ϟ

Russell T. Shinohara

Here are all the papers by Russell T. Shinohara that you can download and read on OA.mg.
Russell T. Shinohara’s last known institution is . Download Russell T. Shinohara PDFs here.

Claim this Profile →
DOI: 10.1016/j.neuroimage.2017.03.020
2017
Cited 847 times
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
Since initial reports regarding the impact of motion artifact on measures of functional connectivity, there has been a proliferation of participant-level confound regression methods to limit its impact. However, many of the most commonly used techniques have not been systematically evaluated using a broad range of outcome measures. Here, we provide a systematic evaluation of 14 participant-level confound regression methods in 393 youths. Specifically, we compare methods according to four benchmarks, including the residual relationship between motion and connectivity, distance-dependent effects of motion on connectivity, network identifiability, and additional degrees of freedom lost in confound regression. Our results delineate two clear trade-offs among methods. First, methods that include global signal regression minimize the relationship between connectivity and motion, but result in distance-dependent artifact. In contrast, censoring methods mitigate both motion artifact and distance-dependence, but use additional degrees of freedom. Importantly, less effective de-noising methods are also unable to identify modular network structure in the connectome. Taken together, these results emphasize the heterogeneous efficacy of existing methods, and suggest that different confound regression strategies may be appropriate in the context of specific scientific goals.
DOI: 10.1016/j.neuroimage.2017.11.024
2018
Cited 834 times
Harmonization of cortical thickness measurements across scanners and sites
With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-biological variance introduced by differences in MRI scanners and acquisition protocols. Such unwanted sources of variation, which we refer to as “scanner effects”, can hinder the detection of imaging features associated with clinical covariates of interest and cause spurious findings. In this paper, we investigate scanner effects in two large multi-site studies on cortical thickness measurements across a total of 11 scanners. We propose a set of tools for visualizing and identifying scanner effects that are generalizable to other modalities. We then propose to use ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor imaging data, to combine and harmonize cortical thickness values across scanners. We show that ComBat removes unwanted sources of scan variability while simultaneously increasing the power and reproducibility of subsequent statistical analyses. We also show that ComBat is useful for combining imaging data with the goal of studying life-span trajectories in the brain.
DOI: 10.1016/j.neuroimage.2017.08.047
2017
Cited 752 times
Harmonization of multi-site diffusion tensor imaging data
Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique used for studying microstructural changes in the white matter. As with many other imaging modalities, DTI images suffer from technical between-scanner variation that hinders comparisons of images across imaging sites, scanners and over time. Using fractional anisotropy (FA) and mean diffusivity (MD) maps of 205 healthy participants acquired on two different scanners, we show that the DTI measurements are highly site-specific, highlighting the need of correcting for site effects before performing downstream statistical analyses. We first show evidence that combining DTI data from multiple sites, without harmonization, may be counter-productive and negatively impacts the inference. Then, we propose and compare several harmonization approaches for DTI data, and show that ComBat, a popular batch-effect correction tool used in genomics, performs best at modeling and removing the unwanted inter-site variability in FA and MD maps. Using age as a biological phenotype of interest, we show that ComBat both preserves biological variability and removes the unwanted variation introduced by site. Finally, we assess the different harmonization methods in the presence of different levels of confounding between site and age, in addition to test robustness to small sample size studies.
DOI: 10.1016/j.neuroimage.2018.05.070
2018
Cited 442 times
On testing for spatial correspondence between maps of human brain structure and function
A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, it remains unclear how one should test hypotheses focused on the overlap or spatial correspondence between two or more brain maps. This “correspondence problem” affects, for example, the interpretation of comparisons between task-based patterns of functional activation, resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been addressed with remarkable variability in terms of methodological approaches and statistical rigor. In this paper, we address the correspondence problem using a spatial permutation framework to generate null models of overlap by applying random rotations to spherical representations of the cortical surface, an approach for which we also provide a theoretical statistical foundation. We use this method to derive clusters of cognitive functions that are correlated in terms of their functional neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the correspondence between maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical landmarks. We provide open-access code to implement the methods presented for two commonly-used tools for surface based cortical analysis (https://www.github.com/spin-test). This spatial permutation approach constitutes a useful advance over widely-used methods for the comparison of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging data.
DOI: 10.1038/s41593-020-0658-y
2020
Cited 362 times
The extent and drivers of gender imbalance in neuroscience reference lists
Like many scientific disciplines, neuroscience has increasingly attempted to confront pervasive gender imbalances within the field. While much of the conversation has centered around publishing and conference participation, recent research in other fields has called attention to the prevalence of gender bias in citation practices. Because of the downstream effects that citations can have on visibility and career advancement, understanding and eliminating gender bias in citation practices is vital for addressing inequity in a scientific community. In this study, we sought to determine whether there is evidence of gender bias in the citation practices of neuroscientists. Using data from five top neuroscience journals, we find that reference lists tend to include more papers with men as first and last author than would be expected if gender were not a factor in referencing. Importantly, we show that this overcitation of men and undercitation of women is driven largely by the citation practices of men, and is increasing over time as the field becomes more diverse. We develop a co-authorship network to assess homophily in researchers' social networks, and we find that men tend to overcite men even when their social networks are representative. We discuss possible mechanisms and consider how individual researchers might address these findings in their own practices.
DOI: 10.1038/s41467-018-05317-y
2018
Cited 325 times
Linked dimensions of psychopathology and connectivity in functional brain networks
Neurobiological abnormalities associated with psychiatric disorders do not map well to existing diagnostic categories. High co-morbidity suggests dimensional circuit-level abnormalities that cross diagnoses. Here we seek to identify brain-based dimensions of psychopathology using sparse canonical correlation analysis in a sample of 663 youths. This analysis reveals correlated patterns of functional connectivity and psychiatric symptoms. We find that four dimensions of psychopathology - mood, psychosis, fear, and externalizing behavior - are associated (r = 0.68-0.71) with distinct patterns of connectivity. Loss of network segregation between the default mode network and executive networks emerges as a common feature across all dimensions. Connectivity linked to mood and psychosis becomes more prominent with development, and sex differences are present for connectivity related to mood and fear. Critically, findings largely replicate in an independent dataset (n = 336). These results delineate connectivity-guided dimensions of psychopathology that cross clinical diagnostic categories, which could serve as a foundation for developing network-based biomarkers in psychiatry.
DOI: 10.1016/j.cub.2017.04.051
2017
Cited 319 times
Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth
The human brain is organized into large-scale functional modules that have been shown to evolve in childhood and adolescence. However, it remains unknown whether the underlying white matter architecture is similarly refined during development, potentially allowing for improvements in executive function. In a sample of 882 participants (ages 8-22) who underwent diffusion imaging as part of the Philadelphia Neurodevelopmental Cohort, we demonstrate that structural network modules become more segregated with age, with weaker connections between modules and stronger connections within modules. Evolving modular topology facilitates global network efficiency and is driven by age-related strengthening of hub edges present both within and between modules. Critically, both modular segregation and network efficiency are associated with enhanced executive performance and mediate the improvement of executive functioning with age. Together, results delineate a process of structural network maturation that supports executive function in youth.
DOI: 10.1073/pnas.1912034117
2019
Cited 319 times
Development of structure–function coupling in human brain networks during youth
The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure–function coupling using diffusion-weighted imaging and n -back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure–function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure–function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data ( n = 294). Moreover, structure–function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.
DOI: 10.1038/s41592-021-01255-8
2021
Cited 319 times
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
DOI: 10.1002/hbm.24241
2018
Cited 317 times
Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data
Abstract Acquiring resting‐state functional magnetic resonance imaging (fMRI) datasets at multiple MRI scanners and clinical sites can improve statistical power and generalizability of results. However, multi‐site neuroimaging studies have reported considerable nonbiological variability in fMRI measurements due to different scanner manufacturers and acquisition protocols. These undesirable sources of variability may limit power to detect effects of interest and may even result in erroneous findings. Until now, there has not been an approach that removes unwanted site effects. In this study, using a relatively large multi‐site (4 sites) fMRI dataset, we investigated the impact of site effects on functional connectivity and network measures estimated by widely used connectivity metrics and brain parcellations. The protocols and image acquisition of the dataset used in this study had been homogenized using identical MRI phantom acquisitions from each of the neuroimaging sites; however, intersite acquisition effects were not completely eliminated. Indeed, in this study, we found that the magnitude of site effects depended on the choice of connectivity metric and brain atlas. Therefore, to further remove site effects, we applied ComBat, a harmonization technique previously shown to eliminate site effects in multi‐site diffusion tensor imaging (DTI) and cortical thickness studies. In the current work, ComBat successfully removed site effects identified in connectivity and network measures and increased the power to detect age associations when using optimal combinations of connectivity metrics and brain atlases. Our proposed ComBat harmonization approach for fMRI‐derived connectivity measures facilitates reliable and efficient analysis of retrospective and prospective multi‐site fMRI neuroimaging studies.
DOI: 10.1016/j.nicl.2014.08.008
2014
Cited 305 times
Statistical normalization techniques for magnetic resonance imaging
While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.
DOI: 10.1016/j.neuroimage.2017.12.059
2018
Cited 302 times
Quantitative assessment of structural image quality
Data quality is increasingly recognized as one of the most important confounding factors in brain imaging research. It is particularly important for studies of brain development, where age is systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of structural neuroimaging measures. However, objective measures of data quality are not available for most structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted volumes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-weighted volumes. These images included a training set of 1065 images from Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be used to identify images scored “unusable” by human raters with a high degree of accuracy (AUC: 0.98–0.99), and out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically bias the results of studies of brain maturation.
DOI: 10.1038/nrneurol.2016.166
2016
Cited 281 times
The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative
The central vein sign (CVS) has been proposed as a novel MRI biomarker to improve the accuracy and speed of multiple sclerosis (MS) diagnosis. This Consensus Statement from the NAIMS Cooperative provides a roadmap to help radiologists and neurologists to better understand, refine, standardize and evaluate the CVS in the diagnosis of MS. Over the past few years, MRI has become an indispensable tool for diagnosing multiple sclerosis (MS). However, the current MRI criteria for MS diagnosis have imperfect sensitivity and specificity. The central vein sign (CVS) has recently been proposed as a novel MRI biomarker to improve the accuracy and speed of MS diagnosis. Evidence indicates that the presence of the CVS in individual lesions can accurately differentiate MS from other diseases that mimic this condition. However, the predictive value of the CVS for the development of clinical MS in patients with suspected demyelinating disease is still unknown. Moreover, the lack of standardization for the definition and imaging of the CVS currently limits its clinical implementation and validation. On the basis of a thorough review of the existing literature on the CVS and the consensus opinion of the members of the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative, this article provides statements and recommendations aimed at helping radiologists and neurologists to better understand, refine, standardize and evaluate the CVS in the diagnosis of MS.
DOI: 10.1016/j.neuroimage.2019.116450
2020
Cited 264 times
Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3-96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
DOI: 10.1158/1078-0432.ccr-16-0702
2016
Cited 226 times
Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response
Abstract Purpose: Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of radiomics, an emerging field of research that aims to utilize the full potential of medical imaging. Experimental Design: A total of 4,842 quantitative MRI features were automatically extracted and analyzed from the multiparametric tumor of 172 patients (allocated to a discovery and validation set with a 2:1 ratio) with recurrent glioblastoma prior to bevacizumab treatment. Leveraging a high-throughput approach, radiomic features of patients in the discovery set were subjected to a supervised principal component (superpc) analysis to generate a prediction model for stratifying treatment outcome to antiangiogenic therapy by means of both progression-free and overall survival (PFS and OS). Results: The superpc predictor stratified patients in the discovery set into a low or high risk group for PFS (HR = 1.60; P = 0.017) and OS (HR = 2.14; P < 0.001) and was successfully validated for patients in the validation set (HR = 1.85, P = 0.030 for PFS; HR = 2.60, P = 0.001 for OS). Conclusions: Our radiomic-based superpc signature emerges as a putative imaging biomarker for the identification of patients who may derive the most benefit from antiangiogenic therapy, advances the knowledge in the noninvasive characterization of brain tumors, and stresses the role of radiomics as a novel tool for improving decision support in cancer treatment at low cost. Clin Cancer Res; 22(23); 5765–71. ©2016 AACR.
DOI: 10.1126/science.aar2578
2018
Cited 205 times
Normative brain size variation and brain shape diversity in humans
Shifts in brain regions with brain size Brain size among normal humans varies as much as twofold. Reardon et al. surveyed the cortical and subcortical structure of more than 3000 human brains by noninvasive imaging (see the Perspective by Van Essen). They found that the scaling of different regions across the range of brain sizes is not consistent: Some brain regions are metabolically costly and are favored in larger brains. This shifts the balance between associative and sensorimotor brain systems in a brain size–dependent way. Science , this issue p. 1222 ; see also p. 1184
DOI: 10.1176/appi.ajp.2015.15060725
2016
Cited 199 times
Common and Dissociable Mechanisms of Executive System Dysfunction Across Psychiatric Disorders in Youth
Disruption of executive function is present in many neuropsychiatric disorders. However, determining the specificity of executive dysfunction across these disorders is challenging given high comorbidity of conditions. Here the authors investigate executive system deficits in association with dimensions of psychiatric symptoms in youth using a working memory paradigm. The authors hypothesize that common and dissociable patterns of dysfunction would be present.The authors studied 1,129 youths who completed a fractal n-back task during functional magnetic resonance imaging at 3-T as part of the Philadelphia Neurodevelopmental Cohort. Factor scores of clinical psychopathology were calculated using an item-wise confirmatory bifactor model, describing overall psychopathology as well as four orthogonal dimensions of symptoms: anxious-misery (mood and anxiety), behavioral disturbance (attention deficit hyperactivity disorder and conduct disorder), psychosis-spectrum symptoms, and fear (phobias). The effect of psychopathology dimensions on behavioral performance and executive system recruitment (2-back > 0-back) was examined using both multivariate (matrix regression) and mass-univariate (linear regression) analyses.Overall psychopathology was associated with both abnormal multivariate patterns of activation and a failure to activate executive regions within the cingulo-opercular control network, including the frontal pole, cingulate cortex, and anterior insula. In addition, psychosis-spectrum symptoms were associated with hypoactivation of the left dorsolateral prefrontal cortex, whereas behavioral symptoms were associated with hypoactivation of the frontoparietal cortex and cerebellum. In contrast, anxious-misery symptoms were associated with widespread hyperactivation of the executive network.These findings provide novel evidence that common and dissociable deficits within the brain's executive system are present in association with dimensions of psychopathology in youth.
DOI: 10.1093/brain/awaa025
2020
Cited 176 times
Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning
Abstract Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = −0.201, P = 0.016) but not in Subtype 2 (r = −0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = −1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = −0.167, df = 277, P = 0.868), antipsychotic dose (t = −0.439, df = 210, P = 0.521), age of illness onset (t = −1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.
DOI: 10.1073/pnas.1400178111
2014
Cited 174 times
Impact of puberty on the evolution of cerebral perfusion during adolescence
Puberty is the defining biological process of adolescent development, yet its effects on fundamental properties of brain physiology such as cerebral blood flow (CBF) have never been investigated. Capitalizing on a sample of 922 youths ages 8-22 y imaged using arterial spin labeled MRI as part of the Philadelphia Neurodevelopmental Cohort, we studied normative developmental differences in cerebral perfusion in males and females, as well as specific associations between puberty and CBF. Males and females had conspicuously divergent nonlinear trajectories in CBF evolution with development as modeled by penalized splines. Seventeen brain regions, including hubs of the executive and default mode networks, showed a robust nonlinear age-by-sex interaction that surpassed Bonferroni correction. Notably, within these regions the decline in CBF was similar between males and females in early puberty and only diverged in midpuberty, with CBF actually increasing in females. Taken together, these results delineate sex-specific growth curves for CBF during youth and for the first time to our knowledge link such differential patterns of development to the effects of puberty.
DOI: 10.1093/neuonc/nox188
2017
Cited 173 times
Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma
BackgroundThe purpose of this study was to analyze the potential of radiomics for disease stratification beyond key molecular, clinical, and standard imaging features in patients with glioblastoma.
DOI: 10.1016/j.neuron.2020.01.029
2020
Cited 170 times
Individual Variation in Functional Topography of Association Networks in Youth
The spatial distribution of large-scale functional networks on the cerebral cortex differs between individuals and is particularly variable in association networks that are responsible for higher-order cognition. However, it remains unknown how this functional topography evolves in development and supports cognition. Capitalizing on advances in machine learning and a large sample imaged with 27 min of high-quality functional MRI (fMRI) data (n = 693, ages 8-23 years), we delineate how functional topography evolves during youth. We found that the functional topography of association networks is refined with age, allowing accurate prediction of unseen individuals' brain maturity. The cortical representation of association networks predicts individual differences in executive function. Finally, variability of functional topography is associated with fundamental properties of brain organization, including evolutionary expansion, cortical myelination, and cerebral blood flow. Our results emphasize the importance of considering the plasticity and diversity of functional neuroanatomy during development and suggest advances in personalized therapeutics.
DOI: 10.1001/jamapsychiatry.2019.0943
2019
Cited 167 times
Burden of Environmental Adversity Associated With Psychopathology, Maturation, and Brain Behavior Parameters in Youths
<h3>Importance</h3> Low socioeconomic status (L-SES) and the experience of traumatic stressful events (TSEs) are environmental factors implicated in behavioral deficits, abnormalities in brain development, and accelerated maturation. However, the relative contribution of these environmental factors is understudied. <h3>Objective</h3> To compare the association of L-SES and TSEs with psychopathology, puberty, neurocognition, and multimodal neuroimaging parameters in brain maturation. <h3>Design, Setting, and Participants</h3> The Philadelphia Neurodevelopmental Cohort is a community-based study examining psychopathology, neurocognition, and neuroimaging among participants recruited through the Children’s Hospital of Philadelphia pediatric network. Participants are youths aged 8 to 21 years at enrollment with stable health and fluency in English. The sample of 9498 participants was racially (5298 European ancestry [55.8%], 3124 African ancestry [32.9%], and 1076 other [11.4%]) and economically diverse. A randomly selected subsample (n = 1601) underwent multimodal neuroimaging. Data were collected from November 5, 2009, through December 30, 2011, and analyzed from February 1 through November 7, 2018. <h3>Main Outcomes and Measures</h3> The following domains were examined: (1) clinical, including psychopathology, assessed with a structured interview based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children, and puberty, assessed with the Tanner scale; (2) neurocognition, assessed by the Penn Computerized Neurocognitive Battery; and (3) multimodal magnetic resonance imaging parameters of brain structure and function. <h3>Results</h3> A total of 9498 participants were included in the analysis (4906 [51.7%] female; mean [SD] age, 14.2 [3.7] years). Clinically, L-SES and TSEs were associated with greater severity of psychiatric symptoms across the psychopathology domains of anxiety/depression, fear, externalizing behavior, and the psychosis spectrum. Low SES showed small effect sizes (highest for externalizing behavior, 0.306 SD; 95% CI, 0.269 to 0.342), whereas TSEs had large effect sizes, with the highest in females for anxiety/depression (1.228 SD; 95% CI, 1.156 to 1.300) and in males for the psychosis spectrum (1.099 SD; 95% CI, 1.032 to 1.166). Both were associated with early puberty. Cognitively, L-SES had moderate effect sizes on poorer performance, the greatest being on complex cognition (−0.500 SD 95% CI, −0.536 to −0.464), whereas TSEs were associated with slightly better memory (0.129 SD; 95% CI, 0.084 to 0.174) and poorer complex reasoning (−0.109 SD; 95% CI, −0.154 to −0.064). Environmental factors had common and distinct associations with brain structure and function. Structurally, both were associated with lower volume, but L-SES had correspondingly lower gray matter density, whereas TSEs were associated with higher gray matter density. Functionally, both were associated with lower regional cerebral blood flow and coherence and with accelerated brain maturation. <h3>Conclusions and Relevance</h3> Low SES and TSEs are associated with common and unique differences in symptoms, neurocognition, and structural and functional brain parameters. Both environmental factors are associated with earlier completion of puberty by physical features and brain parameters. These findings appear to underscore the need for identifying and preventing adverse environmental conditions associated with neurodevelopment.
DOI: 10.1126/scitranslmed.aaa7095
2015
Cited 155 times
Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy
Noninvasive glutamate brain imaging (GluCEST) can localize seizure foci to one hemisphere in patients with temporal lobe epilepsy.
DOI: 10.1073/pnas.1900801116
2019
Cited 151 times
Childhood trauma history is linked to abnormal brain connectivity in major depression
Significance The primary finding in this study was the dramatic primary association of brain resting-state network (RSN) connectivity abnormalities with a history of childhood trauma in major depressive disorder (MDD). Even though participants in this study were not selected for a history of trauma and the brain imaging took place decades after trauma occurrence, the scar of prior trauma was evident in functional dysconnectivity. In addition to childhood trauma, dimensions of MDD symptoms were related to abnormal network connectivity. Further, we found that a network model of MDD described within- and between-network connectivity differences from controls in multiple RSNs, including the default mode network, frontoparietal network, and attention and sensory systems.
DOI: 10.1016/j.neuroimage.2020.116956
2020
Cited 137 times
Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA
A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning).
DOI: 10.48550/arxiv.2107.02314
2021
Cited 115 times
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the Radiological Society of North America (RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Computing and Computer Assisted Interventions (MICCAI) society. Since its inception, BraTS has been focusing on being a common benchmarking venue for brain glioma segmentation algorithms, with well-curated multi-institutional multi-parametric magnetic resonance imaging (mpMRI) data. Gliomas are the most common primary malignancies of the central nervous system, with varying degrees of aggressiveness and prognosis. The RSNA-ASNR-MICCAI BraTS 2021 challenge targets the evaluation of computational algorithms assessing the same tumor compartmentalization, as well as the underlying tumor's molecular characterization, in pre-operative baseline mpMRI data from 2,040 patients. Specifically, the two tasks that BraTS 2021 focuses on are: a) the segmentation of the histologically distinct brain tumor sub-regions, and b) the classification of the tumor's O[6]-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The performance evaluation of all participating algorithms in BraTS 2021 will be conducted through the Sage Bionetworks Synapse platform (Task 1) and Kaggle (Task 2), concluding in distributing to the top ranked participants monetary awards of $60,000 collectively.
DOI: 10.1038/s41598-020-64803-w
2020
Cited 104 times
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained parsing of SDI results in situations where the number of objects is unknown. We explore these ideas with two case studies showing what can be learned from our two presented studies. Our first study explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on the insights into the algorithms provided by our analysis to generate a segmentation that exhibits improved performance. This work demonstrates the wealth of information that can be learned from refined analysis of medical image segmentations.
DOI: 10.1038/s41593-023-01282-y
2023
Cited 33 times
Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth
Animal studies of neurodevelopment have shown that recordings of intrinsic cortical activity evolve from synchronized and high amplitude to sparse and low amplitude as plasticity declines and the cortex matures. Leveraging resting-state functional MRI (fMRI) data from 1,033 youths (ages 8-23 years), we find that this stereotyped refinement of intrinsic activity occurs during human development and provides evidence for a cortical gradient of neurodevelopmental change. Declines in the amplitude of intrinsic fMRI activity were initiated heterochronously across regions and were coupled to the maturation of intracortical myelin, a developmental plasticity regulator. Spatiotemporal variability in regional developmental trajectories was organized along a hierarchical, sensorimotor-association cortical axis from ages 8 to 18. The sensorimotor-association axis furthermore captured variation in associations between youths' neighborhood environments and intrinsic fMRI activity; associations suggest that the effects of environmental disadvantage on the maturing brain diverge most across this axis during midadolescence. These results uncover a hierarchical neurodevelopmental axis and offer insight into the progression of cortical plasticity in humans.
DOI: 10.1016/j.neuroimage.2023.120125
2023
Cited 29 times
Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.
DOI: 10.1176/appi.ajp.2016.16070774
2017
Cited 135 times
Common Dimensional Reward Deficits Across Mood and Psychotic Disorders: A Connectome-Wide Association Study
Anhedonia is central to multiple psychiatric disorders and causes substantial disability. A dimensional conceptualization posits that anhedonia severity is related to a transdiagnostic continuum of reward deficits in specific neural networks. Previous functional connectivity studies related to anhedonia have focused on case-control comparisons in specific disorders, using region-specific seed-based analyses. Here, the authors explore the entire functional connectome in relation to reward responsivity across a population of adults with heterogeneous psychopathology.In a sample of 225 adults from five diagnostic groups (major depressive disorder, N=32; bipolar disorder, N=50; schizophrenia, N=51; psychosis risk, N=39; and healthy control subjects, N=53), the authors conducted a connectome-wide analysis examining the relationship between a dimensional measure of reward responsivity (the reward sensitivity subscale of the Behavioral Activation Scale) and resting-state functional connectivity using multivariate distance-based matrix regression.The authors identified foci of dysconnectivity associated with reward responsivity in the nucleus accumbens, the default mode network, and the cingulo-opercular network. Follow-up analyses revealed dysconnectivity among specific large-scale functional networks and their connectivity with the nucleus accumbens. Reward deficits were associated with decreased connectivity between the nucleus accumbens and the default mode network and increased connectivity between the nucleus accumbens and the cingulo-opercular network. In addition, impaired reward responsivity was associated with default mode network hyperconnectivity and diminished connectivity between the default mode network and the cingulo-opercular network.These results emphasize the centrality of the nucleus accumbens in the pathophysiology of reward deficits and suggest that dissociable patterns of connectivity among large-scale networks are critical to the neurobiology of reward dysfunction across clinical diagnostic categories.
DOI: 10.1001/jamapsychiatry.2015.3463
2016
Cited 119 times
Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms
Structural brain abnormalities are prominent in psychotic disorders, including schizophrenia. However, it is unclear when aberrations emerge in the disease process and if such deficits are present in association with less severe psychosis spectrum (PS) symptoms in youth.To investigate the presence of structural brain abnormalities in youth with PS symptoms.The Philadelphia Neurodevelopmental Cohort is a prospectively accrued, community-based sample of 9498 youth who received a structured psychiatric evaluation. A subsample of 1601 individuals underwent neuroimaging, including structural magnetic resonance imaging, at an academic and children's hospital health care network between November 1, 2009, and November 30, 2011.Measures of brain volume derived from T1-weighted structural neuroimaging at 3 T. Analyses were conducted at global, regional, and voxelwise levels. Regional volumes were estimated with an advanced multiatlas regional segmentation procedure, and voxelwise volumetric analyses were conducted as well. Nonlinear developmental patterns were examined using penalized splines within a general additive model. Psychosis spectrum (PS) symptom severity was summarized using factor analysis and evaluated dimensionally.Following exclusions due to comorbidity and image quality assurance, the final sample included 791 participants aged youth 8 to 22 years. Fifty percent (n = 393) were female. After structured interviews, 391 participants were identified as having PS features (PS group) and 400 participants were identified as typically developing comparison individuals without significant psychopathology (TD group). Compared with the TD group, the PS group had diminished whole-brain gray matter volume (P = 1.8 × 10-10) and expanded white matter volume (P = 2.8 × 10-11). Voxelwise analyses revealed significantly lower gray matter volume in the medial temporal lobe (maximum z score = 5.2 and cluster size of 1225 for the right and maximum z score = 4.5 and cluster size of 310 for the left) as well as in frontal, temporal, and parietal cortex. Volumetric reduction in the medial temporal lobe was correlated with PS symptom severity.Structural brain abnormalities that have been commonly reported in adults with psychosis are present early in life in youth with PS symptoms and are not due to medication effects. Future longitudinal studies could use the presence of such abnormalities in conjunction with clinical presentation, cognitive profile, and genomics to predict risk and aid in stratification to guide early interventions.
DOI: 10.1016/j.neuroimage.2016.02.036
2016
Cited 109 times
Removing inter-subject technical variability in magnetic resonance imaging studies
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC = 67%), a marked improvement compared to results from intensity normalization alone (AUC = 63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities.
DOI: 10.1523/jneurosci.3628-14.2015
2015
Cited 108 times
Topologically Dissociable Patterns of Development of the Human Cerebral Cortex
Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8–21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8–14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface.
DOI: 10.1093/brain/awz303
2019
Cited 96 times
Virtual resection predicts surgical outcome for drug-resistant epilepsy
Abstract Patients with drug-resistant epilepsy often require surgery to become seizure-free. While laser ablation and implantable stimulation devices have lowered the morbidity of these procedures, seizure-free rates have not dramatically improved, particularly for patients without focal lesions. This is in part because it is often unclear where to intervene in these cases. To address this clinical need, several research groups have published methods to map epileptic networks but applying them to improve patient care remains a challenge. In this study we advance clinical translation of these methods by: (i) presenting and sharing a robust pipeline to rigorously quantify the boundaries of the resection zone and determining which intracranial EEG electrodes lie within it; (ii) validating a brain network model on a retrospective cohort of 28 patients with drug-resistant epilepsy implanted with intracranial electrodes prior to surgical resection; and (iii) sharing all neuroimaging, annotated electrophysiology, and clinical metadata to facilitate future collaboration. Our network methods accurately forecast whether patients are likely to benefit from surgical intervention based on synchronizability of intracranial EEG (area under the receiver operating characteristic curve of 0.89) and provide novel information that traditional electrographic features do not. We further report that removing synchronizing brain regions is associated with improved clinical outcome, and postulate that sparing desynchronizing regions may further be beneficial. Our findings suggest that data-driven network-based methods can identify patients likely to benefit from resective or ablative therapy, and perhaps prevent invasive interventions in those unlikely to do so.
DOI: 10.1513/annalsats.201702-178oc
2017
Cited 91 times
Tracheobronchomalacia Is Associated with Increased Morbidity in Bronchopulmonary Dysplasia
Tracheobronchomalacia is a common comorbidity in neonates with bronchopulmonary dysplasia. However, the effect of tracheobronchomalacia on the clinical course of bronchopulmonary dysplasia is not well-understood.We sought to assess the impact of tracheobronchomalacia on outcomes in neonates with bronchopulmonary dysplasia in a large, multi-center cohort.We preformed a cohort study of 974 neonates with bronchopulmonary dysplasia admitted to 27 neonatal intensive care units participating in the Children's Hospital Neonatal Database who had undergone bronchoscopy. In hospital morbidity for neonates with bronchopulmonary dysplasia and tracheobronchomalacia (N=353, 36.2%) was compared to those without tracheobronchomalacia (N=621, 63.8%) using mixed-effects multivariate regression.Neonates with tracheobronchomalacia and bronchopulmonary dysplasia had more comorbidities, such as gastroesophageal reflux (OR=1.65, 95%CI 1.23- 2.29, P=0.001) and pneumonia (OR=1.68, 95%CI 1.21-2.33, P=0.002) and more commonly required surgeries such as tracheostomy (OR=1.55, 95%CI 1.15-2.11, P=0.005) and gastrostomy (OR=1.38, 95%CI 1.03-1.85, P=0.03) compared with those without tracheobronchomalacia. Neonates with tracheobronchomalacia were hospitalitized (118 ± 93 vs 105 ± 83 days, P=0.02) and ventilated (83.1 ± 91.1 vs 67.2 ± 71.9 days, P=0.003) longer than those without tracheobronchomalacia. Upon discharge, neonates with tracheobronchomalacia and BPD were more likely to be mechanically ventilated (OR=1.37, 95CI 1.01-1.87 P=0.045) and possibly less likely to receive oral nutrition (OR=0.69, 95%CI 0.47-1.01, P=0.058).Tracheobronchomalacia is common in neonates with bronchopulmonary dysplasia who undergo bronchoscopy and is associated with longer and more complicated hospitalizations.
DOI: 10.1038/s42003-020-0961-x
2020
Cited 90 times
Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands
A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain's trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics.
DOI: 10.1016/j.biopsych.2016.04.021
2016
Cited 81 times
Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety
Background Adolescence is a critical period for emotional maturation and is a time when clinically significant symptoms of anxiety and depression increase, particularly in females. However, few studies relate developmental differences in symptoms of anxiety and depression to brain development. Cerebral blood flow is one brain phenotype that is known to have marked developmental sex differences. Methods We investigated whether developmental sex differences in cerebral blood flow mediated sex differences in anxiety and depression symptoms by capitalizing on a large sample of 875 youths who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. Perfusion was quantified on a voxelwise basis using arterial spin-labeled magnetic resonance imaging at 3T. Perfusion images were related to trait and state anxiety using general additive models with penalized splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related to anxiety were evaluated for interactions with age, sex, and puberty. Results Trait anxiety was associated with elevated perfusion in a network of regions including the amygdala, anterior insula, and fusiform cortex, even after accounting for prescan state anxiety. Notably, these relationships strengthened with age and the transition through puberty. Moreover, higher trait anxiety in postpubertal females was mediated by elevated perfusion of the left amygdala. Conclusions Taken together, these results demonstrate that differences in the evolution of cerebral perfusion during adolescence may be a critical element of the affective neurobiological characteristics underlying sex differences in anxiety and mood symptoms.
DOI: 10.1016/j.nicl.2017.01.030
2017
Cited 80 times
Cognitive behavioral therapy increases amygdala connectivity with the cognitive control network in both MDD and PTSD
Both major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) are characterized by alterations in intrinsic functional connectivity. Here we investigated changes in intrinsic functional connectivity across these disorders as a function of cognitive behavioral therapy (CBT), an effective treatment in both disorders. 53 unmedicated right-handed participants were included in a longitudinal study. Patients were diagnosed with PTSD (n = 18) and MDD (n = 17) with a structured diagnostic interview and treated with 12 sessions of manualized CBT over a 12-week period. Patients received an MRI scan (Siemens 3 T Trio) before and after treatment. Longitudinal functional principal components analysis (LFPCA) was performed on functional connectivity of the bilateral amygdala with the fronto-parietal network. A matched healthy control group (n = 18) was also scanned twice for comparison. LFPCA identified four eigenimages or principal components (PCs) that contributed significantly to the longitudinal change in connectivity. The second PC differentiated CBT-treated patients from controls in having significantly increased connectivity of the amygdala with the fronto-parietal network following CBT. Analysis of CBT-induced amygdala connectivity changes was restricted to the a priori determined fronto-parietal network. Future studies are needed to determine the generalizability of these findings, given the small and predominantly female sample. We found evidence for the hypothesis that CBT treatment is associated with changes in connectivity between the amygdala and the fronto-parietal network. CBT may work by strengthening connections between the amygdala and brain regions that are involved in cognitive control, potentially providing enhanced top-down control of affective processes that are dysregulated in both MDD and PTSD.
DOI: 10.1038/mp.2017.174
2017
Cited 80 times
Common and dissociable regional cerebral blood flow differences associate with dimensions of psychopathology across categorical diagnoses
The high comorbidity among neuropsychiatric disorders suggests a possible common neurobiological phenotype. Resting-state regional cerebral blood flow (CBF) can be measured noninvasively with magnetic resonance imaging (MRI) and abnormalities in regional CBF are present in many neuropsychiatric disorders. Regional CBF may also provide a useful biological marker across different types of psychopathology. To investigate CBF changes common across psychiatric disorders, we capitalized upon a sample of 1042 youths (ages 11-23 years) who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. CBF at rest was quantified on a voxelwise basis using arterial spin labeled perfusion MRI at 3T. A dimensional measure of psychopathology was constructed using a bifactor model of item-level data from a psychiatric screening interview, which delineated four factors (fear, anxious-misery, psychosis and behavioral symptoms) plus a general factor: overall psychopathology. Overall psychopathology was associated with elevated perfusion in several regions including the right dorsal anterior cingulate cortex (ACC) and left rostral ACC. Furthermore, several clusters were associated with specific dimensions of psychopathology. Psychosis symptoms were related to reduced perfusion in the left frontal operculum and insula, whereas fear symptoms were associated with less perfusion in the right occipital/fusiform gyrus and left subgenual ACC. Follow-up functional connectivity analyses using resting-state functional MRI collected in the same participants revealed that overall psychopathology was associated with decreased connectivity between the dorsal ACC and bilateral caudate. Together, the results of this study demonstrate common and dissociable CBF abnormalities across neuropsychiatric disorders in youth.
DOI: 10.1038/mp.2015.149
2015
Cited 78 times
Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty
Depressive symptoms are common in multiple psychiatric disorders and are frequent sequelae of trauma. A dimensional conceptualization of depression suggests that symptoms should be associated with a continuum of deficits in specific neural circuits. However, most prior investigations of abnormalities in functional connectivity have typically focused on a single diagnostic category using hypothesis-driven seed-based analyses. Here, using a sample of 105 adult female participants from three diagnostic groups (healthy controls, n=17; major depression, n=38; and post-traumatic stress disorder, n=50), we examine the dimensional relationship between resting-state functional dysconnectivity and severity of depressive symptoms across diagnostic categories using a data-driven analysis (multivariate distance-based matrix regression). This connectome-wide analysis identified foci of dysconnectivity associated with depression severity in the bilateral amygdala. Follow-up seed analyses using subject-specific amygdala segmentations revealed that depression severity was associated with amygdalo-frontal hypo-connectivity in a network of regions including bilateral dorsolateral prefrontal cortex, anterior cingulate and anterior insula. In contrast, anxiety was associated with elevated connectivity between the amygdala and the ventromedial prefrontal cortex. Taken together, these results emphasize the centrality of the amygdala in the pathophysiology of depressive symptoms, and suggest that dissociable patterns of amygdalo-frontal dysconnectivity are a critical neurobiological feature across clinical diagnostic categories.
DOI: 10.1176/appi.ajp.2019.18070835
2019
Cited 73 times
Evidence for Dissociable Linkage of Dimensions of Psychopathology to Brain Structure in Youths
High comorbidity among psychiatric disorders suggests that they may share underlying neurobiological deficits. Abnormalities in cortical thickness and volume have been demonstrated in clinical samples of adults, but less is known when these structural differences emerge in youths. The purpose of this study was to examine the association between dimensions of psychopathology and brain structure.The authors studied 1,394 youths who underwent brain imaging as part of the Philadelphia Neurodevelopmental Cohort. Dimensions of psychopathology were constructed using a bifactor model of symptoms. Cortical thickness and volume were quantified using high-resolution 3-T MRI. Structural covariance networks were derived using nonnegative matrix factorization and analyzed using generalized additive models with penalized splines to capture both linear and nonlinear age-related effects.Fear symptoms were associated with reduced cortical thickness in most networks, and overall psychopathology was associated with globally reduced gray matter volume across all networks. Structural covariance networks predicted psychopathology symptoms above and beyond demographic characteristics and cognitive performance.The results suggest a dissociable relationship whereby fear is most strongly linked to reduced cortical thickness and overall psychopathology is most strongly linked to global reductions in gray matter volume. Such results have implications for understanding how abnormalities of brain development may be associated with divergent dimensions of psychopathology.
DOI: 10.1016/j.dcn.2020.100788
2020
Cited 72 times
Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood
Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12–30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.
DOI: 10.1093/brain/awz386
2019
Cited 68 times
Spatial distribution of interictal spikes fluctuates over time and localizes seizure onset
Abstract The location of interictal spikes is used to aid surgical planning in patients with medically refractory epilepsy; however, their spatial and temporal dynamics are poorly understood. In this study, we analysed the spatial distribution of interictal spikes over time in 20 adult and paediatric patients (12 females, mean age = 34.5 years, range = 5–58) who underwent intracranial EEG evaluation for epilepsy surgery. Interictal spikes were detected in the 24 h surrounding each seizure and spikes were clustered based on spatial location. The temporal dynamics of spike spatial distribution were calculated for each patient and the effects of sleep and seizures on these dynamics were evaluated. Finally, spike location was assessed in relation to seizure onset location. We found that spike spatial distribution fluctuated significantly over time in 14/20 patients (with a significant aggregate effect across patients, Fisher’s method: P &amp;lt; 0.001). A median of 12 sequential hours were required to capture 80% of the variability in spike spatial distribution. Sleep and postictal state affected the spike spatial distribution in 8/20 and 4/20 patients, respectively, with a significant aggregate effect (Fisher’s method: P &amp;lt; 0.001 for each). There was no evidence of pre-ictal change in the spike spatial distribution for any patient or in aggregate (Fisher’s method: P = 0.99). The electrode with the highest spike frequency and the electrode with the largest area of downstream spike propagation both localized the seizure onset zone better than predicted by chance (Wilcoxon signed-rank test: P = 0.005 and P = 0.002, respectively). In conclusion, spikes localize seizure onset. However, temporal fluctuations in spike spatial distribution, particularly in relation to sleep and post-ictal state, can confound localization. An adequate duration of intracranial recording—ideally at least 12 sequential hours—capturing both sleep and wakefulness should be obtained to sufficiently sample the interictal network.
DOI: 10.1002/hbm.25533
2021
Cited 63 times
Pitfalls in brain age analyses
Abstract Over the past decade, there has been an abundance of research on the difference between age and age predicted using brain features, which is commonly referred to as the “brain age gap.” Researchers have identified that the brain age gap, as a linear transformation of an out‐of‐sample residual, is dependent on age. As such, any group differences on the brain age gap could simply be due to group differences on age. To mitigate the brain age gap's dependence on age, it has been proposed that age be regressed out of the brain age gap. If this modified brain age gap is treated as a corrected deviation from age, model accuracy statistics such as R 2 will be artificially inflated to the extent that it is highly improbable that an R 2 value below .85 will be obtained no matter the true model accuracy. Given the limitations of proposed brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation from normality.
DOI: 10.1523/jneurosci.2434-19.2020
2020
Cited 60 times
Longitudinal Development of Brain Iron Is Linked to Cognition in Youth
Brain iron is vital to multiple aspects of brain function, including oxidative metabolism, myelination, and neurotransmitter synthesis. Atypical iron concentration in the basal ganglia is associated with neurodegenerative disorders in aging and cognitive deficits. However, the normative development of brain iron concentration in adolescence and its relationship to cognition are less well understood. Here, we address this gap in a longitudinal sample of 922 humans aged 8–26 years at the first visit (M = 15.1, SD = 3.72; 336 males, 486 females) with up to four multiecho T2* scans each. Using this sample of 1236 imaging sessions, we assessed the longitudinal developmental trajectories of tissue iron in the basal ganglia. We quantified tissue iron concentration using R2* relaxometry within four basal ganglia regions, including the caudate, putamen, nucleus accumbens, and globus pallidus. The longitudinal development of R2* was modeled using generalized additive mixed models (GAMMs) with splines to capture linear and nonlinear developmental processes. We observed significant increases in R2* across all regions, with the greatest and most prolonged increases occurring in the globus pallidus and putamen. Further, we found that the developmental trajectory of R2* in the putamen is significantly related to individual differences in cognitive ability, such that greater cognitive ability is increasingly associated with greater iron concentration through late adolescence and young-adulthood. Together, our results suggest a prolonged period of basal ganglia iron enrichment that extends into the mid-twenties, with diminished iron concentration associated with poorer cognitive ability during late adolescence. SIGNIFICANCE STATEMENT Brain tissue iron is essential to healthy brain function. Atypical basal ganglia tissue iron levels have been linked to impaired cognition in iron deficient children and adults with neurodegenerative disorders. However, the normative developmental trajectory of basal ganglia iron concentration during adolescence and its association with cognition are less well understood. In the largest study of tissue iron development yet reported, we characterize the developmental trajectory of tissue iron concentration across the basal ganglia during adolescence and provide evidence that diminished iron content is associated with poorer cognitive performance even in healthy youth. These results highlight the transition from adolescence to adulthood as a period of dynamic maturation of tissue iron concentration in the basal ganglia.
DOI: 10.1002/hbm.25688
2021
Cited 59 times
Mitigating site effects in covariance for machine learning in neuroimaging data
To acquire larger samples for answering complex questions in neuroscience, researchers have increasingly turned to multi-site neuroimaging studies. However, these studies are hindered by differences in images acquired across multiple sites. These effects have been shown to bias comparison between sites, mask biologically meaningful associations, and even introduce spurious associations. To address this, the field has focused on harmonizing data by removing site-related effects in the mean and variance of measurements. Contemporaneously with the increase in popularity of multi-center imaging, the use of machine learning (ML) in neuroimaging has also become commonplace. These approaches have been shown to provide improved sensitivity, specificity, and power due to their modeling the joint relationship across measurements in the brain. In this work, we demonstrate that methods for removing site effects in mean and variance may not be sufficient for ML. This stems from the fact that such methods fail to address how correlations between measurements can vary across sites. Data from the Alzheimer's Disease Neuroimaging Initiative is used to show that considerable differences in covariance exist across sites and that popular harmonization techniques do not address this issue. We then propose a novel harmonization method called Correcting Covariance Batch Effects (CovBat) that removes site effects in mean, variance, and covariance. We apply CovBat and show that within-site correlation matrices are successfully harmonized. Furthermore, we find that ML methods are unable to distinguish scanner manufacturer after our proposed harmonization is applied, and that the CovBat-harmonized data retain accurate prediction of disease group.
DOI: 10.1007/978-3-030-46643-5_38
2020
Cited 56 times
The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview
The purpose of this manuscript is to provide an overview of the technical specifications and architecture of the Cancer imaging Phenomics Toolkit (CaPTk www.cbica.upenn.edu/captk), a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The primary aim of this platform is to enable swift and efficient translation of cutting-edge academic research into clinically useful tools relating to clinical quantification, analysis, predictive modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced computational functionality. This functionality describes specialized, as well as general-purpose, image analysis algorithms developed during active multi-disciplinary collaborative research studies to address real clinical requirements. The target audience of CaPTk consists of both computational scientists and clinical experts. For the former it provides i) an efficient image viewer offering the ability of integrating new algorithms, and ii) a library of readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly interface, eliminating the prerequisite of a substantial computational background. CaPTk’s long-term goal is to provide widely-used technology to make use of advanced quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of the biological mechanisms of cancer development.
DOI: 10.7554/elife.53060
2020
Cited 55 times
Optimization of energy state transition trajectory supports the development of executive function during youth
Executive function develops during adolescence, yet it remains unknown how structural brain networks mature to facilitate activation of the fronto-parietal system, which is critical for executive function. In a sample of 946 human youths (ages 8-23y) who completed diffusion imaging, we capitalized upon recent advances in linear dynamical network control theory to calculate the energetic cost necessary to activate the fronto-parietal system through the control of multiple brain regions given existing structural network topology. We found that the energy required to activate the fronto-parietal system declined with development, and the pattern of regional energetic cost predicts unseen individuals’ brain maturity. Finally, energetic requirements of the cingulate cortex were negatively correlated with executive performance, and partially mediated the development of executive performance with age. Our results reveal a mechanism by which structural networks develop during adolescence to reduce the theoretical energetic costs of transitions to activation states necessary for executive function.
DOI: 10.1007/s00221-021-06036-5
2021
Cited 45 times
Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI
Traditional non-invasive imaging methods describe statistical associations of functional co-activation over time. They cannot easily establish hierarchies in communication as done in non-human animals using invasive methods. Here, we interleaved functional MRI (fMRI) recordings with non-invasive transcranial magnetic stimulation (TMS) to map causal communication between the frontal cortex and subcortical target structures including the subgenual anterior cingulate cortex (sgACC) and the amygdala. Seed-based correlation maps from each participant's resting fMRI scan determined individual stimulation sites with high temporal correlation to targets for the subsequent TMS/fMRI session(s). The resulting TMS/fMRI images were transformed to quantile responses, so that regions of high-/low-quantile response corresponded to the areas of the brain with the most positive/negative evoked response relative to the global brain response. We then modeled the average quantile response for a given region (e.g., structure or network) to determine whether TMS was effective in the relative engagement of the downstream targets. Both the sgACC and amygdala were differentially influenced by TMS. Furthermore, we found that the sgACC distributed brain network was modulated in response to fMRI-guided TMS. The amygdala, but not its distributed network, also responded to TMS. Our findings suggest that individual targeting and brain response measurements reflect causal circuit mapping to the sgACC and amygdala in humans. These results set the stage to further map circuits in the brain and link circuit pathway integrity to clinical intervention outcomes, especially when the intervention targets specific pathways and networks as is possible with TMS.
DOI: 10.1093/brain/awac224
2022
Cited 36 times
Interpretable surface-based detection of focal cortical dysplasias: a Multi-centre Epilepsy Lesion Detection study
One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.
DOI: 10.1038/s41598-022-08412-9
2022
Cited 35 times
Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects
Radiomic features have a wide range of clinical applications, but variability due to image acquisition factors can affect their performance. The harmonization tool ComBat is a promising solution but is limited by inability to harmonize multimodal distributions, unknown imaging parameters, and multiple imaging parameters. In this study, we propose two methods for addressing these limitations. We propose a sequential method that allows for harmonization of radiomic features by multiple imaging parameters (Nested ComBat). We also employ a Gaussian Mixture Model (GMM)-based method (GMM ComBat) where scans are split into groupings based on the shape of the distribution used for harmonization as a batch effect and subsequent harmonization by a known imaging parameter. These two methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography datasets. We found that Nested ComBat exhibited similar performance to standard ComBat in reducing the percentage of features with statistically significant differences in distribution attributable to imaging parameters. GMM ComBat improved harmonization performance over standard ComBat (- 11%, - 10% for Lung3/CAPTK, Lung3/PyRadiomics harmonizing by kernel resolution). Features harmonized with a variant of the Nested method and the GMM split method demonstrated similar c-statistics and Kaplan-Meier curves when used in survival analyses.
DOI: 10.1016/j.media.2021.102304
2022
Cited 32 times
Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes
Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, "Multi-scAle heteroGeneity analysIs and Clustering" (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC.
DOI: 10.1093/brain/awab480
2022
Cited 32 times
Normative intracranial EEG maps epileptogenic tissues in focal epilepsy
Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide these surgical procedures; however, their utility is limited by the sparsity of electrode implantation as well as the normal confounds of spatiotemporally varying neural activity and connectivity. We propose that comparing intracranial EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions, identify targets for invasive treatment and increase our understanding of human epilepsy. Merging data from the Penn Epilepsy Center and a public database from the Montreal Neurological Institute, we aggregated interictal intracranial EEG retrospectively across 166 subjects comprising >5000 channels. For each channel, we calculated the normalized spectral power and coherence in each canonical frequency band. We constructed an intracranial EEG atlas by mapping the distribution of each feature across the brain and tested the atlas against data from novel patients by generating a z-score for each channel. We demonstrate that for seizure onset zones within the mesial temporal lobe, measures of connectivity abnormality provide greater distinguishing value than univariate measures of abnormal neural activity. We also find that patients with a longer diagnosis of epilepsy have greater abnormalities in connectivity. By integrating measures of both single-channel activity and inter-regional functional connectivity, we find a better accuracy in predicting the seizure onset zones versus normal brain (area under the curve = 0.77) compared with either group of features alone. We propose that aggregating normative intracranial EEG data across epilepsy centres into a normative atlas provides a rigorous, quantitative method to map epileptic networks and guide invasive therapy. We publicly share our data, infrastructure and methods, and propose an international framework for leveraging big data in surgical planning for refractory epilepsy.
DOI: 10.1038/s41467-022-30244-4
2022
Cited 32 times
Dissociable multi-scale patterns of development in personalized brain networks
The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks are dissociably related to the emergence of executive function. These results suggest that the development of functional brain networks align with and refine a hierarchy linked to cognition.
DOI: 10.1101/2022.07.22.501193
2022
Cited 31 times
Suboptimal phenotypic reliability impedes reproducible human neuroscience
Summary Paragraph Biomarkers of behavior and psychiatric illness for cognitive and clinical neuroscience remain out of reach 1–4 . Suboptimal reliability of biological measurements, such as functional magnetic resonance imaging (fMRI), is increasingly cited as a primary culprit for discouragingly large sample size requirements and poor reproducibility of brain-based biomarker discovery 1,5–7 . In response, steps are being taken towards optimizing MRI reliability and increasing sample sizes 8–11 , though this will not be enough. Optimizing biological measurement reliability and increasing sample sizes are necessary but insufficient steps for biomarker discovery; this focus has overlooked the ‘other side of the equation’ - the reliability of clinical and cognitive assessments - which are often suboptimal or unassessed. Through a combination of simulation analysis and empirical studies using neuroimaging data, we demonstrate that the joint reliability of both biological and clinical/cognitive phenotypic measurements must be optimized in order to ensure biomarkers are reproducible and accurate. Even with best-case scenario high reliability neuroimaging measurements and large sample sizes, we show that suboptimal reliability of phenotypic data (i.e., clinical diagnosis, behavioral and cognitive measurements) will continue to impede meaningful biomarker discovery for the field. Improving reliability through development of novel assessments of phenotypic variation is needed, but it is not the sole solution. We emphasize the potential to improve the reliability of established phenotypic methods through aggregation across multiple raters and/or measurements 12–15 , which is becoming increasingly feasible with recent innovations in data acquisition (e.g., web- and smart-phone-based administration, ecological momentary assessment, burst sampling, wearable devices, multimodal recordings) 16–20 . We demonstrate that such aggregation can achieve better biomarker discovery for a fraction of the cost engendered by large-scale samples. Although the current study has been motivated by ongoing developments in neuroimaging, the prioritization of reliable phenotyping will revolutionize neurobiological and clinical endeavors that are focused on brain and behavior.
DOI: 10.1016/j.celrep.2022.110576
2022
Cited 25 times
Developmental coupling of cerebral blood flow and fMRI fluctuations in youth
The functions of the human brain are metabolically expensive and reliant on coupling between cerebral blood flow (CBF) and neural activity, yet how this coupling evolves over development remains unexplored. Here, we examine the relationship between CBF, measured by arterial spin labeling, and the amplitude of low-frequency fluctuations (ALFF) from resting-state magnetic resonance imaging across a sample of 831 children (478 females, aged 8-22 years) from the Philadelphia Neurodevelopmental Cohort. We first use locally weighted regressions on the cortical surface to quantify CBF-ALFF coupling. We relate coupling to age, sex, and executive functioning with generalized additive models and assess network enrichment via spin testing. We demonstrate regionally specific changes in coupling over age and show that variations in coupling are related to biological sex and executive function. Our results highlight the importance of CBF-ALFF coupling throughout development; we discuss its potential as a future target for the study of neuropsychiatric diseases.
DOI: 10.1007/s00330-022-08933-x
2022
Cited 25 times
First-generation clinical dual-source photon-counting CT: ultra-low-dose quantitative spectral imaging
Evaluation of image characteristics at ultra-low radiation dose levels of a first-generation dual-source photon-counting computed tomography (PCCT) compared to a dual-source dual-energy CT (DECT) scanner.A multi-energy CT phantom was imaged with and without an extension ring on both scanners over a range of radiation dose levels (CTDIvol 0.4-15.0 mGy). Scans were performed in different modes of acquisition for PCCT with 120 kVp and DECT with 70/Sn150 kVp and 100/Sn150 kVp. Various tissue inserts were used to characterize the precision and repeatability of Hounsfield units (HUs) on virtual mono-energetic images between 40 and 190 keV. Image noise was additionally investigated at an ultra-low radiation dose to illustrate PCCT's ability to remove electronic background noise.Our results demonstrate the high precision of HU measurements for a wide range of inserts and radiation exposure levels with PCCT. We report high performance for both scanners across a wide range of radiation exposure levels, with PCCT outperforming at low exposures compared to DECT. PCCT scans at the lowest radiation exposures illustrate significant reduction in electronic background noise, with a mean percent reduction of 74% (p value ~ 10-8) compared to DECT 70/Sn150 kVp and 60% (p value ~ 10-6) compared to DECT 100/Sn150 kVp.This paper reports the first experiences with a clinical dual-source PCCT. PCCT provides reliable HUs without disruption from electronic background noise for a wide range of dose values. Diagnostic benefits are not only for quantification at an ultra-low dose but also for imaging of obese patients.PCCT scanners provide precise and reliable Hounsfield units at ultra-low dose levels. The influence of electronic background noise can be removed at ultra-low-dose acquisitions with PCCT. Both spectral platforms have high performance along a wide range of radiation exposure levels, with PCCT outperforming at low radiation exposures.
DOI: 10.1016/j.neuron.2023.01.014
2023
Cited 12 times
Development of top-down cortical propagations in youth
Hierarchical processing requires activity propagating between higher- and lower-order cortical areas. However, functional neuroimaging studies have chiefly quantified fluctuations within regions over time rather than propagations occurring over space. Here, we leverage advances in neuroimaging and computer vision to track cortical activity propagations in a large sample of youth (n = 388). We delineate cortical propagations that systematically ascend and descend a cortical hierarchy in all individuals in our developmental cohort, as well as in an independent dataset of densely sampled adults. Further, we demonstrate that top-down, descending hierarchical propagations become more prevalent with greater demands for cognitive control as well as with development in youth. These findings emphasize that hierarchical processing is reflected in the directionality of propagating cortical activity and suggest top-down propagations as a potential mechanism of neurocognitive maturation in youth.
DOI: 10.1111/epi.17482
2023
Cited 11 times
Spike patterns surrounding sleep and seizures localize the seizure‐onset zone in focal epilepsy
Interictal spikes help localize seizure generators as part of surgical planning for drug-resistant epilepsy. However, there are often multiple spike populations whose frequencies change over time, influenced by brain state. Understanding state changes in spike rates will improve our ability to use spikes for surgical planning. Our goal was to determine the effect of sleep and seizures on interictal spikes, and to use sleep and seizure-related changes in spikes to localize the seizure-onset zone (SOZ).We performed a retrospective analysis of intracranial electroencephalography (EEG) data from patients with focal epilepsy. We automatically detected interictal spikes and we classified different time periods as awake or asleep based on the ratio of alpha to delta power, with a secondary analysis using the recently published SleepSEEG algorithm. We analyzed spike rates surrounding sleep and seizures. We developed a model to localize the SOZ using state-dependent spike rates.We analyzed data from 101 patients (54 women, age range 16-69). The normalized alpha-delta power ratio accurately classified wake from sleep periods (area under the curve = .90). Spikes were more frequent in sleep than wakefulness and in the post-ictal compared to the pre-ictal state. Patients with temporal lobe epilepsy had a greater wake-to-sleep and pre- to post-ictal spike rate increase compared to patients with extra-temporal epilepsy. A machine-learning classifier incorporating state-dependent spike rates accurately identified the SOZ (area under the curve = .83). Spike rates tended to be higher and better localize the seizure-onset zone in non-rapid eye movement (NREM) sleep than in wake or REM sleep.The change in spike rates surrounding sleep and seizures differs between temporal and extra-temporal lobe epilepsy. Spikes are more frequent and better localize the SOZ in sleep, particularly in NREM sleep. Quantitative analysis of spikes may provide useful ancillary data to localize the SOZ and improve surgical planning.
DOI: 10.1016/j.nicl.2013.03.002
2013
Cited 84 times
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI
Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images.
DOI: 10.1007/978-3-319-10404-1_95
2014
Cited 74 times
Combining Generative Models for Multifocal Glioma Segmentation and Registration
In this paper, we propose a new method for simultaneously segmenting brain scans of glioma patients and registering these scans to a normal atlas. Performing joint segmentation and registration for brain tumors is very challenging when tumors include multifocal masses and have complex shapes with heterogeneous textures. Our approach grows tumors for each mass from multiple seed points using a tumor growth model and modifies a normal atlas into one with tumors and edema using the combined results of grown tumors. We also generate a tumor shape prior via the random walk with restart, utilizing multiple tumor seeds as initial foreground information. We then incorporate this shape prior into an EM framework which estimates the mapping between the modified atlas and the scans, posteriors for each tissue labels, and the tumor growth model parameters. We apply our method to the BRATS 2013 leaderboard dataset to evaluate segmentation performance. Our method shows the best performance among all participants.
DOI: 10.3174/ajnr.a3172
2012
Cited 69 times
Automatic Lesion Incidence Estimation and Detection in Multiple Sclerosis Using Multisequence Longitudinal MRI
Detecting incidence and enlargement of lesions is essential in monitoring the progression of MS. In clinical trials, lesion load is observed by manually segmenting and comparing serial MR images, which is time consuming, costly, and prone to inter- and intraobserver variability. Subtracting images from consecutive time points nulls stable lesions, leaving only new lesion activity. We propose SuBLIME, an automated method for segmenting incident lesion voxels.We used logistic regression models incorporating multiple MR imaging sequences and subtraction images from consecutive longitudinal studies to estimate voxel-level probabilities of lesion incidence. We used T1-weighted, T2-weighted, FLAIR, and PD volumes from a total of 110 MR imaging studies from 10 subjects.To assess the performance of the model, we assigned 5 subjects to a training set and the remaining 5 to a validation set. With SuBLIME, lesion incidence is detected and delineated in the validation set with an AUC of 99% (95% CI [97%, 100%]) at the voxel level.This fully automated and computationally fast method allows sensitive and specific detection of lesion incidence that can be applied to large collections of images. Using the explicit form of the statistical model, SuBLIME can easily be adapted to cases when more or fewer imaging sequences are available.
DOI: 10.1212/wnl.0b013e318271f7b8
2012
Cited 68 times
Neurologic disorders incidence in HIV+ vs HIV− men
To study the incidence and pattern of neurologic disorders in a large cohort of HIV-positive men, compared with HIV-negative men, in the era of highly active antiretroviral therapy (HAART).The Multicenter AIDS Cohort Study is a prospective study of men who have sex with men enrolled in 4 cities in the United States. We compared HIV-positive vs HIV-negative men for incidence and category of neurologic diagnoses in the HAART era (July 1, 1996, to last known follow-up or death, on or before July 1, 2011).There were 3,945 participants alive during the HAART era (2,083 HIV negative, 1,776 HIV positive, and 86 who became infected with HIV during the study period) including 3,427 who were older than 40 years of age. Median age at first neurologic diagnosis among all participants alive in the HAART era was lower in HAART-treated HIV-positive vs HIV-negative men (48 vs 57 years of age, p < 0.001). Incidence of neurologic diagnoses was higher in HAART-treated HIV-positive vs HIV-negative men (younger than 40 years: 11.4 vs 0 diagnoses per 1,000 person-years [p < 0.001]; 40-49 years: 11.6 vs 2.0 [p < 0.001]; 50-60 years: 15.1 vs 3.0 [p < 0.001]; older than 60 years: 17.0 vs 5.7 [p < 0.01]). Excess neurologic disease was found in the categories of nervous system infections (p < 0.001), dementia (p < 0.001), seizures/epilepsy (p < 0.01), and peripheral nervous system disorders (p < 0.001), but not stroke (p = 0.60).HIV-positive men receiving HAART have a higher burden of neurologic disease than HIV-negative men and develop neurologic disease at younger ages.
DOI: 10.1016/j.media.2015.06.008
2015
Cited 62 times
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier's decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.
DOI: 10.1164/rccm.201508-1522oc
2016
Cited 60 times
Diastolic Dysfunction Increases the Risk of Primary Graft Dysfunction after Lung Transplant
Rationale: Primary graft dysfunction (PGD) is a significant cause of early morbidity and mortality after lung transplant and is characterized by severe hypoxemia and infiltrates in the allograft.The pathogenesis of PGD involves ischemia-reperfusion injury.However, subclinical increases in pulmonary venous pressure due to left ventricular diastolic dysfunction may contribute by exacerbating capillary leak.Objectives: To determine whether a higher ratio of early mitral inflow velocity (E) to early diastolic mitral annular velocity (é), indicative of worse left ventricular diastolic function, is associated with a higher risk of PGD.Methods: We performed a retrospective cohort study of patients in the Lung Transplant Outcomes Group who underwent bilateral lung transplant at our institution between 2004 and 2014 for interstitial lung disease, chronic obstructive pulmonary disease, or pulmonary arterial hypertension.Transthoracic echocardiograms obtained during evaluation for transplant listing were analyzed for E/é and other measures of diastolic function.PGD was defined as Pa O 2 /FI O 2 less than or equal to 200 with allograft infiltrates at 48 or 72 hours after reperfusion.The association between E/é and PGD was assessed with multivariable logistic regression.Measurements and Main Results: After adjustment for recipient age, body mass index, mean pulmonary arterial pressure, and pretransplant diagnosis, higher E/é and E/é greater than 8 were associated with an increased risk of PGD (E/é odds ratio, 1.93; 95% confidence interval, 1.02-3.64;P = 0.04; E/é .8odds ratio, 5.29; 95% confidence interval, 1.40-20.01;P = 0.01).Conclusions: Differences in left ventricular diastolic function may contribute to the development of PGD.Future trials are needed to determine whether optimization of left ventricular diastolic function reduces the risk of PGD.
DOI: 10.1093/brain/awz125
2019
Cited 59 times
Characterizing the role of the structural connectome in seizure dynamics
How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
DOI: 10.1016/j.jacc.2015.07.032
2015
Cited 58 times
Predictors of Catastrophic Adverse Outcomes in Children With Pulmonary Hypertension Undergoing Cardiac Catheterization
Cardiac catheterization is the standard of care procedure for diagnosis, choice of therapy, and longitudinal follow-up of children and adults with pulmonary hypertension (PH). However, the procedure is invasive and has risks associated with both the procedure and recovery period.The purpose of this study was to identify risk factors for catastrophic adverse outcomes in children with PH undergoing cardiac catheterization.We studied children and young adults up to 21 years of age with PH undergoing 1 or more cardiac catheterization at centers participating in the Pediatric Health Information Systems database between 2007 and 2012. Using mixed-effects multivariable regression, we assessed the association between pre-specified subject- and procedure-level covariates and the risk of the composite outcome of death or initiation of mechanical circulatory support within 1 day of cardiac catheterization after adjustment for patient- and procedure-level factors.A total of 6,339 procedures performed on 4,401 patients with a diagnosis of PH from 38 of 43 centers contributing data to the Pediatric Health Information Systems database were included. The observed risk of composite outcome was 3.5%. In multivariate modeling, the adjusted risk of the composite outcome was 3.3%. Younger age at catheterization, cardiac operation in the same admission as the catheterization, pre-procedural systemic vasodilator infusion, and hemodialysis were independently associated with an increased risk of adverse outcomes. Pre-procedural use of pulmonary vasodilators was associated with reduced risk of composite outcome.The risk of cardiac catheterization in children and young adults with PH is high relative to previously reported risk in other pediatric populations. The risk is influenced by patient-level factors. Further research is necessary to determine whether knowledge of these factors can be translated into practices that improve outcomes for children with PH.
DOI: 10.1523/jneurosci.2200-17.2018
2018
Cited 58 times
Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence
Adolescence is characterized by both maturation of brain structure and increased risk of negative outcomes from behaviors associated with impulsive decision-making. One important index of impulsive choice is delay discounting (DD), which measures the tendency to prefer smaller rewards available soon over larger rewards delivered after a delay. However, it remains largely unknown how individual differences in structural brain development may be associated with impulsive choice during adolescence. Leveraging a unique large sample of 427 human youths (208 males and 219 females) imaged as part of the Philadelphia Neurodevelopmental Cohort, we examined associations between delay discounting and cortical thickness within structural covariance networks. These structural networks were derived using non-negative matrix factorization, an advanced multivariate technique for dimensionality reduction, and analyzed using generalized additive models with penalized splines to capture both linear and nonlinear developmental effects. We found that impulsive choice, as measured by greater discounting, was most strongly associated with diminished cortical thickness in structural brain networks that encompassed the ventromedial prefrontal cortex, orbitofrontal cortex, temporal pole, and temporoparietal junction. Furthermore, structural brain networks predicted DD above and beyond cognitive performance. Together, these results suggest that reduced cortical thickness in regions known to be involved in value-based decision-making is a marker of impulsive choice during the critical period of adolescence.SIGNIFICANCE STATEMENT Risky behaviors during adolescence, such as initiation of substance use or reckless driving, are a major source of morbidity and mortality. In this study, we present evidence from a large sample of youths that diminished cortical thickness in specific structural brain networks is associated with impulsive choice. Notably, the strongest association between impulsive choice and brain structure was seen in regions implicated in value-based decision-making; namely, the ventromedial prefrontal and orbitofrontal cortices. Moving forward, such neuroanatomical markers of impulsivity may aid in the development of personalized interventions targeted to reduce risk of negative outcomes resulting from impulsivity during adolescence.
DOI: 10.1002/hbm.23887
2017
Cited 57 times
Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI
Medial temporal lobe (MTL) subregions play integral roles in memory function and are differentially affected in various neurological and psychiatric disorders. The ability to structurally and functionally characterize these subregions may be important to understanding MTL physiology and diagnosing diseases involving the MTL. In this study, we characterized network architecture of the MTL in healthy subjects (n = 31) using both resting state functional MRI and MTL-focused T2-weighted structural MRI at 7 tesla. Ten MTL subregions per hemisphere, including hippocampal subfields and cortical regions of the parahippocampal gyrus, were segmented for each subject using a multi-atlas algorithm. Both structural covariance matrices from correlations of subregion volumes across subjects, and functional connectivity matrices from correlations between subregion BOLD time series were generated. We found a moderate structural and strong functional inter-hemispheric symmetry. Several bilateral hippocampal subregions (CA1, dentate gyrus, and subiculum) emerged as functional network hubs. We also observed that the structural and functional networks naturally separated into two modules closely corresponding to (a) bilateral hippocampal formations, and (b) bilateral extra-hippocampal structures. Finally, we found a significant correlation in structural and functional connectivity (r = 0.25). Our findings represent a comprehensive analysis of network topology of the MTL at the subregion level. We share our data, methods, and findings as a reference for imaging methods and disease-based research.
DOI: 10.1016/j.nicl.2019.101694
2019
Cited 53 times
Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging
Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50–90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/− 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required.
DOI: 10.1111/jon.12506
2018
Cited 50 times
MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions
ABSTRACT BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. METHODS Method for Inter‐Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross‐validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. RESULTS In the Johns Hopkins study, MIMoSA yielded average Sørensen‐Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. CONCLUSION MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study.
DOI: 10.1002/hbm.24530
2019
Cited 44 times
Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study
Abstract Mesial temporal lobe epilepsy (TLE) is a common neurological disorder affecting the hippocampus and surrounding medial temporal lobe (MTL). Although prior studies have analyzed whole‐brain network distortions in TLE patients, the functional network architecture of the MTL at the subregion level has not been examined. In this study, we utilized high‐resolution 7T T2‐weighted magnetic resonance imaging (MRI) and resting‐state BOLD‐fMRI to characterize volumetric asymmetry and functional network asymmetry of MTL subregions in unilateral medically refractory TLE patients and healthy controls. We subdivided the TLE group into mesial temporal sclerosis patients (TLE‐MTS) and MRI‐negative nonlesional patients (TLE‐NL). Using an automated multi‐atlas segmentation pipeline, we delineated 10 MTL subregions per hemisphere for each subject. We found significantly different patterns of volumetric asymmetry between the two groups, with TLE‐MTS exhibiting volumetric asymmetry corresponding to decreased volumes ipsilaterally in all hippocampal subfields, and TLE‐NL exhibiting no significant volumetric asymmetries other than a mild decrease in whole‐hippocampal volume ipsilaterally. We also found significantly different patterns of functional network asymmetry in the CA1 subfield and whole hippocampus, with TLE‐NL patients exhibiting asymmetry corresponding to increased connectivity ipsilaterally and TLE‐MTS patients exhibiting asymmetry corresponding to decreased connectivity ipsilaterally. Our findings provide initial evidence that functional neuroimaging‐based network properties within the MTL can distinguish between TLE subtypes. High‐resolution MRI has potential to improve localization of underlying brain network disruptions in TLE patients who are candidates for surgical resection.
DOI: 10.1002/ana.25429
2019
Cited 43 times
A surface‐in gradient of thalamic damage evolves in pediatric multiple sclerosis
Objective Central nervous system pathology in multiple sclerosis includes both focal inflammatory perivascular injury and injury to superficial structures, including the subpial region of the cortex, which reportedly exhibits a gradient of damage from the surface inward. We assessed how early in the multiple sclerosis course a "surface‐in" process of injury suggesting progressive biology may begin. Methods We focused on the thalamus, which notably has both a cerebrospinal fluid (CSF) interface and a white matter interface. Thalamic volume trajectories were assessed in a prospectively followed cohort of children from initial presentation with either multiple sclerosis or monophasic acquired demyelination, and healthy controls. Voxelwise volume changes were calculated using deformation‐based morphometry, and analyzed in relation to distance from the CSF interface by mixed effects modeling and semiparametric smoothing methods. Results Twenty‐seven children with multiple sclerosis and 73 children with monophasic demyelination were prospectively followed with yearly brain scans (mean follow‐up = 4.6 years, standard deviation = 1.9). A total of 282 healthy children with serial scans were included as controls. Relative to healthy controls, children with multiple sclerosis and children with monophasic demyelination demonstrated volume loss in thalamic regions adjacent to the white matter. However, only children with multiple sclerosis exhibited an additional surface‐in gradient of thalamic injury on the ventricular side, which was already notable in the first year of clinical disease (asymptote estimate = 3.01, 95% confidence interval [CI] = 1.44–4.58, p = 0.0002) and worsened over time (asymptote:time estimate = 0.33, 95% CI = 0.12–0.54, p = 0.0021). Interpretation Our results suggest that a multiple sclerosis disease‐specific surface‐in process of damage can manifest at the earliest stages of the disease. ANN NEUROL 2019;85:340–351.
DOI: 10.1016/j.biopsych.2019.09.005
2020
Cited 41 times
Neurostructural Heterogeneity in Youths With Internalizing Symptoms
Background Internalizing disorders such as anxiety and depression are common psychiatric disorders that frequently begin in youth and exhibit marked heterogeneity in treatment response and clinical course. Given that symptom-based classification approaches do not align with underlying neurobiology, an alternative approach is to identify neurobiologically informed subtypes based on brain imaging data. Methods We used a recently developed semisupervised machine learning method (HYDRA [heterogeneity through discriminative analysis]) to delineate patterns of neurobiological heterogeneity within youths with internalizing symptoms using structural data collected at 3T from a sample of 1141 youths. Results Using volume and cortical thickness, cross-validation methods indicated 2 highly stable subtypes of internalizing youths (adjusted Rand index = 0.66; permutation-based false discovery rate p < .001). Subtype 1, defined by smaller brain volumes and reduced cortical thickness, was marked by impaired cognitive performance and higher levels of psychopathology than both subtype 2 and typically developing youths. Using resting-state functional magnetic resonance imaging and diffusion images not considered during clustering, we found that subtype 1 also showed reduced amplitudes of low-frequency fluctuations in frontolimbic regions at rest and reduced fractional anisotropy in several white matter tracts. In contrast, subtype 2 showed intact cognitive performance and greater volume, cortical thickness, and amplitudes during rest compared with subtype 1 and typically developing youths, despite still showing clinically significant levels of psychopathology. Conclusions We identified 2 subtypes of internalizing youths differentiated by abnormalities in brain structure, function, and white matter integrity, with one of the subtypes showing poorer functioning across multiple domains. Identification of biologically grounded internalizing subtypes may assist in targeting early interventions and assessing longitudinal prognosis.
DOI: 10.1093/cercor/bhaa123
2020
Cited 40 times
Sex Differences in Variability of Brain Structure Across the Lifespan
Abstract Several brain disorders exhibit sex differences in onset, presentation, and prevalence. Increased understanding of the neurobiology of sex-based differences in variability across the lifespan can provide insight into both disease vulnerability and resilience. In n = 3069 participants, from 8 to 95 years of age, we found widespread greater variability in males compared with females in cortical surface area and global and subcortical volumes for discrete brain regions. In contrast, variance in cortical thickness was similar for males and females. These findings were supported by multivariate analysis accounting for structural covariance, and present and stable across the lifespan. Additionally, we examined variability among brain regions by sex. We found significant age-by-sex interactions across neuroimaging metrics, whereby in very early life males had reduced among-region variability compared with females, while in very late life this was reversed. Overall, our findings of greater regional variability, but less among-region variability in males in early life may aid our understanding of sex-based risk for neurodevelopmental disorders. In contrast, our findings in late life may provide a potential sex-based risk mechanism for dementia.
DOI: 10.1101/2020.01.03.894378
2020
Cited 38 times
The extent and drivers of gender imbalance in neuroscience reference lists
Like many scientific disciplines, neuroscience has increasingly attempted to confront pervasive gender imbalances within the field. While much of the conversation has centered around publishing and conference participation, recent research in other fields has called attention to the prevalence of gender bias in citation practices. Because of the downstream effects that citations can have on visibility and career advancement, understanding and eliminating gender bias in citation practices is vital for addressing inequity in a scientific community. In this study, we sought to determine whether there is evidence of gender bias in the citation practices of neuroscientists. Using data from five top neuroscience journals, we find that reference lists tend to include more papers with men as first and last author than would be expected if gender were not a factor in referencing. Importantly, we show that this overcitation of men and undercitation of women is driven largely by the citation practices of men, and is increasing over time as the field becomes more diverse. We develop a co-authorship network to assess homophily in researchers’ social networks, and we find that men tend to overcite men even when their social networks are representative. We discuss possible mechanisms and consider how individual researchers might address these findings in their own practices.
DOI: 10.1176/appi.ajp.21070686
2022
Cited 22 times
Schizophrenia Imaging Signatures and Their Associations With Cognition, Psychopathology, and Genetics in the General Population
Objective: The prevalence and significance of schizophrenia-related phenotypes at the population level is debated in the literature. Here, the authors assessed whether two recently reported neuroanatomical signatures of schizophrenia—signature 1, with widespread reduction of gray matter volume, and signature 2, with increased striatal volume—could be replicated in an independent schizophrenia sample, and investigated whether expression of these signatures can be detected at the population level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. Methods: This cross-sectional study used an independent schizophrenia-control sample (N=347; ages 16–57 years) for replication of imaging signatures, and then examined two independent population-level data sets: typically developing youths and youths with psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort (N=359; ages 16–23 years) and adults in the UK Biobank study (N=836; ages 44–50 years). The authors quantified signature expression using support-vector machine learning and compared cognition, psychopathology, and polygenic risk between signatures. Results: Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youths with psychosis spectrum symptoms than in typically developing youths, whereas signature 2 frequency was similar in the two groups. In both youths and adults, signature 1 was associated with worse cognitive performance than signature 2. Compared with adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. Conclusions: The authors successfully replicated two neuroanatomical signatures of schizophrenia and describe their prevalence in population-based samples of youths and adults. They further demonstrated distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.
DOI: 10.1016/j.neuroimage.2022.119198
2022
Cited 22 times
Harmonizing functional connectivity reduces scanner effects in community detection
Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.
DOI: 10.1016/j.ebiom.2022.104179
2022
Cited 22 times
Immune aging in multiple sclerosis is characterized by abnormal CD4 T cell activation and increased frequencies of cytotoxic CD4 T cells with advancing age
<h2>Summary</h2><h3>Background</h3> Immunosenescence (ISC) describes age-related changes in immune-system composition and function. Multiple sclerosis (MS) is a lifelong inflammatory condition involving effector and regulatory T-cell imbalance, yet little is known about T-cell ISC in MS. We examined age-associated changes in circulating T cells in MS compared to normal controls (NC). <h3>Methods</h3> Forty untreated MS (Mean Age 43·3, Range 18–72) and 49 NC (Mean Age 48·6, Range 20–84) without inflammatory conditions were included in cross-sectional design. T-cell subsets were phenotypically and functionally characterized using validated multiparametric flow cytometry. Their aging trajectories, and differences between MS and NC, were determined using linear mixed-effects models. <h3>Findings</h3> MS patients demonstrated early and persistent redistribution of naïve and memory CD4 T-cell compartments. While most CD4 and CD8 T-cell aging trajectories were similar between groups, MS patients exhibited abnormal age-associated increases of activated (HLA-DR<sup>+</sup>CD38<sup>+</sup>; (<i>P</i> = 0·013) and cytotoxic CD4 T cells, particularly in patients >60 (EOMES: <i>P</i> < 0·001). Aging MS patients also failed to upregulate CTLA-4 expression on both CD4 (<i>P</i> = 0·014) and CD8 (<i>P</i> = 0·009) T cells, coupled with abnormal age-associated increases in frequencies of B cells expressing costimulatory molecules. <h3>Interpretation</h3> While many aspects of T-cell aging in MS are conserved, the older MS patients harbour abnormally increased frequencies of CD4 T cells with activated and cytotoxic effector profiles. Age-related decreased expression of T-cell co-inhibitory receptor CTLA-4, and increased B-cell costimulatory molecule expression, may provide a mechanism that drives aberrant activation of effector CD4 T cells that have been implicated in progressive disease. <h3>Funding</h3> Stated in Acknowledgements section of manuscript.
DOI: 10.1073/pnas.2110416119
2022
Cited 22 times
Sex differences in the functional topography of association networks in youth
Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.
DOI: 10.1016/j.neuroimage.2022.118986
2022
Cited 21 times
A framework For brain atlases: Lessons from seizure dynamics
Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of available atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the brain's function from its underlying structure. We show how network topology, structure-function correlation (SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas choice and atlas features. Through the lens of our disease system, we propose a general framework and algorithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the various atlases published over the last century.
DOI: 10.1038/s41598-022-12699-z
2022
Cited 21 times
Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma
Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.
DOI: 10.1016/j.nicl.2022.103101
2022
Cited 20 times
Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions
Magnetic resonance imaging (MRI) is a fundamental tool in the diagnosis and management of neurological diseases such as multiple sclerosis (MS). New portable, low-field strength, MRI scanners could potentially lower financial and technical barriers to neuroimaging and reach underserved or disabled populations, but the sensitivity of these devices for MS lesions is unknown. We sought to determine if white matter lesions can be detected on a portable 64mT scanner, compare automated lesion segmentations and total lesion volume between paired 3T and 64mT scans, identify features that contribute to lesion detection accuracy, and explore super-resolution imaging at low-field. In this prospective, cross-sectional study, same-day brain MRI (FLAIR, T1w, and T2w) scans were collected from 36 adults (32 women; mean age, 50 ± 14 years) with known or suspected MS using Siemens 3T (FLAIR: 1 mm isotropic, T1w: 1 mm isotropic, and T2w: 0.34-0.5 × 0.34-0.5 × 3-5 mm) and Hyperfine 64mT (FLAIR: 1.6 × 1.6 × 5 mm, T1w: 1.5 × 1.5 × 5 mm, and T2w: 1.5 × 1.5 × 5 mm) scanners at two centers. Images were reviewed by neuroradiologists. MS lesions were measured manually and segmented using an automated algorithm. Statistical analyses assessed accuracy and variability of segmentations across scanners and systematic scanner biases in automated volumetric measurements. Lesions were identified on 64mT scans in 94% (31/33) of patients with confirmed MS. The average smallest lesions manually detected were 5.7 ± 1.3 mm in maximum diameter at 64mT vs 2.1 ± 0.6 mm at 3T, approaching the spatial resolution of the respective scanner sequences (3T: 1 mm, 64mT: 5 mm slice thickness). Automated lesion volume estimates were highly correlated between 3T and 64mT scans (r = 0.89, p < 0.001). Bland-Altman analysis identified bias in 64mT segmentations (mean = 1.6 ml, standard error = 5.2 ml, limits of agreement = -19.0-15.9 ml), which over-estimated low lesion volume and under-estimated high volume (r = 0.74, p < 0.001). Visual inspection revealed over-segmentation was driven venous hyperintensities on 64mT T2-FLAIR. Lesion size drove segmentation accuracy, with 93% of lesions > 1.0 ml and all lesions > 1.5 ml being detected. Using multi-acquisition volume averaging, we were able to generate 1.6 mm isotropic images on the 64mT device. Overall, our results demonstrate that in established MS, a portable 64mT MRI scanner can identify white matter lesions, and that automated estimates of total lesion volume correlate with measurements from 3T scans.
DOI: 10.3389/fnins.2023.1038011
2023
Cited 9 times
The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis
Perivascular spaces have been involved in neuroinflammatory and neurodegenerative diseases. Upon a certain size, these spaces can become visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of systematic evidence on etiology and temporal dynamics of MVPVS hampers their diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was to summarize potential etiologies and evolution of MVPVS.In a comprehensive literature search, out of 1,488 unique publications, 140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for a qualitative summary. 6 records were included in a meta-analysis to assess the association between MVPVS and brain atrophy.Four overarching and partly overlapping etiologies of MVPVS have been proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune cell accumulation in the perivascular space. The meta-analysis in patients with neuroinflammatory diseases did not support an association between MVPVS and brain volume measures [R: -0.15 (95%-CI -0.40-0.11)]. Based on few and mostly small studies in tumefactive MVPVS and in vascular and neuroinflammatory diseases, temporal evolution of MVPVS is slow.Collectively, this study provides high-grade evidence for MVPVS etiopathogenesis and temporal dynamics. Although several potential etiologies for MVPVS emergence have been proposed, they are only partially supported by data. Advanced MRI methods should be employed to further dissect etiopathogenesis and evolution of MVPVS. This can benefit their implementation as an imaging biomarker.https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=346564, identifier CRD42022346564.
DOI: 10.1001/jamapsychiatry.2023.0409
2023
Cited 9 times
Assessment of Neuroanatomical Endophenotypes of Autism Spectrum Disorder and Association With Characteristics of Individuals With Schizophrenia and the General Population
Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment.To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations.This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022.The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations.Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] β, 0.83 [0.02]; P = 4.22 × 10-6).This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.
DOI: 10.1038/s41380-023-02069-0
2023
Cited 9 times
Psychosis brain subtypes validated in first-episode cohorts and related to illness remission: results from the PHENOM consortium
Abstract Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups—a ‘lower brain volume’ subgroup (SG1) and an ‘higher striatal volume’ subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership (‘None’), and mixed SG1 + SG2 subgroups (‘Mixed’). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of ‘lower brain volume’ in SG1 and ‘higher striatal volume’ (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p &lt; 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
DOI: 10.1111/epi.17633
2023
Cited 8 times
Long‐term epilepsy outcome dynamics revealed by natural language processing of clinic notes
Electronic medical records allow for retrospective clinical research with large patient cohorts. However, epilepsy outcomes are often contained in free text notes that are difficult to mine. We recently developed and validated novel natural language processing (NLP) algorithms to automatically extract key epilepsy outcome measures from clinic notes. In this study, we assessed the feasibility of extracting these measures to study the natural history of epilepsy at our center.We applied our previously validated NLP algorithms to extract seizure freedom, seizure frequency, and date of most recent seizure from outpatient visits at our epilepsy center from 2010 to 2022. We examined the dynamics of seizure outcomes over time using Markov model-based probability and Kaplan-Meier analyses.Performance of our algorithms on classifying seizure freedom was comparable to that of human reviewers (algorithm F1 = .88 vs. human annotator κ = .86). We extracted seizure outcome data from 55 630 clinic notes from 9510 unique patients written by 53 unique authors. Of these, 30% were classified as seizure-free since the last visit, 48% of non-seizure-free visits contained a quantifiable seizure frequency, and 47% of all visits contained the date of most recent seizure occurrence. Among patients with at least five visits, the probabilities of seizure freedom at the next visit ranged from 12% to 80% in patients having seizures or seizure-free at the prior three visits, respectively. Only 25% of patients who were seizure-free for 6 months remained seizure-free after 10 years.Our findings demonstrate that epilepsy outcome measures can be extracted accurately from unstructured clinical note text using NLP. At our tertiary center, the disease course often followed a remitting and relapsing pattern. This method represents a powerful new tool for clinical research with many potential uses and extensions to other clinical questions.
DOI: 10.1111/epi.17565
2023
Cited 7 times
Resting state functional connectivity demonstrates increased segregation in bilateral temporal lobe epilepsy
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. An increasingly identified subset of patients with TLE consists of those who show bilaterally independent temporal lobe seizures. The purpose of this study was to leverage network neuroscience to better understand the interictal whole brain network of bilateral TLE (BiTLE).In this study, using a multicenter resting state functional magnetic resonance imaging (rs-fMRI) data set, we constructed whole-brain functional networks of 19 patients with BiTLE, and compared them to those of 75 patients with unilateral TLE (UTLE). We quantified resting-state, whole-brain topological properties using metrics derived from network theory, including clustering coefficient, global efficiency, participation coefficient, and modularity. For each metric, we computed an average across all brain regions, and iterated this process across network densities. Curves of network density vs each network metric were compared between groups. Finally, we derived a combined metric, which we term the "integration-segregation axis," by combining whole-brain average clustering coefficient and global efficiency curves, and applying principal component analysis (PCA)-based dimensionality reduction.Compared to UTLE, BiTLE had decreased global efficiency (p = .031), and decreased whole brain average participation coefficient across a range of network densities (p = .019). Modularity maximization yielded a larger number of smaller communities in BiTLE than in UTLE (p = .020). Differences in network properties separate BiTLE and UTLE along the integration-segregation axis, with regions within the axis having a specificity of up to 0.87 for BiTLE. Along the integration-segregation axis, UTLE patients with poor surgical outcomes were distributed in the same regions as BiTLE, and network metrics confirmed similar patterns of increased segregation in both BiTLE and poor outcome UTLE.Increased interictal whole-brain network segregation, as measured by rs-fMRI, is specific to BiTLE, as well as poor surgical outcome UTLE, and may assist in non-invasively identifying this patient population prior to intracranial electroencephalography or device implantation.
DOI: 10.1111/ijs.12205
2013
Cited 49 times
Worldwide Reported Use of IV Tissue Plasminogen Activator for Acute Ischemic Stroke
Background and Purpose Intravenous tissue plasminogen activator is the most effective treatment for acute ischemic stroke, and its use may therefore serve as an indicator of the available level of acute stroke care. The greatest burden of stroke is in low- and middle-income countries, but the extent to which intravenous tissue plasminogen activator is used in these countries is unreported. Summary of Review A systematic review was performed searching each country name AND ‘stroke’ OR ‘tissue plasminogen activator’ OR ‘thrombolysis’ using PubMed, Embase, Global Health, African Index Medicus, and abstracts published in the International Journal of Stroke (Jan. 1, 1996–Oct. 1, 2012). The reported use of intravenous tissue plasminogen activator was then analyzed according to country-level income status, total expenditure on health per capita, and mortality and disability-adjusted life years due to stroke. There were 118 780 citations reviewed. Of 214 countries and independent territories, 64 (30%) reported use of intravenous tissue plasminogen activator for acute ischemic stroke in the medical literature: 3% (1/36) low-income, 19% (10/54) lower-middle-income, 33% (18/54) upper-middle-income, and 50% (35/70) high-income-countries (test for trend, P &lt; 0·001). When considering country-level determinants of reported intravenous tissue plasminogen activator use for acute ischemic stroke, total healthcare expenditure per capita (odds ratio 3·3 per 1000 international dollar increase, 95% confidence interval 1·4–9·9, P = 0·02) and reported mortality rate from cerebrovascular disease (odds ratio 1·02, 95% confidence interval 0·99–1·06, P = 0·02) were significant, but reported disability-adjusted life years from cerebrovascular diseases and gross national income per capita were not ( P &gt; 0·05). Of the 10 countries with the highest disability-adjusted life years due to stroke, only one reported intravenous tissue plasminogen activator use. Conclusions By reported use, intravenous tissue plasminogen activator for acute ischemic stroke is available to some patients in approximately one-third of countries. Access to advanced acute stroke care is most limited where the greatest burden of cerebrovascular disease is reported.
DOI: 10.1007/978-3-030-32248-9_38
2019
Cited 42 times
Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices
In this paper, we present a fully convolutional densely connected network (Tiramisu) for multiple sclerosis (MS) lesion segmentation. Different from existing methods, we use stacked slices from all three anatomical planes to achieve a 2.5D method. Individual slices from a given orientation provide global context along the plane and the stack of adjacent slices adds local context. By taking stacked data from three orientations, the network has access to more samples for training and can make more accurate segmentation by combining information of different forms. The conducted experiments demonstrated the competitive performance of our method. For an ablation study, we simulated lesions on healthy controls to generate images with ground truth lesion masks. This experiment confirmed that the use of 2.5D patches, stacked data and the Tiramisu model improve the MS lesion segmentation performance. In addition, we evaluated our approach on the Longitudinal MS Lesion Segmentation Challenge. The overall score of 93.1 places the $$L_2$$ -loss variant of our method in the first position on the leaderboard, while the focal-loss variant has obtained the best Dice coefficient and lesion-wise true positive rate with 69.3% and 60.2%, respectively.
DOI: 10.1515/ijb-2015-0030
2016
Cited 41 times
Addressing Confounding in Predictive Models with an Application to Neuroimaging
Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.
DOI: 10.1002/jmri.25436
2016
Cited 41 times
Structural Correlation‐based Outlier Rejection (SCORE) algorithm for arterial spin labeling time series
Purpose To propose and validate Structural Correlation‐based Outlier REjection (SCORE), a novel algorithm for removal of artifacts arising from outlier control‐label pairs in 2D arterial spin labeling (ASL) data. Materials and Methods The proposed method was assessed with respect to other state‐of‐the‐art ASL signal processing approaches using 2D pulsed ASL data obtained with a 3T Siemens scanner from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Longitudinal data from control participants acquired 3 months apart were used to assess within‐subject coefficient of variation (wsCV) based on the assumption that the optimal signal processing strategy will minimize control subject retest variability in Cerebral Blood Flow (CBF). SCORE was further evaluated by determining its sensitivity for distinguishing patients with Alzheimer's disease (AD) from controls based on hypoperfusion in predefined regions of interest (ROIs) that are known to be sensitive to AD‐related changes. Results SCORE coupled with a preprocessing step to discard a few extreme outliers (combined algorithm referred to as SCORE+) reduced wsCV up to 21% in gray matter and 39% in smaller ROIs compared to the reference algorithms. It also provided an average increase in effect size for patient–control differences of 50% compared to other algorithms in a priori ROIs sensitive to AD‐related changes. This increase was statistically significant ( P &lt; 0.05) for the majority of the ROIs and methods as evaluated by permutation tests. Conclusion CBF maps generated with SCORE or SCORE + provide improved retest reliability in control subjects while simultaneously increasing sensitivity to pathological CBF effects between controls and patients. J. Magn. Reson. Imaging 2016 Level of Evidence : 2 J. MAGN. RESON. IMAGING 2017;45:1786–1797
DOI: 10.1016/j.neuroimage.2016.03.051
2016
Cited 39 times
Power estimation for non-standardized multisite studies
A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions.
DOI: 10.1016/j.neuroimage.2020.117242
2020
Cited 37 times
Intensity warping for multisite MRI harmonization
In multisite neuroimaging studies there is often unwanted technical variation across scanners and sites. These “scanner effects” can hinder detection of biological features of interest, produce inconsistent results, and lead to spurious associations. We propose mica (multisite image harmonization by cumulative distribution function alignment), a tool to harmonize images taken on different scanners by identifying and removing within-subject scanner effects. Our goals in the present study were to (1) establish a method that removes scanner effects by leveraging multiple scans collected on the same subject, and, building on this, (2) develop a technique to quantify scanner effects in large multisite studies so these can be reduced as a preprocessing step. We illustrate scanner effects in a brain MRI study in which the same subject was measured twice on seven scanners, and assess our method’s performance in a second study in which ten subjects were scanned on two machines. We found that unharmonized images were highly variable across site and scanner type, and our method effectively removed this variability by aligning intensity distributions. We further studied the ability to predict image harmonization results for a scan taken on an existing subject at a new site using cross-validation.
DOI: 10.1016/j.biopsych.2019.12.015
2020
Cited 33 times
Approaches to Defining Common and Dissociable Neurobiological Deficits Associated With Psychopathology in Youth
Psychiatric disorders show high rates of comorbidity and nonspecificity of presenting clinical symptoms, while demonstrating substantial heterogeneity within diagnostic categories. Notably, many of these psychiatric disorders first manifest in youth. We review progress and next steps in efforts to parse heterogeneity in psychiatric symptoms in youths by identifying abnormalities within neural circuits. To address this fundamental challenge in psychiatry, a number of methods have been proposed. We provide an overview of these methods, broadly organized into dimensional versus categorical approaches and single-view versus multiview approaches. Dimensional approaches including factor analysis and canonical correlation analysis aim to capture dimensional associations between psychopathology and brain measures across a continuous spectrum from health to disease. In contrast, categorical approaches, such as clustering and community detection, aim to identify subtypes of individuals within a class of symptoms or brain features. We highlight several studies that apply these methods to samples of youths and discuss issues to consider when using these approaches. Finally, we end by highlighting avenues for future research.
DOI: 10.1117/1.jmi.7.3.031505
2020
Cited 30 times
Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities
Purpose: Glioblastoma, the most common and aggressive adult brain tumor, is considered noncurative at diagnosis, with 14 to 16 months median survival following treatment. There is increasing evidence that noninvasive integrative analysis of radiomic features can predict overall and progression-free survival, using advanced multiparametric magnetic resonance imaging (Adv-mpMRI). If successfully applicable, such noninvasive markers can considerably influence patient management. However, most patients prior to initiation of therapy typically undergo only basic structural mpMRI (Bas-mpMRI, i.e., T1, T1-Gd, T2, and T2-fluid-attenuated inversion recovery) preoperatively, rather than Adv-mpMRI that provides additional vascularization (dynamic susceptibility contrast-MRI) and cell-density (diffusion tensor imaging) related information. Approach: We assess a retrospective cohort of 101 glioblastoma patients with available Adv-mpMRI from a previous study, which has shown that an initial feature panel (IFP, i.e., intensity, volume, location, and growth model parameters) extracted from Adv-mpMRI can yield accurate overall survival stratification. We focus on demonstrating that equally accurate prediction models can be constructed using augmented radiomic feature panels (ARFPs, i.e., integrating morphology and textural descriptors) extracted solely from widely available Bas-mpMRI, obviating the need for using Adv-mpMRI. We extracted 1612 radiomic features from distinct tumor subregions to build multivariate models that stratified patients as long-, intermediate-, or short-survivors. Results: The classification accuracy of the model utilizing Adv-mpMRI protocols and the IFP was 72.77% and degraded to 60.89% when using only Bas-mpMRI. However, utilizing the ARFP on Bas-mpMRI improved the accuracy to 74.26%. Furthermore, Kaplan–Meier analysis demonstrated superior classification of subjects into short-, intermediate-, and long-survivor classes when using ARFP extracted from Bas-mpMRI. Conclusions: This quantitative evaluation indicates that accurate survival prediction in glioblastoma patients is feasible using solely Bas-mpMRI and integrative advanced radiomic features, which can compensate for the lack of Adv-mpMRI. Our finding holds promise for generalization across multiple institutions that may not have access to Adv-mpMRI and to better inform clinical decision-making about aggressive interventions and clinical trials.
DOI: 10.1016/j.biopsych.2022.05.014
2022
Cited 16 times
Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth
The spatial layout of large-scale functional brain networks differs between individuals and is particularly variable in the association cortex, implicated in a broad range of psychiatric disorders. However, it remains unknown whether this variation in functional topography is related to major dimensions of psychopathology in youth.The authors studied 790 youths ages 8 to 23 years who had 27 minutes of high-quality functional magnetic resonance imaging data as part of the Philadelphia Neurodevelopmental Cohort. Four correlated dimensions were estimated using a confirmatory correlated traits factor analysis on 112 item-level clinical symptoms, and one overall psychopathology factor with 4 orthogonal dimensions were extracted using a confirmatory factor analysis. Spatially regularized nonnegative matrix factorization was used to identify 17 individual-specific functional networks for each participant. Partial least square regression with split-half cross-validation was conducted to evaluate to what extent the topography of personalized functional networks encodes major dimensions of psychopathology.Personalized functional network topography significantly predicted unseen individuals' major dimensions of psychopathology, including fear, psychosis, externalizing, and anxious-misery. Reduced representation of association networks was among the most important features for the prediction of all 4 dimensions. Further analysis revealed that personalized functional network topography predicted overall psychopathology (r = 0.16, permutation testing p < .001), which drove prediction of the 4 correlated dimensions.These results suggest that individual differences in functional network topography in association networks is related to overall psychopathology in youth. Such results underscore the importance of considering functional neuroanatomy for personalized diagnostics and therapeutics in psychiatry.
DOI: 10.1016/j.nicl.2022.103205
2022
Cited 15 times
Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues
The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.
DOI: 10.1007/s12028-011-9516-9
2011
Cited 50 times
The Challenges with Brain Death Determination in Adult Patients on Extracorporeal Membrane Oxygenation
To identify a reliable method of performing apnea testing as part of brain death determination in adult patients who develop loss of brainstem reflexes while receiving extracorporeal membrane oxygenation (ECMO). ECMO provides extracirculatory support to patients in cardiorespiratory failure who would otherwise be expected to die. Many studies have reported brain death as a potential complication of adult ECMO, but none have cited how apnea testing was performed in these patients.This retrospective review identified adults 15 years or older treated with ECMO at our institution (2002-2010) and the method of determination of brain death when complete loss of brainstem reflexes occurred.Loss of all brainstem reflexes was identified in three cases (3/87, 3.4%). The apnea test was not performed since it was deemed "difficult," leading to withdrawal of ECMO and intensive care. Ancillary tests such as cerebral flow studies were not used because they may not document absent cerebral arterial flow due to the ischemic nature of the injury. We propose the use of an oxygenated apnea test on ECMO using continuous positive airway pressure (CPAP) through the ventilator or anesthesia bag, with an inline manometer and an end tidal CO(2) device.Apnea testing is essential in the determination of brain death, but may not be employed in ECMO-treated adult patients. Apnea testing using the above protocol may assist in better decision making for adult ECMO patients at risk of brain death.
DOI: 10.1016/j.neuroimage.2011.05.038
2011
Cited 46 times
Population-wide principal component-based quantification of blood–brain-barrier dynamics in multiple sclerosis
The processes by which new white matter lesions in multiple sclerosis (MS) develop are only partially understood. Much of this understanding has come through magnetic resonance imaging (MRI) of the human brain. One of the hallmarks of new lesion development in MS is enhancement on T(1)-weighted MRI scans following the intravenous administration of a gadolinium-based contrast agent that shortens the longitudinal relaxation time of the tissue. Visible enhancement on the MRI results from the opening of the blood-brain barrier and reveals areas of active inflammation. The incidence and number of existing enhancing lesions are common outcome measures used in MS treatment clinical trials. Dynamic-contrast-enhanced MRI (DCE-MRI) can estimate the rate at which contrast agents pass from the plasma to MS lesions. In this paper, we develop a principal component-based framework for the analysis of these data that provides biologically meaningful quantification of blood-brain-barrier opening in new MS lesions. To accomplish this, we use functional principal components analysis to study directions of variation in the voxel-level time series of intensities both within and across subjects. The analysis reveals and allows quantification of typical spatiotemporal enhancement patterns in acute MS lesions, providing measures of magnitude, rate, shape (ring-like vs. nodular), and dynamics (centrifugal vs. centripetal). Across 10 subjects with relapsing-remitting and primary progressive MS, we found subjects to have between 0 and 12 gadolinium-enhancing lesions, the majority of which enhanced centripetally. We quantified the spatiotemporal behavior within each of these lesions using novel measures. Further application of these techniques will determine the extent to which these lesion measures can predict or track response to therapy or long-term prognosis in this disorder.