ϟ

Robert Teed

Here are all the papers by Robert Teed that you can download and read on OA.mg.
Robert Teed’s last known institution is . Download Robert Teed PDFs here.

Claim this Profile →
DOI: 10.1021/nl100890d
2010
Cited 373 times
Ultrahigh Sensitivity Carbon Nanotube Agents for Photoacoustic Molecular Imaging in Living Mice
Photoacoustic imaging is an emerging modality that overcomes to a great extent the resolution and depth limitations of optical imaging while maintaining relatively high-contrast. However, since many diseases will not manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast agents that can target diseased tissue(s). Here we present a novel photoacoustic contrast agent, Indocyanine Green dye-enhanced single walled carbon nanotube (SWNT-ICG). We conjugated this contrast agent with cyclic Arg-Gly-Asp (RGD) peptides to molecularly target the alpha(v)beta(3) integrins, which are associated with tumor angiogenesis. Intravenous administration of this tumor-targeted contrast agent to tumor-bearing mice showed significantly higher photoacoustic signal in the tumor than in mice injected with the untargeted contrast agent. The new contrast agent gave a markedly 300 times higher photoacoustic contrast in living tissues than previously reported SWNTs, leading to subnanomolar sensitivities. Finally, we show that the new contrast agent can detect approximately 20 times fewer cancer cells than previously reported SWNTs.
DOI: 10.1021/nn204352r
2012
Cited 224 times
Family of Enhanced Photoacoustic Imaging Agents for High-Sensitivity and Multiplexing Studies in Living Mice
Photoacoustic imaging is a unique modality that overcomes to a great extent the resolution and depth limitations of optical imaging while maintaining relatively high contrast. However, since many diseases will not manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast agents that can target diseased tissue(s). Here we present a family of novel photoacoustic contrast agents that are based on the binding of small optical dyes to single-walled carbon nanotubes (SWNT-dye). We synthesized five different SWNT-dye contrast agents using different optical dyes, creating five “flavors” of SWNT-dye nanoparticles. In particular, SWNTs that were coated with either QSY21 (SWNT-QSY) or indocyanine green (SWNT-ICG) exhibited over 100-times higher photoacoustic contrast in living animals compared to plain SWNTs, leading to subnanomolar sensitivities. We then conjugated the SWNT-dye conjugates with cyclic Arg-Gly-Asp peptides to molecularly target the αvβ3 integrin, which is associated with tumor angiogenesis. Intravenous administration of these tumor-targeted imaging agents to tumor-bearing mice showed significantly higher photoacoustic signal in the tumor than in mice injected with the untargeted contrast agent. Finally, we were able to spectrally separate the photoacoustic signals of SWNT-QSY and SWNT-ICG in living animals injected subcutaneously with both particles in the same location, opening the possibility for multiplexing in vivo studies.
DOI: 10.1364/ol.35.000270
2010
Cited 117 times
Photoacoustic ocular imaging
We developed a photoacoustic ocular imaging device and demonstrated its utility in imaging the deeper layers of the eye including the retina, choroid, and optic nerve. Using safe laser intensity, the photoacoustic system was able to visualize the blood distribution of an enucleated pig's eye and an eye of a living rabbit. Ultrasound images, which were simultaneously acquired, were overlaid on the photoacoustic images to visualize the eye's anatomy. Such a system may be used in the future for early detection and improved management of neovascular ocular diseases, including wet age-related macular degeneration and proliferative diabetic retinopathy.
DOI: 10.1158/1078-0432.ccr-11-1116
2012
Cited 96 times
Pharmacokinetically Stabilized Cystine Knot Peptides That Bind Alpha-v-Beta-6 Integrin with Single-Digit Nanomolar Affinities for Detection of Pancreatic Cancer
Abstract Purpose: Detection of pancreatic cancer remains a high priority and effective diagnostic tools are needed for clinical applications. Many cancer cells overexpress integrin αvβ6, a cell surface receptor being evaluated as a novel clinical biomarker. Experimental Design: To validate this molecular target, several highly stable cystine knot peptides were engineered by directed evolution to bind specifically and with high affinity (3–6 nmol/L) to integrin αvβ6. The binders do not cross-react with related integrin αvβ5, integrin α5β1, or tumor-angiogenesis–associated integrin, αvβ3. Results: Positron emission tomography showed that these disulfide-stabilized peptides rapidly accumulate at tumors expressing integrin αvβ6. Clinically relevant tumor-to-muscle ratios of 7.7 ± 2.4 to 11.3 ± 3.0 were achieved within 1 hour after radiotracer injection. Minimization of off-target dosing was achieved by reformatting αvβ6-binding activities across various natural and pharmacokinetically stabilized cystine knot scaffolds with different amino acid content. We show that the primary sequence of a peptide scaffold directs its pharmacokinetics. Scaffolds with high arginine or glutamic acid content suffered high renal retention of more than 75% injected dose per gram (%ID/g). Substitution of these amino acids with renally cleared amino acids, notably serine, led to significant decreases in renal accumulation of less than 20%ID/g 1 hour postinjection (P < 0.05, n = 3). Conclusions: We have engineered highly stable cystine knot peptides with potent and specific integrin αvβ6-binding activities for cancer detection. Pharmacokinetic engineering of scaffold primary sequence led to significant decreases in off-target radiotracer accumulation. Optimization of binding affinity, specificity, stability, and pharmacokinetics will facilitate translation of cystine knots for cancer molecular imaging. Clin Cancer Res; 18(3); 839–49. ©2011 AACR.
DOI: 10.1007/s11307-009-0290-4
2009
Cited 26 times
A Comparison Between Time Domain and Spectral Imaging Systems for Imaging Quantum Dots in Small Living Animals
We quantified the performance of time-domain imaging (TDI) and spectral imaging (SI) for fluorescence imaging of quantum dots (QDs) in three distinct imaging instruments: eXplore Optix (TDI, Advanced Research Technologies Inc.), Maestro (SI, CRi Inc.), and IVIS-Spectrum (SI, Caliper Life Sciences Inc.).The instruments were compared for their sensitivity in phantoms and living mice, multiplexing capabilities (ability to resolve the signal of one QD type in the presence of another), and the dependence of contrast and spatial resolution as a function of depth.In phantoms, eXplore Optix had an order of magnitude better sensitivity compared to the SI systems, detecting QD concentrations of ~40 pM in vitro. Maestro was the best instrument for multiplexing QDs. Reduction of contrast and resolution as a function of depth was smallest with eXplore Optix for depth of 2-6 mm, while other depths gave comparable results in all systems. Sensitivity experiments in living mice showed that the eXplore Optix and Maestro systems outperformed the IVIS-Spectrum.TDI was found to be an order of magnitude more sensitive than SI at the expense of speed and very limited multiplexing capabilities. For deep tissue QD imaging, TDI is most applicable for depths between 2 and 6 mm, as its contrast and resolution degrade the least at these depths.
DOI: 10.1117/1.jbo.17.11.117004
2012
Cited 7 times
Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor
Molecular optical imaging is a widespread technique for interrogating molecular events in living subjects. However, current approaches preclude long-term, continuous measurements in awake, mobile subjects, a strategy crucial in several medical conditions. Consequently, we designed a novel, lightweight miniature biosensor for in vivo continuous optical sensing. The biosensor contains an enclosed vertical-cavity surface-emitting semiconductor laser and an adjacent pair of near-infrared optically filtered detectors. We employed two sensors (dual sensing) to simultaneously interrogate normal and diseased tumor sites. Having established the sensors are precise with phantom and in vivo studies, we performed dual, continuous sensing in tumor (human glioblastoma cells) bearing mice using the targeted molecular probe cRGD-Cy5.5, which targets αVβ3 cell surface integrins in both tumor neovasculature and tumor. The sensors capture the dynamic time-activity curve of the targeted molecular probe. The average tumor to background ratio after signal calibration for cRGD-Cy5.5 injection is approximately 2.43±0.95 at 1 h and 3.64±1.38 at 2 h (N=5 mice), consistent with data obtained with a cooled charge coupled device camera. We conclude that our novel, portable, precise biosensor can be used to evaluate both kinetics and steady state levels of molecular probes in various disease applications.
DOI: 10.1117/12.811227
2009
Cited 5 times
Implantable optical biosensor for in vivo molecular imaging
We present the design and fabrication of an implantable fluorescence biosensor suitable for continuously monitored, freely-moving in vivo rodent studies. The GaAs-based semiconductor sensor incorporates an un-cooled photodetector with a 670nm vertical-cavity surface-emitting laser (VCSEL) optimized for sensing fluorescent Cy5.5 dye. For filtering unwanted spectra, a combination of physical and spectral blocking layers yields OD5 excitation rejection at the detector. The sensor detects near-IR fluorescent Cy5.5 molecules in vitro at 100nM concentration (in a 100μL volume) with linear response for concentrations up to 25μM. In a preliminary study in a living mouse, subcutaneously injected dye (1μM Cy5.5 in 50μL) was detected. This technology has the potential to enable new studies of living systems in applications that require long-term, continuous fluorescence sensing.
DOI: 10.1117/12.806497
2009
Cited 4 times
Photoacoustic molecular imaging using single walled carbon nanotubes in living mice
Photoacoustic molecular imaging is an emerging technology offering non-invasive high resolution imaging of the molecular expressions of a disease using a photoacoustic imaging agent. Here we demonstrate for the first time the utility of single walled carbon nanotubes (SWNTs) as targeted imaging agents in living mice bearing tumor xenografts. SWNTs were conjugated with polyethylene-glycol-5000 connected to Arg-Gly-Asp (RGD) peptide to target the &alpha;<sub>v</sub>&beta;<sub>3</sub> integrin that is associated with tumor angiogenesis. In-vitro, we characterized the photoacoustic spectra of the particles, their signal linearity and tested their uptake by &alpha;<sub>v</sub>&beta;<sub>3</sub>-expressing cells (U87MG). The photoacoustic signal of SWNTs was found not to be affected by the RGD conjugation to the SWNTs and was also found to be highly linear with concentration (R<sup>2</sup> = 0.9997 for 25-400nM). The cell uptake studies showed that RGD-targeted SWNTs gave 75% higher photoacoustic signal than non-targeted SWNTs when incubated with U87MG cells. In-vivo, we measured the minimal detectable concentration of SWNTs in living mice by subcutaneously injecting SWNTs at increasing concentrations. The lowest detectable concentration of SWNTs in living mice was found to be 50nM. Finally, we administered RGDtargeted and non-targeted SWNTs via the tail-vein to U87MG tumor-bearing mice (n=4 for each group) and measured the signal from the tumor before and up to 4 hours post-injection. At 4 hours post-injection, tumors of mice injected with RGD-targeted SWNTs showed 8 times higher photoacoustic signal compared with mice injected with non-targeted SWNTs. These results were verified ex-vivo using a Raman microscope that is sensitive to the SWNTs Raman signal.
2011
Ophthalmic Photoacoustic Imaging for Blood Distribution Evaluation