (231) Google Scholar Likewise, the fraction of tumor components having 9p and other UPDs was measured by either allele-specific PCR or STR PCR,7Kralovics R Passamonti F Buser AS Teo SS Tiedt R Passweg JR Tichelli A Cazzola M Skoda RC A gain-of-function mutation of JAK2 in myeloproliferative disorders.N Engl J Med. 2005; 352: 1779-1790Crossref PubMed Scopus (2751) Google Scholar, 19Kralovics R Teo SS Li S Theocharides A Buser AS Tichelli A Skoda RC Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders.Blood. 2006; 108: 1377-1380Crossref PubMed Scopus (231) Google Scholar by use of the primers provided in appendix B. The percentage of UPD-positive cells (%UPD(+)) was also estimated as the mean difference of AsCNs for heterozygous SNPs within the UPD region divided by that for homozygous SNPs within an arbitrary selected normal region:%UPD(+)=E(|RˆA,iK-RˆB,iK|i∈hetero SNPs in UPD region)E(|RˆA,jK-RˆB,jK|j∈homo SNPs with normal CN) ,where AsCNs for the denominator were calculated as if the homozygous SNPs were heterozygous. However, in those samples with a high percentage of UPD-positive components, the heterozygous SNP rate in the UPD region decreased. For such regions, we calculated the percentage of UPD-positive cells by randomly selecting 30% (the mean heterozygous SNP call rate for this array) of all the SNPs therein and by assuming that they were heterozygous SNPs. Cellular composition of JAK2 wild-type (wt) and mutant (mt) homozygotes (wt/wt and mt/mt) and heterozygotes (wt/mt) in each MPD specimen was estimated assuming that all UPD components are homozygous for the JAK2 mutation. The fractions of the wt/mt heterozygotes in cases with a 9p gain were estimated assuming that the duplicated 9p alleles had the JAK2 mutation. Throughout the calculations, small negative values for wt/mt were disregarded. FISH analysis was performed according to the previously published method, to confirm the absolute total CNs in NCI-H2171.20Wang L Ogawa S Hangaishi A Qiao Y Hosoya N Nanya Y Ohyashiki K Mizoguchi H Hirai H Molecular characterization of the recurrent unbalanced translocation der(1;7)(q10;p10).Blood. 2003; 102: 2597-2604Crossref PubMed Scopus (30) Google Scholar The genomic probes were generated by whole-genome amplification of FISH-confirmed RP11 BAC clones 169N13 (3q13; CN=2), 227F7 (8q24; CN=2), 196H14 (12q14; CN=2), 25E13 (13q33; CN=2), 84E24 (17q24; CN=2), 12C9 (19q13; CN=2), 153K19 (3q13; CN=3), 94D19 (3p14; CN=1), 80P10 (8q22; CN=1), and 64C21 (13q12-13; CN=1), which were obtained from the BACPAC Resources Center at the Children’s Hospital Oakland Research Institute in Oakland, California. When a pure tumor sample is analyzed with a paired constitutive reference on a GeneChip Xba 50K array, LOH is easily detected as homozygous SNP loci in the tumor specimen that are heterozygous in the constitutive DNA (fig. 1A, pink bars). In addition, given a large number of SNPs to be genotyped, the presence of LOH is also inferred from the grossly decreased heterozygous SNP calls, even in the absence of a paired reference (fig. 1D). The accuracy of the LOH inference would depend partly on the algorithm used but more strongly on the tumor content of the specimens. Thus, our SNP call–based LOH inference algorithm in CNAG (appendix C), as well as that of dChip,17Beroukhim R Lin M Park Y Hao K Zhao X Garraway LA Fox EA Hochberg EP Mellinghoff IK Hofer MD et al.Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP arrays.PLoS Comput Biol. 2006; 2: e41Crossref PubMed Scopus (124) Google Scholar show almost 100% sensitivity and specificity for pure tumor specimens. But, as the tumor content decreases, the LOH detection rate steeply declines (fig. 1G), and, with <50% tumor cells, no LOH can be detected, even when complete genotype information for both tumor and paired constitutive DNA is obtained (fig. 1B, 1E, 1H, and 1I). On the other hand, the capability of allele-specific measurements of CN alterations in cancer genomes is an excellent feature of the SNP array-based CN-detection system that uses a large number of SNP-specific probe sets.16Nannya Y Sanada M Nakazaki K Hosoya N Wang L Hangaishi A Kurokawa M Chiba S Bailey DK Kennedy GC et al.A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays.Cancer Res. 2005; 65: 6071-6079Crossref PubMed Scopus (556) Google Scholar, 18Laframboise T Harrington D Weir BA PLASQ: a generalized linear model-based procedure to determine allelic dosage in cancer cells from SNP array data.Biostatistics. 2007; 8: 323-336Crossref PubMed Scopus (38) Google Scholar, 21Huang J Wei W Chen J Zhang J Liu G Di X Mei R Ishikawa S Aburatani H Jones KW et al.CARAT: a novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays.BMC Bioinformatics. 2006; 7: 83Crossref PubMed Scopus (53) Google Scholar When constitutive DNA is used as a reference, AsCN analysis is accomplished by separately comparing the SNP-specific array signals from the two parental alleles at the heterozygous SNP loci in the constitutive genomic DNA.16Nannya Y Sanada M Nakazaki K Hosoya N Wang L Hangaishi A Kurokawa M Chiba S Bailey DK Kennedy GC et al.A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays.Cancer Res. 2005; 65: 6071-6079Crossref PubMed Scopus (556) Google Scholar It determines not only the total CN changes but also the alterations of allelic compositions in cancer genomes, which are captured as the split lines in the two AsCN graphs (fig. 1A and 1B). In this mode of analysis, the presence of LOH can be detected as loss of one parental allele, even in specimens showing almost no discordant calls (fig. 1B). The previous method for AsCN analysis, however, essentially depends on the availability of constitutive DNA, since AsCNs are calculated only at the heterozygous SNP loci in constitutive DNA.16Nannya Y Sanada M Nakazaki K Hosoya N Wang L Hangaishi A Kurokawa M Chiba S Bailey DK Kennedy GC et al.A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays.Cancer Res. 2005; 65: 6071-6079Crossref PubMed Scopus (556) Google Scholar Alternatively, allele-specific signals can be compared with those in anonymous references on the basis of the heterozygous SNP calls in the tumor specimen. In the latter case, the concordance of heterozygous SNP calls between the tumor and the unrelated sample is expected to be only 37% with a single reference. However, the use of multiple references overcomes the low concordance rate with a single reference, and the expected overall concordance rate for heterozygous SNPs and for all SNPs increases to 86% and 92%, respectively, with five unrelated references (appendix D). Thus, for AsCNAR, allele-specific signal ratios are calculated at all the concordant heterozygous SNP loci for individual references, and then the signal ratios for the identical SNPs are averaged across different references over the entire genome. For the analysis of total CNs, all the concordant SNPs, both homozygous and heterozygous, are included in the calculations, and the two allele-specific signal ratios for heterozygous SNP loci are summed together. Since AsCNAR computes AsCNs only for heterozygous SNP loci in tumors, difficulty may arise on analysis of an LOH region in highly pure tumor samples, in which little or no heterozygous SNP calls are expected. However, as shown above, such LOH regions can be easily detected by the SNP call–based algorithm, where AsCNAR is formally calculated assuming all the SNPs therein are heterozygous. Thus, the AsCNAR provides an essentially equivalent result to that from AsCN analysis using constitutional DNA, with similar sensitivity in detecting AI and LOH (compare fig. 1A with 1D and 1B with 1E). As expected from its principle, AsCNAR is more robust in the presence of normal cell contaminations than are SNP call–based algorithms. To evaluate this quantitatively, we analyzed tumor DNA that was intentionally mixed with its paired normal DNA at varying ratios in 50K Xba SNP arrays, and the array data were analyzed with AsCNAR. To preclude subjectivity, LOH regions were detected by an HMM-based algorithm, which evaluates difference in AsCNs in both parental alleles (appendix E).22Dugad R Desai U A tutorial on hidden Markov models. Signal Processing and Artificial Neural Networks Laboratory, Bombay, India1996Google Scholar As the tumor content decreases, the SNP call–based LOH inference fails to detect LOH because of the appearance of heterozygous SNP calls from the contaminated normal cell component (fig. 1E and 1G–1I), but these heterozygous SNP calls, in turn, make AsCNAR operate effectively. In fact, this algorithm precisely identifies known LOH regions, as well as regions with AI, in intentionally mixed tumor samples containing as little as 20% (for LOH without CN loss) to 25% (LOH with CN loss) tumor contents (fig. 2A–2C). Note that this large gain in sensitivity is obtained without the expense of specificity, which is very close to 100%, as observed with other algorithms (fig. 2D). In AsCNAR, small regions of AI (<1 million bases in length) are difficult to detect in samples contaminated with normal cells. However, such regions are also difficult to detect using other algorithms (data not shown). To examine further the strength of the newly developed algorithms for AsCN and LOH detection, we explored UPD regions in 85 primary acute leukemia samples, including 39 AML and 46 ALL samples, on GeneChip 50K Xba SNP arrays, since recent reports identified frequent (∼20%) occurrence of this abnormality in AML.23Raghavan M Lillington DM Skoulakis S Debernardi S Chaplin T Foot NJ Lister TA Young BD Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias.Cancer Res. 2005; 65: 375-378PubMed Google Scholar, 24Fitzgibbon J Smith LL Raghavan M Smith ML Debernardi S Skoulakis S Lillington D Lister TA Young BD Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias.Cancer Res. 2005; 65: 9152-9154Crossref PubMed Scopus (191) Google Scholar In the SNP call–based LOH inference algorithm, 16 UPD regions were identified in 14 cases, 8 (20.5%) AML and 6 (13.0%) ALL. However, the frequencies were almost doubled with the AsCNAR algorithm; a total of 28 UPD loci were identified in 25 cases, including 14 (35.9%) AML and 11 (23.9%) ALL (fig. 3A and table 1). In 5 of the 25 UPD-positive cases, a matched remission sample was available for AsCN analysis, which provided essentially the same results as AsCNAR, except for one relapsed AML case (W150673). In the latter case, a discrepancy in AsCN shifts in 17p UPD occurred between AsCN analysis with and without a constitutive reference, with more CN shift detected with anonymous references (fig. 4A and 4B). The discrepancy was, however, explained by the unexpected detection of a subtle UPD change in 17p in the reference sample by AsCNAR (P<.0001, by t test) (fig. 4C), which offset the CN shift in the relapsed sample, although it was morphologically and cytogenetically diagnosed as in complete remission.Table 1.CN-Neutral LOH in Primary Acute LeukemiaSampleDiseaseChromosomeSize (Mb)Detection by SNP Call–Based MethodbD = the UPD was detected by the SNP call–based method; ND = not detected.W176866ALL1q92.4NDW158256ALL2243.0NDW113372ALL4q138.4DW125534ALL5q88.8DW124523ALL6p33.9DW180545ALL9p36.9DW113372ALL9p35.4DW121456ALL9p28.2NDW125626ALL9q47.6NDW106094ALL9q34.2DW138712ALL10p28.8NDW168799ALL16p7.2DW100145AML1p44.1DW150234aThe remission samples are available.AML1p17.2DW111862aThe remission samples are available.AML3q9.2DW122271AML4q108.9DW157831AML9p34.1NDW157831AML11p41.1DW138303aThe remission samples are available.AML11p38.7NDW163744aThe remission samples are available.AML11p32.1NDW132710AML11q66.0DW123820AML13114.1NDW163322AML13114.1NDW194318AML17p19.6DW150673aThe remission samples are available.AML17p15.6NDW129779AML17q55.7NDW157831AML19q41.3DW103042AML22q25.6Da The remission samples are available.b D = the UPD was detected by the SNP call–based method; ND = not detected. Open table in a new tab Figure 4.Detection of AI in samples of primary AML and MPD. AsCN analyses disclosed the pres
DOI: 10.1002/j.1460-2075.1995.tb07008.x
1995
Cited 217 times
An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms.
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) and (3;21)(q26;q22) translocations associated with myelogenous leukemias and encodes a DNA binding protein. From the AML1 gene, two representative forms of proteins, AML1a and AML1b, are produced by alternative splicing. Both forms have a DNA binding domain but, unlike AML1b, AML1a lacks a putative transcriptional activation domain. Here we demonstrate that overexpressed AML1a totally suppresses granulocytic differentiation and stimulates cell proliferation in 32Dcl3 murine myeloid cells treated with granulocyte colony-stimulating factor. These effects of AML1a were canceled by the concomitant overexpression of AML1b. Such biological phenomena could be explained by our observations that (i) AML1a, which on its own has no effects as a transcriptional regulator, dominantly suppresses transcriptional activation by AML1b, and (ii) AML1a exhibits the higher affinity for DNA binding compared with AML1b. These antagonistic actions could be important in leukemogenesis and/or myeloid cell differentiation because more than half of myelogenous leukemia patients showed an increase in the relative amounts of AML1a.
DOI: 10.1182/blood-2007-05-088310
2008
Cited 195 times
Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray
Pediatric acute lymphoblastic leukemia (ALL) is a malignant disease resulting from accumulation of genetic alterations. A robust technology, single nucleotide polymorphism oligonucleotide genomic microarray (SNP-chip) in concert with bioinformatics offers the opportunity to discover the genetic lesions associated with ALL. We examined 399 pediatric ALL samples and their matched remission marrows at 50,000/250,000 SNP sites using an SNP-chip platform. Correlations between genetic abnormalities and clinical features were examined. Three common genetic alterations were found: deletion of ETV6, deletion of p16INK4A, and hyperdiploidy, as well as a number of novel recurrent genetic alterations. Uniparental disomy (UPD) was a frequent event, especially affecting chromosome 9. A cohort of children with hyperdiploid ALL without gain of chromosomes 17 and 18 had a poor prognosis. Molecular allelokaryotyping is a robust tool to define small genetic abnormalities including UPD, which is usually overlooked by standard methods. This technique was able to detect subgroups with a poor prognosis based on their genetic status.
DOI: 10.1182/blood-2012-11-469619
2013
Cited 170 times
BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders
Key Points Despite a low frequency of mutations, BCOR might be considered as a key gene in risk stratification. Deep sequencing technologies show that BCOR mutations commonly arise after other concomitant mutations in MDS.
DOI: 10.1084/jem.20131144
2013
Cited 164 times
Concurrent loss of <i>Ezh2</i> and <i>Tet2</i> cooperates in the pathogenesis of myelodysplastic disorders
Polycomb group (PcG) proteins are essential regulators of hematopoietic stem cells. Recent extensive mutation analyses of the myeloid malignancies have revealed that inactivating somatic mutations in PcG genes such as EZH2 and ASXL1 occur frequently in patients with myelodysplastic disorders including myelodysplastic syndromes (MDSs) and MDS/myeloproliferative neoplasm (MPN) overlap disorders (MDS/MPN). In our patient cohort, EZH2 mutations were also found and often coincided with tet methylcytosine dioxygenase 2 (TET2) mutations. Consistent with these findings, deletion of Ezh2 alone was enough to induce MDS/MPN-like diseases in mice. Furthermore, concurrent depletion of Ezh2 and Tet2 established more advanced myelodysplasia and markedly accelerated the development of myelodysplastic disorders including both MDS and MDS/MPN. Comprehensive genome-wide analyses in hematopoietic progenitor cells revealed that upon deletion of Ezh2, key developmental regulator genes were kept transcriptionally repressed, suggesting compensation by Ezh1, whereas a cohort of oncogenic direct and indirect polycomb targets became derepressed. Our findings provide the first evidence of the tumor suppressor function of EZH2 in myeloid malignancies and highlight the cooperative effect of concurrent gene mutations in the pathogenesis of myelodysplastic disorders.
DOI: 10.1182/blood.v84.8.2431.2431
1994
Cited 163 times
Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias
Abstract Recently, it has been shown that the homozygous deletion of the cyclin- dependent kinase-4 inhibitor (CDK4I;p16) gene, which is mapped to chromosome 9p21, is frequently observed in a wide spectrum of human cancers, including leukemias. Therefore, the CDK4I gene is thought to be a putative tumor-suppressor gene. We report here that both alleles of the CDK4I gene were completely or partially deleted in human leukemia cells derived from both patients and established cell lines. Thirty-seven hematopoietic cell lines and samples from 72 patients with leukemias were examined for homozygous loss of the CDK4I gene locus by Southern blot analysis. We found that a part or the whole of the CDK4I gene was homozygously deleted in 14 of the 37 (38%) cell lines and 4 of 72 (6%) samples from leukemia patients, including 45 with acute myelocytic leukemia, 14 with acute lymphocytic leukemia (ALL), and 13 with chronic myelocytic leukemia in blastic crisis. In the cell lines, the homozygous deletion of the CDK4I gene was detected in a variety of cell lineages, whereas all 4 cases showing the homozygous deletion were confined to ALL. It should be noted that 2 of them had no cytogenetic abnormalities of chromosome 9. Our results suggest that loss of the CDK4I function may contribute to immortalization of human leukemia cells and play a causative role at least in development of human lymphocytic leukemias.
DOI: 10.1182/blood-2013-06-507962
2013
Cited 153 times
Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients
Fanconi anemia (FA) is a severe hereditary disorder with defective DNA damage response and repair. It is characterized by phenotypes including progressive bone marrow failure (BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. Recent studies in mice have suggested that the FA proteins might counteract aldehyde-induced genotoxicity in hematopoietic stem cells. Nearly half of the Japanese population carries a dominant-negative allele (rs671) of the aldehyde-catalyzing enzyme ALDH2 (acetaldehyde dehydrogenase 2), providing an opportunity to test this hypothesis in humans. We examined 64 Japanese FA patients, and found that the ALDH2 variant is associated with accelerated progression of BMF, while birth weight or the number of physical abnormalities was not affected. Moreover, malformations at some specific anatomic locations were observed more frequently in ALDH2-deficient patients. Our current data indicate that the level of ALDH2 activity impacts pathogenesis in FA, suggesting the possibility of a novel therapeutic approach.
DOI: 10.1182/blood-2011-07-365189
2011
Cited 151 times
Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia
Abstract Idiopathic aplastic anemia (AA) is a common cause of acquired BM failure. Although autoimmunity to hematopoietic progenitors is thought to be responsible for its pathogenesis, little is known about the molecular basis of this autoimmunity. Here we show that a substantial proportion of AA patients harbor clonal hematopoiesis characterized by the presence of acquired copy number-neutral loss of heterozygosity (CNN-LOH) of the 6p arms (6pLOH). The 6pLOH commonly involved the HLA locus, leading to loss of one HLA haplotype. Loss of HLA-A expression from multiple lineages of leukocytes was confirmed by flow cytometry in all 6pLOH(+) cases. Surprisingly, the missing HLA-alleles in 6pLOH(+) clones were conspicuously biased to particular alleles, including HLA-A*02:01, A*02:06, A*31:01, and B*40:02. A large-scale epidemiologic study on the HLA alleles of patients with various hematologic diseases revealed that the 4 HLA alleles were over-represented in the germline of AA patients. These findings indicate that the 6pLOH(+) hematopoiesis found in AA represents “escapes” hematopoiesis from the autoimmunity, which is mediated by cytotoxic T cells that target the relevant auto-antigens presented on hematopoietic progenitors through these class I HLAs. Our results provide a novel insight into the genetic basis of the pathogenesis of AA.
DOI: 10.1111/j.1349-7006.2009.01130.x
2009
Cited 150 times
Gain‐of‐function mutations and copy number increases of Notch2 in diffuse large B‐cell lymphoma
Signaling through the Notch1 receptor has a pivotal role in early thymocyte development. Gain of Notch1 function results in the development of T-cell acute lymphoblastic leukemia in a number of mouse experimental models, and activating Notch1 mutations deregulate Notch1 signaling in the majority of human T-cell acute lymphoblastic leukemias. Notch2, another member of the Notch gene family, is preferentially expressed in mature B cells and is essential for marginal zone B-cell generation. Here, we report that 5 of 63 (approximately 8%) diffuse large B-cell lymphomas, a subtype of mature B-cell lymphomas, have Notch2 mutations. These mutations lead to partial or complete deletion of the proline-, glutamic acid-, serine- and threonine-rich (PEST) domain, or a single amino acid substitution at the C-terminus of Notch2 protein. Furthermore, high-density oligonucleotide microarray analysis revealed that some diffuse large B-cell lymphoma cases also have increased copies of the mutated Notch2 allele. In the Notch activation-sensitive luciferase reporter assay in vitro, mutant Notch2 receptors show increased activity compared with wild-type Notch2. These findings implicate Notch2 gain-of-function mutations in the pathogenesis of a subset of B-cell lymphomas, and suggest broader roles for Notch gene mutations in human cancers.
DOI: 10.1016/j.ajhg.2013.05.024
2013
Cited 135 times
Two Susceptibility Loci to Takayasu Arteritis Reveal a Synergistic Role of the IL12B and HLA-B Regions in a Japanese Population
Takayasu arteritis (TAK) is an autoimmune systemic vasculitis of unknown etiology. Although previous studies have revealed that HLA-B*52:01 has an effect on TAK susceptibility, no other genetic determinants have been established so far. Here, we performed genome scanning of 167 TAK cases and 663 healthy controls via Illumina Infinium Human Exome BeadChip arrays, followed by a replication study consisting of 212 TAK cases and 1,322 controls. As a result, we found that the IL12B region on chromosome 5 (rs6871626, overall p = 1.7 × 10(-13), OR = 1.75, 95% CI 1.42-2.16) and the MLX region on chromosome 17 (rs665268, overall p = 5.2 × 10(-7), OR = 1.50, 95% CI 1.28-1.76) as well as the HLA-B region (rs9263739, a proxy of HLA-B*52:01, overall p = 2.8 × 10(-21), OR = 2.44, 95% CI 2.03-2.93) exhibited significant associations. A significant synergistic effect of rs6871626 and rs9263739 was found with a relative excess risk of 3.45, attributable proportion of 0.58, and synergy index of 3.24 (p ≤ 0.00028) in addition to a suggestive synergistic effect between rs665268 and rs926379 (p ≤ 0.027). We also found that rs6871626 showed a significant association with clinical manifestations of TAK, including increased risk and severity of aortic regurgitation, a representative severe complication of TAK. Detection of these susceptibility loci will provide new insights to the basic mechanisms of TAK pathogenesis. Our findings indicate that IL12B plays a fundamental role on the pathophysiology of TAK in combination with HLA-B(∗)52:01 and that common autoimmune mechanisms underlie the pathology of TAK and other autoimmune disorders such as psoriasis and inflammatory bowel diseases in which IL12B is involved as a genetic predisposing factor.
DOI: 10.1371/journal.pgen.1005778
2016
Cited 134 times
Integrated Multiregional Analysis Proposing a New Model of Colorectal Cancer Evolution
Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients' ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease.
DOI: 10.1002/wrna.1222
2014
Cited 131 times
Splicing factor mutations and cancer
Recent advances in high-throughput sequencing technologies have unexpectedly revealed that somatic mutations of splicing factor genes frequently occurred in several types of hematological malignancies, including myelodysplastic syndromes, other myeloid neoplasms, and chronic lymphocytic leukemia. Splicing factor mutations have also been reported in solid cancers such as breast and pancreatic cancers, uveal melanomas, and lung adenocarcinomas. These mutations were heterozygous and mainly affected U2AF1 (U2AF35), SRSF2 (SC35), SF3B1 (SF3B155 or SAP155), and ZRSR2 (URP), which are engaged in the initial steps of RNA splicing, including 3' splice-site recognition, and occur in a large mutually exclusive pattern, suggesting a common impact of these mutations on RNA splicing. In this study, splicing factor mutations in various types of cancers, their functional/biological effects, and their potential as therapeutic targets have been reviewed.
DOI: 10.1038/modpathol.2015.6
2015
Cited 131 times
TCEB1-mutated renal cell carcinoma: a distinct genomic and morphological subtype
Integrated sequencing analysis identified a group of tumors among clear cell renal cell carcinomas characterized by hotspot mutations in TCEB1 (a gene that contributes to the VHL complex to ubiquitinate hypoxia-inducible factor). We analyzed 11 tumors from two distinct cohorts with TCEB1 mutations along with an expanded cohort to assess whether these should be considered an entity distinct from clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma. All tumors were characterized by hotspot mutations in TCEB1 Y79C/S/F/N or A100P. Morphological and immunohistochemical characteristics of the tumors were assessed by two experienced genitourinary pathologists. Clinical and pathological variables, copy number alterations, mutations, and expression signatures were compared with a cohort of TCEB1 wild-type tumors. All TCEB1-mutated tumors were VHL and PBRM1 wild type and contained distinct copy number profiles including loss of heterozygosity of chromosome 8, the location of TCEB1 (8q21.11). All tumors lacked the clear cell renal cell carcinoma signature 3p loss and contained distinct gene expression signatures. None of the clear cell papillary tumors harbored TCEB1 mutations. Pathologically, all TCEB1-mutated tumors shared characteristic features including thick fibromuscular bands transecting the tumor, pure clear cell cytology frequently with cells showing voluminous cytoplasm, and clear cell renal cell carcinoma-like acinar areas associated with infolding tubular and focally papillary architecture. The presence of voluminous cytoplasm, absence of luminal polarization of tumor nuclei, and lack of extensive cup-like distribution of carbonic anhydrase-IX expression distinguish it from clear cell papillary carcinoma. None of the patients developed metastases at last follow-up (median 48 months). In sum, TCEB1-mutated renal cell carcinoma is a distinct entity with recurrent hotspot mutations, specific copy number alterations, pathway activation, and characteristic morphological features. Further clinical follow-up is needed to determine whether these tumors are more indolent compared with the conventional clear cell renal cell carcinoma.
DOI: 10.5966/sctm.2014-0219
2015
Cited 131 times
Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice
Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells.This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases.
DOI: 10.1038/ncomms15099
2017
Cited 124 times
Clonal evolution in myelodysplastic syndromes
Abstract Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance ( TP53 ) or disease progression ( NRAS , KRAS ) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions.
DOI: 10.1182/blood-2008-08-171934
2009
Cited 123 times
HLA mismatch combinations associated with decreased risk of relapse: implications for the molecular mechanism
Abstract The finding that the risk of relapse in hematologic malignancy decreases after allogeneic hematopoietic stem cell transplantation (HSCT) has lead to the concept of a graft-versus-leukemia (GVL) effect. However, this beneficial effect is considered to be frequently offset by graft-versus-host disease (GVHD). Thus, improving HSCT outcomes by separating GVL from GVHD is a key clinical issue. This cohort study registered 4643 patients with hematologic malignancies who received transplants from unrelated donors. Six major human leukocyte antigen (HLA) loci were retrospectively genotyped. We identified 4 HLA-Cw and 6 HLA-DPB1 mismatch combinations responsible for a decreased risk of relapse; of these, 8 of 10 combinations were different from those responsible for severe acute GVHD, including all 6 of the HLA-DPB1 combinations. Pairs with these combinations of HLA-DPB1 were associated with a significantly better overall survival than were completely matched pairs. Moreover, several amino acid substitutions on specific positions responsible for a decreased risk of relapse were identified in HLA-Cw, but not in HLA-DPB1. These findings might be crucial to elucidating the mechanism of the decreased risk of relapse on the basis of HLA molecule. Donor selection made in consideration of these results might allow the separation of GVL from acute GVHD, especially in HLA-DPB1 mismatch combinations.
DOI: 10.1182/blood-2017-01-761874
2018
Cited 122 times
Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma
Key Points ATL subtypes are further classified into molecularly distinct subsets with different prognosis by genetic profiling. PD-L1 amplifications are a strong genetic predictor for worse outcome in both aggressive and indolent ATL.
DOI: 10.1182/blood-2009-07-235119
2010
Cited 113 times
Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome–negative myeloproliferative neoplasms
Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia, and primary myelofibrosis show an inherent tendency for transformation into leukemia (MPN-blast phase), which is hypothesized to be accompanied by acquisition of additional genomic lesions. We, therefore, examined chromosomal abnormalities by high-resolution single nucleotide polymorphism (SNP) array in 88 MPN patients, as well as 71 cases with MPN-blast phase, and correlated these findings with their clinical parameters. Frequent genomic alterations were found in MPN after leukemic transformation with up to 3-fold more genomic changes per sample compared with samples in chronic phase (P < .001). We identified commonly altered regions involved in disease progression including not only established targets (ETV6, TP53, and RUNX1) but also new candidate genes on 7q, 16q, 19p, and 21q. Moreover, trisomy 8 or amplification of 8q24 (MYC) was almost exclusively detected in JAK2V617F(-) cases with MPN-blast phase. Remarkably, copy number-neutral loss of heterozygosity (CNN-LOH) on either 7q or 9p including homozygous JAK2V617F was related to decreased survival after leukemic transformation (P = .01 and P = .016, respectively). Our high-density SNP-array analysis of MPN genomes in the chronic compared with leukemic stage identified novel target genes and provided prognostic insights associated with the evolution to leukemia.
DOI: 10.1172/jci74747
2014
Cited 107 times
Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria
Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal disease of hematopoietic stem cells that is associated with hemolysis, marrow failure, and thrombophilia. PNH has been considered a monogenic disease that results from somatic mutations in the gene encoding PIGA, which is required for biosynthesis of glycosylphosphatidylinisotol-anchored (GPI-anchored) proteins. The loss of certain GPI-anchored proteins is hypothesized to provide the mutant clone with an extrinsic growth advantage, but some features of PNH argue that there are intrinsic drivers of clonal expansion. Here, we performed whole-exome sequencing of paired PNH+ and PNH- fractions on samples taken from 12 patients as well as targeted deep sequencing of an additional 36 PNH patients. We identified additional somatic mutations that resulted in a complex hierarchical clonal architecture, similar to that observed in myeloid neoplasms. In addition to mutations in PIGA, mutations were found in genes known to be involved in myeloid neoplasm pathogenesis, including TET2, SUZ12, U2AF1, and JAK2. Clonal analysis indicated that these additional mutations arose either as a subclone within the PIGA-mutant population, or prior to PIGA mutation. Together, our data indicate that in addition to PIGA mutations, accessory genetic events are frequent in PNH, suggesting a stepwise clonal evolution derived from a singular stem cell clone.
DOI: 10.1002/gcc.22076
2013
Cited 103 times
Genome‐wide identification of genes with amplification and/or fusion in small cell lung cancer
To obtain a landscape of gross genetic alterations in small cell lung cancer (SCLC), genome-wide copy number analysis and whole-transcriptome sequencing were performed in 58 and 42 SCLCs, respectively. Focal amplification of known oncogene loci, MYCL1 (1p34.2), MYCN (2p24.3), and MYC (8q24.21), was frequently and mutually exclusively detected. MYCL1 and MYC were co-amplified with other regions on either the same or the different chromosome in several cases. In addition, the 9p24.1 region was identified as being amplified in SCLCs without amplification of MYC family oncogenes. Notably, expression of the KIAA1432 gene in this region was significantly higher in KIAA1432 amplified cells than in non-amplified cells, and its mRNA expression showed strong correlations with the copy numbers. Thus, KIAA1432 is a novel gene activated by amplification in SCLCs. By whole-transcriptome sequencing, a total of 60 fusion transcripts, transcribed from 95 different genes, were identified as being expressed in SCLC cells. However, no in-frame fusion transcripts were recurrently detected in ≥2 SCLCs, and genes in the amplified regions, such as PVT1 neighboring MYC and RLF in MYCL1 amplicons, were recurrently fused with genes in the same amplicons or with those in different amplicons on either the same or different chromosome. Thus, it was indicated that amplification and fusion of several genes on chromosomes 1 and 8 occur simultaneously but not sequentially through chromothripsis in the development of SCLC, and amplification rather than fusion of genes plays an important role in its development.
DOI: 10.1038/ng.3900
2017
Cited 103 times
Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia
Junko Takita, Seishi Ogawa and colleagues profile 121 cases of pediatric T cell acute lymphoblasic leukemia (T-ALL) and identify recurrent SPI1 (PU.1) gene fusions. They find that these SPI1 fusions correlated with poor survival, retained transcriptional activity and, in a mouse stem cell model, enhanced cell proliferation. The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor1, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4−CD8−) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets2 in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-β-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.
DOI: 10.1038/leu.2016.69
2016
Cited 101 times
Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia
Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential.
DOI: 10.1016/j.ajhg.2015.04.022
2015
Cited 100 times
Mutations in the Gene Encoding the E2 Conjugating Enzyme UBE2T Cause Fanconi Anemia
Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, increased cancer susceptibility, progressive bone marrow failure (BMF), and various developmental abnormalities resulting from the defective FA pathway. FA is caused by mutations in genes that mediate repair processes of interstrand crosslinks and/or DNA adducts generated by endogenous aldehydes. The UBE2T E2 ubiquitin conjugating enzyme acts in FANCD2/FANCI monoubiquitination, a critical event in the pathway. Here we identified two unrelated FA-affected individuals, each harboring biallelic mutations in UBE2T. They both produced a defective UBE2T protein with the same missense alteration (p.Gln2Glu) that abolished FANCD2 monoubiquitination and interaction with FANCL. We suggest this FA complementation group be named FA-T.
DOI: 10.1038/s41375-019-0380-5
2019
Cited 100 times
Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas
Viral infection induces potent cellular immunity and activated intracellular signaling, which may dictate the driver events involved in immune escape and clonal selection of virus-associated cancers, including Epstein-Barr virus (EBV)-positive lymphomas. Here, we thoroughly interrogated PD-L1/PD-L2-involving somatic aberrations in 384 samples from various lymphoma subtypes using high-throughput sequencing, particularly focusing on virus-associated lymphomas. A high frequency of PD-L1/PD-L2-involving genetic aberrations was observed in EBV-positive lymphomas [33 (22%) of 148 cases], including extranodal NK/T-cell lymphoma (ENKTL, 23%), aggressive NK-cell leukemia (57%), systemic EBV-positive T-cell lymphoproliferative disorder (17%) as well as EBV-positive diffuse large B-cell lymphoma (DLBCL, 19%) and peripheral T-cell lymphoma-not otherwise specified (15%). Predominantly causing a truncation of the 3′-untranslated region, these alterations represented the most prevalent somatic lesions in ENKTL. By contrast, the frequency was much lower in EBV-negative lymphomas regardless of histology type [12 (5%) of 236 cases]. Besides PD-L1/PD-L2 alterations, EBV-positive DLBCL exhibited a genetic profile distinct from EBV-negative one, characterized by frequent TET2 and DNMT3A mutations and the paucity of CD79B, MYD88, CDKN2A, and FAS alterations. Our findings illustrate unique genetic features of EBV-associated lymphomas, also suggesting a potential role of detecting PD-L1/PD-L2-involving lesions for these lymphomas to be effectively targeted by immune checkpoint blockade.
DOI: 10.1038/leu.2014.144
2014
Cited 99 times
PRPF8 defects cause missplicing in myeloid malignancies
Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. Fifty percent of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole-RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process, suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing.
DOI: 10.1182/blood-2015-06-644948
2016
Cited 99 times
Variegated RHOA mutations in adult T-cell leukemia/lymphoma
Key Points RHOA mutations are common in ATLL and show a unique distribution compared with other T-cell lymphomas. Depending on patients, functionally distinct RHOA mutations are clonally selected and involved in the pathogenesis of ATLL.
DOI: 10.1038/leu.2017.273
2017
Cited 99 times
Activation of RHOA–VAV1 signaling in angioimmunoblastic T-cell lymphoma
Somatic G17V RHOA mutations were found in 50–70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA: VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR) signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further identified VAV1 mutations and a new translocation, VAV1–STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%), whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was also demonstrated in VAV1–STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and the associating TCR signaling by both G17V RHOA and VAV1–STAP2 expression. Phospho-VAV1 staining was demonstrated in the clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that the G17V RHOA–VAV1 axis may provide a new therapeutic target in AITL.
DOI: 10.1016/j.molcel.2020.10.012
2020
Cited 99 times
Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans
Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.
DOI: 10.18632/oncotarget.6464
2015
Cited 98 times
Genomic landscape of liposarcoma
Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.
DOI: 10.1016/j.celrep.2017.05.015
2017
Cited 97 times
A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy
Cancer patients having anti-programmed cell death-1 (PD-1)/PD ligand 1 (L1)-unresponsive tumors may benefit from advanced immunotherapy. Double-stranded RNA triggers dendritic cell (DC) maturation to cross-prime antigen-specific cytotoxic T lymphocytes (CTLs) via Toll-like receptor 3 (TLR3). The TLR3-specific RNA agonist, ARNAX, can induce anti-tumor CTLs without systemic cytokine/interferon (IFN) production. Here, we have developed a safe vaccine adjuvant for cancer that effectively implements anti-PD-L1 therapy. Co-administration of ARNAX with a tumor-associated antigen facilitated tumor regression in mouse models, and in combination with anti-PD-L1 antibody, activated tumor-specific CTLs in lymphoid tissues, enhanced CTL infiltration, and overcame anti-PD-1 resistance without cytokinemia. The TLR3-TICAM-1-interferon regulatory factor (IRF)3-IFN-β axis in DCs exclusively participated in CD8+ T cell cross-priming. ARNAX therapy established Th1 immunity in the tumor microenvironment, upregulating genes involved in DC/T cell/natural killer (NK) cell recruitment and functionality. Human ex vivo studies disclosed that ARNAX+antigen induced antigen-specific CTL priming and proliferation in peripheral blood mononuclear cells (PBMCs), supporting the feasibility of ARNAX for potentiating anti-PD-1/PD-L1 therapy in human vaccine immunotherapy.
DOI: 10.1016/j.jaci.2016.09.029
2017
Cited 96 times
Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations
Ikaros, which is encoded by IKZF1, is a transcriptional factor that play a critical role in hematopoiesis. Somatic IKZF1 alterations are known to be involved in the pathogenesis of leukemia in human subjects. Recently, immunodeficiency caused by germline IKZF1 mutation has been described.We sought to describe the clinical and immunologic phenotypes of Japanese patients with heterozygous IKZF1 mutations.We performed whole-exome sequencing in patients from a dysgammaglobulinemia or autoimmune disease cohort and used a candidate gene approach in 4 patients. Functional and laboratory studies, including detailed lymphopoiesis/hematopoiesis analysis in the bone marrow, were performed.Nine patients from 6 unrelated families were identified to have heterozygous germline mutations in IKZF1. Age of onset was 0 to 20 years (mean, 7.4 years). Eight of 9 patients presented with dysgammaglobulinemia accompanied by B-cell deficiency. Four of 9 patients had autoimmune disease, including immune thrombocytopenic purpura, IgA vasculitis, and systemic lupus erythematosus. Nonautoimmune pancytopenia was observed in 1 patient. All of the mutant Ikaros protein demonstrated impaired DNA binding to the target sequence and abnormal diffuse nuclear localization. Flow cytometric analysis of bone marrow revealed reduced levels of common lymphoid progenitors and normal development of pro-B to pre-B cells.Germline heterozygous IKZF1 mutations cause dysgammaglobulinemia; hematologic abnormalities, including B-cell defect; and autoimmune diseases.
DOI: 10.1016/j.ccell.2019.06.007
2019
Cited 96 times
Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome
Myeloid leukemia in Down syndrome (ML-DS) clonally evolves from transient abnormal myelopoiesis (TAM), a preleukemic condition in DS newborns. To define mechanisms of leukemic transformation, we combined exome and targeted resequencing of 111 TAM and 141 ML-DS samples with functional analyses. TAM requires trisomy 21 and truncating mutations in GATA1; additional TAM variants are usually not pathogenic. By contrast, in ML-DS, clonal and subclonal variants are functionally required. We identified a recurrent and oncogenic hotspot gain-of-function mutation in myeloid cytokine receptor CSF2RB. By a multiplex CRISPR/Cas9 screen in an in vivo murine TAM model, we tested loss-of-function of 22 recurrently mutated ML-DS genes. Loss of 18 different genes produced leukemias that phenotypically, genetically, and transcriptionally mirrored ML-DS.
DOI: 10.1158/0008-5472.can-16-1149
2016
Cited 95 times
Regeneration of CD8αβ T Cells from T-cell–Derived iPSC Imparts Potent Tumor Antigen-Specific Cytotoxicity
Although adoptive transfer of cytotoxic T lymphocytes (CTL) offer a promising cancer therapeutic direction, the generation of antigen-specific CTL from patients has faced difficulty in efficient expansion in ex vivo culture. To resolve this issue, several groups have proposed that induced pluripotent stem cell technology be applied for the expansion of antigen-specific CTL, which retain expression of the same T-cell receptor as original CTL. However, in these previous studies, the regenerated CTL are mostly of the CD8αα+ innate type and have less antigen-specific cytotoxic activity than primary CTL. Here we report that, by stimulating purified iPSC-derived CD4/CD8 double-positive cells with anti-CD3 antibody, T cells expressing CD8αβ were generated and exhibited improved antigen-specific cytotoxicity compared with CD8αα+ CTL. Failure of CD8αβ T-cell production using the previous method was found to be due to killing of double-positive cells by the double-negative cells in the mixed cultures. We found that WT1 tumor antigen-specific CTL regenerated by this method prolonged the survival of mice bearing WT1-expressing leukemic cells. Implementation of our methods may offer a useful clinical tool. Cancer Res; 76(23); 6839-50. ©2016 AACR.