ϟ

Rogelio Reyes-Almanza

Here are all the papers by Rogelio Reyes-Almanza that you can download and read on OA.mg.
Rogelio Reyes-Almanza’s last known institution is . Download Rogelio Reyes-Almanza PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/14/11/c11012
2019
Cited 7 times
The CMS RPC detector performance and stability during LHC RUN-2
The CMS experiment, located at the Large Hadron Collider (LHC) in CERN, has a redundant muon system composed by three different gaseous detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness and redundancy to the muon trigger. The RPC system operation in the challenging background and pileup conditions of the LHC environment is presented. The RPC system provides information to all muon track finders and thus contributing to both muon trigger and reconstruction. The summary of the detector performance results obtained with proton-proton collision at √s = 13 TeV during 2016 and 2017 data taking have been presented. The stability of the system is presented in terms of efficiency and cluster size vs time and increasing instantaneous luminosity. Data-driven predictions about the expected performance during High Luminosity LHC (HL-LHC) stage have been reported.
DOI: 10.1088/1748-0221/13/08/p08024
2018
Cited 4 times
Long-term performance and longevity studies of the CMS Resistive Plate Chambers
Four double-gap CMS resistive plate chambers are being tested at the CERN Gamma Irradiation Facility to determine the performance and aging effects at the expected conditions of the High Luminosity-Large Hadron Collider. Results up to an integrated charge of 290 millicoulomb/cm2 are reported.
DOI: 10.1088/1748-0221/13/09/c09001
2018
Cited 3 times
Fast timing measurement for CMS RPC Phase-II upgrade
With the increase of the LHC luminosity foreseen in the coming years, many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced or upgraded. The new ones should be capable to provide time information to reduce the data ambiguity due to the expected high pileup. We propose to equip CMS high |η| muon chambers with pairs of single gap RPC detectors read out by long pickup strips PCB. The precise time measurement (0<15 ps) of the signal induced by particles crossing the detector on both ends of each strip will give an accurate measurement of the position of the incoming particle along the strip. The absolute time measurement, determined by RPC signal (around 1.5 ns) will also reduce the data ambiguity due to the highly expected pileup and help to identify Heavy Stable Charged Particles (HSCP). The development of a specific electronic chain (analog front-end ASIC, time-to-digital converter stage and printed circuit board design) and the corresponding first results on prototype chambers are presented.
DOI: 10.1088/1748-0221/14/09/c09045
2019
Cited 3 times
RPC radiation background simulations for the high luminosity phase in the CMS experiment
The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the detector material could cause significant damage and result in a progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study the radiation environment and the impact on detector performance. Results are presented for CMS RPC stations considering the operating conditions expected at the HL-LHC.
DOI: 10.1088/1748-0221/14/10/c10027
2019
RE3/1 &amp; RE4/1 RPC chambers integration in the inner region of the forward muon spectrometer in the CMS experiment
The high pseudorapidity ($\eta$) region of the Compact Muon Solenoid (CMS) muon system is covered by Cathode Strip Chambers only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. During the annual Year-End Technical Stops 2022 & 2023, two new layers of improved Resistive Plate Chambers (iRPC) will be added, RE3/1 & RE4/1, which will completely cover the region of $1.8 < |\eta| < 2.4$ in the endcap. Thus, the additional new chambers will lead to increase efficiency for both trigger and offline reconstruction in the difficult region where the background is the highest and the magnetic field is the lowest within the muon system. The extended RPC system will improve the performance and the robustness of the muon trigger. The final design of iRPC chambers and the concept to integrate and install them in the CMS muon system have been finalized. In this report, the main results demonstrating the implementation and installation of the new iRPC detectors in the CMS muon system at high $|\eta|$ region will be presented.
DOI: 10.1088/1748-0221/14/05/c05012
2019
Longevity studies on the CMS-RPC system
In the next decades, the Large Hadron Collider (LHC) will run at very high luminosity (HL-LHC) 5×1034 cm−2s−1, factor five more than the nominal LHC luminosity. During this period the CMS RPC system will be subjected to high background rates which could affect the performance by inducing aging effects. A dedicated longevity program to qualify the present RPC system for the HL-LHC running period is ongoing. At the CERN Gamma Irradiation Facility (GIF++) four RPC detectors, from the spare production, are exposed to an intense gamma radiation for a dose equivalent to the one expected at the HL-LHC . The main detector parameters are under monitoring as a function of the integrated charge and the performance is studied with a muon beam. Preliminary results of the study after having collected ≈ 34% of the expected integrated charge will be presented.
DOI: 10.1088/1748-0221/14/09/c09046
2019
High voltage calibration method for the CMS RPC detector
The Resistive Plate Chambers (RPC) are used for muon triggers in the CMS experiment. To calibrate the high voltage working-points (WP) and identify degraded detectors due to radiation or chemical damage, a high voltage scan has been performed using 2017 data from pp collisions at a center-of-mass energy of 13 TeV. In this paper, we present the calibration method and the latest results obtained for the 2017 data. A comparison with all scans taken since 2011 is considered to investigate the stability of the detector performance in time.
DOI: 10.1088/1748-0221/15/05/c05072
2020
RPC upgrade project for CMS Phase II
The Muon Upgrade Phase II of the Compact Muon Solenoid (CMS) aims to guarantee the optimal conditions of the present system and extend the η coverage to ensure a reliable system for the High Luminosity Large Hadron Collider (HL-LHC) period. The Resistive Plate Chambers (RPCs) system will upgrade the off-detector electronics (called link system) of the chambers currently installed chambers and place improved RPCs (iRPCs) to cover the high pseudo−rapidity region, a challenging region for muon reconstruction in terms of background and momentum resolution. In order to find the best option for the iRPCs, an R&D program for new detectors was performed and real size prototypes have been tested in the Gamma Irradiation Facility (GIF++) at CERN. The results indicated that the technology suitable for the high background conditions is based on High Pressure Laminate (HPL) double-gap RPC. The RPC Upgrade Phase II program is planned to be ready after the Long Shutdown 3 (LS3).
2018
RPC upgrade project for CMS Phase II : arXiv
DOI: 10.1088/1748-0221/14/10/c10020
2019
CMS RPC efficiency measurement using the tag-and-probe method
We measure the efficiency of CMS Resistive Plate Chamber (RPC) detectors in proton-proton collisions at the centre-of-mass energy of 13 TeV using the tag-and-probe method. A muon from a Z0 boson decay is selected as a probe of efficiency measurement, reconstructed using the CMS inner tracker and the rest of CMS muon systems. The overall efficiency of CMS RPC chambers during the 2016–2017 collision runs is measured to be more than 96% for the nominal RPC chambers.
DOI: 10.1088/1748-0221/14/11/c11011
2019
Search for Heavy Stable Charged Particles in the CMS Experiment using the RPC Phase II upgraded detectors
Several theoretical models inspired by the idea of supersymmetry (SUSY) accommodate the possibility of Heavy Stable Charged Particles (HSCPs). The Phase II upgrade of the CMS-RPC system will allow the trigger and identification of this kind of particles exploiting the Time-of-Flight Technique with the improved time resolution that a new Data Acquisition System (DAQ) system will provide (∼2 ns). Moreover, new Resistive Plate Chambers (RPC) detector chambers will be installed to extend the acceptance coverage up to |η|<2.4 with similar time resolution and better spatial resolution. We present a trigger strategy to detect HSCPs with the RPC detectors. Its performance is studied with Monte Carlo simulations and the expected results with the High Luminosity Large Hadron Collider (HL-LHC) data are shown.
DOI: 10.1088/1748-0221/14/10/c10037
2019
High Rate RPC detector for LHC
The High Luminosity LHC (HL-LHC) phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. The foreseen gradual increase of the instantaneous luminosity of up to more than twice its nominal value of $10\times10^{34}\ {\rm cm}^{-1}{\rm s}^{-2}$ during Phase I and Phase II of the LHC running, presents special challenges for the experiments. The region with high pseudo rapidity ($\eta$) region of the forward muon spectrometer ($2.4 > |\eta| > 1.9$) is not equipped with RPC stations. The increase of the expected particles rate up to 2 kHz cm$^{-1}$ ( including a safety factor 3 ) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. A new generation of Glass-RPC (GRPC) using low-resistivity glass was proposed to equip the two most far away of the four high $\eta$ muon stations of CMS. In their single-gap version they can stand rates of few kHz cm$^{-1}$. Their time precision of about 1 ns can allow to reduce the noise contribution leading to an improvement of the trigger rate. The proposed design for large size chambers is examined and some preliminary results obtained during beam tests at Gamma Irradiation Facility (GIF++) and Super Proton Synchrotron (SPS) at CERN are shown. They were performed to validate the capability of such detectors to support high irradiation environment with limited consequence on their efficiency.