ϟ

Sergio Sánchez Navas

Here are all the papers by Sergio Sánchez Navas that you can download and read on OA.mg.
Sergio Sánchez Navas’s last known institution is . Download Sergio Sánchez Navas PDFs here.

Claim this Profile →
DOI: 10.1016/j.physletb.2004.06.001
2004
Cited 5,397 times
Review of Particle Physics
We derive non-flat cosmological models for two cases (i.e., dust and radiation) in the context of Møller’s tetradic theory (MTT) of gravitation using the tetrad that creates the non-flat Friedmann–Robertson–Walker (FRW) metric. These two models are affected by the free dimensional parameter, λ, that characterized MTT, which approaches zero in the flat case for both models. Using standard definitions of thermodynamics, we calculate the radius horizon, Hawking temperature, and entropy of our non-flat models in the framework of cosmology and show the effect of λ on open and closed universes. We then use the first law of thermodynamics to construct non-flat cosmological models via the non-extensive thermodynamic approach. The resulting models are affected by λ and the extensive parameter, δ, which quantifies the effect of non-extensive thermodynamics. When we set, λ=0 and δ=1, we return to Einstein’s general relativity models. We study the evolution of our models in the presence of collisionless non-relativistic matter and describe precise forms of the dark energy density and equation-of-state parameter constraining the non-extensive thermodynamic parameter. We show that insertion of the non-extensive thermodynamic parameter affects the non-flat FRW universe in a manner that noticeably differs from that observed under normal thermodynamics. We also show that the deceleration of the open universe behaves as dark energy in a future epoch, i.e., when the redshift approaches −1, i.e., z≈−1.
DOI: 10.1103/physrevd.66.010001
2002
Cited 2,822 times
Review of Particle Properties
This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.
DOI: 10.1103/physrevd.102.082002
2020
Cited 42 times
Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube
We present the results of the first combined dark matter search targeting the Galactic Centre using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the $\tau^+\tau^-$, $\mu^+\mu^-$, $b\bar{b}$ and $W^+W^-$ channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2,101.6 days of ANTARES data and 1,007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally-averaged dark matter annihilation cross section $\langle\sigma_A\upsilon\rangle$ are set. These limits present an improvement of up to a factor of two in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the $\tau^+\tau^-$ channel, the value obtained for the limit is $7.44 \times 10^{-24} \text{cm}^{3}\text{s}^{-1}$ for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.
2004
Cited 102 times
Review of particle physics. Particle Data Group
This biennial Review summarizes much of Particle Physics. Using data from previous editions plus new measurements from papers we list evaluate and average measured properties of gauge bosons leptons quarks mesons and baryons. We also summarize searches for hypothetical particles such as Higgs bosons heavy neutrinos and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables gures formulae and reviews of topics such as the Standard Model particle detectors probability and statistics. Among the reviews are many that are new or heavily revised including those on neutrino mixing CP violation in K D and B mesons Vcb the new exotic  particle extra dimensions grand unified theories cosmic background radiation dark matter cosmological parameters and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables listings and reviews and errata are also available on the Particle Data Group website https://pdg.lbl.gov.
DOI: 10.1016/s0927-6505(99)00118-8
2000
Cited 70 times
Background light in potential sites for the ANTARES undersea neutrino telescope
The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by $^{40}$K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to $^{40}$K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.
2000
Cited 56 times
Review of Particle Physics, 2000-2001
DOI: 10.48550/arxiv.2404.12108
2024
Impact of non-reciprocal interactions on colloidal self-assembly with tunable anisotropy
Non-reciprocal (NR) effective interactions violating Newton's third law occur in many biological systems, but can also be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous effects on the overall collective behaviour and pattern formation, but can also influence aggregation processes on the particle scale. Here we focus on the impact of non-reciprocity on the self-assembly of an (originally passive) colloidal system with anisotropic interactions whose character is tunable by external fields. In the absence of non-reciprocity, that is, under equilibrium conditions, the colloids form aggregates with extremely long life times [Kogler et al., Soft Matter 11, 7356 (2015)], indicating kinetic trapping. Here we study, based on Brownian Dynamics (BD) simulations in 2D, a NR version of this model consisting of two species with reciprocal isotropic, but NR anisotropic interactions. We find that NR induces an effective propulsion of particle pairs and small aggregates forming at initial stages of self-assembly, an indication of the NR-induced non-equilibrium. The shape and stability of these initial clusters strongly depends on the degree of anisotropy. At longer times we find, for weak NR interactions, large (even system-spanning) clusters where single particles can escape and enter at the boundaries, in stark contrast to the small rigid aggregates appearing at the same time in the passive case. In this sense, weak NR shortcuts the aggregation. Increasing the degree of NR (and thus, propulsion), we even observe large-scale phase separation if the interactions are weakly anisotropic. In contrast, system with strong NR and anisotropy remain essentially disordered. Overall, NR interactions are shown to destabilize the rigid aggregates interrupting self-assembly in the passive case, helping the system to overcome kinetic barriers.
DOI: 10.1103/physrevd.102.092013
2020
Cited 13 times
Measurement of the top quark Yukawa coupling from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:math> kinematic distributions in the dilepton final state in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:…
A measurement of the Higgs boson Yukawa coupling to the top quark is presented using proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, recorded with the CMS detector. The coupling strength with respect to the standard model value, $Y_\mathrm{t}$, is determined from kinematic distributions in $\mathrm{t\bar{t}}$ final states containing ee, $μμ$, or e$μ$ pairs. Variations of the Yukawa coupling strength lead to modified distributions for $\mathrm{t\bar{t}}$ production. In particular, the distributions of the mass of the $\mathrm{t\bar{t}}$ system and the rapidity difference of the top quark and antiquark are sensitive to the value of $Y_\mathrm{t}$. The measurement yields a best fit value of $Y_\mathrm{t} =$ 1.16 $^{+0.24}_{-0.35}$, bounding $Y_\mathrm{t}$ $\lt$ 1.54 at a 95% confidence level.
1999
Cited 25 times
A Deep Sea Telescope for High Energy Neutrinos
The ANTARES Collaboration proposes to construct a large area water Cherenkov detector in the deep Mediterranean Sea, optimised for the detection of muons from high-energy astrophysical neutrinos. This paper presents the scientific motivation for building such a device, along with a review of the technical issues involved in its design and construction. The observation of high energy neutrinos will open a new window on the universe. The primary aim is to study particle acceleration mechanisms in energetic astrophysical objects such as AGN's and GRB's, which may also shed light on the origin of ultra-high-energy cosmic rays. At lower energies, non-baryonic dark matter may be detected through the neutrinos produced when gravitationally captured WIMPs annihilate in the cores of the Earth and the Sun. Neutrino oscillations can be measured by studying distortions in the energy spectrum of upward-going atmospheric nu's. The characteristics of the proposed site are an important consideration in detector design. Water properties and detector environment parameters were measured. These tests have shown that the proposed site provides a good-quality environment for the detector, and have also demonstrated the feasibility of the deployment technique. The present proposal concerns the construction and deployment of a detector with surface area 0.1 km^2. The conceptual design for such a detector is discussed, and the physics performance evaluated. An overview of costs and schedules is presented. It is concluded that a 0.1 km^2 detector is technically feasible at realistic cost, and offers an exciting and varied physics and astrophysics programme. Such a detector will also provide practical experience which will be invaluable in the design and operation of future detectors on the astrophysically desirable 1 km^2 scale.
DOI: 10.1093/mnras/sty2621
2018
Cited 10 times
The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope
In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called Fast Radio Bursts (FRBs) is still a great mystery despite the growing observational efforts made by various multi-wavelength and multi-messenger facilities. So far, many models have been proposed to explain FRBs but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, the question whether some hadronic processes may occur in the vicinity of the FRB source is assessed. If so, FRBs may contribute to the high energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures has been done using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs have been selected and no coincident neutrino candidate was observed. Upper limits on the per burst neutrino fluence have been derived using a power law spectrum, $\rm{\frac{dN}{dE_\nu}\propto E_\nu^{-\gamma}}$, for the incoming neutrino flux, assuming spectral indexes $\gamma$ = 1.0, 2.0, 2.5. Finally, the neutrino energy has been constrained by computing the total energy radiated in neutrinos assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released are derived from the associated null results.
DOI: 10.48550/arxiv.2312.00409
2023
White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach (QG-MM)", in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.
DOI: 10.48550/arxiv.2110.05916
2021
Cited 6 times
First search for exclusive diphoton production at high mass with tagged protons in proton-proton collisions at $\sqrt{s} =$ 13 TeV
A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp $\to$ p$γγ$p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb$^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $\lvertζ_1\rvert$ $\lt$ 2.9 $\times$ 10$^{-13}$ GeV$^{-4}$ and $\lvertζ_2\rvert$ $\lt$ 6.0 $\times$ 10$^{-13}$ GeV$^{-4}$.
DOI: 10.48550/arxiv.hep-ex/0103008
2001
Cited 11 times
The ICARUS Experiment, A Second-Generation Proton Decay Experiment and Neutrino Observatory at the Gran Sasso Laboratory
The final phase of the ICARUS physics program requires a sensitive mass of liquid Argon of 5000 tons or more. The T600 detector stands today as the first living proof that such large detector can be built and that liquid Argon imaging technology can be implemented on such large scales. After the successful completion of a series of technical tests to be performed at the assembly hall in Pavia, the T600 detector will be ready to be transported into the LNGS tunnel. The operation of the T600 at the LNGS will allow us (1) to develop the local infrastructure needed to operate our large detector (2) to start the handling of the underground liquid argon technology (3) to study the local background (4) to start the data taking with an initial liquid argon mass that will reach in a 5-6 year program the multi-kton goal. The T600 is to be considered as the first milestone on the road towards a total sensitive mass of 5000 tons: it is the first piece of the detector to be complemented by further modules of appropriate size and dimensions, in order to reach in a most efficient and rapid way the final design mass. In this document, we describe the physics program that will be accomplished within the first phase of the program.
DOI: 10.48550/arxiv.0812.2373
2008
Cited 5 times
Energy reconstruction of electromagnetic showers from $π^0$ decays with the ICARUS T600 Liquid Argon TPC
We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of $π^{0}$ mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The ($γ$,$γ$) invariant mass was found to be consistent with the value of the $π^0$ mass. The resolution of the reconstructed $π^0$ mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a $π^0$ mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photomultiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate $π^0$ events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with $π^0$ production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data.
DOI: 10.48550/arxiv.1205.4189
2012
Cited 3 times
Developments in heavy quarkonium spectroscopy
We summarize recent developments in heavy quarkonium spectroscopy, relying on previous review articles for the bulk of material available prior to mid-2010. This note is intended as a mini-review to appear in the 2012 Review of Particle Physics published by the Particle Data Group.
DOI: 10.2118/214961-ms
2023
Patented Surface Automatic Valve to Maximize the Recovery of Light Oil, Condensate, and Gas from Depleted Reservoirs with Minimum Manpower Interaction and Without External Energy to be Operated
Abstract This Surface Automatic Valve (SAV) is designed to recover and optimize the production from light oil, condensate, and gas within depleted reservoirs, which are no longer economically viable with the current technologies on the market. It is manufactured in stainless steel allowing operation in wells with acid and aromatic crudes. The valve's operation demands little maintenance and reduces the exposure of personnel associated with accessing fields located in geographically challenging areas. The completion design, surface pressures and choke valve use are the initial components analyzed when determining the applicability of the SAV in the well. Some simulations are performed in advance to configure the tool at optimized pressures. The valve's interior features two sensors that allow the opening and closing of the well at calibration pressures. When the well reaches the high pressure, it contracts and allows the well to produce. As the pressure decreases and until it reaches the low pressure, the valve closes automatically, and the cycle repeats indefinitely. The installation time of the SAV in the choke spans up to 3 hours, and the well is monitored for its correct operation. The results are obtained using a Barton chart installed in the wellhead to record the opening and closing of the tool by 72 hours (recommended). The curves for each production cycle are analyzed through mathematical equations to recalibrate the tool if necessary. Among all the results obtained, there was one well to highlight because it was closed by its non-productivity and the impossibility of using other market technologies to operate profitably without external energy. The well was reactivated by installing the SAV at the opening and closing pressures as per the simulations, working without issues during the testing time, minimizing the presence of field operators to supervise the well, and recording the production at the end of the trial with 20 BOPD and 360 MSCFPD in average, profiting from a well in sequence for plug and abandon. The SAV has been successfully installed and tested in two countries. Test approval certificates were provided by each OPCO in these cases. In summary, the SAV, unique in the market and patented with the number 11,473,402, assists in reactivating non-producing and optimizing low production wells. It uses the same energy from the reservoir to be operated without external sources, and refrains from impacting the surface footprint. It can work with corrosive crude and the installation process proves simplistic with minimal human intervention. While the valve's operational risks are minimal, it is being studied for integrity purposes with Sustainable Annulus Pressure (SAP) wells.
2002
Cited 5 times
Proposal to Measure the Efficiency of Electron Charge Sign Determination up to 10 GeV in a Magnetized Liquid Argon Detector ($\mu$LANNDD)
The recent dramatic success of the ICARUS 300-ton liquid-argon time-projection-chamber prototype [1] indicates that it is timely to review the possibilities for large-scale application of this technology for accelerator-based neutrino physics, neutrino astrophysics, and proton decay [2, 4, 3, 5]. A full exploration of the MNS neutrino mixing matrix (and extensions if sterile neutrinos exist) should be possible if the large mixing angle MSW solution to the solar neutrino problem, presently favored by the data [6], is confirmed by future measurements. A large detector for this purpose should be able to distinguish the charge of the lepton into which the neutrino converts, for which the detector should be immersed in a magnetic field. The most promising option for a large detector that can distinguish the charge of an electron is magnetized liquid argon [7, 8]. However, all studies to date of liquid argon detectors suitable for neutrino physics [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have been in zero magnetic field. We propose to study two key issues with a liquid argon detector of size 0.7× 0.7× 3.0 m, sufficient to contain an electromagnetic shower, placed in a 120D36 magnet in the AGS A3 beamline:
DOI: 10.1016/j.physletb.2004.06.007
2004
Cited 4 times
Gauge &amp; Higgs boson summary table
DOI: 10.48550/arxiv.1812.08650
2018
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data
The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of $\Delta m^2_{32}$ and $\theta_{23}$ has been performed - which is consistent with world best-fit values - and constraints on the 3+1 neutrino model have been derived.
DOI: 10.1016/j.physletb.2008.07.018,
2008
Review of Particle Physics, 2008-2009
2021
Search for long-lived particles produced in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for long-lived particles (LLPs) produced in association with a Z boson is presented. The study is performed using data from proton-proton collisions with a center-of-mass energy of 13 TeV recorded by the CMS experiment during 2016-2018, corresponding to an integrated luminosity of 117 fb$^{-1}$. The LLPs are assumed to decay to a pair of standard model quarks that are identified as displaced jets within the CMS tracker system. Triggers and selections based on Z boson decays to electron or muon pairs improve the sensitivity to light LLPs (down to 15 GeV). This search provides sensitivity to beyond the standard model scenarios which predict LLPs produced in association with a Z boson. In particular, the results are interpreted in the context of exotic decays of the Higgs boson to a pair of scalar LLPs (H $\to$ SS). The Higgs boson decay branching fraction is constrained to values less than 6% for proper decay lengths of 10-100 mm and for LLP masses between 40 and 55 GeV. In the case of low-mass ($\approx$15 GeV) scalar particles that subsequently decay to a pair of b quarks, the search is sensitive to branching fractions $\mathcal{B}$(H $\to$ SS) $\lt$ 20% for proper decay lengths of 10-50 mm. The use of associated production with a Z boson increases the sensitivity to low-mass LLPs of this analysis with respect to gluon fusion searches. In the case of 15 GeV scalar LLPs, the improvement corresponds to a factor of 2 at a proper decay length of 30 mm.
2021
Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV
A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13\TeV is presented. The transverse momenta of jets within $\lvert\eta\rvert \lt$ 4.7 reach down to 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.
2002
Cited 4 times
The ICARUS experiment: A second-generation proton decay experiment and neutrino observatory at the Gran Sasso laboratory. Cloning of T600 modules to reach the design sensitive mass
2019
Study of J/$\psi$ meson production from jet fragmentation in pp collisions at $\sqrt{s} =$ 8 TeV
2021
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s} = $ 13 TeV
1997
ANTARES Proposal: Towards a Large Scale High Energy Cosmic Neutrino - undersea detector
The ANTARES collaboration propose to observe high energy cosmic neutrinos using a deep sea Cherenkov detector. The sky survey with high energy neutrinos is complementary to the observations with photons and will shed a new light on the understanding of the origin of cosmics rays. We propose to explore the possibility of a km-scale detector to be installed in a deep site in the Mediterranean sea, for which a broad collaboration will be needed. With the help of collaborators and partners which have experience in sea science engineering (COM, CSTN, CTME, IFREMER, France Telecom Câbles, INSU-CNRS...) we will test the sea engineering part of a detector including test deployments close to the Toulon coast (France) where technical support is available and where several sites at depths down to 2500~m are easily accessible. We propose to build and install a demonstrator (a fully equipped 3-dimensional test array) the design of which can be extended to a km-scale detector. During the same time, autonomous systems allowing to measure undersea optical parameters in view of the selection of a site for the future km-scale detector will be realized.
2015
Status of the Silicon Photomultiplier Telescope FAMOUS for the Fluorescence Detection of UHECRs
An established technique for the measurement of ultra-high-energy-cosmic-rays is the detection of the fluorescence light induced in the atmosphere of the Earth, by means of telescopes equipped with photomultiplier tubes. Silicon photomultipliers (SiPMs) promise an increase in the photon detection efficiency which outperforms conventional photomultiplier tubes. In combination with their compact package, a moderate bias voltage of several ten volt and single photon resolution, the use of SiPMs can improve the energy and spatial resolution of air fluorescence measurements, and lead to a gain in information on the primary particle. Though, drawbacks like a high dark-noise-rate and a strong temperature dependency have to be managed. FAMOUS is a refracting telescope prototype instrumented with 64 SiPMs of which the main optical element is a Fresnel lens of 549.7 mm diameter and 502.1 mm focal length. The sensitive area of the SiPMs is increased by a special light collection system consisting of Winston cones. The total field of view of the telescope is approximately 12 $^\circ$. The frontend electronics automatically compensates for the temperature dependency of the SiPMs and will provide trigger information for the readout. Already for this prototype, the Geant4 detector simulation indicates full detection efficiency of extensive air showers of $E=10^{18}\,\text{eV}$ up to a distance of 6 km. We present the first working version of FAMOUS with a focal plane prototype providing seven active pixels.
DOI: 10.2118/177671-ms
2015
GPS Aided Oil Spill Tracking and Mapping System: Application to Offshore Petroleum Industry
Abstract There are varied types and severity of marine oil spills. Authors focus on the oil spills that are results of a blowout especially in the offshore petroleum industry. Blowouts are considered as nightmare situation for oilfield workers and oil blowouts from offshore rigs are horrible disasters causing loss of human lives, oil spills causing damage to marine life and environment besides huge economics impacts. Precise information about time course or the extent of oil spill is crucial for fast and effective response. This paper describes the result of a work carried out by the authors to design and develop an autonomous offshore oil spill system that is robust, financially affordable and suitable for day and night operations. Authors propose an arrangement of anchored and floating buoys fitted with GPS (Global Posistioning System) as described in this paper for real time tracking and mapping of an oil spill. Experiments and computer simulations have been conducted to test the efficiency and working methodology of the proposed system.
2016
Flavor Oscillations of High-Energy Neutrinos
2015
Status of the Silicon Photomultiplier Telescope FAMOUS for the Fluorescence Detection of UHECRs
An established technique for the measurement of ultra-high-energy-cosmic-rays is the detection of the fluorescence light induced in the atmosphere of the Earth, by means of telescopes equipped with photomultiplier tubes. Silicon photomultipliers (SiPMs) promise an increase in the photon detection efficiency which outperforms conventional photomultiplier tubes. In combination with their compact package, a moderate bias voltage of several ten volt and single photon resolution, the use of SiPMs can improve the energy and spatial resolution of air fluorescence measurements, and lead to a gain in information on the primary particle. Though, drawbacks like a high dark-noise-rate and a strong temperature dependency have to be managed. FAMOUS is a refracting telescope prototype instrumented with 64 SiPMs of which the main optical element is a Fresnel lens of 549:7 mm diameter and 502:1 mm focal length. The sensitive area of the SiPMs is increased by a special light collection system consisting of Winston cones. The total field of view of the telescope is approximately 12 . The frontend electronics automatically compensates for the temperature dependency of the SiPMs and will provide trigger information for the readout. Already for this prototype, the Geant4 detector simulation indicates full detection efficiency of extensive air showers of E = 10 18 eV up to a distance of 6 km. We present the first working version of FAMOUS with a focal plane prototype providing seven active pixels.
DOI: 10.48550/arxiv.1502.00792
2015
Status of the Silicon Photomultiplier Telescope FAMOUS for the Fluorescence Detection of UHECRs
An established technique for the measurement of ultra-high-energy-cosmic-rays is the detection of the fluorescence light induced in the atmosphere of the Earth, by means of telescopes equipped with photomultiplier tubes. Silicon photomultipliers (SiPMs) promise an increase in the photon detection efficiency which outperforms conventional photomultiplier tubes. In combination with their compact package, a moderate bias voltage of several ten volt and single photon resolution, the use of SiPMs can improve the energy and spatial resolution of air fluorescence measurements, and lead to a gain in information on the primary particle. Though, drawbacks like a high dark-noise-rate and a strong temperature dependency have to be managed. FAMOUS is a refracting telescope prototype instrumented with 64 SiPMs of which the main optical element is a Fresnel lens of 549.7 mm diameter and 502.1 mm focal length. The sensitive area of the SiPMs is increased by a special light collection system consisting of Winston cones. The total field of view of the telescope is approximately 12 $^\circ$. The frontend electronics automatically compensates for the temperature dependency of the SiPMs and will provide trigger information for the readout. Already for this prototype, the Geant4 detector simulation indicates full detection efficiency of extensive air showers of $E=10^{18}\,\text{eV}$ up to a distance of 6 km. We present the first working version of FAMOUS with a focal plane prototype providing seven active pixels.
1996
Searches For New Physics
Review of prospects for discovery of new physics signals at LEP2. The areas covered include SUSY, exotic fermions, BESS models, leptoquarks, virtual effects and CP violating observables.
2011
Search for ultra-high energy neutrinos with the Pierre Auger Observatory and other experiments
2002
Neutrino oscillation experiments for precise measurements of oscillation parameters and search for muon-neutrino ---> electron-neutrino appearance and CP violation: Letter of intent to Brookhaven National Laboratory
DOI: 10.48550/arxiv.1708.03649
2017
An algorithm for the reconstruction of neutrino-induced showers in the ANTARES neutrino telescope
Muons created by $\nu_\mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about \unit{0.4}{\degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $\nu_\tau$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about \unit{1}{\metre}, the neutrino direction is reconstructed with a median angular resolution between \unit{2}{\degree} and \unit{3}{\degree} in the energy range of \SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about \SIrange{5}{10}{\%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
DOI: 10.48550/arxiv.1711.01251
2017
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboration
DOI: 10.48550/arxiv.1711.01496
2017
The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration
Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboration
DOI: 10.1142/9789812814357_0010
2008
DARK MATTER SEARCH WITH NOBLE LIQUIDS: THE ARDM EXPERIMENT
1997
Towards a large scale high-energy cosmic neutrino undersea detector
2019
Search for resonances decaying to a pair of Higgs bosons in the $\mathrm{b\bar{b}}\mathrm{q\bar{q}}'\ell\nu$ final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV
2019
Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data
The main goal of the ANTARES neutrino telescope is the identification of neutrinos from cosmic accelerators. The good visibility towards the Southern sky for neutrino energies below 100 TeV and the good angular resolution for reconstructed events make the telescope excellent to test for the presence of point-like sources, especially of Galactic origin. The median angular resolution for track-like events (mainly from $\nu_{\mu}$ CC interactions) is $0.4^{\circ}$ while the median angular resolution for contained shower-like events (mainly from $\nu_{e}$ CC and all-flavour NC interactions) is $3^{\circ}$. Recently the ANTARES Collaboration published the result of the search for cosmic point-like neutrino sources using track-like and shower-like events collected during nine years of data taking. In this contribution, an update to this analysis using eleven years of data recorded between early 2007 and the end of 2017, for a total livetime of 3136 days, is presented. Moreover, the results of a search for time and space correlation between the ANTARES events and 54 IceCube tracks and those of the searches for neutrino candidates associated with the IceCube-170922A event or from the direction of the TXS 0506+056 blazar are reported.
2020
Search for strong electric fields in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV using azimuthal anisotropy of prompt $\mathrm{D}^0$ and $\overline{\mathrm{D}}^0$ mesons
The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference ($\Delta v_2$) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, $v_2$) between $\mathrm{D}^0$ ($\mathrm{\bar{u}c}$) and $\overline{\mathrm{D}}^0$ ($\mathrm{u\bar{c}}$) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of $\Delta v_2$. The rapidity-averaged value is found to be $\langle\Delta v_2 \rangle =$ 0.001 $\pm$ 0.001 (stat) $\pm$ 0.003 (syst) in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the $\mathrm{D}^0$ and $\overline{\mathrm{D}}^0$ mesons $v_2$ and triangular flow coefficient ($v_3$) as functions of rapidity, transverse momentum ($p_\mathrm{T}$), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt $\mathrm{D}^0$ meson $v_2$ values is observed, while the $v_3$ is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.
2020
Measurement of the $\Upsilon(\text{1S}) $ pair production cross section and search for resonances decaying to $\Upsilon(\text{1S}) \mu^{+}\mu^{-}$ in proton-proton collisions at $\sqrt{s} = $ 13 TeV
DOI: 10.18154/rwth-2021-05460
2020
Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV
2019
Multiparticle correlation studies in pPb collisions at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ = 8.16 TeV
DOI: 10.3204/pubdb-2020-02623
2020
Measurement of the CP-violating phase ${\phi_{\mathrm{s}}}$ in the ${\mathrm{B^{0}_{s}}\to\mathrm{J}/\psi\,\phi(1020) \to \mu^{+}\mu^{-}\,{\mathrm{K^{+}}\mathrm{K^{-}}} } $ channel in proton-proton collisions at $\sqrt{s} = $ 13 TeV
DOI: 10.26226/morressier.5cf632c3af72dec2b0554a81
2019
Emotional expressions recognition in dual diagnosed patients
DOI: 10.26226/morressier.5cf632c2af72dec2b0554976
2019
Emotion Recognition in drug abusers patients: Impact of the main drug use
DOI: 10.48550/arxiv.1908.08248
2019
Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data
The main goal of the ANTARES neutrino telescope is the identification of neutrinos from cosmic accelerators. The good visibility towards the Southern sky for neutrino energies below 100 TeV and the good angular resolution for reconstructed events make the telescope excellent to test for the presence of point-like sources, especially of Galactic origin. The median angular resolution for track-like events (mainly from $\nu_{\mu}$ CC interactions) is $0.4^{\circ}$ while the median angular resolution for contained shower-like events (mainly from $\nu_{e}$ CC and all-flavour NC interactions) is $3^{\circ}$. Recently the ANTARES Collaboration published the result of the search for cosmic point-like neutrino sources using track-like and shower-like events collected during nine years of data taking. In this contribution, an update to this analysis using eleven years of data recorded between early 2007 and the end of 2017, for a total livetime of 3136 days, is presented. Moreover, the results of a search for time and space correlation between the ANTARES events and 54 IceCube tracks and those of the searches for neutrino candidates associated with the IceCube-170922A event or from the direction of the TXS 0506+056 blazar are reported.
DOI: 10.5170/cern-1996-001-v-1.463
1996
Searches for New Physics
Review of prospects for discovery of new physics signals at LEP2. The areas covered include SUSY, exotic fermions, BESS models, leptoquarks, virtual effects and CP violating observables.
2021
Search for neutrino non-standard interactions with ANTARES and KM3NeT-ORCA
Non-standard interactions (NSIs) in the propagation of neutrinos in matter can lead to significant deviations in neutrino oscillations expected within the standard 3-neutrino framework. These additional interactions would result in an anomalous flux of neutrinos observable at neutrino telescopes. The ANTARES detector and its next-generation successor, KM3NeT, located in the abyss of the Mediterranean Sea, have the potential to measure sub-dominant effects in neutrino oscillations, coming from non-standard neutrino interactions. In this contribution, a likelihood-based search for NSIs with 10 years of atmospheric muon-neutrino data recorded with ANTARES is reported and sensitivity projections for KM3NeT/ORCA, based on realistic detector simulations, are shown. The bounds obtained with ANTARES in the NSI $\mu - \tau$ sector constitute the most stringent limits up to date.
2021
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV
A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016.Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13$^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952$^{+0.0079}_{-0.0104}$ and 0.83$^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.
2021
Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV
Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.
2021
Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at $\sqrt{s}$ = 13 TeV
The associated production of a W and a Z boson is studied in final states with multiple leptons produced in proton-proton (pp) collisions at a centre-of-mass energy of 13 TeV using 137 fb$^{-1}$ of data collected with the CMS detector at the LHC. A measurement of the total inclusive production cross section yields $\sigma_{\text{tot}}$(pp $\to$ WZ) = 50.6 $\pm$ 0.8 (stat) $\pm$ 1.5 (syst) $\pm$ 1.1 (lum) $\pm$ 0.5 (thy) pb. Measurements of the fiducial and differential cross sections for several key observables are also performed in all the final-state lepton flavour and charge compositions with a total of three charged leptons, which can be electrons or muons. All results are compared with theoretical predictions computed up to next-to-next-to-leading order in quantum chromodynamics plus next-to-leading order in electroweak theory and for various sets of parton distribution functions. The results include direct measurements of the charge asymmetry and the W and Z vector boson polarization. The first observation of longitudinally polarized W bosons in WZ production is reported. Anomalous gauge couplings are searched for, leading to new constraints on beyond-the-standard-model contributions to the WZ triple gauge coupling.
2021
Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.
2021
Search for heavy resonances decaying to Z($ \nu\bar{\nu} $)V($ \mathrm{q}\mathrm{\bar{q}}' $) in proton-proton collisions at $\sqrt{s} = $ 13 TeV
2021
Observation of $\mathrm{B^{0}_{s}}$ mesons and measurement of the $\mathrm{B^{0}_{s}}/\mathrm{B^{+}}$ yield ratio in PbPb collisions at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV
2021
High precision measurements of Z boson production in PbPb collisions at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV
The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.
2021
Measurements of the ${\mathrm{p}}{\mathrm{p}}\to\mathrm{W^{\pm}}\gamma\gamma$ and ${\mathrm{p}}{\mathrm{p}}\to\mathrm{Z}\gamma\gamma$ cross sections at $\sqrt s = $ 13 TeV and limits on anomalous quartic gauge couplings
2021
Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV
Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.
2021
Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the $\tau\tau\mathrm{b}\mathrm{b}$ final state at 13 TeV
2021
Evidence for X(3872) in PbPb collisions and studies of its prompt production at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV
2002
Letter of Intent: Neutrino Physics with Detectors at Baselines of 100 - 1000 km from BNL
M.V. Diwan, R.C. Fernow, H.G. Kirk, S.A. Kahn, Z. Parsa, B. Viren Brookhaven National Laboratory, Upton, NY 11973 USA D.B. Cline, K. Lee, B. Lisowski, P.F. Smith Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA R.F. Burkart, W. Burgett, E.J. Feynves Department of Physics, University of Texas at Dallas, Richardson, TX 75083 USA A. Badertscher, A. Bueno, L. Knecht, G. Natterer, S. Navas, A. Rubbia Institut fr Teilchenphysik, ETHZ, CH-8093 Zurich, Switzerland J.G. Learned Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 USA V. Palladino Universita di Napoli “Federico II”, 80138 Napoli, Italy I. Mocioiu, R. Shrock C.N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11974 USA C. Cerri, F. Sergiampietri INFN-Sezione di Pisa, 56010 S. Piero a Grado PI, Italy C. Lu, K.T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 USA
1996
Searches for new physics
1996
SUSY searches at LEP1.5