ϟ

Sean M. Grimmond

Here are all the papers by Sean M. Grimmond that you can download and read on OA.mg.
Sean M. Grimmond’s last known institution is . Download Sean M. Grimmond PDFs here.

Claim this Profile →
DOI: 10.1038/nature12477
2013
Cited 8,051 times
Signatures of mutational processes in human cancer
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
DOI: 10.1038/nature14169
2015
Cited 2,113 times
Whole genomes redefine the mutational landscape of pancreatic cancer
Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
DOI: 10.1038/nature08987
2010
Cited 2,065 times
International network of cancer genome projects
Hundreds of individual human cancer genome sequences are expected to be published in 2010, and thousands per year after that. The International Cancer Genome Consortium (ICGC) was launched with the aim of keeping track of the data relating to large-scale cancer genome studies of all major cancers in adults and children — a total of 50 different cancer types and/or subtypes. In this issue the ICGC team ( http://www.icgc.org ) spells out the policies and planning for the project. The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
DOI: 10.1038/nature01266
2002
Cited 1,507 times
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
DOI: 10.1038/ng1789
2006
Cited 1,257 times
Genome-wide analysis of mammalian promoter architecture and evolution
DOI: 10.1038/nature14410
2015
Cited 1,213 times
Whole–genome characterization of chemoresistant ovarian cancer
DOI: 10.1038/nature22071
2017
Cited 1,050 times
Whole-genome landscapes of major melanoma subtypes
Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis. The first large, high-coverage whole-genome sequencing study of melanomas from cutaneous, acral and mucosal sites. Melanoma is a highly metastatic cancer with a high mutation load, and signatures in some subtypes are often associated with exposure to ultraviolet radiation. Graham Mann and colleagues report whole-genome sequencing of tumour samples from patients with melanoma, including 75 primary melanomas, 93 melanoma metastases and 15 cell lines derived from melanoma metastases. The authors compare the genomic landscapes of cutaneous, acral and mucosal subtypes of melanoma, identifying distinct mutational signatures by subtype. Cutaneous melanomas showed mutational signatures of ultraviolet radiation exposure, whereas acral and mucosal melanomas showed a lower mutation burden and more frequent complex structural rearrangements in comparison to other melanoma subtypes. Understanding the whole-genome landscapes of all melanoma subtypes is important for investigating melanoma prevention and targeted treatment.
DOI: 10.1038/nmeth.1223
2008
Cited 970 times
Stem cell transcriptome profiling via massive-scale mRNA sequencing
DOI: 10.1038/nature24462
2017
Cited 850 times
Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer
The analysis of T-cell antigens in long-term survivors of pancreatic ductal adenocarcinoma suggests that neoantigen immunogenicity and quality, not purely quantity, correlate with survival. A small percentage of patients with pancreatic cancer survive beyond five years, but the reason for their relative longevity remains uncertain. In this retrospective analysis, Vinod Balachandran et al. evaluate the immune mechanisms of long-term survival in human pancreatic cancer. The analysis shows that survival correlates with high mutation load in conjunction with increased infiltration of cytolytic T cells and polyclonal T-cell responses and that mutations at the tumour antigen MUC16 locus are enriched in long-term survivors. Additionally, patients with high predicted neoantigen–microbial cross-reactivity scores tended to live longest. The authors provide evidence that the quality rather than quantity of neoantigens determines survival. Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.
DOI: 10.1038/ng.368
2009
Cited 714 times
The regulated retrotransposon transcriptome of mammalian cells
DOI: 10.1101/gr.078378.108
2008
Cited 703 times
Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation
The transcriptional networks that regulate embryonic stem (ES) cell pluripotency and lineage specification are the subject of considerable attention. To date such studies have focused almost exclusively on protein-coding transcripts. However, recent transcriptome analyses show that the mammalian genome contains thousands of long noncoding RNAs (ncRNAs), many of which appear to be expressed in a developmentally regulated manner. The functions of these remain untested. To identify ncRNAs involved in ES cell biology, we used a custom-designed microarray to examine the expression profiles of mouse ES cells differentiating as embryoid bodies (EBs) over a 16-d time course. We identified 945 ncRNAs expressed during EB differentiation, of which 174 were differentially expressed, many correlating with pluripotency or specific differentiation events. Candidate ncRNAs were identified for further characterization by an integrated examination of expression profiles, genomic context, chromatin state, and promoter analysis. Many ncRNAs showed coordinated expression with genomically associated developmental genes, such as Dlx1, Dlx4, Gata6, and Ecsit. We examined two novel developmentally regulated ncRNAs, Evx1as and Hoxb5/6as, which are derived from homeotic loci and share similar expression patterns and localization in mouse embryos with their associated protein-coding genes. Using chromatin immunoprecipitation, we provide evidence that both ncRNAs are associated with trimethylated H3K4 histones and histone methyltransferase MLL1, suggesting a role in epigenetic regulation of homeotic loci during ES cell differentiation. Taken together, our data indicate that long ncRNAs are likely to be important in processes directing pluripotency and alternative differentiation programs, in some cases through engagement of the epigenetic machinery.
DOI: 10.1016/j.cell.2010.01.044
2010
Cited 692 times
An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man
Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.
DOI: 10.1101/gr.4200206
2005
Cited 480 times
Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome
Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did not contain an apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-mRNA contamination during library construction, or alternatively represent nonspecific "transcriptional noise." Here we show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts of unknown function whose expression appears to be regulated. The ncRNA transcripts have larger exons and fewer introns than protein-coding transcripts. Analysis of the genomic landscape around these sequences indicates that some cDNA clones were produced not from terminal poly(A) tracts but internal priming sites within longer transcripts, only a minority of which is encompassed by known genes. A significant proportion of these transcripts exhibit tissue-specific expression patterns, as well as dynamic changes in their expression in macrophages following lipopolysaccharide stimulation. Taken together, the data provide strong support for the conclusion that ncRNAs are an important, regulated component of the mammalian transcriptome.
DOI: 10.1016/j.cell.2014.01.066
2014
Cited 416 times
Mutant p53 Drives Pancreatic Cancer Metastasis through Cell-Autonomous PDGF Receptor β Signaling
Missense mutations in the p53 tumor suppressor inactivate its antiproliferative properties but can also promote metastasis through a gain-of-function activity. We show that sustained expression of mutant p53 is required to maintain the prometastatic phenotype of a murine model of pancreatic cancer, a highly metastatic disease that frequently displays p53 mutations. Transcriptional profiling and functional screening identified the platelet-derived growth factor receptor b (PDGFRb) as both necessary and sufficient to mediate these effects. Mutant p53 induced PDGFRb through a cell-autonomous mechanism involving inhibition of a p73/NF-Y complex that represses PDGFRb expression in p53-deficient, noninvasive cells. Blocking PDGFRb signaling by RNA interference or by small molecule inhibitors prevented pancreatic cancer cell invasion in vitro and metastasis formation in vivo. Finally, high PDGFRb expression correlates with poor disease-free survival in pancreatic, colon, and ovarian cancer patients, implicating PDGFRb as a prognostic marker and possible target for attenuating metastasis in p53 mutant tumors.
DOI: 10.1038/ng.375
2009
Cited 409 times
The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
The FANTOM4 study identified transcriptional start sites active during proliferation arrest and differentiation of the human monocytic cell line THP-1. Systematic knockdown of 52 transcription factors provide support for their model in which a complex transcriptional network regulates the differentiation process. Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
DOI: 10.1038/ng.312
2009
Cited 332 times
Tiny RNAs associated with transcription start sites in animals
DOI: 10.1093/nar/gkr967
2011
Cited 322 times
PINA v2.0: mining interactome modules
The Protein Interaction Network Analysis (PINA) platform is a comprehensive web resource, which includes a database of unified protein-protein interaction data integrated from six manually curated public databases, and a set of built-in tools for network construction, filtering, analysis and visualization. The second version of PINA enhances its utility for studies of protein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions ('interactome') for six model organisms. All identified modules are fully annotated by enriched Gene Ontology terms, KEGG pathways, Pfam domains and the chemical and genetic perturbations collection from MSigDB. Moreover, a new tool is provided for module enrichment analysis in addition to simple query function. The interactome data are also available on the web site for further bioinformatics analysis. PINA is freely accessible at http://cbg.garvan.unsw.edu.au/pina/.
DOI: 10.1186/gb-2011-12-12-r126
2011
Cited 301 times
MicroRNAs and their isomiRs function cooperatively to target common biological pathways
Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules. To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs. Together, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides.
DOI: 10.1038/nature11114
2012
Cited 296 times
The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma
Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.
DOI: 10.1186/gb-2008-9-8-r127
2008
Cited 278 times
The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition
MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.
DOI: 10.1073/pnas.1110156109
2012
Cited 269 times
Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
DOI: 10.1038/ncomms10001
2015
Cited 261 times
A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing
As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.
DOI: 10.1093/nar/gkn617
2008
Cited 251 times
NRED: a database of long noncoding RNA expression
In mammals, thousands of long non-protein-coding RNAs (ncRNAs) (>200 nt) have recently been described. However, the biological significance and function of the vast majority of these transcripts remain unclear. We have constructed a public repository, the Noncoding RNA Expression Database (NRED), which provides gene expression information for thousands of long ncRNAs in human and mouse. The database contains both microarray and in situ hybridization data, much of which is described here for the first time. NRED also supplies a rich tapestry of ancillary information for featured ncRNAs, including evolutionary conservation, secondary structure evidence, genomic context links and antisense relationships. The database is available at http://jsm-research.imb.uq.edu.au/NRED, and the web interface enables both advanced searches and data downloads. Taken together, NRED should significantly advance the study and understanding of long ncRNAs, and provides a timely and valuable resource to the scientific community.
DOI: 10.1038/ncomms6224
2014
Cited 234 times
Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis
Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n=40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.
DOI: 10.1158/1078-0432.ccr-15-0426
2015
Cited 207 times
Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial
Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies.The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM).Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study.Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.
DOI: 10.1073/pnas.1202490109
2012
Cited 202 times
<i>Sleeping Beauty</i> mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma
Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.
DOI: 10.1038/nature18288
2016
Cited 192 times
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR–ABL. Direct inhibition of BCR–ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR–ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show—using proteomics, transcriptomics and network analyses—that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR–ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated. Leukaemic stem cells (LSCs) are responsible for BCR–ABL-driven chronic myeloid leukaemia relapse; here, p53 and MYC signalling networks are shown to regulate LSCs concurrently, and targeting both these pathways has a synergistic effect in managing the disease. Tyrosine kinase inhibitors are a first-line therapy in patients with chronic myeloid leukaemia (CML), where they target the oncogenic BCR-ABL fusion gene. However, relapse inevitably occurs, probably driven by a drug-resistant population of leukaemic stem cells (LSCs). This study uncovers the concurrent involvement of p53 and Myc signalling networks in regulating LSCs. The authors demonstrate that genetic and/or pharmacological targeting of both the p53 and c-Myc pathways achieves more effective disease neutralization in mouse and human cell models of CML.
DOI: 10.1002/ijc.28765
2014
Cited 187 times
Genome‐wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT‐ROBO, ITGA2 and MET signaling
The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.
DOI: 10.1038/nature14046
2014
Cited 184 times
Genome-wide characterization of the routes to pluripotency
DOI: 10.1053/j.gastro.2016.09.060
2017
Cited 173 times
Hypermutation In Pancreatic Cancer
Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Pancreatic ductal adenocarcinoma has a 5-year survival of <5%, with therapies offering only incremental benefit,1Vogelzang N.J. et al.J Clin Oncol. 2012; 30: 88-109Crossref PubMed Scopus (85) Google Scholar potentially due to the diversity of its genomic landscape.2Bailey P. et al.Nature. 2016; 531: 47-52Crossref PubMed Scopus (1973) Google Scholar, 3Biankin A.V. et al.Nature. 2012; 491: 399-405Crossref PubMed Scopus (1379) Google Scholar, 4Waddell N. et al.Nature. 2015; 518: 495-501Crossref PubMed Scopus (1466) Google Scholar Recent reports link high mutation burden with response to immune checkpoint inhibitors in several cancer types.5Le D.T. et al.N Engl J Med. 2015; 372: 2509-2520Crossref PubMed Scopus (6099) Google Scholar Defining tumors that are hypermutated with an increased mutation burden and understanding the underlying mechanisms in pancreatic cancer has the potential to advance therapeutic development, particularly for immunotherapeutic strategies. Whole genome sequencing (WGS, n = 180) and whole exome sequencing (n = 205) of 385 unselected predominantly sporadic pancreatic ductal adenocarcinoma (Supplementary Table 1) defined a mean mutation load of 1.8 and 1.1 mutation per megabase (Mb), respectively (Supplementary Table 2). Outlier analysis identified 20 tumors with the highest mutation burden (5.2%, 15 WGS and 5 exome) (Table 1 and Supplementary Figure 1A), 5 of which were considered extreme outliers and classified as hypermutated as they contained ≥12 somatic mutations/Mb, the defined threshold for hypermutation in colorectal cancer.6Cancer Genome Atlas NetworkNature. 2012; 487: 330-337Crossref PubMed Scopus (5894) Google Scholar Immunohistochemistry for mismatch repair (MMR) proteins (MSH2, MSH6, MLH1, and PMS2) identified 4 MMR-deficient tumors, all of which were hypermutated (n = 180, Figure 1).Table 1Clinical and Histologic Features and Proposed Etiology for Highly Mutated Pancreatic Ductal Adenocarcinoma Tumors (n = 20)Sample IDPersonal and family history of malignancyHistologyMutation load, mutations/MbIHC resultMSIsensor scoreKRAS mutationPredominant mutation signature (mutations/Mb)SV subtype (no. of events)Proposed etiologyHypermutation (extreme outliers) ICGC_0076aSample sequenced by WGS, other samples by exome sequencing.NoneMixed signet ring, mucinous and papillary adenocarcinoma38.55Absent MLH1 and PMS228.3p.G12VMMR (18.3)Scattered (131)MMR deficiency: >280 kb somatic homozygous deletion over MSH2. ICGC_0297aSample sequenced by WGS, other samples by exome sequencing.NoneUndifferentiated adenocarcinoma60.62Absent MSH2 and MSH627.33WTMMR (33.4)Scattered (75)MMR deficiency: Somatic MLH1 promoter hypermethylation. ICGC_0548aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, moderately differentiated30.13Absent MSH2 and MSH617.47WTMMR (16.6)Stable (49)MMR deficiency: >27 kb somatic inversion rearrangement disrupting MSH2. ICGC_0328aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma16.63Normal3.2p.G12DUnknown (11.9)Scattered (110)Cell line with signature: etiology unknown. ICGC_00901 FDR, father CRCDuctal adenocarcinoma, moderately differentiated12.9Absent MSH2 and MSH60.21p.G12CNANAMMR deficiency: somatic MSH2 splice site c.2006G>A.Highly mutated tumors ICGC_0054aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, poorly differentiated6.52Normal0.01p.G12VHR deficiency (1.3)Unstable (310)HR deficiency: no germline or somatic cause found. ICGC_0290aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, poorly differentiated6.54Not available0.07p.G12VHR deficiency (3.1)Unstable (558)HR deficiency: Germline BRCA2 mutation c.7180A>T, p.A2394*. Somatic CN-LOH. ICGC_0215aSample sequenced by WGS, other samples by exome sequencing.2 FDR lung cancer, 2 FDR prostate cancer. Previous CRC and melanomaDuctal adenocarcinoma, moderately differentiated6.27Normal0.01p.G12VHR deficiency (1.9)Scattered (111)HR deficiency: Germline ATM mutation c.7539_7540delAT, p.Y2514*. Somatic CN-LOH. ICGC_0324NoneDuctal adenocarcinoma, moderately differentiated6.24Normal0p.G12DNANAUndefined ICGC_0034aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, poorly differentiated6.09Normal4.02p.G12DHR deficiency (3.4)Unstable (366)HR deficiency: Germline BRCA2 mutation c.5237_5238insT, p.N1747*. Somatic CN-LOH. ICGC_0131aSample sequenced by WGS, other samples by exome sequencing.Lung cancer after PCDuctal adenocarcinoma, moderately differentiated5.63Normal0p.G12DT>G at TT sites (3.0)Focal (147)T>G at TT sites signature: etiology potentially associated with DNA oxidation ICGC_0006aSample sequenced by WGS, other samples by exome sequencing.1 FDR, father lung cancerAdenocarcinoma arising from IPMN, moderately differentiated5.29Normal0.01p.G12DHR deficiency (1.2)Unstable (211)HR deficiency: Somatic BRCA2 c.5351dupA, p.N1784KfsTer3. Somatic CN-LOH. ICGC_0321aSample sequenced by WGS, other samples by exome sequencing.2 FDR, mother and cousin breast cancerDuctal adenocarcinoma, poorly differentiated4.79Not available0p.G12DHR deficiency (2.1)Unstable (286)HR deficiency: Germline BRCA2 c.6699delT, p.F2234LfsTer7. Somatic CN loss- 1 copy. ICGC_0309aSample sequenced by WGS, other samples by exome sequencing.NoneAdenocarcinoma arising from IPMN, moderately differentiated4.74Normal0.03p.G12VT>G at TT sites (3.1)Unstable (232)T>G at TT sites signature: etiology potentially associated with DNA oxidation ICGC_0005aSample sequenced by WGS, other samples by exome sequencing.1 FDR, mother CRCDuctal adenocarcinoma, poorly differentiated4.72Not available1p.G12VHR deficiency (1.1)Focal (95)HR deficiency: No germline or somatic cause found. ICGC_0016aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, poorly differentiated4.61Normal3.03p.G12VHR deficiency (1.7)Unstable (447)HR deficiency: potentially linked to Somatic RPA1 c.273G>T, p.R91S ICGC_00461 FDR, brother PCDuctal adenocarcinoma, poorly differentiated4.3Normal0p.Q61HNANAUndefined GARV_0668aSample sequenced by WGS, other samples by exome sequencing.NoneDuctal adenocarcinoma, poorly differentiated4.3Not available2.19p.G12VHR deficiency (1.6)Unstable (464)HR deficiency: Germline BRCA2 c.7068_7069delTC, p.L2357VfsTer2. Somatic CN loss - 1 copy. ICGC_0291NoneDuctal adenocarcinoma, well differentiated3.84Not available0.03p.G12RNANAHR deficiency: Somatic BRCA2 c.7283T>A, p.L2428*. ICGC_0256NoneDuctal adenocarcinoma, poorly differentiated3.72Not available0.06p.G12DNANAUndefinedCRC, colorectal cancer; FDR, first-degree relative; IHC, immunohistochemistry; IPMN, intraductal papillary mucinous neoplasm; CN-LOH, copy neutral loss of heterozygosity; CN, copy number; PC, pancreatic cancer; NA, not applicable to exome data.a Sample sequenced by WGS, other samples by exome sequencing. Open table in a new tab CRC, colorectal cancer; FDR, first-degree relative; IHC, immunohistochemistry; IPMN, intraductal papillary mucinous neoplasm; CN-LOH, copy neutral loss of heterozygosity; CN, copy number; PC, pancreatic cancer; NA, not applicable to exome data. KRAS mutation status and histopathologic characteristics have been associated with MMR-deficient pancreatic tumors.7Goggins M. et al.Am J Pathol. 1998; 152: 1501-1507PubMed Google Scholar Of the 4 MMR-deficient tumors in our cohort, 2 were KRAS wild-type; 3 had undifferentiated to moderately differentiated histology and one had a signet-ring component. These features were not predictive of MMR deficiency in our cohort, as 11 additional non−MMR-deficient tumors had a signet-ring cell component or colloid morphology, and 131 of 347 assessable tumors had poorly or undifferentiated histology. Mutational signature analysis can detect MMR deficiency indirectly based on the pattern of somatic mutations.8Alexandrov L.B. et al.Nature. 2013; 500: 415-421Crossref PubMed Scopus (6213) Google Scholar An MMR-deficient signature dominated the MMR-deficient tumors (with WGS), and was minimal in MMR intact tumors (Supplementary Figure 1). In addition, microsatellite instability (MSI), a hallmark of MMR deficiency in colorectal cancer, was detected in all three MMR deficient tumors with WGS using MSIsensor9Niu B. Ye K. et al.Bioinformatics. 2014; 30: 1015-1016Crossref PubMed Scopus (294) Google Scholar (Supplementary Table 2). MSI was not identified for the fourth MMR deficient sample potentially due to the reduced number of microsatellite loci in exome data. The underlying causes of MMR deficiency in the 4 cases were private somatic events. For 2 cases, MSH2 was disrupted by different structural rearrangements, 1 case contained a missense MSH2 mutation and the last, methylation of the MLH1 promoter (Figure 1). The missense mutation caused an MSH2 splice acceptor site mutation that alters the same nucleotide results in a pathogenic skipping of exon 13 in germline studies.10Thompson B.A. et al.Nat Genet. 2014; 46: 107-115Crossref PubMed Scopus (346) Google Scholar Hypermethylation of the MLH1 promoter is the predominant mechanism of MSI in sporadic colon cancer.11Boland C.R. et al.Gastroenterology. 2010; 138: 2073-2087 e3Abstract Full Text Full Text PDF PubMed Scopus (1359) Google Scholar The remaining hypermutated tumor contained an intact MMR pathway, and was a cell line (ATCC, CRL-2551) with an unidentified mutational signature, therefore the high mutation burden in this sample may be the result of long-term cell culture. The 15 samples (11 WGS and 4 exome) identified in the outlier analysis with high mutation burden, but not hypermutated (∼4 to 12 mutations/Mb) contained no evidence of MMR deficiency. Mutational signature analysis of the WGS samples indicated homologous recombination (HR) repair deficiency as the most substantial (range, 1.0–3.4 mutations/Mb) contributor to the mutation burden for 8 WGS mutation load outlier tumors. In support of a HR defect4Waddell N. et al.Nature. 2015; 518: 495-501Crossref PubMed Scopus (1466) Google Scholar; 7 of these tumors contained high levels of genomic instability with >200 structural variants and mutations in genes involved in HR were present for 6 of 8 cases (Supplementary Table 2). In addition, 1 case that had undergone exome sequencing had a somatic BRCA2 nonsense mutation that likely contributed to HR deficiency in this case. A mutational signature associated with T>G mutations at TT sites previously described in other cancers, including esophageal cancer12Nones K. Waddell N. Wayte N. et al.Nat Commun. 2014; : 5Google Scholar was the major contributor (>3 mutations/Mb) in 2 samples. For these 2 and the remaining 4 cases, no potential causative event could be identified. Although germline defects in MMR genes are well reported in pancreatic cancer13Grant R.C. Selander I. et al.Gastroenterology. 2015; 148: 556-564Abstract Full Text Full Text PDF PubMed Scopus (211) Google Scholar in our cohort, they did not contribute to MMR deficiency even in those with familial pancreatic cancer or a personal or family history of Lynch-related tumors. A germline truncating variant was detected in PMS2 in 1 case, but did not have loss of the second allele, had normal immunohistochemistry staining and did not display a MMR mutational signature (Supplementary Table 2). MMR deficiency is important in the evolution in a small, but meaningful proportion of pancreatic cancers with a prevalence of 1% (4 of 385) in our cohort. This is consistent with recent studies using the Bethesda polymerase chain reaction panel,14Laghi L. et al.PLoS One. 2012; 7: e46002Crossref PubMed Scopus (55) Google Scholar and with previous estimates of MSI prevalence of 2%−3%.15Nakata B. et al.Clin Cancer Res. 2002; 8: 2536-2540PubMed Google Scholar However, in tumors with low epithelial content that underwent exome sequencing, the sensitivity of somatic mutation detection is reduced, which will affect mutation burden and signature analysis. While cognizant of small numbers, immunohistochemistry was the most accurate in defining MMR due to multiple genomic mechanisms of MMR gene inactivation. Multiple methods to define MMR deficiency may be required for clinical trials that aim to recruit MMR-deficient participants to assess the potential efficacy of checkpoint inhibitors or other therapies in pancreatic cancer. Homologous recombination-deficient tumors, and those with a novel signature seen in esophageal cancer had an increased mutation burden, and need further evaluation as potential patient selection markers for clinical trials of checkpoint inhibitor and other therapies that target tumors with a high mutation burden. The authors would like to thank Cathy Axford, Deborah Gwynne, Mary-Anne Brancato, Clare Watson, Michelle Thomas, Gerard Hammond, and Doug Stetner for central coordination of the Australian Pancreatic Cancer Genome Initiative, data management, and quality control; Mona Martyn-Smith, Lisa Braatvedt, Henry Tang, Virginia Papangelis, and Maria Beilin for biospecimen acquisition; and Sonia Grimaldi and Giada Bonizzato of the ARC-Net Biobank for biospecimen acquisition. For a full list of contributors see Australian Pancreatic Cancer Genome Initiative: http://www.pancreaticcancer.net.au/apgi/collaborators. The cohort consisted of 385 patients with histologically verified pancreatic exocrine carcinoma, prospectively recruited between 2006 and 2013 through the Australian Pancreatic Cancer Genome Initiative (www.pancreaticcancer.net.au) as part of the International Cancer Genome Consortium.1Hudson T.J. et al.Nature. 2010; 464: 993-998Crossref PubMed Scopus (1689) Google Scholar Ethical approval was granted at all treating institutions and individual patients provided informed consent upon entry to the study. The clinicopathologic information for the cohort is described in (Supplementary Table 1), and the global mutation profile has previously been reported for some of these tumors (Supplementary Table 2). Tumor and normal DNA were extracted after histologic review from fresh frozen tissue samples collected at the time of surgical resection or biopsy, as described previously.2Biankin A.V. et al.Nature. 2012; 491: 399-405Crossref PubMed Scopus (1513) Google Scholar Tumor cellularity was determined from single-nucleotide polymorphism array data using qpure.3Song S. et al.PLoS One. 2012; 7: e45835Crossref PubMed Scopus (85) Google Scholar Tumors with epithelial content ≥40% underwent WGS lower cellularity tumors underwent whole exome sequencing. DNA from patient-derived pancreas cell lines and matched normal was also extracted. Exome and WGS were performed using paired 100-bp reads on the Illumina HiSeq 2000, as described previously.2Biankin A.V. et al.Nature. 2012; 491: 399-405Crossref PubMed Scopus (1513) Google Scholar, 4Waddell N. et al.Nature. 2015; 518: 495-501Crossref PubMed Scopus (1686) Google Scholar Regions of germline and somatic copy number change were detected using Illumina SNP BeadChips with GAP.5Popova T. et al.Genome Biol. 2009; 10 (R128−R128)Crossref PubMed Scopus (151) Google Scholar Somatic structural variants were identified from WGS reads using the qSV tool.4Waddell N. et al.Nature. 2015; 518: 495-501Crossref PubMed Scopus (1686) Google Scholar, 6Patch A.M. et al.Nature. 2015; 521: 489-494Crossref PubMed Scopus (930) Google Scholar Single nucleotide variants were called using 2 variant callers: qSNP7Kassahn K.S. et al.PLoS One. 2013; 8: e74380Crossref PubMed Scopus (52) Google Scholar and GATK.8McKenna A. et al.Genome Res. 2010; 20: 1297-1303Crossref PubMed Scopus (14755) Google Scholar Mutations identified by both callers or, those that were unique to a caller but verified by an orthogonal sequencing approach, were considered high confidence and used in all subsequent analyses. Small indels (<200 bp) were identified using Pindel9Ye K. et al.Bioinformatics. 2009; 25: 2865-2871Crossref PubMed Scopus (1391) Google Scholar and each indel was visually inspected in the Integrative Genome Browser. The distribution of the total number of small somatic mutations (coding and noncoding single nucleotide and indel variants) identified per megabase for exome and WGS sequence data were analyzed separately. The group of samples with high mutation load, at the top of each distribution, were defined as the upper distribution outliers for mutations per megabase, that is, ≥75th centile + (1.5× interquartile range). The threshold for detecting outliers in the exome and WGS groups was 3.4 and 4.2 mutations/Mb, respectively. From within the highly mutated set of tumors, hypermutated samples were identified as those with a mutation rate exceeding the thresholds for extreme distribution outliers (≥75th centile + [5× interquartile range]) of 7.4 and 8.1 mutations/Mb for exome and WGS sequencing, respectively. MSIsensor was used to detect microsatellite instability by directly comparing microsatellite repeat lengths between paired normal and tumor sequencing data.10Niu B. et al.Bioinformatics. 2014; 30: 1015-1016Crossref PubMed Scopus (378) Google Scholar A MSIsensor score of >3.5% of somatic microsatellites with repeat length shifts was the detection threshold used to indicate microsatellite instability as published for endometrial cancer.10Niu B. et al.Bioinformatics. 2014; 30: 1015-1016Crossref PubMed Scopus (378) Google Scholar This correlated well with the 5 and 7 microsatellite panels recommended in the Bethesda guidelines.10Niu B. et al.Bioinformatics. 2014; 30: 1015-1016Crossref PubMed Scopus (378) Google Scholar, 11Umar A. et al.J Natl Cancer Inst. 2004; 96: 261-268Crossref PubMed Scopus (2461) Google Scholar Tissue microarrays were constructed using at least three 1-mm formalin-fixed, paraffin-embedded tumor cores. Immunohistochemistry for MSH6 and PMS2 proteins was performed on tissue microarray sections as a screen for MMR deficiency due to MMR proteins forming heterodimers with concordant mismatch repair loss (ie, loss of MLH1 and PMS2 or loss of MSH2 and MSH6).12Hall G. et al.Pathology. 2010; 42: 409-413Abstract Full Text PDF PubMed Scopus (98) Google Scholar Immunohistochemistry on full tumor sections for MSH2, MLH1, MSH6, and PMS2 was performed in those with abnormal staining in core sections. The immunohistochemistry was performed as described previously12Hall G. et al.Pathology. 2010; 42: 409-413Abstract Full Text PDF PubMed Scopus (98) Google Scholar and scored by a senior pathologist. Somatic mutational signatures were extracted from the whole genome sequenced samples using the framework described previously.13Alexandrov L.B. et al.Cell Rep. 2013; 3: 246-259Abstract Full Text Full Text PDF PubMed Scopus (734) Google Scholar High confidence somatic substitutions were classified by the substitution change and sequence context, that is, the type of immediately neighboring bases to the variant. The framework processes the counts of somatic mutations at each context within each sample using non-negative factorization to produce the different signature profiles that are present in the data. The profiles identified were matched against reported signatures from the Cancer of Somatic Mutations in Cancer (http://cancer.sanger.ac.uk/cosmic/signatures). The major contributory signatures, defined as the mutational signature with the highest number of contributing somatic substitution variants, is reported for highly mutated whole genome samples. Bisulfite-converted whole-genome amplified DNA was hybridized to Infinium Human Methylation 450K Beadchips according to the manufacturers protocol (Illumina). Methylation arrays were performed on DNA from 174 pancreatic ductal adenocarcinoma samples, which were compared to DNA from 29 adjacent nonmalignant pancreata. A subset of the methylation data has been published previously.14Nones K. et al.Int J Cancer. 2014; 135: 1110-1118Crossref PubMed Scopus (156) Google Scholar We examined the data for evidence of tumor-specific hypermethylation of the promoter region of MLH1 and MSH2 genes. The methylation array data have been deposited into the International Cancer Genome Consortium data portal (dcc.icgc.org, project PACA-AU). Download .xlsx (.08 MB) Help with xlsx files Supplementary Tables 1 and 2
DOI: 10.1038/s41467-019-10652-9
2019
Cited 126 times
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
Abstract Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.
DOI: 10.1016/s0140-6736(23)02476-5
2024
Cited 5 times
Postoperative radiotherapy omission in selected patients with early breast cancer following preoperative breast MRI (PROSPECT): primary results of a prospective two-arm study
Adjuvant breast radiotherapy as a standard component of breast-conserving treatment for early cancer can overtreat many women. Breast MRI is the most sensitive modality to assess local tumour burden. The aim of this study was to determine whether a combination of MRI and pathology findings can identify women with truly localised breast cancer who can safely avoid radiotherapy.PROSPECT is a prospective, multicentre, two-arm, non-randomised trial of radiotherapy omission in patients selected using preoperative MRI and postoperative tumour pathology. It is being conducted at four academic hospitals in Australia. Women aged 50 years or older with cT1N0 non-triple-negative breast cancer were eligible. Those with apparently unifocal cancer had breast-conserving surgery (BCS) and, if pT1N0 or N1mi, had radiotherapy omitted (group 1). Standard treatment including excision of MRI-detected additional cancers was offered to the others (group 2). All were recommended systemic therapy. The primary outcome was ipsilateral invasive recurrence rate (IIRR) at 5 years in group 1. Primary analysis occurred after the 100th group 1 patient reached 5 years follow-up. Quality-adjusted life-years (QALYs) and cost-effectiveness of the PROSPECT pathway were analysed. This study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12610000810011).Between May 17, 2011, and May 6, 2019, 443 patients with breast cancer underwent MRI. Median age was 63·0 years. MRI detected 61 malignant occult lesions separate from the index cancer in 48 patients (11%). Of 201 group 1 patients who had BCS without radiotherapy, the IIRR at 5 years was 1·0% (upper 95% CI 5·4%). In group 1, one local recurrence occurred at 4·5 years and a second at 7·5 years. In group 2, nine patients had mastectomy (2% of total cohort), and the 5-year IIRR was 1·7% (upper 95% CI 6·1%). The only distant metastasis in the entire cohort was genetically distinct from the index cancer. The PROSPECT pathway increased QALYs by 0·019 (95% CI 0·008-0·029) and saved AU$1980 (95% CI 1396-2528) or £953 (672-1216) per patient.PROSPECT suggests that women with unifocal breast cancer on MRI and favourable pathology can safely omit radiotherapy.Breast Cancer Trials, National Breast Cancer Foundation, Cancer Council Victoria, the Royal Melbourne Hospital Foundation, and the Breast Cancer Research Foundation.
DOI: 10.1161/01.res.86.2.e29
2000
Cited 299 times
Mice Lacking the Vascular Endothelial Growth Factor-B Gene ( <i>Vegfb</i> ) Have Smaller Hearts, Dysfunctional Coronary Vasculature, and Impaired Recovery From Cardiac Ischemia
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis.
DOI: 10.1681/asn.2007101078
2008
Cited 229 times
GUDMAP
In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs was deemed a high priority. The information obtained through this initiative is anticipated to enable the highest level of basic and clinical research grounded on a 21st-century view of the developing anatomy. There are three components to the Genitourinary Developmental Molecular Anatomy Project GUDMAP; all of these are intended to provide resources that support research on the kidney and UGT. The first provides ontology of the cell types during UGT development and the molecular hallmarks of those cells as discerned by a variety of procedures, including in situ hybridization, transcriptional profiling, and immunostaining. The second generates novel mouse strains. In these strains, cell types of particular interest within an organ are labeled through the introduction of a specific marker into the context of a gene that exhibits appropriate cell type or structure-specific expression. In addition, the targeting construct enables genetic manipulation within the cell of interest in many of the strains. Finally, the information is annotated, collated, and promptly released at regular intervals, before publication, through a database that is accessed through a Web portal. Presented here is a brief overview of the Genitourinary Developmental Molecular Anatomy Project effort.
DOI: 10.1016/j.ydbio.2009.05.578
2009
Cited 227 times
Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment
While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.
DOI: 10.4049/jimmunol.0900603
2009
Cited 209 times
Genome-Wide Identification of Long Noncoding RNAs in CD8+ T Cells
Previous research into the molecular mechanisms that underlie Ag-specific CD8(+) T cell differentiation and function has largely focused on the role of proteins. However, it is now apparent that the mammalian genome expresses large numbers of long (>200 nt) nonprotein-coding RNAs (ncRNAs), and there is increasing evidence that these RNAs have important regulatory functions, particularly in the regulation of epigenetic processes underpinning cell differentiation. In this study, we show that CD8(+) T cells express hundreds of long ncRNAs, many of which are lymphoid-specific and/or change dynamically with lymphocyte differentiation or activation. Numerous ncRNAs surround or overlap immunologically important protein-coding genes and can be predicted to function via a range of regulatory mechanisms. The overlap of many long ncRNAs expressed in CD8(+) T cells with microRNAs and small interfering RNAs further suggests that long ncRNAs may be processed into and exert their effects via smaller functional species. Finally, we show that the majority of long ncRNAs expressed in CD8(+) T cells harbor signatures of evolutionary conservation, secondary structures, and/or regulated promoters, further supporting their functionality. Taken together, our findings represent the first systematic discovery of long ncRNAs expressed in CD8(+) T cells and suggest that many of these transcripts are likely to play a role in adaptive immunity.
DOI: 10.1016/j.devcel.2008.09.007
2008
Cited 203 times
Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution
Kidney development is based on differential cell-type-specific expression of a vast number of genes. While multiple critical genes and pathways have been elucidated, a genome-wide analysis of gene expression within individual cellular and anatomic structures is lacking. Accomplishing this could provide significant new insights into fundamental developmental mechanisms such as mesenchymal-epithelial transition, inductive signaling, branching morphogenesis, and segmentation. We describe here a comprehensive gene expression atlas of the developing mouse kidney based on the isolation of each major compartment by either laser capture microdissection or fluorescence-activated cell sorting, followed by microarray profiling. The resulting data agree with known expression patterns and additional in situ hybridizations. This kidney atlas allows a comprehensive analysis of the progression of gene expression states during nephrogenesis, as well as discovery of potential growth factor-receptor interactions. In addition, the results provide deeper insight into the genetic regulatory mechanisms of kidney development.
DOI: 10.1371/journal.pgen.0020052
2006
Cited 198 times
The Abundance of Short Proteins in the Mammalian Proteome
Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and non-synonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a "dark matter" subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway.
DOI: 10.1182/blood-2005-07-2888
2006
Cited 198 times
A global role for EKLF in definitive and primitive erythropoiesis
Abstract Erythroid Kruppel-like factor (EKLF, KLF1) plays an important role in definitive erythropoiesis and β-globin gene regulation but failure to rectify lethal fetal anemia upon correction of globin chain imbalance suggested additional critical EKLF target genes. We employed expression profiling of EKLF-null fetal liver and EKLF-null erythroid cell lines containing an inducible EKLF-estrogen receptor (EKLF-ER) fusion construct to search for such targets. An overlapping list of EKLF-regulated genes from the 2 systems included α-hemoglobin stabilizing protein (AHSP), cytoskeletal proteins, hemesynthesis enzymes, transcription factors, and blood group antigens. One EKLF target gene, dematin, which encodes an erythrocyte cytoskeletal protein (band 4.9), contains several phylogenetically conserved consensus CACC motifs predicted to bind EKLF. Chromatin immunoprecipitation demonstrated in vivo EKLF occupancy at these sites and promoter reporter assays showed that EKLF activates gene transcription through these DNA elements. Furthermore, investigation of EKLF target genes in the yolk sac led to the discovery of unexpected additional defects in the embryonic red cell membrane and cytoskeleton. In short, EKLF regulates global erythroid gene expression that is critical for the development of primitive and definitive red cells.
DOI: 10.1101/gr.106575.110
2010
Cited 196 times
A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells
KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.
DOI: 10.1016/j.ydbio.2007.05.027
2007
Cited 191 times
Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r–EGFP transgene reporter
All solid organs contain resident monocyte-derived cells that appear early in organogenesis and persist throughout life. These cells are critical for normal development in some organs. Here we report the use of a previously described transgenic line, with EGFP driven by the macrophage-restricted Csf1r (c-fms) promoter, to image macrophage production and infiltration accompanying organogenesis in many tissues. Using microarray analysis of FACS-isolated EGFP-positive cells, we show that fetal kidney, lung and brain macrophages show similar gene expression profiles irrespective of their tissue of origin. EGFP-positive cells appeared in the renal interstitium from 12 days post coitum, prior to nephrogenesis, and maintain a close apposition to renal tubules postnatally. CSF-1 added to embryonic kidney explants increased overall renal growth and ureteric bud branching. Expression profiling of tissue macrophages and of CSF-1-treated explants showed evidence of the alternate, pro-proliferative (M2) activation profile, including expression of macrophage mannose receptor (CD206), macrophage scavenger receptor 2 (Msr2), C1q, CD163, selenoprotein P, CCL24 and TREM2. This response has been associated with the trophic role of tumour-associated macrophages. These findings suggest a trophic role of macrophages in embryonic kidney development, which may continue to play a similar role in postnatal repair.
DOI: 10.1073/pnas.0501169102
2005
Cited 179 times
The phasevarion: A genetic system controlling coordinated, random switching of expression of multiple genes
Several host-adapted bacterial pathogens contain methyltransferases associated with type III restriction-modification (R-M) systems that are subject to reversible, high-frequency on/off switching of expression (phase variation). To investigate the role of phase-variable expression of R-M systems, we made a mutant strain lacking the methyltransferase (mod) associated with a type III R-M system of Haemophilus influenzae and analyzed its phenotype. By microarray analysis, we identified a number of genes that were either up- or down-regulated in the mod mutant strain. This system reports the coordinated random switching of a set of genes in a bacterial pathogen and may represent a widely used mechanism.
DOI: 10.1016/j.ajhg.2013.03.018
2013
Cited 167 times
A De Novo Mutation in the β-Tubulin Gene TUBB4A Results in the Leukoencephalopathy Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published in the literature to date. We performed exome sequencing on five family trios, two family quartets, and three single probands, which revealed that all eleven H-ABC-diagnosed individuals carry the same de novo single-nucleotide TUBB4A mutation resulting in nonsynonymous change p.Asp249Asn. Detailed investigation of one of the family quartets with the singular finding of an H-ABC-affected sibling pair revealed maternal mosaicism for the mutation, suggesting that rare de novo mutations that are initially phenotypically neutral in a mosaic individual can be disease causing in the subsequent generation. Modeling of TUBB4A shows that the mutation creates a nonsynonymous change at a highly conserved asparagine that sits at the intradimer interface of α-tubulin and β-tubulin, and this change might affect tubulin dimerization, microtubule polymerization, or microtubule stability. Consistent with H-ABC's clinical presentation, TUBB4A is highly expressed in neurons, and a recent report has shown that an N-terminal alteration is associated with a heritable dystonia. Together, these data demonstrate that a single de novo mutation in TUBB4A results in H-ABC.
DOI: 10.1371/journal.ppat.1000400
2009
Cited 165 times
Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between "differentiated" cell types.
DOI: 10.1002/stem.493
2010
Cited 158 times
Vitamin C Promotes Widespread Yet Specific DNA Demethylation of the Epigenome in Human Embryonic Stem Cells
Abstract Vitamin C (ascorbate) is a widely used medium supplement in embryonic stem cell culture. Here, we show that ascorbate causes widespread, consistent, and remarkably specific DNA demethylation of 1,847 genes in human embryonic stem cells (hESCs), including important stem cell genes, with a clear bias toward demethylation at CpG island boundaries. We show that a subset of these DNA demethylated genes displays concomitant gene expression changes and that the position of the demethylated CpGs relative to the transcription start site is correlated to such changes. We further show that the ascorbate-demethylated gene set not only overlaps with gene sets that have bivalent marks, but also with the gene sets that are demethylated during differentiation of hESCs and during reprogramming of fibroblasts to induced pluritotent stem cells (iPSCs). Our data thus identify a novel link between ascorbate-mediated signaling and specific epigenetic changes in hESCs that might impact on pluripotency and reprogramming pathways.
DOI: 10.1016/j.ajhg.2013.04.006
2013
Cited 154 times
Mutations in DARS Cause Hypomyelination with Brain Stem and Spinal Cord Involvement and Leg Spasticity
Inherited white-matter disorders are a broad class of diseases for which treatment and classification are both challenging. Indeed, nearly half of the children presenting with a leukoencephalopathy remain without a specific diagnosis. Here, we report on the application of high-throughput genome and exome sequencing to a cohort of ten individuals with a leukoencephalopathy of unknown etiology and clinically characterized by hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), as well as the identification of compound-heterozygous and homozygous mutations in cytoplasmic aspartyl-tRNA synthetase (DARS). These mutations cause nonsynonymous changes to seven highly conserved amino acids, five of which are unchanged between yeast and man, in the DARS C-terminal lobe adjacent to, or within, the active-site pocket. Intriguingly, HBSL bears a striking resemblance to leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate (LBSL), which is caused by mutations in the mitochondria-specific DARS2, suggesting that these two diseases might share a common underlying molecular pathology. These findings add to the growing body of evidence that mutations in tRNA synthetases can cause a broad range of neurologic disorders.
DOI: 10.1371/journal.pone.0007708
2009
Cited 140 times
A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells
Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment.We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3.These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency.
DOI: 10.1261/rna.042143.113
2013
Cited 138 times
miR-139-5p is a regulator of metastatic pathways in breast cancer
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.
DOI: 10.1002/stem.1297
2013
Cited 137 times
Integration-Free Induced Pluripotent Stem Cells Model Genetic and Neural Developmental Features of Down Syndrome Etiology
Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming. DS iPSCs selectively overexpressed chromosome 21 genes, consistent with gene dosage, which was associated with deregulation of thousands of genes throughout the genome. DS and WT iPSCs were neurally converted at >95% efficiency and had remarkably similar lineage potency, differentiation kinetics, proliferation, and axon extension at early time points. However, at later time points DS cultures showed a twofold bias toward glial lineages. Moreover, DS neural cultures were up to two times more sensitive to oxidative stress-induced apoptosis, and this could be prevented by the antioxidant N-acetylcysteine. Our results reveal a striking complexity in the genetic alterations caused by trisomy 21 that are likely to underlie DS developmental phenotypes, and indicate a central role for defective early glial development in establishing developmental defects in DS brains. Furthermore, oxidative stress sensitivity is likely to contribute to the accelerated neurodegeneration seen in DS, and we provide proof of concept for screening corrective therapeutics using DS iPSCs and their derivatives. Nonviral DS iPSCs can therefore model features of complex human disease in vitro and provide a renewable and ethically unencumbered discovery platform.
DOI: 10.1038/ng.3153
2014
Cited 128 times
Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy
DOI: 10.1038/nature14047
2014
Cited 124 times
Divergent reprogramming routes lead to alternative stem-cell states
DOI: 10.1002/ana.24650
2016
Cited 118 times
Whole exome sequencing in patients with white matter abnormalities
Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25 of 71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5 of 71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases. Ann Neurol 2016;79:1031-1037.
DOI: 10.1093/neuonc/noy020
2018
Cited 114 times
Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium
Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal Analysis Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities and, ultimately, improved outcomes for a patient population in need.
DOI: 10.1371/journal.pone.0027569
2011
Cited 113 times
Phasevarion Mediated Epigenetic Gene Regulation in Helicobacter pylori
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.
DOI: 10.1261/rna.034926.112
2012
Cited 113 times
MicroRNA-182-5p targets a network of genes involved in DNA repair
MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p. We identified more than 1000 genes as potential targets of miR-182-5p, most of which have a known function in pathways underlying tumor biology. Specifically, functional enrichment analysis identified components of both the DNA damage response pathway and cell cycle to be highly represented in this target cohort. Experimental validation confirmed that miR-182-5p-mediated disruption of the homologous recombination (HR) pathway is a consequence of its ability to target multiple components in that pathway. Although there is a strong enrichment for the cell cycle ontology, we do not see primary proliferative defects as a consequence of miR-182-5p overexpression. We highlight targets that could be responsible for miR-182-5p-mediated disruption of other biological processes attributed in the literature so far. Finally, we show that miR-182-5p is highly expressed in a panel of human breast cancer samples, highlighting its role as a potential oncomir in breast cancer.
DOI: 10.1186/gb-2014-15-3-r51
2014
Cited 112 times
Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs
MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5′ end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence.
DOI: 10.1038/ncomms6619
2014
Cited 111 times
An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator
Reprogramming of somatic cells to induced pluripotent stem cells involves a dynamic rearrangement of the epigenetic landscape. To characterize this epigenomic roadmap, we have performed MethylC-seq, ChIP-seq (H3K4/K27/K36me3) and RNA-Seq on samples taken at several time points during murine secondary reprogramming as part of Project Grandiose. We find that DNA methylation gain during reprogramming occurs gradually, while loss is achieved only at the ESC-like state. Binding sites of activated factors exhibit focal demethylation during reprogramming, while ESC-like pluripotent cells are distinguished by extension of demethylation to the wider neighbourhood. We observed that genes with CpG-rich promoters demonstrate stable low methylation and strong engagement of histone marks, whereas genes with CpG-poor promoters are safeguarded by methylation. Such DNA methylation-driven control is the key to the regulation of ESC-pluripotency genes, including Dppa4, Dppa5a and Esrrb. These results reveal the crucial role that DNA methylation plays as an epigenetic switch driving somatic cells to pluripotency.
DOI: 10.1016/j.scr.2011.08.003
2012
Cited 108 times
Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities
Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88–0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.
DOI: 10.1136/gutjnl-2013-306202
2014
Cited 108 times
Targeting mTOR dependency in pancreatic cancer
<h3>Objective</h3> Pancreatic cancer is a leading cause of cancer-related death in the Western world. Current chemotherapy regimens have modest survival benefit. Thus, novel, effective therapies are required for treatment of this disease. <h3>Design</h3> Activating <i>KRAS</i> mutation almost always drives pancreatic tumour initiation, however, deregulation of other potentially druggable pathways promotes tumour progression. PTEN loss leads to acceleration of <i>Kras<sup>G12D</sup></i>-driven pancreatic ductal adenocarcinoma (PDAC) in mice and these tumours have high levels of mammalian target of rapamycin (mTOR) signalling. To test whether these KRAS PTEN pancreatic tumours show mTOR dependence, we compared response to mTOR inhibition in this model, to the response in another established model of pancreatic cancer, KRAS P53. We also assessed whether there was a subset of pancreatic cancer patients who may respond to mTOR inhibition. <h3>Results</h3> We found that tumours in KRAS PTEN mice exhibit a remarkable dependence on mTOR signalling. In these tumours, mTOR inhibition leads to proliferative arrest and even tumour regression. Further, we could measure response using clinically applicable positron emission tomography imaging. Importantly, pancreatic tumours driven by activated KRAS and mutant p53 did not respond to treatment. In human tumours, approximately 20% of cases demonstrated low PTEN expression and a gene expression signature that overlaps with murine KRAS PTEN tumours. <h3>Conclusions</h3> KRAS PTEN tumours are uniquely responsive to mTOR inhibition. Targeted anti-mTOR therapies may offer clinical benefit in subsets of human PDAC selected based on genotype, that are dependent on mTOR signalling. Thus, the genetic signatures of human tumours could be used to direct pancreatic cancer treatment in the future.
DOI: 10.1016/j.celrep.2015.12.005
2016
Cited 107 times
Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation
The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.
DOI: 10.1038/ncomms8828
2015
Cited 107 times
A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae
Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.
DOI: 10.1182/blood-2012-02-413187
2014
Cited 103 times
Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes
Key Points A mutation preventing interaction between c-Myb and p300 prevents transformation and leukemia induction by MLL-AF9 and AML1-ETO9a oncogenes. Identifying agents that block the c-Myb-p300 interaction may be a valuable approach to developing a therapy for acute myeloid leukemia.
DOI: 10.1186/gm482
2013
Cited 103 times
Clinical and molecular characterization of HER2 amplified-pancreatic cancer
Pancreatic cancer is one of the most lethal and molecularly diverse malignancies. Repurposing of therapeutics that target specific molecular mechanisms in different disease types offers potential for rapid improvements in outcome. Although HER2 amplification occurs in pancreatic cancer, it is inadequately characterized to exploit the potential of anti-HER2 therapies.HER2 amplification was detected and further analyzed using multiple genomic sequencing approaches. Standardized reference laboratory assays defined HER2 amplification in a large cohort of patients (n = 469) with pancreatic ductal adenocarcinoma (PDAC).An amplified inversion event (1 MB) was identified at the HER2 locus in a patient with PDAC. Using standardized laboratory assays, we established diagnostic criteria for HER2 amplification in PDAC, and observed a prevalence of 2%. Clinically, HER2- amplified PDAC was characterized by a lack of liver metastases, and a preponderance of lung and brain metastases. Excluding breast and gastric cancer, the incidence of HER2-amplified cancers in the USA is >22,000 per annum.HER2 amplification occurs in 2% of PDAC, and has distinct features with implications for clinical practice. The molecular heterogeneity of PDAC implies that even an incidence of 2% represents an attractive target for anti-HER2 therapies, as options for PDAC are limited. Recruiting patients based on HER2 amplification, rather than organ of origin, could make trials of anti-HER2 therapies feasible in less common cancer types.
DOI: 10.1136/gutjnl-2017-315144
2017
Cited 99 times
Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer
Extensive molecular heterogeneity of pancreatic ductal adenocarcinoma (PDA), few effective therapies and high mortality make this disease a prime model for advancing development of tailored therapies. The p16-cyclin D-cyclin-dependent kinase 4/6-retinoblastoma (RB) protein (CDK4) pathway, regulator of cell proliferation, is deregulated in PDA. Our aim was to develop a novel personalised treatment strategy for PDA based on targeting CDK4.Sensitivity to potent CDK4/6 inhibitor PD-0332991 (palbociclib) was correlated to protein and genomic data in 19 primary patient-derived PDA lines to identify biomarkers of response. In vivo efficacy of PD-0332991 and combination therapies was determined in subcutaneous, intrasplenic and orthotopic tumour models derived from genome-sequenced patient specimens and genetically engineered model. Mechanistically, monotherapy and combination therapy were investigated in the context of tumour cell and extracellular matrix (ECM) signalling. Prognostic relevance of companion biomarker, RB protein, was evaluated and validated in independent PDA patient cohorts (>500 specimens).Subtype-specific in vivo efficacy of PD-0332991-based therapy was for the first time observed at multiple stages of PDA progression: primary tumour growth, recurrence (second-line therapy) and metastatic setting and may potentially be guided by a simple biomarker (RB protein). PD-0332991 significantly disrupted surrounding ECM organisation, leading to increased quiescence, apoptosis, improved chemosensitivity, decreased invasion, metastatic spread and PDA progression in vivo. RB protein is prevalent in primary operable and metastatic PDA and may present a promising predictive biomarker to guide this therapeutic approach.This study demonstrates the promise of CDK4 inhibition in PDA over standard therapy when applied in a molecular subtype-specific context.
DOI: 10.1038/ncomms6750
2014
Cited 98 times
Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors
Mammals express the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) on cell surfaces, where they act as receptors for pathogens, including influenza A virus (IAV). Neu5Gc is synthesized from Neu5Ac by the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this enzyme is inactive and only Neu5Ac is produced. Ferrets are susceptible to human-adapted IAV strains and have been the dominant animal model for IAV studies. Here we show that ferrets, like humans, do not synthesize Neu5Gc. Genomic analysis reveals an ancient, nine-exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia members of the Carnivora. Interactions between two human strains of IAV with the sialyllactose receptor (sialic acid--α2,6Gal) confirm that the type of terminal sialic acid contributes significantly to IAV receptor specificity. Our results indicate that exclusive expression of Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains.
DOI: 10.1002/path.4583
2015
Cited 97 times
Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance
Abstract Treatment options for patients with brain metastases ( BMs ) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under‐utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy‐number analysis and exome‐ and RNA ‐sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2 , ST7 , PIK3R1 and SMC5 , and the DNA repair, ERBB – HER signalling, axon guidance and protein kinase‐A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2 ‐positivity across four consecutive metastatic deposits by IHC and SISH , resulting in the deployment of HER2 ‐targeted therapy for the patient. (d) In the ERBB / HER pathway, ERBB2 expression correlated with ERBB3 ( r 2 = 0.496; p &lt; 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho‐ HER3 Y1222 or phospho‐ HER4 Y1162 membrane‐positive, respectively. The HER3 ligands NRG1 / 2 were barely detectable by RNAseq , with NRG1 (8p12) genomic loss in 63.6% breast cancer‐ BMs , suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM . The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs , and highlighted the possibility of therapeutically targeting HER3 , which is broadly over‐expressed and activated in BMs , independent of primary site and systemic therapy. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.
DOI: 10.1371/journal.pone.0045835
2012
Cited 93 times
qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles
Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.
DOI: 10.1158/0008-5472.can-13-0529
2013
Cited 90 times
Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial α5 Integrin
Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional nonkinase receptor for semaphorins, vascular endothelial growth factor (VEGF), and other growth factors, expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular extravasation and metastasis in zebrafish and murine xenograft models of clear cell renal cell carcinoma (RCC) and pancreatic adenocarcinoma. In tissue from patients with RCC, NRP-2 expression is positively correlated with tumor grade and is highest in metastatic tumors. In a prospectively acquired cohort of patients with pancreatic cancer, high NRP-2 expression cosegregated with poor prognosis. Through biochemical approaches as well as Atomic Force Microscopy (AFM), we describe a unique mechanism through which NRP-2 expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular adhesion and extravasation. Taken together, our studies reveal a clinically significant role of NRP-2 in cancer cell extravasation and promotion of metastasis.
DOI: 10.1016/j.celrep.2020.107625
2020
Cited 85 times
HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.
DOI: 10.1038/s41467-020-17359-2
2020
Cited 60 times
Sex differences in oncogenic mutational processes
Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.
DOI: 10.1016/j.semcancer.2021.06.018
2022
Cited 34 times
Clinical utility of whole-genome sequencing in precision oncology
Precision diagnostics is one of the two pillars of precision medicine. Sequencing efforts in the past decade have firmly established cancer as a primarily genetically driven disease. This concept is supported by therapeutic successes aimed at particular pathways that are perturbed by specific driver mutations in protein-coding domains and reflected in three recent FDA tissue agnostic cancer drug approvals. In addition, there is increasing evidence from studies that interrogate the entire genome by whole-genome sequencing that acquired global and complex genomic aberrations including those in non-coding regions of the genome might also reflect clinical outcome. After addressing technical, logistical, financial and ethical challenges, national initiatives now aim to introduce clinical whole-genome sequencing into real-world diagnostics as a rational and potentially cost-effective tool for response prediction in cancer and to identify patients who would benefit most from 'expensive' targeted therapies and recruitment into clinical trials. However, so far, this has not been accompanied by a systematic and prospective evaluation of the clinical utility of whole-genome sequencing within clinical trials of uniformly treated patients of defined clinical outcome. This approach would also greatly facilitate novel predictive biomarker discovery and validation, ultimately reducing size and duration of clinical trials and cost of drug development. This manuscript is the third in a series of three to review and critically appraise the potential and challenges of clinical whole-genome sequencing in solid tumors and hematological malignancies.
DOI: 10.1186/s13073-022-01060-8
2022
Cited 26 times
Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma
Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials.We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment.The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations.We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.
DOI: 10.1016/j.semcancer.2021.06.009
2022
Cited 24 times
Analytical demands to use whole-genome sequencing in precision oncology
Interrogating the tumor genome in its entirety by whole-genome sequencing (WGS) offers an unprecedented insight into the biology and pathogenesis of cancer, with potential impact on diagnostics, prognostication and therapy selection. WGS is able to detect sequence as well as structural variants and thereby combines central domains of cytogenetics and molecular genetics. Given the potential of WGS in directing targeted therapeutics and clinical decision-making, we envision a gradual transition of the method from research to clinical routine. This review is one out of three within this issue aimed at facilitating this effort, by discussing in-depth analytical validation, clinical interpretation and clinical utility of WGS. The review highlights the requirements for implementing, validating and maintaining a clinical WGS pipeline to obtain high-quality patient-specific data in accordance with the local regulatory landscape. Every step of the WGS pipeline, which includes DNA extraction, library preparation, sequencing, bioinformatics analysis, and data storage, is considered with respect to its logistics, necessities, potential pitfalls, and the required quality management. WGS is likely to drive clinical diagnostics and patient care forward, if requirements and challenges of the technique are recognized and met.
DOI: 10.1016/j.ajhg.2023.01.018
2023
Cited 12 times
Australian Genomics: Outcomes of a 5-year national program to accelerate the integration of genomics in healthcare
Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.
DOI: 10.1182/blood-2023-178806
2023
Cited 11 times
CAR+ T-Cell Lymphoma Post Ciltacabtagene Autoleucel Therapy for Relapsed Refractory Multiple Myeloma
Introduction:Rareevents of T-cell lymphoma (TCL) derived from CAR-T cells (2 cases) have been reported in patients receiving nonviral piggyBac transposon-based CAR-T therapy (Micklethwaite et al, Blood, 2021). Ciltacabtagene autoleucel (cilta-cel) is an anti-BCMA CAR-T therapy produced via conventional lentiviral transduction. In the randomized, phase 3 CARTITUDE-4 study (NCT04181827), cilta-cel significantly improved PFS (HR=0.26) vs standard of care in lenalidomide-refractory patients with multiple myeloma and 1-3 prior lines of therapy. We present the clinicogenomic characterization of a CARTITUDE-4 patient who developed a CAR+ TCL post cilta-cel. Methods: Diagnostic and staging workup included biopsy analyses and FDG-PET scan. Presence of CAR+ cells in lymph node biopsy (LNB) was assessed by quantitative polymerase chain reaction (qPCR), in situ hybridization (ISH), and immunohistochemistry (IHC). Whole genome sequencing (WGS), transcriptome sequencing, whole exome sequencing (WES), T-cell receptor (TCR) sequencing, and genome-wide CAR integration analyses were conducted. Results:A 51 y/o male patient received cilta-cel; CAR+ T cells in blood peaked 14 d post-infusion (77 cells/μL) and decreased to 3 cells/μL at d 92 post-infusion, when he achieved stringent complete response (sCR) and MRD negativity at 10 -5. At 5 mo post-infusion, a relatively rapidly growing erythematous nasofacial plaque developed. TCL was diagnosed based on facial lesion biopsy showing an infiltrate of atypical T cells positive for CD2 and CD3 but negative for CD4, CD8, CD7, CD56, ALK, EBER-ISH, TdT, CD30, and cytotoxic T cell markers. FDG-PET showed bilateral FDG-avid cervical lymphadenopathy, with similar T cell infiltrate in submandibular LNB. qPCR and ISH/IHC revealed 90-100% of LNB cells to be CAR+. At d 162 post-infusion (after TCL diagnosis but before TCL-directed chemotherapy) CAR+ T cells in blood had re-expanded, independent of BCMA antigen, to 378 cells/μL. CAR integration analysis of LNB revealed a dominant insertion into the 3′UTR of PBX2 (91.1% of total reads from all integration sites), suggesting tumor monoclonality. TCR sequencing (1.8×10 -6 sensitivity) of LNB showed a monoclonal sequence in 91% of all T cells. Analysis of the drug product revealed the same unique TCR sequence from the monoclone at low frequency (~2×10 -6), suggesting the presence of this clone in apheresis material. WGS showed low overall mutational burden in the LNB (1.26 mutations/megabase) with 37 coding and 3286 non-coding variants, including 2 predicted loss-of-function TET2 mutations; a PTPRB truncation; and a focal duplication involving the 5′UTR to intron 16 of NFKB2. No dominant mutational signatures or gross copy number changes were observed. WES of the LNB indicated that a TET2 mutation (p.H1416R), which was not due to CAR insertion, was heterozygous and likely clonal. Targeted sequencing (0.5% sensitivity) of stored CD34+ cells and bone marrow aspirate collected from the patient 2 y earlier showed no abnormalities. Germline samples revealed the presence of a heterozygous JAK3 variant (p.V722I) that has been described as an activating variant, implicated in TCL, and detected in germline samples from patients with antigen-induced TCL (Blombery et al, Haematologica, 2016). The patient received CHOEP-21 (cyclophosphamide-doxorubicin-vincristine-prednisone-etoposide) and achieved metabolic CR but relapsed soon after treatment was stopped. Subsequent treatment with gemcitabine-dexamethasone-cisplatin-alemtuzumab was followed by consolidation with fludarabine plus melphalan and matched allogeneic stem cell transplant. He relapsed with cutaneous disease within 3 mo. Conclusions: To our knowledge, this is the first case of CAR+ TCL occurring after infusion of a CAR-T therapy produced via lentiviral transduction (cilta-cel). This rare malignancy was potentially driven by genetic mutations (e.g., TET2, NFKB2, PTPRB and/or JAK3), some of which may have existed in the form of a clone with malignant potential before cilta-cel manufacturing (e.g., TET2 p.H1416R and JAK3 p.V722I variants). A potential contributory role of the CAR insertion in the 3′ untranslated region of PBX2 to TCL development remains unclear and cannot be excluded at this time. Further investigation is needed to elucidate the differential contributions of these genomic factors to the etiology of this TCL case.
DOI: 10.1101/gr.6.2.124
1996
Cited 138 times
Cloning and characterization of a novel human gene related to vascular endothelial growth factor.
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.
DOI: 10.1038/sj.onc.1202164
1998
Cited 127 times
Characterization of the mouse Men1 gene and its expression during development
The gene responsible for multiple endocrine neoplasia type 1 (MEN1), a heritable predisposition to endocrine tumours in man, has recently been identified. Here we have characterized the murine homologue with regard to cDNA sequence, genomic structure, expression pattern and chromosomal localisation. The murine Men1 gene spans approximately 6.7 kb of genomic DNA and is comprised of 10 exons with similar genomic structure to the human locus. It was mapped to the pericentromeric region of mouse chromosome 19, which is conserved with the human 11q13 band where MEN1 is located. The predicted protein is 611 amino acids in length and overall is 97% homologous to the human orthologue. The 45 reported MEN1 mutations which alter or delete a single amino acid in human all occur at conserved residues, thereby supporting their functional significance. Two transcripts of approximately 3.2 and 2.8 kb were detected in both embryonal and adult murine tissues, resulting from alternative splicing of intron 1. By RNA in situ hybridization and Northern analysis the spatiotemporal expression pattern of Men1 was determined during mouse development. Men1 gene activity was detected already at gestational day 7. At embryonic day 14 expression was generally high throughout the embryo, while at day 17 the thymus, skeletal muscle, and CNS showed the strongest signal. In selected tissues from postnatal mouse Men1 was detected in all tissues analysed and was expressed at high levels in cerebral cortex, hippocampus, testis, and thymus. In brain the menin protein was detected mainly in nerve cell nuclei, whereas in testis it appeared perinuclear in spermatogonia. These results show that Men1 expression is not confined to organs affected in MEN1, suggesting that Men1 has a significant function in many different cell types including the CNS and testis.
DOI: 10.1074/jbc.m006087200
2000
Cited 125 times
Characterization of RasGRP2, a Plasma Membrane-targeted, Dual Specificity Ras/Rap Exchange Factor
Rasproteins operate as molecular switches in signal transduction pathways downstream of tyrosine kinases and G-protein-coupled receptors.Ras is switched from the inactive GDP-bound state to the active GTP-bound state by guanine nucleotide exchange factors (GEFs).We report here the cloning and characterization of Ras-GRP2, a longer alternatively spliced form of the recently cloned RapGEF, CalDAG-GEFI.A unique feature of Ras-GRP2 is that it is targeted to the plasma membrane by a combination of N-terminal myristoylation and palmitoylation.In vivo, RasGRP2 selectively catalyzes nucleotide exchange on N-and Ki-Ras, but not Ha-Ras.RasGRP2 also catalyzes nucleotide exchange on Rap1, but this RapGEF activity is less potent than that associated with CalDAG-GEFI.The nucleotide exchange activity of Ras-GRP2 toward N-Ras is stimulated by diacylglycerol and inhibited by calcium.The effects of diacylglycerol and calcium are additive but are not accompanied by any detectable change in the subcellular localization of Ras-GRP2.In contrast, CalDAG-GEFI is localized predominantly to the cytosol and lacks Ras exchange activity in vivo.However, prolonged exposure to phorbol esters, or growth in serum, results in localization of CalDAG-GEFI to the cell membrane and restoration of Ras exchange activity.Expression of RasGRP2 or CalDAG-GEFI in NIH3T3 cells transfected with wild type N-Ras results in an accelerated growth rate but not morphologic transformation.Thus, under appropriate growth conditions, CalDAG-GEFI and RasGRP2 are dual specificity Ras and Rap exchange factors.
DOI: 10.1097/01.asn.0000136779.17837.8f
2004
Cited 119 times
Identifying the Molecular Phenotype of Renal Progenitor Cells
ABSTRACT. Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 θ, retinoic acid receptor-α, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.
DOI: 10.1038/sj.onc.1205975
2002
Cited 116 times
Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells
DOI: 10.1186/gb-2008-9-9-234
2008
Cited 114 times
Transcriptome content and dynamics at single-nucleotide resolution
Massively parallel short-tag sequencing of cDNA libraries--RNAseq--is being used to study the dynamics and complexity of eukaryotic transcriptomes, giving new biological insights into the 'active genome'.
DOI: 10.1038/nbt1391
2008
Cited 113 times
Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE)
One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.
DOI: 10.1136/gut.2007.147595
2009
Cited 101 times
Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse
Sulfate (SO(4)(2-)) is an abundant component of intestinal mucins and its content is decreased in certain gastrointestinal diseases, including inflammatory bowel disease. In this study, the hyposulfataemic NaS1 sulfate transporter null (Nas1(-/-)) mice were used to investigate the physiological consequences of disturbed sulfate homeostasis on (1) intestinal sulfomucin content and mRNA expression; (2) intestinal permeability and proliferation; (3) dextran sulfate sodium (DSS)-induced colitis; and (4) intestinal barrier function against the bacterial pathogen, Campylobacter jejuni.Intestinal sulfomucins and sialomucins were detected by high iron diamine staining, permeability was assessed by fluorescein isothiocyanate (FITC)-dextran uptake, and proliferation was assessed by 5-bromodeoxyuridine (BrdU) incorporation. Nas1(-/-) and wild-type (Nas1(+/+)) mice received DSS in drinking water, and intestinal damage was assessed by histological, clinical and haematological measurements. Mice were orally inoculated with C jejuni, and intestinal and systemic infection was assessed. Ileal mRNA expression profiles of Nas1(-/-) and Nas1(+/+) mice were determined by cDNA microarrays and validated by quantitative real-time PCR.Nas1(-/-) mice exhibited reduced intestinal sulfomucin content, enhanced intestinal permeability and DSS-induced colitis, and developed systemic infections when challenged orally with C jejuni. The transcriptional profile of 41 genes was altered in Nas1(-/-) mice, with the most upregulated gene being pancreatic lipase-related protein 2 and the most downregulated gene being carbonic anhydrase 1 (Car1).Sulfate homeostasis is essential for maintaining a normal intestinal metabolic state, and hyposulfataemia leads to reduced intestinal sulfomucin content, enhanced susceptibility to toxin-induced colitis and impaired intestinal barrier to bacterial infection.
DOI: 10.1016/j.ygeno.2007.11.003
2008
Cited 92 times
A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE
Cap analysis gene expression (CAGE) is a high-throughput, tag-based method designed to survey the 5' end of capped full-length cDNAs. CAGE has previously been used to define global transcription start site usage and monitor gene activity in mammals. A drawback of the CAGE approach thus far has been the removal of as many as 40% of CAGE sequence tags due to their mapping to multiple genomic locations. Here, we address the origins of multimap tags and present a novel strategy to assign CAGE tags to their most likely source promoter region. When this approach was applied to the FANTOM3 CAGE libraries, the percentage of protein-coding mouse transcriptional frameworks detected by CAGE improved from 42.9 to 57.8% (an increase of 5516 frameworks) with no reduction in CAGE to microarray correlation. These results suggest that the multimap tags produced by high-throughput, short sequence tag-based approaches can be rescued to augment greatly the transcriptome coverage provided by single-map tags alone.
DOI: 10.1007/s10549-009-0653-1
2009
Cited 89 times
Subtypes of familial breast tumours revealed by expression and copy number profiling
DOI: 10.1101/gr.112128.110
2010
Cited 79 times
Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome
The complexity of the eukaryotic transcriptome is generated by the interplay of transcription initiation, termination, alternative splicing, and other forms of post-transcriptional modification. It was recently shown that RNA transcripts may also undergo cleavage and secondary 5' capping. Here, we show that post-transcriptional cleavage of RNA contributes to the diversification of the transcriptome by generating a range of small RNAs and long coding and noncoding RNAs. Using genome-wide histone modification and RNA polymerase II occupancy data, we confirm that the vast majority of intraexonic CAGE tags are derived from post-transcriptional processing. By comparing exonic CAGE tags to tissue-matched PARE data, we show that the cleavage and subsequent secondary capping is regulated in a developmental-stage- and tissue-specific manner. Furthermore, we find evidence of prevalent RNA cleavage in numerous transcriptomic data sets, including SAGE, cDNA, small RNA libraries, and deep-sequenced size-fractionated pools of RNA. These cleavage products include mRNA variants that retain the potential to be translated into shortened functional protein isoforms. We conclude that post-transcriptional RNA cleavage is a key mechanism that expands the functional repertoire and scope for regulatory control of the eukaryotic transcriptome.
DOI: 10.1371/journal.pone.0017286
2011
Cited 77 times
Identification of Anchor Genes during Kidney Development Defines Ontological Relationships, Molecular Subcompartments and Regulatory Pathways
The development of the mammalian kidney is well conserved from mouse to man. Despite considerable temporal and spatial data on gene expression in mammalian kidney development, primarily in rodent species, there is a paucity of genes whose expression is absolutely specific to a given anatomical compartment and/or developmental stage, defined here as ‘anchor’ genes. We previously generated an atlas of gene expression in the developing mouse kidney using microarray analysis of anatomical compartments collected via laser capture microdissection. Here, this data is further analysed to identify anchor genes via stringent bioinformatic filtering followed by high resolution section in situ hybridisation performed on 200 transcripts selected as specific to one of 11 anatomical compartments within the midgestation mouse kidney. A total of 37 anchor genes were identified across 6 compartments with the early proximal tubule being the compartment richest in anchor genes. Analysis of minimal and evolutionarily conserved promoter regions of this set of 25 anchor genes identified enrichment of transcription factor binding sites for Hnf4a and Hnf1b, RbpJ (Notch signalling), PPARγ:RxRA and COUP-TF family transcription factors. This was reinforced by GO analyses which also identified these anchor genes as targets in processes including epithelial proliferation and proximal tubular function. As well as defining anchor genes, this large scale validation of gene expression identified a further 92 compartment-enriched genes able to subcompartmentalise key processes during murine renal organogenesis spatially or ontologically. This included a cohort of 13 ureteric epithelial genes revealing previously unappreciated compartmentalisation of the collecting duct system and a series of early tubule genes suggesting that segmentation into proximal tubule, loop of Henle and distal tubule does not occur until the onset of glomerular vascularisation. Overall, this study serves to illuminate previously ill-defined stages of patterning and will enable further refinement of the lineage relationships within mammalian kidney development.
DOI: 10.1095/biolreprod.113.107607
2013
Cited 72 times
MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis
MicroRNAs (miRNAs) have been shown to play key regulatory roles in a range of biological processes, including cell differentiation and development. To identify miRNAs that participate in gonad differentiation, a fundamental and tightly regulated developmental process, we examined miRNA expression profiles at the time of sex determination and during the early fetal differentiation of mouse testes and ovaries using high-throughput sequencing. We identified several miRNAs that were expressed in a sexually dimorphic pattern, including several members of the let-7 family, miR-378, and miR-140-3p. We focused our analysis on the most highly expressed, sexually dimorphic miRNA, miR-140-3p, and found that both miR-140-3p and its more lowly expressed counterpart, the previously annotated guide strand, miR-140-5p, are testis enriched and expressed in testis cords. Analysis of the miR-140-5p/miR-140-3p-null mouse revealed a significant increase in the number of Leydig cells in the developing XY gonad, strongly suggesting an important role for miR-140-5p/miR-140-3p in testis differentiation in mouse.
DOI: 10.1136/gutjnl-2014-307075
2014
Cited 72 times
SOX9 regulates ERBB signalling in pancreatic cancer development
<h3>Objective</h3> The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. <h3>Design</h3> We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. <h3>Results</h3> We found genetic aberrations in the <i>SOX9</i> gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. <h3>Conclusions</h3> By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms.
DOI: 10.1371/journal.pone.0059920
2013
Cited 68 times
Whole Genome Sequence Analysis of the First Australian OXA-48-Producing Outbreak-Associated Klebsiella pneumoniae Isolates: The Resistome and In Vivo Evolution
Whole genome sequencing was used to characterize the resistome of intensive care unit (ICU) outbreak-associated carbapenem-resistant K. pneumoniae isolates. Importantly, and of particular concern, the carbapenem-hydrolyzing β-lactamase gene bla(OXA-48) and the extended-spectrum β-lactamase gene bla(CTX-M-14), were identified on a single broad host-range conjugative plasmid. This represents the first report of bla(OXA-48) in Australia and highlights the importance of resistance gene surveillance, as such plasmids can silently spread amongst enterobacterial populations and have the potential to drastically limit treatment options. Furthermore, the in vivo evolution of these isolates was also examined after 18 months of intra-abdominal carriage in a patient that transited through the ICU during the outbreak period. Reflecting the clonality of K. pneumoniae, only 11 single nucleotide polymorphisms (SNPs) were accumulated during this time-period and many of these were associated with genes involved in tolerance/resistance to antibiotics, metals or organic solvents, and transcriptional regulation. Collectively, these SNPs are likely to be associated with changes in virulence (at least to some extent) that have refined the in vivo colonization capacity of the original outbreak isolate.
DOI: 10.1371/journal.pone.0074380
2013
Cited 67 times
Somatic Point Mutation Calling in Low Cellularity Tumors
Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.
DOI: 10.1158/1078-0432.ccr-17-1621
2018
Cited 65 times
Homologous Recombination DNA Repair Pathway Disruption and Retinoblastoma Protein Loss Are Associated with Exceptional Survival in High-Grade Serous Ovarian Cancer
Abstract Purpose: Women with epithelial ovarian cancer generally have a poor prognosis; however, a subset of patients has an unexpected dramatic and durable response to treatment. We sought to identify clinical, pathological, and molecular determinants of exceptional survival in women with high-grade serous cancer (HGSC), a disease associated with the majority of ovarian cancer deaths. Experimental Design: We evaluated the histories of 2,283 ovarian cancer patients and, after applying stringent clinical and pathological selection criteria, identified 96 with HGSC that represented significant outliers in terms of treatment response and overall survival. Patient samples were characterized immunohistochemically and by genome sequencing. Results: Different patterns of clinical response were seen: long progression-free survival (Long-PFS), multiple objective responses to chemotherapy (Multiple Responder), and/or greater than 10-year overall survival (Long-Term Survivors). Pathogenic germline and somatic mutations in genes involved in homologous recombination (HR) repair were enriched in all three groups relative to a population-based series. However, 29% of 10-year survivors lacked an identifiable HR pathway alteration, and tumors from these patients had increased Ki-67 staining. CD8+ tumor-infiltrating lymphocytes were more commonly present in Long-Term Survivors. RB1 loss was associated with long progression-free and overall survival. HR deficiency and RB1 loss were correlated, and co-occurrence was significantly associated with prolonged survival. Conclusions: There was diversity in the clinical trajectory of exceptional survivors associated with multiple molecular determinants of exceptional outcome in HGSC patients. Concurrent HR deficiency and RB1 loss were associated with favorable outcomes, suggesting that co-occurrence of specific mutations might mediate durable responses in such patients. Clin Cancer Res; 24(3); 569–80. ©2017 AACR. See related commentary by Peng and Mills, p. 508
DOI: 10.1073/pnas.1305536111
2014
Cited 62 times
Minor class splicing shapes the zebrafish transcriptome during development
Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.
DOI: 10.1016/j.pediatrneurol.2013.06.024
2014
Cited 60 times
Identification of a Novel de Novo p.Phe932Ile KCNT1 Mutation in a Patient With Leukoencephalopathy and Severe Epilepsy
More than half of patients with genetic leukoencephalopathies remain without a specific diagnosis; this is particularly true in individuals with a likely primary neuronal etiology, such as those in which abnormal white matter occurs in combination with severe epilepsy.A child with a severe early infantile epileptic encephalopathy and abnormal myelination underwent whole exome sequencing.Whole exome sequencing identified a heterozygous de novo mutation in KCNT1, a sodium-gated potassium channel gene.Severely delayed myelination was anecdotally reported in previous patients with KCNT1 mutations. This case reinforces that KCNT1 sequencing should be included in an investigation of patients with severely delayed myelination and epilepsy.
DOI: 10.1158/0008-5472.can-16-2224
2017
Cited 59 times
<i>EIF1AX</i> and <i>NRAS</i> Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas
Low-grade serous ovarian carcinomas (LGSC) are associated with a poor response to chemotherapy and are molecularly characterized by RAS pathway activation. Using exome and whole genome sequencing, we identified recurrent mutations in the protein translational regulator EIF1AX and in NF1, USP9X, KRAS, BRAF, and NRAS RAS pathway mutations were mutually exclusive; however, we found significant co-occurrence of mutations in NRAS and EIF1AX Missense EIF1AX mutations were clustered at the N-terminus of the protein in a region associated with its role in ensuring translational initiation fidelity. Coexpression of mutant NRAS and EIF1AX proteins promoted proliferation and clonogenic survival in LGSC cells, providing the first example of co-occurring, growth-promoting mutational events in ovarian cancer. Cancer Res; 77(16); 4268-78. ©2017 AACR.
DOI: 10.1002/cncr.28863
2014
Cited 57 times
Clinical and pathologic features of familial pancreatic cancer
BACKGROUND Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC). METHODS Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first‐degree relatives; otherwise, they were classified with sporadic PC (SPC). RESULTS The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent‐child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first‐degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P &lt;.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long‐standing diabetes mellitus (&gt;2 years) was associated with poor survival in both groups. CONCLUSIONS FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies. Cancer 2014;120:3669–3675. © 2014 American Cancer Society .
DOI: 10.1038/ng.3861
2017
Cited 57 times
Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma
Michael Schatz, David Tuveson and colleagues analyze somatic noncoding alterations in 308 pancreatic ductal adenocarcinomas. They find recurrent noncoding regulatory mutations that correlate with differential expression of proximal genes and find that the strongest regulatory elements are more frequently mutated, suggesting a selective advantage for mutations in these regions. The contributions of coding mutations to tumorigenesis are relatively well known; however, little is known about somatic alterations in noncoding DNA. Here we describe GECCO (Genomic Enrichment Computational Clustering Operation) to analyze somatic noncoding alterations in 308 pancreatic ductal adenocarcinomas (PDAs) and identify commonly mutated regulatory regions. We find recurrent noncoding mutations to be enriched in PDA pathways, including axon guidance and cell adhesion, and newly identified processes, including transcription and homeobox genes. We identified mutations in protein binding sites correlating with differential expression of proximal genes and experimentally validated effects of mutations on expression. We developed an expression modulation score that quantifies the strength of gene regulation imposed by each class of regulatory elements, and found the strongest elements were most frequently mutated, suggesting a selective advantage. Our detailed single-cancer analysis of noncoding alterations identifies regulatory mutations as candidates for diagnostic and prognostic markers, and suggests new mechanisms for tumor evolution.
DOI: 10.1093/carcin/bgw018
2016
Cited 52 times
Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma
The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival.
DOI: 10.1186/s40170-017-0164-1
2017
Cited 51 times
Mitochondrial mutations and metabolic adaptation in pancreatic cancer
Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.
DOI: 10.1038/s42003-020-01469-0
2021
Cited 31 times
DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association
Abstract Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX , DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX , DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.