ϟ

Paul Lingor

Here are all the papers by Paul Lingor that you can download and read on OA.mg.
Paul Lingor’s last known institution is . Download Paul Lingor PDFs here.

Claim this Profile →
DOI: 10.1073/pnas.0909794107
2010
Cited 262 times
Mechanisms of acute axonal degeneration in the optic nerve in vivo
Axonal degeneration is an initial key step in traumatic and neurodegenerative CNS disorders. We established a unique in vivo epifluorescence imaging paradigm to characterize very early events in axonal degeneration in the rat optic nerve. Single retinal ganglion cell axons were visualized by AAV-mediated expression of dsRed and this allowed the quantification of postlesional acute axonal degeneration (AAD). EM analysis revealed severe structural alterations of the cytoskeleton, cytoplasmatic vacuolization, and the appearance of autophagosomes within the first hours after lesion. Inhibition of autophagy resulted in an attenuation of acute axonal degeneration. Furthermore, a rapid increase of intraaxonal calcium levels following crush lesion could be visualized using a calcium-sensitive dye. Application of calcium channel inhibitors prevented crush-induced calcium increase and markedly attenuated axonal degeneration, whereas application of a calcium ionophore aggravated the degenerative phenotype. We finally demonstrate that increased postlesional autophagy is calcium dependent and thus mechanistically link autophagy and intraaxonal calcium levels. Both processes are proposed to be major targets for the manipulation of axonal degeneration in future therapeutic settings.
DOI: 10.1016/s1474-4422(20)30037-5
2020
Cited 212 times
Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study
Nusinersen is approved for the treatment of 5q spinal muscular atrophy of all types and stages in patients of all ages. Although clinical trials have shown improvements in motor function in infants and children treated with the drug, data for adults are scarce. We aimed to assess the safety and efficacy of nusinersen in adults with 5q spinal muscular atrophy.We did an observational cohort study at ten academic clinical sites in Germany. Patients with genetically confirmed 5q spinal muscular atrophy (age 16-65 years) with a homozygous deletion of exons 7, 8, or both, or with compound heterozygous mutations were eligible for inclusion and received nusinersen treatment in accordance with the label for a minimum treatment time of 6 months to a follow-up of up to 14 months. The primary outcome was the change in the total Hammersmith Functional Motor Scale Expanded (HFMSE) score, assessed at months 6, 10, and 14, and based on pre-post comparisons. This study is registered with the German Clinical Trials Register (number DRKS00015702).Between July 13, 2017, and May 1, 2019, 173 patients were screened, of whom 139 (80%) were eligible for data analysis. Of these, 124 (89%) were included in the 6-month analysis, 92 (66%) in the 10-month analysis, and 57 (41%) in the 14-month analysis; patients with missing baseline HFMSE scores were excluded from these analyses. Mean HFMSE scores were significantly increased compared with baseline at 6 months (mean difference 1·73 [95% CI 1·05-2·41], p<0·0001), 10 months (2·58 [1·76-3·39], p<0·0001), and 14 months (3·12 [2·06-4·19], p<0·0001). Clinically meaningful improvements (≥3 points increase) in HFMSE scores were seen in 35 (28%) of 124 patients at 6 months, 33 (35%) of 92 at 10 months, and 23 (40%) of 57 at 14 months. To 14-month follow-up, the most frequent adverse effects among 173 patients were headache (61 [35%] patients), back pain (38 [22%]), and nausea (19 [11%]). No serious adverse events were reported.Despite the limitations of the observational study design and a slow functional decline throughout the natural disease course, our data provide evidence for the safety and efficacy of nusinersen in the treatment of adults with 5q spinal muscular atrophy, with clinically meaningful improvements in motor function in a real-world cohort.None.
DOI: 10.1093/brain/awx370
2018
Cited 169 times
Hot-spot KIF5A mutations cause familial ALS
Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 × 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis.
DOI: 10.1016/j.pharmthera.2018.03.008
2018
Cited 145 times
ROCK inhibition in models of neurodegeneration and its potential for clinical translation
Neurodegenerative disorders like Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis are affecting a rapidly increasing population worldwide. While common pathomechanisms such as protein aggregation, axonal degeneration, dysfunction of protein clearing and an altered immune response have been characterized, no disease-modifying therapies have been developed so far. Interestingly, a significant involvement of the Rho kinase (ROCK) signaling pathway has been described in all of these mechanisms making it a promising target for new therapeutic approaches. In this article, we first review current knowledge of the involvement of ROCK in neurodegenerative disorders and the utility of its inhibition as a disease-modifying therapy in different neurodegenerative disorders. After a detailed description of the biochemical characteristics of ROCK and its molecular interactors, differences of ROCK-expression under physiological and pathological conditions are compared. Next, different pharmacological and molecular-genetic strategies to inhibit ROCK-function are discussed, focusing on pharmacological ROCK-inhibitors. The role of the ROCK-pathway in cellular processes that are central in neurodegenerative disorders pathology like axonal degeneration, autophagy, synaptic and glial function is explained in detail. Finally, all available data on ROCK-inhibition in different animal models of neurodegenerative disorders is reviewed and first approaches for translation into human patients are discussed. Taken together, there is now extensive evidence from preclinical studies in several neurodegenerative disorders that characterize ROCK as a promising drug target for further translational research in neurodegenerative disorders.
DOI: 10.1001/jamaneurol.2021.4893
2022
Cited 90 times
Safety and Effectiveness of Long-term Intravenous Administration of Edaravone for Treatment of Patients With Amyotrophic Lateral Sclerosis
Intravenous edaravone is approved as a disease-modifying drug for patients with amyotrophic lateral sclerosis (ALS), but evidence for efficacy is limited to short-term beneficial effects shown in the MCI186-ALS19 study in a subpopulation in which efficacy was expected.To evaluate the long-term safety and effectiveness of intravenous edaravone therapy for patients with ALS in a real-world clinical setting.Multicenter, propensity score-matched cohort study conducted between June 2017 and March 2020 at 12 academic ALS referral centers associated with the German Motor Neuron Disease Network. Of 1440 patients screened, 738 were included in propensity score matching. Final analyses included 324 patients with ALS comprising 194 patients who started intravenous edaravone treatment (141 received ≥4 consecutive treatment cycles; 130 matched) and 130 propensity score-matched patients with ALS receiving standard therapy. All patients had probable or definite ALS according to the El Escorial criteria, with disease onset between December 2012 and April 2019. Subgroups were defined by applying the MCI186-ALS19 study inclusion criteria to evaluate whether patients would have been considered eligible (EFAS) or ineligible (non-EFAS).Intravenous edaravone plus riluzole vs riluzole only.Patient characteristics and systematic safety assessment for patients who received at least 1 dose of intravenous edaravone. Effectiveness assessment of edaravone was conducted among patients who received at least 4 treatment cycles compared with propensity score-matched patients with ALS who received only standard therapy. Primary outcome was disease progression measured by decrease in the ALS Functional Rating Scale-Revised (ALSFRS-R) score. Secondary outcomes were survival probability, time to ventilation, and change in disease progression before vs during treatment. To account for the matched design, patients receiving edaravone and their corresponding matched controls were regarded as related samples in disease progression analyses; stratification for propensity score quintiles was used for survival probability and time to ventilation analyses.A total of 194 patients started intravenous edaravone treatment; 125 (64%) were male, and the median age was 57.5 years (IQR, 50.7-63.8 years). Potential adverse effects were observed in 30 cases (16%), most notably infections at infusion sites and allergic reactions. Disease progression among 116 patients treated for a median of 13.9 months (IQR, 8.9-13.9 months) with edaravone did not differ from 116 patients treated for a median of 11.2 months (IQR, 6.4-20.0 months) with standard therapy (ALSFRS-R points/month, -0.91 [95% CI, -0.69 to -1.07] vs -0.85 [95% CI, -0.66 to -0.99]; P = .37). No significant differences were observed in the secondary end points of survival probability, time to ventilation, and change in disease progression. Similarly, outcomes between patients treated with edaravone and matched patients did not differ within the EFAS and non-EFAS subgroups.This cohort study using propensity score matching found that, although long-term intravenous edaravone therapy for patients with ALS was feasible and mainly well tolerated, it was not associated with any disease-modifying benefit. Intravenous edaravone may not provide a clinically relevant additional benefit compared with standard therapy alone.
DOI: 10.1038/s41467-021-27649-y
2022
Cited 47 times
Dynamics of spike-and nucleocapsid specific immunity during long-term follow-up and vaccination of SARS-CoV-2 convalescents
Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.
DOI: 10.1093/brain/awm284
2007
Cited 219 times
ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells
Functional regeneration in the CNS is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. A principal, yet unresolved question is the interaction between these two major factors. We thus evaluated the role of pharmacological inhibition of rho kinase (ROCK), a key mediator of myelin-derived axonal growth inhibition and CNTF, a potent neurotrophic factor for retinal ganglion cells (RGC), in models of retinal ganglion cell apoptosis and neurite outgrowth/regeneration in vitro and in vivo. Here, we show for the first time that the ROCK inhibitor Y-27632 significantly enhanced survival of RGC in vitro and in vivo. In vitro, the co-application of CNTF and Y-27632 potentiated the effect of either substance alone. ROCK inhibition resulted in the activation of the intrinsic MAPK pathway, and the combination of CNTF and Y-27632 resulted in even more pronounced MAPK activation. While CNTF also induced STAT3 phosphorylation, the additional application of ROCK inhibitor surprisingly diminished the effects of CNTF on STAT3 phosphorylation. ROCK activity was also decreased in an additive manner by both substances. In vivo, both CNTF and Y-27632 enhanced regeneration of RGC into the non-permissive optic nerve crush model and additive effects were observed after combination treatment. Further evaluation using specific inhibitors delineate STAT3 as a negative regulator of neurite growth and positive regulator of cell survival, while MAPK and Akt support neurite growth. These results show that next to neurotrophic factors ROCK inhibition by Y-27632 potently supports survival of lesioned adult CNS neurons. Co-administration of CNTF and Y-27632 results in additive effects on neurite outgrowth and regeneration. The interaction of intracellular signalling pathways may, however, attenuate more pronounced synergy and has to be taken into account for future treatment strategies.
DOI: 10.1038/cddis.2014.191
2014
Cited 152 times
ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.
DOI: 10.1093/brain/aws254
2012
Cited 145 times
Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease
Axonal degeneration is one of the earliest features of Parkinson’s disease pathology, which is followed by neuronal death in the substantia nigra and other parts of the brain. Inhibition of axonal degeneration combined with cellular neuroprotection therefore seem key to targeting an early stage in Parkinson’s disease progression. Based on our previous studies in traumatic and neurodegenerative disease models, we have identified rho kinase as a molecular target that can be manipulated to disinhibit axonal regeneration and improve survival of lesioned central nervous system neurons. In this study, we examined the neuroprotective potential of pharmacological rho kinase inhibition mediated by fasudil in the in vitro 1-methyl-4-phenylpyridinium cell culture model and in the subchronic in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Application of fasudil resulted in a significant attenuation of dopaminergic cell loss in both paradigms. Furthermore, dopaminergic terminals were preserved as demonstrated by analysis of neurite network in vitro, striatal fibre density and by neurochemical analysis of the levels of dopamine and its metabolites in the striatum. Behavioural tests demonstrated a clear improvement in motor performance after fasudil treatment. The Akt survival pathway was identified as an important molecular mediator for neuroprotective effects of rho kinase inhibition in our paradigm. We conclude that inhibition of rho kinase using the clinically approved small molecule inhibitor fasudil may be a promising new therapeutic strategy for Parkinson’s disease.
DOI: 10.1039/c4mt00339j
2015
Cited 129 times
Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease
Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder with severe consequences for patients and caregivers. In the last twenty years of research, alpha-synuclein (αSyn) emerged as a main regulator of PD pathology, both in genetic and sporadic cases. Most importantly, oligomeric and aggregated species of αSyn appear to be pathogenic. In addition, transition metals have been implicated in the disease pathogenesis of PD already for decades. The interaction of metals with αSyn has been shown to trigger the aggregation of this protein. Furthermore, metals can exert cellular toxicity due to their red-ox potential, which leads to the formation of reactive oxygen species, exacerbating the noxious effects of αSyn. Here we give a brief overview on αSyn pathology and the role of metals in the brain and then address in more detail the interaction of αSyn with three disease-relevant transition metals, iron (Fe), copper (Cu) and manganese (Mn). We also discuss possible therapeutic approaches for PD, which are based on these interactions, e.g. chelation therapy and anti-oxidative treatments. Not all mechanisms of alpha-synuclein-mediated toxicity and roles of metals are sufficiently understood. We discuss several aspects, which deserve further investigation in order to shed light on the etiopathology of the disease and enable the development of more specific, innovative drugs for the treatment of PD and other synucleinopathies.
DOI: 10.1038/cddis.2015.318
2015
Cited 129 times
Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells
We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction.
DOI: 10.1093/hmg/ddr425
2011
Cited 122 times
The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin
Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.
DOI: 10.1186/s40478-016-0310-y
2016
Cited 115 times
Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, yet disease-modifying treatments do not currently exist. Rho-associated protein kinase (ROCK) was recently described as a novel neuroprotective target in PD. Since alpha-synuclein (α-Syn) aggregation is a major hallmark in the pathogenesis of PD, we aimed to evaluate the anti-aggregative potential of pharmacological ROCK inhibition using the isoquinoline derivative Fasudil, a small molecule inhibitor already approved for clinical use in humans. Fasudil treatment significantly reduced α-Syn aggregation in vitro in a H4 cell culture model as well as in a cell-free assay. Nuclear magnetic resonance spectroscopy analysis revealed a direct binding of Fasudil to tyrosine residues Y133 and Y136 in the C-terminal region of α-Syn. Importantly, this binding was shown to be biologically relevant using site-directed mutagenesis of these residues in the cell culture model. Furthermore, we evaluated the impact of long-term Fasudil treatment on α-Syn pathology in vivo in a transgenic mouse model overexpressing human α-Syn bearing the A53T mutation (α-SynA53T mice). Fasudil treatment improved motor and cognitive functions in α-SynA53T mice as determined by CatwalkTM gait analysis and novel object recognition (NOR), without apparent side effects. Finally, immunohistochemical analysis revealed a significant reduction of α-Syn pathology in the midbrain of α-SynA53T mice after Fasudil treatment. Our results demonstrate that Fasudil, next to its effects mediated by ROCK-inhibition, directly interacts with α-Syn and attenuates α-Syn pathology. This underscores the translational potential of Fasudil as a disease-modifying drug for the treatment of PD and other synucleinopathies.
DOI: 10.1007/s00441-012-1362-3
2012
Cited 106 times
Axonal degeneration as a therapeutic target in the CNS
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
DOI: 10.1038/cddis.2015.169
2015
Cited 103 times
Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons
Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered.
DOI: 10.3389/fnins.2018.00625
2018
Cited 98 times
Circulating miRNAs as Diagnostic Biomarkers for Parkinson’s Disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Its main neuropathological hallmarks are the degeneration of dopaminergic neurons in the substantia nigra and alpha-synuclein containing protein inclusions, called Lewy Bodies. The diagnosis of idiopathic PD is still based on the assessment of clinical criteria, leading to an insufficient diagnostic accuracy. Additionally, there is no biomarker available allowing the prediction of the disease course or monitoring the response to therapeutic approaches. So far, protein biomarker candidates such as alpha-synuclein have failed to improve diagnosis of PD. Circulating microRNAs (miRNAs) in body fluids are promising biomarker candidates for PD, as they are easily accessible by non- or minimally-invasive procedures and changes in their expression are associated with pathophysiological processes relevant for PD. Advances in miRNA analysis methods resulted in numerous recent publications on miRNAs as putative biomarkers. Here, we discuss the applicability of different body fluids as sources for miRNA biomarkers, highlight technical aspects of miRNA analysis and give an overview on published studies investigating circulating miRNAs as biomarker candidates for diagnosis of PD and other Parkinsonian syndromes.
DOI: 10.1002/glia.22601
2013
Cited 94 times
Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis
Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons (MN) and their axons, but is also influenced by neighboring cells such as astrocytes and microglial cells. The role of microglia in ALS is complex as it switches from an anti‐inflammatory and neuroprotective phenotype in early disease to a proinflammatory and neurotoxic phenotype in later stages. Our previous studies in models of neurodegeneration identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression. Here, we examined the neuroprotective potential of the ROCK inhibitor Fasudil to target the central pathogenic features of ALS. Application of Fasudil to kainic acid‐lesioned primary MN in vitro resulted in a strong prosurvival effect. In vivo , SOD1 G93A mice benefited from oral treatment with Fasudil showing prolonged survival and improved motor function. These findings were correlated to an improved survival of motor neurons and a pronounced alteration of astroglial and microglial cell infiltration of the spinal cord under Fasudil treatment. Modeling a proinflammatory microglial phenotype by stimulation with LPS in vitro , Fasudil decreased the release of proinflammatory cytokines and chemokines TNFα, Il6, CCL2, CCL3, and CCL5 while CXCL1 release was only transiently suppressed. In sciatic nerve motor axons, neuromuscular junction remodeling processes were increased. In conclusion, we provide preclinical and neurobiological evidence that inhibition of ROCK by the clinically approved small molecule inhibitor Fasudil may be a novel therapeutic approach in ALS combining both neuroprotection and immunomodulation for the cure of this devastating disease. GLIA 2014;62:217–232
DOI: 10.3389/fnins.2019.00015
2019
Cited 67 times
The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System
The homeostasis of iron is of fundamental importance in the central nervous system (CNS) to ensure biological processes such as oxygen transport, mitochondrial respiration or myelin synthesis. Dyshomeostasis and accumulation of iron can be observed during aging and both are shared characteristics of several neurodegenerative diseases. Iron-mediated generation of reactive oxygen species (ROS) may lead to protein aggregation and cellular toxicity. The process of misfolding and aggregation of neuronal proteins such as α-synuclein, Tau, amyloid beta (Aβ), TDP-43 or SOD1 is a common hallmark of many neurodegenerative disorders and iron has been shown to facilitate protein aggregation. Thus, both, iron and aggregating proteins are proposed to amplify their detrimental effects in the disease state. In this review, we give an overview on effects of iron on aggregation of different proteins involved in neurodegeneration. Furthermore, we discuss the proposed mechanisms of iron-mediated toxicity and protein aggregation emphasizing the red-ox chemistry and protein-binding properties of iron. Finally, we address current therapeutic approaches harnessing iron chelation as a disease-modifying intervention in neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis.
DOI: 10.1038/s41385-021-00482-8
2022
Cited 43 times
Mild COVID-19 imprints a long-term inflammatory eicosanoid- and chemokine memory in monocyte-derived macrophages
Monocyte-derived macrophages (MDM) drive the inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and they are a major source of eicosanoids in airway inflammation. Here we report that MDM from SARS-CoV-2-infected individuals with mild disease show an inflammatory transcriptional and metabolic imprint that lasts for at least 5 months after SARS-CoV-2 infection. MDM from convalescent SARS-CoV-2-infected individuals showed a downregulation of pro-resolving factors and an increased production of pro-inflammatory eicosanoids, particularly 5-lipoxygenase-derived leukotrienes. Leukotriene synthesis was further enhanced by glucocorticoids and remained elevated at 3–5 months, but had returned to baseline at 12 months post SARS-CoV-2 infection. Stimulation with SARS-CoV-2 spike protein or LPS triggered exaggerated prostanoid-, type I IFN-, and chemokine responses in post COVID-19 MDM. Thus, SARS-CoV-2 infection leaves an inflammatory imprint in the monocyte/ macrophage compartment that drives aberrant macrophage effector functions and eicosanoid metabolism, resulting in long-term immune aberrations in patients recovering from mild COVID-19.
DOI: 10.1007/s00702-022-02498-1
2022
Cited 25 times
Blood-based biomarker in Parkinson’s disease: potential for future applications in clinical research and practice
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
DOI: 10.1371/journal.pone.0263595
2022
Cited 25 times
Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis
Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome.We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models.We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region.Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission.
DOI: 10.1002/ctm2.692
2022
Cited 24 times
Multi‐omic landscaping of human midbrains identifies disease‐relevant molecular targets and pathways in advanced‐stage Parkinson's disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process.Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies.Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function.This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.
DOI: 10.1007/s00702-023-02635-4
2023
Cited 14 times
The heterogeneity of Parkinson’s disease
The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.
DOI: 10.1111/ene.15773
2023
Cited 12 times
Performance of serum neurofilament light chain in a wide spectrum of clinical courses of amyotrophic lateral sclerosis—a cross‐sectional multicenter study
The objective was to assess the performance of serum neurofilament light chain (sNfL) in amyotrophic lateral sclerosis (ALS) in a wide range of disease courses, in terms of progression, duration and tracheostomy invasive ventilation (TIV).A prospective cross-sectional study at 12 ALS centers in Germany was performed. sNfL concentrations were age adjusted using sNfL Z scores expressing the number of standard deviations from the mean of a control reference database and correlated to ALS duration and ALS progression rate (ALS-PR), defined by the decline of the ALS Functional Rating Scale.In the total ALS cohort (n = 1378) the sNfL Z score was elevated (3.04; 2.46-3.43; 99.88th percentile). There was a strong correlation of sNfL Z score with ALS-PR (p < 0.001). In patients with long (5-10 years, n = 167) or very long ALS duration (>10 years, n = 94) the sNfL Z score was significantly lower compared to the typical ALS duration of <5 years (n = 1059) (p < 0.001). Furthermore, in patients with TIV, decreasing sNfL Z scores were found in correlation with TIV duration and ALS-PR (p = 0.002; p < 0.001).The finding of moderate sNfL elevation in patients with long ALS duration underlined the favorable prognosis of low sNfL. The strong correlation of sNfL Z score with ALS-PR strengthened its value as progression marker in clinical management and research. The lowering of sNfL in correlation with long TIV duration could reflect a reduction either in disease activity or in the neuroaxonal substrate of biomarker formation during the protracted course of ALS.
DOI: 10.1056/nejmc2214647
2023
Cited 10 times
Detection of Prion Protein Seeding Activity in Tear Fluids
DOI: 10.1016/s0042-6822(03)00162-4
2003
Cited 131 times
Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units
Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology.
DOI: 10.1523/jneurosci.20-23-08597.2000
2000
Cited 129 times
Growth/Differentiation Factor-15/Macrophage Inhibitory Cytokine-1 Is a Novel Trophic Factor for Midbrain Dopaminergic Neurons<i>In Vivo</i>
Transforming growth factor-βs (TGF-βs) constitute an expanding family of multifunctional cytokines with prominent roles in development, cell proliferation, differentiation, and repair. We have cloned, expressed, and raised antibodies against a distant member of the TGF-βs, growth/differentiation factor-15 (GDF-15). GDF-15 is identical to macrophage inhibitory cytokine-1 (MIC-1). GDF-15/MIC-1 mRNA and protein are widely distributed in the developing and adult CNS and peripheral nervous systems, including choroid plexus and CSF. GDF-15/MIC-1 is a potent survival promoting and protective factor for cultured and iron-intoxicated dopaminergic (DAergic) neurons cultured from the embryonic rat midbrain floor. The trophic effect of GDF-15/MIC-1 was not accompanied by an increase in cell proliferation and astroglial maturation, suggesting that GDF-15/MIC-1 probably acts directly on neurons. GDF-15/MIC-1 also protects 6-hydroxydopamine (6-OHDA)-lesioned nigrostriatal DAergic neurons in vivo . Unilateral injections of GDF-15/MIC-1 into the medial forebrain bundle just above the substantia nigra (SN) and into the left ventricle (20 μg each) immediately before a 6-OHDA injection (8 μg) prevented 6-OHDA-induced rotational behavior and significantly reduced losses of DAergic neurons in the SN. This protection was evident for at least 1 month. Administration of 5 μg of GDF-15/MIC-1 in the same paradigm also provided significant neuroprotection. GDF-15/MIC-1 also promoted the serotonergic phenotype of cultured raphe neurons but did not support survival of rat motoneurons. Thus, GDF-15/MIC-1 is a novel neurotrophic factor with prominent effects on DAergic and serotonergic neurons. GDF-15/MIC-1 may therefore have a potential for the treatment of Parkinson's disease and disorders of the serotonergic system.
DOI: 10.1111/j.1471-4159.2007.04756.x
2007
Cited 126 times
Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan <i>in vitro</i> and axonal regeneration in the adult optic nerve <i>in vivo</i>
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.
DOI: 10.1111/j.1471-4159.2006.03727.x
2006
Cited 109 times
Granulocyte‐colony stimulating factor is neuroprotective in a model of Parkinson's disease
Abstract We have recently shown that the hematopoietic Granulocyte‐Colony Stimulating Factor (G‐CSF) is neuroprotective in rodent stroke models, and that this action appears to be mediated via a neuronal G‐CSF receptor. Here, we report that the G‐CSF receptor is expressed in rodent dopaminergic substantia nigra neurons, suggesting that G‐CSF might be neuroprotective for dopaminergic neurons and a candidate molecule for the treatment of Parkinson's disease. Thus, we investigated protective effects of G‐CSF in 1‐methyl‐4‐phenylpyridinium (MPP + )‐challenged PC12 cells and primary neuronal midbrain cultures, as well as in the mouse 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) model of Parkinson's disease. Substantial protection was found against MPP + ‐induced dopaminergic cell death in vitro . Moreover, subcutaneous application of G‐CSF at a dose of 40 μg/Kg body weight daily over 13 days rescued dopaminergic substantia nigra neurons from MPTP‐induced death in aged mice, as shown by quantification of tyrosine hydroxylase‐positive substantia nigra cells. Using HPLC, a corresponding reduction in striatal dopamine depletion after MPTP application was observed in G‐CSF‐treated mice. Thus our data suggest that G‐CSF is a novel therapeutic opportunity for the treatment of Parkinson's disease, because it is well‐tolerated and already approved for the treatment of neutropenic conditions in humans.
DOI: 10.1093/brain/awh382
2005
Cited 106 times
Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo
Transection of the optic nerve induces an apoptotic degeneration of retinal ganglion cells (RGC) in the rat retina. The immediate early gene c-Jun, the proapoptotic Bcl-2 family member Bax and the apoptosome constituent Apaf-1 have been shown previously to play major roles in the induction or execution of the apoptosis cascade. In this study we have designed and generated short interfering RNAs (siRNAs) against c-Jun, Bax and Apaf-1, which were injected into the optic nerve stump in order to inhibit axotomy-induced apoptosis. siRNAs were first tested in vitro to ensure silencing efficiency. In vivo, a clear neuronal localization of Cy3-labelled siRNA could be visualized in retinal flat mounts. Retinas that were injected with anti-Apaf-1- and anti-c-Jun-siRNA showed significantly more surviving RGC than non-injected or anti-EGFP-injected controls (approximately 2- to 3-fold, respectively). Anti-Bax-siRNA-injected retinas showed a trend towards an increased RGC number (not significant). Regulation of target proteins in situ could be visualized by immunohistochemical stainings. We conclude that (i) c-Jun and Apaf-1 play major roles in the apoptotic cascade of RGC and may represent useful targets for antiapoptotic strategies in RGC in vivo, and (ii) injection of siRNAs into the optic nerve stump is a new method to down-regulate target genes specifically in RGC.
DOI: 10.1021/jm060318n
2006
Cited 97 times
Imino-tetrahydro-benzothiazole Derivatives as p53 Inhibitors: Discovery of a Highly Potent in Vivo Inhibitor and Its Action Mechanism
Several neurological disorders manifest symptoms that result from the degeneration and death of specific neurons. p53 is an important modulator of cell death, and its inhibition could be a therapeutic approach to several neuropathologies. Here, we report the design, synthesis, and biological evaluation of novel p53 inhibitors based on the imino-tetrahydrobenzothiazole scaffold. By performing studies on their mechanism of action, we find that cyclic analogue 4b and its open precursor 2b are more potent than pifithrin-alpha (PFT-alpha), which is known to block p53 pro-apoptotic activity in vitro and in vivo without acting on other pro-apoptotic pathways. Using spectroscopic methods, we also demonstrate that open form 2b is more stable than 4b in biological media. Compound 2b is converted into its corresponding active cyclic form through an intramolecular dehydration process and was found two log values more active in vivo than PFT-alpha. Thus, 2b can be considered as a new prodrug prototype that prevents in vivo p53-triggered cell death in several neuropathologies and possibly reduces cancer therapy side effects.
DOI: 10.1038/sj.cdd.4402087
2007
Cited 96 times
Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis
Under physiological conditions, mitochondrial morphology dynamically shifts between a punctuate appearance and tubular networks. However, little is known about upstream signal transduction pathways that regulate mitochondrial morphology. We show that mitochondrial fission is a very early and kinetically invariant event during neuronal cell death, which causally contributes to cytochrome c release and neuronal apoptosis. Using a small molecule CDK5 inhibitor, as well as a dominant-negative CDK5 mutant and RNAi knockdown experiments, we identified CDK5 as an upstream signalling kinase that regulates mitochondrial fission during apoptosis of neurons. Vice versa, our study shows that mitochondrial fission is a modulator contributing to CDK5-mediated neurotoxicity. Thereby, we provide a link that allows integration of CDK5 into established neuronal apoptosis pathways.
DOI: 10.3389/fnmol.2011.00039
2011
Cited 87 times
ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration
Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies.
DOI: 10.15252/embj.201593585
2016
Cited 61 times
Loss of <scp>FBXO</scp>7 (<scp>PARK</scp>15) results in reduced proteasome activity and models a parkinsonism‐like phenotype in mice
Abstract Mutations in the FBXO 7 ( PARK 15 ) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome ( PPS ), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO 7 (F‐box protein only 7) is a subunit of the SCF ( SKP 1/cullin‐1/F‐box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO 7‐ SCF binds to and ubiquitinates the proteasomal subunit PSMA 2. In addition, we show that FBXO 7 is a proteasome‐associated protein involved in proteasome assembly. In FBXO 7 knockout mice, we find reduced proteasome activity and early‐onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix–loop–helix protein‐1)‐Cre‐induced deletion of the FBXO 7 gene in forebrain neurons or the loss of FBXO 7 in tyrosine hydroxylase ( TH )‐positive neurons results in motor defects, reminiscent of the phenotype in PARK 15 patients. Taken together, our study establishes a vital role for FBXO 7 in neurons, which is required for proper motor control and accentuates the importance of FBXO 7 in proteasome function.
DOI: 10.1007/s12035-015-9146-x
2015
Cited 60 times
α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons
DOI: 10.3389/fneur.2019.00293
2019
Cited 58 times
ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis
Objectives: Disease-modifying therapies for amyotrophic lateral sclerosis (ALS) are still not satisfactory. The Rho kinase (ROCK) inhibitor fasudil has demonstrated beneficial effects in cell culture and animal models of ALS. For many years, fasudil has been approved in Japan for the treatment of vasospasm in patients with subarachnoid hemorrhage with a favorable safety profile. Here we describe a clinical trial protocol to repurpose fasudil as a disease-modifying therapy for ALS patients. Methods: ROCK-ALS is a multicenter, double-blind, randomized, placebo-controlled phase IIa trial of fasudil in ALS patients (EudraCT: 2017-003676-31, NCT: 03792490). Safety and tolerability are the primary endpoints. Efficacy is a secondary endpoint and will be assessed by the change in ALSFRS-R, ALSAQ-5, slow vital capacity (SVC), ECAS, and the motor unit number index (MUNIX), as well as survival. Efficacy measures will be assessed before (baseline) and immediately after the infusion therapy as well as on days 90 and 180. Patients will receive a daily dose of either 30 or 60 mg fasudil, or placebo in two intravenous applications for a total of 20 days. Regular assessments of safety will be performed throughout the treatment period, and in the follow-up period until day 180. Additionally, we will collect biological fluids to assess target engagement and evaluate potential biomarkers for disease progression. A total of 120 patients with probable or definite ALS (revised El Escorial criteria) and within 6-18 months of the onset of weakness shall be included in 16 centers in Germany, Switzerland and France. Results and conclusions: The ROCK-ALS trial is a phase IIa trial to evaluate the ROCK-inhibitor fasudil in early-stage ALS-patients that started patient recruitment in 2019.
DOI: 10.3389/fnagi.2017.00094
2017
Cited 57 times
Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson’s Disease and Amyotrophic Lateral Sclerosis
Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.
DOI: 10.1016/j.nbd.2014.09.013
2015
Cited 55 times
AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson's disease in vitro and in vivo
Parkinson's disease (PD) is a neurodegenerative disorder with prominent neuronal cell death in the substantia nigra (SN) and other parts of the brain. Previous studies in models of traumatic and neurodegenerative CNS disease showed that pharmacological inhibition of Rho-associated kinase (ROCK), a molecule involved in inhibitory signaling in the CNS, by small-molecule inhibitors improves neuronal survival and increases regeneration. Most small-molecule inhibitors, however, offer only limited target specificity and also inhibit other kinases, including both ROCK isoforms. To establish the role of the predominantly brain-expressed ROCK2 isoform in models of regeneration and PD, we used adeno-associated viral vectors (AAV) to specifically knockdown ROCK2 in neurons. Rat primary midbrain neurons (PMN) were transduced with AAV expressing short-hairpin-RNA (shRNA) against ROCK2 and LIM-domain kinase 1 (LIMK1), one of the downstream targets of ROCK2. While knock-down of ROCK2 and LIMK1 both enhanced neurite regeneration in a traumatic scratch lesion model, only ROCK2-shRNA protected PMN against 1-methyl-4-phenylpyridinium (MPP+) toxicity. Moreover, AAV.ROCK2-shRNA increased levels of the pro-survival markers Bcl-2 and phospho-Erk1. In vivo, AAV.ROCK2-shRNA vectors were injected into the ipsilateral SN and a unilateral 6-OHDA striatal lesion was performed. After four weeks, behavioral, immunohistochemical and biochemical alterations were investigated. Downregulation of ROCK2 protected dopaminergic neurons in the SN from 6-OHDA-induced degeneration and resulted in significantly increased TH-positive neuron numbers. This effect, however, was confined to nigral neuronal somata as striatal terminal density, dopamine and metabolite levels were not significantly preserved. Interestingly, motor behavior was improved in the ROCK2-shRNA treated animals compared to control after four weeks. Our studies thus confirm ROCK2 as a promising therapeutic target in models of PD and demonstrate that neuron-specific inhibition of ROCK2 promotes survival of lesioned dopaminergic neurons.
DOI: 10.1016/j.parkreldis.2019.03.001
2019
Cited 51 times
Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson's disease – A pilot study
The diagnosis of Parkinson's disease (PD) is still challenging and biomarkers could contribute to an improved diagnostic accuracy. Tear fluid (TF) is an easily accessible body fluid reflecting pathophysiological changes in systemic and ocular diseases and is already used as a biomarker source for several ophthalmological disorders. Here, we analyzed the TF of patients with PD and controls (CTR) to describe disease-related changes in TF and identify putative biomarkers for the diagnosis of PD.Unstimulated TF samples of a pilot cohort with 36 PD patients and 18 CTR were collected via Schirmer tear test strips and then analyzed via a Bottom-up liquid chromatography electrospray ionization tandem mass spectrometry (BULCMS) workflow, followed by functional analysis encompassing protein-protein interaction as well as cellular component and pathway analysis.BULCMS analysis lead to the identification of 571 tear proteins (false discovery rate, FDR < 1%), whereby 31 proteins were exclusively detected in the PD group and 7 only in the CTR group. Whereas 21 proteins were significantly increased in the PD versus CTR groups, 19 proteins were significantly decreased. Core networks of proteins involved in immune response, lipid metabolism and oxidative stress were distinctly altered in PD patients.To our best knowledge, this is the first description of TF proteome in PD patients. Tear protein level alterations suggest the contribution of different disease-related mechanisms in ocular pathology in PD and propose candidate proteins to be validated as potential biomarkers in larger cohorts.
DOI: 10.1007/s00415-019-09547-y
2019
Cited 51 times
Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen
DOI: 10.1016/j.nbd.2018.08.001
2018
Cited 50 times
Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function
Alpha-synuclein (aSyn) is the major protein component of Lewy bodies and Lewy neurites, the typical pathological hallmarks in Parkinson's disease (PD) and Dementia with Lewy bodies. aSyn is capable of inducing transcriptional deregulation, but the precise effect of specific aSyn mutants associated with familial forms of PD, remains unclear. Here, we used transgenic mice overexpressing human wild-type (WT) or A30P aSyn to compare the transcriptional profiles of the two animal models. We found that A30P aSyn promotes strong transcriptional deregulation and increases DNA binding. Interestingly, COL4A2, a major component of basement membranes, was found to be upregulated in both A30P aSyn transgenic mice and in dopaminergic neurons expressing A30P aSyn, suggesting a crucial role for collagen related genes in aSyn-induced toxicity. Finally, we observed that A30P aSyn alters Golgi morphology and increases the susceptibility to endoplasmic reticulum (ER) stress in dopaminergic cells. In total, our findings provide novel insight into the putative role of aSyn on transcription and on the molecular mechanisms involved, thereby opening novel avenues for future therapeutic interventions in PD and other synucleinopathies.
DOI: 10.1016/j.clinph.2018.11.009
2019
Cited 46 times
Motor Unit Number Index (MUNIX) of hand muscles is a disease biomarker for adult spinal muscular atrophy
There is still insufficient knowledge about natural history in adult spinal muscular atrophy, thus valid markers for treatment and disease monitoring are urgently needed. We studied hand muscle innervation pattern of 38 adult genetically confirmed 5q spinal muscular atrophy (SMA) patients by the motor unit number index (MUNIX) method. Data were compared to healthy controls and amyotrophic lateral sclerosis (ALS) patients and systematically correlated to typical disease-relevant scores and other clinical as well as demographic characteristics. Denervation of hand muscles in adult SMA was not evenly distributed. By calculation of the MUNIX ratios, we identified a specific hand muscle wasting pattern for SMA which is different to the split hand in ALS. Furthermore, MUNIX parameters strongly correlated with established disease course parameters independent of disease stages. We found a pathophysiological remarkable denervation pattern of hand muscles, a ‘reversed split hand’. MUNIX of single hand muscles correlated well with disease severity and thus represents an easily available biomarker for adult SMA. Our data show the power of the MUNIX method as a biomarker for upcoming questions in adult SMA.
DOI: 10.1007/s00415-019-09290-4
2019
Cited 46 times
Prognostic factors in ALS: a comparison between Germany and China
DOI: 10.1177/1756286419846058
2019
Cited 43 times
Neurochemical markers in CSF of adolescent and adult SMA patients undergoing nusinersen treatment
There is limited information on neurochemical markers being used to support and monitor the affection of motoneurons in patients with spinal muscular atrophy (SMA). The objective of this study was to examine neurochemical markers in cerebrospinal fluid (CSF) under treatment with the antisense-oligonucleotide (ASO), nusinersen.We measured markers of axonal degeneration [neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)] along with basic CSF parameters in 25 adolescent and adult SMA type 2 and 3 patients at baseline and after four intrathecal injections of nusinersen. Neurochemical markers were compared with controls. In addition, neurochemical markers in SMA patients were related to the Hammersmith Functional Rating Scale Expanded (HFMSE).No significant difference in neurofilament (Nf) values was observed between SMA and control group, neither at baseline nor after four injections of nusinersen. NfL, protein and quotients of albumin (Qalb) increased slightly in SMA patients after the fourth injection. The slight increase of NfL could be related to the development of mild CSF flow change. No relations were observed between changes in Nf and HFMSE.We assume that Nf levels in CSF in these patients may result from slow disease progression in this stage of disease, pre-existing loss of motoneurons due to long disease duration besides affection of the LMN only. Therefore, we conclude that Nf levels in CSF do not seem useful as diagnostic and monitoring markers in adolescent and adult SMA type 2 and 3 patients.
DOI: 10.1002/acn3.51340
2021
Cited 33 times
Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment
Abstract Objective To determine whether serum creatine kinase activity (CK) and serum creatinine concentration (Crn) are prognostic and predictive biomarkers for disease severity, disease progression, and nusinersen treatment effects in adult patients with 5q‐associated spinal muscular atrophy (SMA). Methods Within this retrospective, multicenter observational study in 206 adult patients with SMA, we determined clinical subtypes (SMA types, ambulatory ability) and repeatedly measured CK and Crn and examined disease severity scores (Hammersmith Functional Motor Scale Expanded, Revised Upper Limb Module, and revised Amyotrophic Lateral Sclerosis Functional Rating Scale). Patients were followed under nusinersen treatment for 18 months. Results CK and Crn differed between clinical subtypes and correlated strongly with disease severity scores (e.g., for Hammersmith Functional Motor Scale Expanded: (CK) ρ = 0.786/ (Crn) ρ = 0.558). During the 18 months of nusinersen treatment, CK decreased (∆CK = −17.56%, p &lt; 0.0001), whereas Crn slightly increased (∆Crn = +4.75%, p &lt; 0.05). Interpretation Serum creatine kinase activity and serum creatinine concentration reflect disease severity of spinal muscular atrophy and are promising biomarkers to assess patients with spinal muscular atrophy during disease course and to predict treatment response. The decrease of creatine kinase activity, combined with the tendency of creatinine concentration to increase during nusinersen treatment, suggests reduced muscle mass wasting with improved muscle energy metabolism.
DOI: 10.3390/brainsci11060748
2021
Cited 31 times
Informal Caregiving in Amyotrophic Lateral Sclerosis (ALS): A High Caregiver Burden and Drastic Consequences on Caregivers’ Lives
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive autonomy loss and need for care. This does not only affect patients themselves, but also the patients’ informal caregivers (CGs) in their health, personal and professional lives. The big efforts of this multi-center study were not only to evaluate the caregivers’ burden and to identify its predictors, but it also should provide a specific understanding of the needs of ALS patients’ CGs and fill the gap of knowledge on their personal and work lives. Using standardized questionnaires, primary data from patients and their main informal CGs (n = 249) were collected. Patients’ functional status and disease severity were evaluated using the Barthel Index, the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and the King’s Stages for ALS. The caregivers’ burden was recorded by the Zarit Burden Interview (ZBI). Comorbid anxiety and depression of caregivers were assessed by the Hospital Anxiety and Depression Scale. Additionally, the EuroQol Five Dimension Five Level Scale evaluated their health-related quality of life. The caregivers’ burden was high (mean ZBI = 26/88, 0 = no burden, ≥24 = highly burdened) and correlated with patients’ functional status (rp = −0.555, p &lt; 0.001, n = 242). It was influenced by the CGs’ own mental health issues due to caregiving (+11.36, 95% CI [6.84; 15.87], p &lt; 0.001), patients’ wheelchair dependency (+9.30, 95% CI [5.94; 12.66], p &lt; 0.001) and was interrelated with the CGs’ depression (rp = 0.627, p &lt; 0.001, n = 234), anxiety (rp = 0.550, p &lt; 0.001, n = 234), and poorer physical condition (rp = −0.362, p &lt; 0.001, n = 237). Moreover, female CGs showed symptoms of anxiety more often, which also correlated with the patients’ impairment in daily routine (rs = −0.280, p &lt; 0.001, n = 169). As increasing disease severity, along with decreasing autonomy, was the main predictor of caregiver burden and showed to create relevant (negative) implications on CGs’ lives, patient care and supportive therapies should address this issue. Moreover, in order to preserve the mental and physical health of the CGs, new concepts of care have to focus on both, on not only patients but also their CGs and gender-associated specific issues. As caregiving in ALS also significantly influences the socioeconomic status by restrictions in CGs’ work lives and income, and the main reported needs being lack of psychological support and a high bureaucracy, the situation of CGs needs more attention. Apart from their own multi-disciplinary medical and psychological care, more support in care and patient management issues is required.
DOI: 10.1007/s00702-022-02500-w
2022
Cited 23 times
SARS-CoV-2 and neurodegenerative diseases: what we know and what we don’t
Infection of the CNS with the SARS-CoV-2 can occur via different routes and results in para- or post-infectious manifestations with a variety of neurological symptoms. In patients with neurodegenerative diseases, SARS-CoV-2 is often associated with a higher fatality rate, which is a relevant problem in increasingly older populations. Apart from the direct consequences of an infection in patients with neurodegenerative diseases, indirect consequences of the pandemic such as limited access to care facilities and treatment have negative effects on the course of these chronic disorders. The occurrence of long-lasting neurological symptoms after infection with SARS-CoV-2 indicates a prolonged impact on the CNS. However, while it is known that SARS-CoV-2 affects neuronal populations that are relevant in the pathogenesis of neurodegenerative diseases, it is yet unclear whether an infection with SARS-CoV-2 is sufficient to trigger neurodegeneration. Reflecting on the impact of SARS-CoV-2 on neurodegeneration, we provide a concise overview on the current knowledge of SARS-CoV-2-induced pathology in the CNS and discuss yet open questions in the field.
DOI: 10.1093/brain/awac252
2022
Cited 19 times
Effect of nusinersen on motor, respiratory and bulbar function in early-onset spinal muscular atrophy
Abstract 5q-associated spinal muscular atrophy is a rare neuromuscular disorder with the leading symptom of a proximal muscle weakness. Three different drugs have been approved by the European Medicines Agency and Food and Drug Administration for the treatment of spinal muscular atrophy patients, however, long-term experience is still scarce. In contrast to clinical trial data with restricted patient populations and short observation periods, we report here real-world evidence on a broad spectrum of patients with early-onset spinal muscular atrophy treated with nusinersen focusing on effects regarding motor milestones, and respiratory and bulbar insufficiency during the first years of treatment. Within the SMArtCARE registry, all patients under treatment with nusinersen who never had the ability to sit independently before the start of treatment were identified for data analysis. The primary outcome of this analysis was the change in motor function evaluated with the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders and motor milestones considering World Health Organization criteria. Further, we evaluated data on the need for ventilator support and tube feeding, and mortality. In total, 143 patients with early-onset spinal muscular atrophy were included in the data analysis with a follow-up period of up to 38 months. We observed major improvements in motor function evaluated with the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders. Improvements were greater in children &amp;gt;2 years of age at start of treatment than in older children. 24.5% of children gained the ability to sit independently. Major improvements were observed during the first 14 months of treatment. The need for intermittent ventilator support and tube feeding increased despite treatment with nusinersen. Our findings confirm the increasing real-world evidence that treatment with nusinersen has a dramatic influence on disease progression and survival in patients with early-onset spinal muscular atrophy. Major improvements in motor function are seen in children younger than 2 years at the start of treatment. Bulbar and respiratory function needs to be closely monitored, as these functions do not improve equivalent to motor function.
DOI: 10.1261/rna.2252206
2006
Cited 95 times
Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons
RNA interference (RNAi) provides a powerful experimental tool for sequence-specific gene silencing, allowing efficient analysis of gene function in a multitude of cell types. However, application of RNAi in primary mammalian neurons has been limited by low-transfection efficiency and considerable toxicity of conventional transfection methods. In this study, we evaluated a peptide-mediated and a polymer/lipid-based cellular delivery method for siRNA into rat primary neurons and compared the results with a commonly used liposomal transfection reagent. Stearylated octaarginine (Stearyl-R8) was used as polypeptide and artificial virus-like particles (AVPs) were used as a combined liposomal-polymeric vector, since both reagents have been previously shown to successfully transfect DNA into cell lines. Stearyl-R8 and AVPs both promoted siRNA transfection into primary hippocampal neurons via the endosomal pathway. SiRNA-mediated gene silencing could be effectively induced in primary neuron cultures. In comparison with the commonly used cationic liposome transfection agent, both novel reagents were less detrimental to cell metabolic activity. We conclude that these novel transfection methods yield performances comparable to cationic liposome-mediated transfection for siRNA, while being less cytotoxic in primary neurons. Stearyl-R8 and AVPs may therefore represent novel and more cost-efficient alternatives to conventional siRNA-transfection reagents.
DOI: 10.1038/sj.cdd.4402258
2007
Cited 86 times
Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen
Disruption of synaptic integrity, loss of connectivity and axodendritic degeneration are early and essential components of neurodegeneration. Although neuronal cell death mechanisms have been thoroughly investigated, less is known about the signals involved in axodendritic damage and the processes involved in regeneration. Here we conducted a genome-wide RNA interference-based forward genetic screen, using small interfering RNA targeting all human kinases, and identified clusters of kinases families essential for growth cone collapse, neurite retraction and neurite outgrowth. Of 59 kinases identified as positive regulators of neurite outgrowth, almost 50% were in the tyrosine kinase/tyrosine kinase-like (TK/TKL) receptor subgroups, underlining the importance of extracellular ligands in this process. Neurite outgrowth was inhibited by 66 other kinases, none of which were TK/TKL members, whereas 79 kinases inhibited lysophosphatidic acid-induced neurite retraction. Twenty kinases were involved in both inhibitory processes suggesting shared mechanisms. Within this group of 20 kinases, some (ULK1, PDK1, MAP4K4) have been implicated previously in axonal events, but others (MAST2, FASTK, CKM and DGUOK) have not. For a subset of kinases, the effect on neurite outgrowth was validated in rat primary cerebellar cultures. The ability to affect regeneration was further tested in a model of axodendritic lesion using primary rat midbrain cultures. Finally, we demonstrated that haploinsufficiency of two members of the AGC kinase subgroup, ROCK1 and PKN1, was able to suppress retinal degeneration in Drosophila model of class III Autosomal Dominant Retinitis Pigmentosa.
DOI: 10.1111/j.1471-4159.2011.07257.x
2011
Cited 60 times
Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.
DOI: 10.1007/s12017-017-8447-9
2017
Cited 46 times
Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of Alpha-Synuclein Aggregation
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and its causes remain unknown. A major hallmark of the disease is the increasing presence of aggregated alpha-synuclein (aSyn). Furthermore, there is a solid consensus on iron (Fe) accumulation in several regions of PD brains during disease progression. In our study, we focused on the interaction of Fe and aggregating aSyn in vivo in a transgenic mouse model overexpressing human aSyn bearing the A53T mutation (prnp.aSyn.A53T). We utilized a neonatal iron-feeding model to exacerbate the motor phenotype of the transgenic mouse model. Beginning from day 100, mice were treated with deferiprone (DFP), a ferric chelator that is able to cross the blood-brain barrier and is currently used in clinics as treatment for hemosiderosis. Our paradigm resulted in an impairment of the learning abilities in the rotarod task and the novel object recognition test. DFP treatment significantly improved the performance in both tasks. Although this was not accompanied by alterations in aSyn aggregation, our results support DFP as possible therapeutic option in PD.
DOI: 10.1007/s12035-015-9676-2
2016
Cited 41 times
Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush
DOI: 10.1111/jnc.14316
2018
Cited 39 times
Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson's disease
Abstract The diagnosis of Parkinson's disease (PD) still lacks objective diagnostic markers independent of clinical criteria. Cerebrospinal fluid (CSF) samples from 36 PD and 42 age‐matched control patients were subjected to inductively coupled plasma‐sector field mass spectrometry and a total of 28 different elements were quantified. Different machine learning algorithms were applied to the dataset to identify a discriminating set of elements yielding a novel biomarker signature. Using 19 stably detected elements, the extreme gradient tree boosting model showed the best performance in the discrimination of PD and control patients with high specificity and sensitivity (78.6% and 83.3%, respectively), re‐classifying the training data to 100%. The 10 times 10‐fold cross‐validation yielded a good area under the receiver operating characteristic curve of 0.83. Arsenic, magnesium, and selenium all showed significantly higher mean CSF levels in the PD group compared to the control group ( p = 0.01, p = 0.04, and p = 0.03). Reducing the number of elements to a discriminating minimum, we identified an elemental cluster (Se, Fe, As, Ni, Mg, Sr), which most importantly contributed to the sample discrimination. Selenium was identified as the element with the highest impact within this cluster directly followed by iron. After prospective validation, this elemental fingerprint in the CSF could have the potential to be used as independent biomarker for the diagnosis of PD. Next to their value as a biomarker, these data also argue for a prominent role of these highly discriminating six elements in the pathogenesis of PD. image
DOI: 10.3389/fneur.2020.00173
2020
Cited 30 times
Compassionate Use of the ROCK Inhibitor Fasudil in Three Patients With Amyotrophic Lateral Sclerosis
The Rho kinase (ROCK) inhibitor Fasudil is a promising drug for a disease-modifying therapy of amyotrophic lateral sclerosis (ALS). In preclinical models, Fasudil was shown to increase motor neuron survival, inhibit axonal degeneration, enhance axonal regeneration and modulate microglial function in vitro and in vivo. It prolonged survival and improved motor function of SOD1-G93A-mice. Recently, a phase IIa clinical trial has been commenced to investigate the safety, tolerability, and efficacy of Fasudil in ALS patients at an early stage of disease (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Although Fasudil has been approved in Japan for many years for the treatment of vasospasms following subarachnoid hemorrhage and is known to have a favorable side effect profile in these patients, there is no data on its use in human patients with ALS or any other neurodegenerative conditions. Here, we report the first three cases of compassionate use of Fasudil in patients with ALS. Between May 2017 and February 2019, one male (66 years old) and two female (62 and 68 years old) subjects with probable or definite ALS according to the El Escorial criteria (one of the females having a pathogenic SOD1 mutation) were administered Fasudil 30 mg intravenously twice daily over 45 min on 20 consecutive working days. Blood pressure, heart rate and routine laboratory tests were constantly controlled. All three subjects tolerated the Fasudil infusions well without any obvious side effects. Interestingly, the slow vital capacity showed a significant increase in one of the patients. Taken together, we report here the first compassionate use of the ROCK inhibitor Fasudil in three ALS patients, which was well-tolerated.
DOI: 10.1111/ene.15072
2021
Cited 24 times
Neurological symptoms and complications in predominantly hospitalized COVID‐19 patients: Results of the European multinational Lean European Open Survey on SARS‐Infected Patients (LEOSS)
During acute coronavirus disease 2019 (COVID-19) infection, neurological signs, symptoms and complications occur. We aimed to assess their clinical relevance by evaluating real-world data from a multinational registry.We analyzed COVID-19 patients from 127 centers, diagnosed between January 2020 and February 2021, and registered in the European multinational LEOSS (Lean European Open Survey on SARS-Infected Patients) registry. The effects of prior neurological diseases and the effect of neurological symptoms on outcome were studied using multivariate logistic regression.A total of 6537 COVID-19 patients (97.7% PCR-confirmed) were analyzed, of whom 92.1% were hospitalized and 14.7% died. Commonly, excessive tiredness (28.0%), headache (18.5%), nausea/emesis (16.6%), muscular weakness (17.0%), impaired sense of smell (9.0%) and taste (12.8%), and delirium (6.7%) were reported. In patients with a complicated or critical disease course (53%) the most frequent neurological complications were ischemic stroke (1.0%) and intracerebral bleeding (ICB; 2.2%). ICB peaked in the critical disease phase (5%) and was associated with the administration of anticoagulation and extracorporeal membrane oxygenation (ECMO). Excessive tiredness (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.20-1.68) and prior neurodegenerative diseases (OR 1.32, 95% CI 1.07-1.63) were associated with an increased risk of an unfavorable outcome. Prior cerebrovascular and neuroimmunological diseases were not associated with an unfavorable short-term outcome of COVID-19.Our data on mostly hospitalized COVID-19 patients show that excessive tiredness or prior neurodegenerative disease at first presentation increase the risk of an unfavorable short-term outcome. ICB in critical COVID-19 was associated with therapeutic interventions, such as anticoagulation and ECMO, and thus may be an indirect complication of a life-threatening systemic viral infection.
DOI: 10.3201/eid2803.204436
2022
Cited 15 times
Infection Control Measures and Prevalence of SARS-CoV-2 IgG among 4,554 University Hospital Employees, Munich, Germany
Hospital staff are at high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the coronavirus disease (COVID-19) pandemic. This cross-sectional study aimed to determine the prevalence of SARS-CoV-2 infection in hospital staff at the University Hospital rechts der Isar in Munich, Germany, and identify modulating factors. Overall seroprevalence of SARS-CoV-2-IgG in 4,554 participants was 2.4%. Staff engaged in direct patient care, including those working in COVID-19 units, had a similar probability of being seropositive as non-patient-facing staff. Increased probability of infection was observed in staff reporting interactions with SARS-CoV-2‒infected coworkers or private contacts or exposure to COVID-19 patients without appropriate personal protective equipment. Analysis of spatiotemporal trajectories identified that distinct hotspots for SARS-CoV-2‒positive staff and patients only partially overlap. Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic might be safe as long as adequate personal protective equipment is used and infection prevention practices are followed inside and outside the hospital.
DOI: 10.1093/braincomms/fcad152
2023
Cited 6 times
Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis
Therapy of motoneuron diseases entered a new phase with the use of intrathecal antisense oligonucleotide therapies treating patients with specific gene mutations predominantly in the context of familial amyotrophic lateral sclerosis. With the majority of cases being sporadic, we conducted a cohort study to describe the mutational landscape of sporadic amyotrophic lateral sclerosis. We analysed genetic variants in amyotrophic lateral sclerosis-associated genes to assess and potentially increase the number of patients eligible for gene-specific therapies. We screened 2340 sporadic amyotrophic lateral sclerosis patients from the German Network for motor neuron diseases for variants in 36 amyotrophic lateral sclerosis-associated genes using targeted next-generation sequencing and for the C9orf72 hexanucleotide repeat expansion. The genetic analysis could be completed on 2267 patients. Clinical data included age at onset, disease progression rate and survival. In this study, we found 79 likely pathogenic Class 4 variants and 10 pathogenic Class 5 variants (without the C9orf72 hexanucleotide repeat expansion) according to the American College of Medical Genetics and Genomics guidelines, of which 31 variants are novel. Thus, including C9orf72 hexanucleotide repeat expansion, Class 4, and Class 5 variants, 296 patients, corresponding to ∼13% of our cohort, could be genetically resolved. We detected 437 variants of unknown significance of which 103 are novel. Corroborating the theory of oligogenic causation in amyotrophic lateral sclerosis, we found a co-occurrence of pathogenic variants in 10 patients (0.4%) with 7 being C9orf72 hexanucleotide repeat expansion carriers. In a gene-wise survival analysis, we found a higher hazard ratio of 1.47 (95% confidence interval 1.02-2.1) for death from any cause for patients with the C9orf72 hexanucleotide repeat expansion and a lower hazard ratio of 0.33 (95% confidence interval 0.12-0.9) for patients with pathogenic SOD1 variants than for patients without a causal gene mutation. In summary, the high yield of 296 patients (∼13%) harbouring a pathogenic variant and oncoming gene-specific therapies for SOD1/FUS/C9orf72, which would apply to 227 patients (∼10%) in this cohort, corroborates that genetic testing should be made available to all sporadic amyotrophic lateral sclerosis patients after respective counselling.
DOI: 10.3390/cells12040597
2023
Cited 5 times
TDP-43 Proteinopathy Specific Biomarker Development
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
DOI: 10.1186/s42466-023-00251-x
2023
Cited 5 times
Guideline “Motor neuron diseases” of the German Society of Neurology (Deutsche Gesellschaft für Neurologie)
In 2021, the Deutsche Gesellschaft für Neurology published a new guideline on diagnosis and therapy of motor neuron disorders. Motor neuron disorders affect upper motor neurons in the primary motor cortex and/or lower motor neurons in the brain stem and spinal cord. The most frequent motor neuron disease amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease with an average life expectancy of 2-4 years with a yearly incidence of 3.1/100,000 in Central Europe (Rosenbohm et al. in J Neurol 264(4):749-757, 2017. https://doi.org/10.1007/s00415-017-8413-3 ). It is considered a rare disease mainly due to its low prevalence as a consequence of short disease duration.These guidelines comprise recommendations regarding differential diagnosis, neuroprotective therapies and multidisciplinary palliative care including management of respiration and nutrition as well as provision of assistive devices and end-of-life situations.Diagnostic and therapeutic guidelines are necessary due the comparatively high number of cases and the aggressive disease course. Given the low prevalence and the severe impairment of patients, it is often impossible to generate evidence-based data so that ALS guidelines are partially dependent on expert opinion.
DOI: 10.3389/fnagi.2024.1308577
2024
Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson’s disease (ROCK-PD)
The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile.To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD.We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration.After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
DOI: 10.1093/brain/awn196
2008
Cited 63 times
BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity
Improved survival of injured neurons and the inhibition of repulsive environmental signalling are prerequisites for functional regeneration. BAG1 (Bcl-2-associated athanogene-1) is an Hsp70/Hsc70-binding protein, which has been shown to suppress apoptosis and enhance neuronal differentiation. We investigated BAG1 as a therapeutic molecule in the lesioned visual system in vivo. Using an adeno-associated viral vector, BAG1 (AAV.BAG1) was expressed in retinal ganglion cells (RGC) and then tested in models of optic nerve axotomy and optic nerve crush. BAG1 significantly increased RGC survival as compared to adeno-associated viral vector enhanced green fluorescent protein (AAV.EGFP) treated controls and this was independently confirmed in transgenic mice over-expressing BAG1 in neurons. The numbers and lengths of regenerating axons after optic nerve crush were also significantly increased in the AAV.BAG1 group. In pRGC cultures, BAG1-over-expression resulted in a ∼3-fold increase in neurite length and growth cone surface. Interestingly, BAG1 induced an intracellular translocation of Raf-1 and ROCK2 and ROCK activity was decreased in a Raf-1-dependent manner by BAG1-over-expression. In summary, we show that BAG1 acts in a dual role by inhibition of lesion-induced apoptosis and interaction with the inhibitory ROCK signalling cascade. BAG1 is therefore a promising molecule to be further examined as a putative therapeutic tool in neurorestorative strategies.
DOI: 10.1111/jnc.12073
2012
Cited 43 times
X‐ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons
Abstract Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X‐ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X‐ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic ( DA ergic) and non‐ DA ergic neurons after treatment with transition metals. Application of Fe 2+ resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X‐ray absorption near edge structure analysis. After treatment with Mn 2+ , a cytoplasmic/paranuclear localization of Mn was observed preferentially in DA ergic neurons, while no prominent signal was detectable after Mn 3+ treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage‐gated calcium channels in DA ergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DA ergic neurons and Parkinson's disease pathogenesis.
DOI: 10.1097/nen.0000000000000095
2014
Cited 42 times
Rho Kinase Inhibition by Fasudil in the Striatal 6-Hydroxydopamine Lesion Mouse Model of Parkinson Disease
Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg of 6-OHDA and treated with fasudil 30 or 100 mg/kg body weight via drinking water. Motor behavior was tested biweekly; histologic and biochemical analyses were performed at 4 and 12 weeks after lesion. Motor behavior was severely impaired after 6-OHDA lesion and was not improved by fasudil treatment. Fasudil 100 mg/kg did not significantly increase the number of dopaminergic cells in the substantia nigra after 12 weeks versus lesion controls. Interestingly, however, high-performance liquid chromatography analysis of dopamine metabolites revealed that striatal levels of 3,4-dihydroxyphenylacetic acid were significantly increased after 12 weeks, suggesting a regenerative response. In contrast to recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin model, fasudil effects seem limited in this severe 6-OHDA model of PD. Nevertheless, high therapeutic concentrations of fasudil are suggestive of a proregenerative potential for dopaminergic neurons, making further evaluations of rho kinase inhibition as a proregenerative therapeutic strategy in PD promising.
DOI: 10.1111/bpa.12170
2014
Cited 37 times
Early and Sustained Activation of Autophagy in Degenerating Axons after Spinal Cord Injury
Axonal degeneration is one of the initial steps in many neurological disorders and has been associated with increased autophagic activity. Although there are increasing data on the regulation of autophagy proteins in the neuronal soma after spinal cord injury (SCI), their characterization in the axon is scarce. Here, we examined the regulation of autophagy during axonal degeneration in a rat model of SCI following a lesion at Th 8. We analyzed the morphological and ultrastructural changes in injured axons by immunohistochemical evaluation of autophagy-related proteins and electron microscopy at different time points following SCI. The expression of ULK1, Atg7 and Atg5 in damaged axons was rapidly upregulated within hours after SCI. The number of axonal LC3-positive autophagosomes was also rapidly increased after SCI and remained at an increased level for up to 6 weeks. Ultrastructural analysis showed early signs of axonal degeneration and increased autophagy. In conclusion, we show that autophagy is increased early and for a sustained period in degenerating axons after SCI and that it might be an important executive step involved in axonal degeneration. Therefore, autophagy may represent a promising target for future therapeutic interventions in the treatment of axonal degeneration in traumatic central nervous system disorders.
DOI: 10.1111/bpa.12346
2016
Cited 37 times
Altered Expression of Growth Associated Protein‐43 and Rho Kinase in Human Patients with Parkinson's Disease
Abstract Causative treatment strategies for Parkinson's disease (PD) will have to address multiple underlying pathomechanisms to attenuate neurodegeneration. Additionally, the intrinsic regenerative capacity of the central nervous system is also an important factor contributing to restoration. Extracellular cues can limit sprouting and regrowth of adult neurons, but even aged neurons have a low intrinsic regeneration capacity. Whether this capacity has been lost or if growth inhibitory cues are increased during PD progression has not been resolved yet. In this study, we assessed the regenerative potential in the nigrostriatal system in post‐mortem brain sections of PD patients compared to age‐matched and young controls. Investigation of the expression pattern of the regeneration‐associated protein GAP‐43 suggested a lower regenerative capacity in nigral dopaminergic neurons of PD patients. Furthermore, the increase in protein expression of the growth‐inhibitory protein ROCK2 in astrocytes and a similar trend in microglia, suggests an important role for ROCK2 in glial PD pathology, which is initiated already in normal aging. Considering the role of astro‐ and microglia in PD pathogenesis as well as beneficial effects of ROCK inhibition on neuronal survival and regeneration in neurodegenerative disease models, our data strengthens the importance of the ROCK pathway as a therapeutic target in PD.
DOI: 10.1016/j.exer.2015.08.016
2016
Cited 36 times
The role of autophagy in axonal degeneration of the optic nerve
Different pathological conditions including glaucoma, optic neuritis, hereditary optic atrophy and traumatic injury lead to a degeneration of retinal ganglion cell axons in the optic nerve. Besides this clinical relevance, several experimental models employ the optic nerve as a model system to examine general mechanisms of axonal degeneration in the central nervous system. Several experimental studies have demonstrated that an activation of autophagy is a prominent feature of axonal degeneration in the optic nerve independent of the underlying pathological condition. However, the function of autophagy in axonal degeneration remains still unclear. Inhibition of autophagy was found to attenuate axonal degeneration within the first hours after optic nerve lesion. Other studies focusing on survival of retinal ganglion cells at later postlesional time points report contradicting results, where both inhibition and induction of autophagy were beneficial for survival, depending on the model system or examination time. Therefore, a more precise understanding of the role and the kinetics of autophagy in axonal degeneration is mandatory to develop new therapies for diseases of the optic nerve. Here, we review the literature on the pathophysiological role of autophagy in axonal degeneration in the optic nerve and discuss its implications for future therapeutic approaches in diseases of the eye and the central nervous system involving axonal degeneration.
DOI: 10.1016/j.omtn.2018.01.005
2018
Cited 36 times
miR-182-5p and miR-183-5p Act as GDNF Mimics in Dopaminergic Midbrain Neurons
Parkinson’s disease (PD) is the second-most-frequent neurodegenerative disorder worldwide. One major hallmark of PD is the degeneration of dopaminergic (DA) neurons in the substantia nigra. Glial cell line-derived neurotrophic factor (GDNF) potently increases DA neuron survival in models of PD; however, the underlying mechanisms are incompletely understood. MicroRNAs (miRNAs) are small, non-coding RNAs that are important for post-transcriptional regulation of gene expression. Using small RNA sequencing, we show that GDNF specifically increases the expression of miR-182-5p and miR-183-5p in primary midbrain neurons (PMNs). Transfection of synthetic miR-182-5p and miR-183-5p mimics leads to increased neurite outgrowth and mediates neuroprotection of DA neurons in vitro and in vivo, mimicking GDNF effects. This is accompanied by decreased expression of FOXO3 and FOXO1 transcription factors and increased PI3K-Akt signaling. Inhibition of endogenous miR-182-5p or miR-183-5p in GDNF-treated PMNs attenuated the pro-DA effects of GDNF. These findings unveil an unknown miR-mediated mechanism of GDNF action and suggest that targeting miRNAs is a new therapeutic avenue to PD phenotypes. Parkinson’s disease (PD) is the second-most-frequent neurodegenerative disorder worldwide. One major hallmark of PD is the degeneration of dopaminergic (DA) neurons in the substantia nigra. Glial cell line-derived neurotrophic factor (GDNF) potently increases DA neuron survival in models of PD; however, the underlying mechanisms are incompletely understood. MicroRNAs (miRNAs) are small, non-coding RNAs that are important for post-transcriptional regulation of gene expression. Using small RNA sequencing, we show that GDNF specifically increases the expression of miR-182-5p and miR-183-5p in primary midbrain neurons (PMNs). Transfection of synthetic miR-182-5p and miR-183-5p mimics leads to increased neurite outgrowth and mediates neuroprotection of DA neurons in vitro and in vivo, mimicking GDNF effects. This is accompanied by decreased expression of FOXO3 and FOXO1 transcription factors and increased PI3K-Akt signaling. Inhibition of endogenous miR-182-5p or miR-183-5p in GDNF-treated PMNs attenuated the pro-DA effects of GDNF. These findings unveil an unknown miR-mediated mechanism of GDNF action and suggest that targeting miRNAs is a new therapeutic avenue to PD phenotypes.
DOI: 10.1021/acschemneuro.5b00093
2015
Cited 35 times
Alpha-Synuclein Regulates Neuronal Levels of Manganese and Calcium
Manganese (Mn) may foster aggregation of alpha-synuclein (αSyn) contributing to the pathogenesis of PD. Here, we examined the influence of αSyn overexpression on distribution and oxidation states of Mn in frozen-hydrated primary midbrain neurons (PMNs) by synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure spectroscopy (XANES). Overexpression of αSyn increased intracellular Mn levels, whereas levels of Ca, Zn, K, P, and S were significantly decreased. Mn oxidation states were not altered. A strong correlation between Cu-/Mn-levels as well as Fe-/Mn-levels was observed in αSyn-overexpressing cells. Subcellular resolution revealed a punctate or filament-like perinuclear and neuritic distribution of Mn, which resembled the expression of DMT1 and MnSOD. While overexpression of αSyn did not significantly alter the expression patterns of the most-expressed Mn transport proteins (DMT1, VGCC, Fpn1), it attenuated the Mn release from Mn-treated neurons. Thus, these data suggest that αSyn may act as an intracellular Mn store. In total, neurotoxicity in PD could be mediated via regulation of transition metal levels and the metal-binding capacity of αSyn, which could represent a promising therapeutic target for this neurodegenerative disorder.
DOI: 10.1007/s00702-017-1695-x
2017
Cited 32 times
Alpha-synuclein and iron: two keys unlocking Parkinson’s disease
DOI: 10.1016/j.mcn.2018.12.005
2019
Cited 31 times
Cerebrospinal fluid biomarker for Parkinson's disease: An overview
In Parkinson's disease (PD), there is a wide field of recent and ongoing search for useful biomarkers for early and differential diagnosis, disease monitoring or subtype characterization. Up to now, no biofluid biomarker has entered the daily clinical routine. Cerebrospinal fluid (CSF) is often used as a source for biomarker development in different neurological disorders because it reflects changes in central-nervous system homeostasis. This review article gives an overview about different biomarker approaches in PD, mainly focusing on CSF analyses. Current state and future perspectives regarding classical protein markers like alpha‑synuclein, but also different "omics" techniques are described. In conclusion, technical advancements in the field already yielded promising results, but further multicenter trials with well-defined cohorts, standardized protocols and integrated data analysis of different modalities are needed before successful translation into routine clinical application.
DOI: 10.1016/j.nbd.2019.104677
2020
Cited 25 times
Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson's disease
The aim of the study was to validate a predictive biomarker machine learning model for the classification of Parkinson's disease (PD) and age-matched controls (AMC), based on bioelement abundance in the cerebrospinal fluid (CSF). For this multicentric trial, participants were enrolled from four different centers. CSF was collected according to standardized protocols. For bioelement determination, CSF samples were subjected to inductively coupled plasma mass spectrometry. A predefined Support Vector Machine (SVM) model, trained on a previous discovery cohort was applied for differentiation, based on the levels of six different bioelements. 82 PD patients, 68 age-matched controls and 7 additional Normal Pressure Hydrocephalus (NPH) patients were included to validate a predefined SVM model. Six differentiating elements (As, Fe, Mg, Ni, Se, Sr) were quantified. Based on their levels, SVM was successfully applied to a new local cohort (AUROC 0.76, Sensitivity 0.80, Specificity 0.83), without taking any additional features into account. The same model did not discriminate PD and AMCs / NPH from three external cohorts, likely due to center effects. However, discrimination was possible in cohorts with a full elemental data set, now using center-specific discovery cohorts and a cross validated approach (AUROC 0.78 and 0.88, respectively). Pooled PD CSF iron levels showed a clear correlation with disease duration (p = .0001). In summary, bioelemental CSF patterns, obtained by mass spectrometry and integrated into a predictive model yield the potential to facilitate the differentiation of PD and AMC. Center-specific biases interfere with application in external cohorts. This must be carefully addressed using center-defined, local reference values and models.
DOI: 10.1038/s41418-020-0543-y
2020
Cited 25 times
Inhibition of the autophagic protein ULK1 attenuates axonal degeneration in vitro and in vivo, enhances translation, and modulates splicing
Abstract Axonal degeneration is a key and early pathological feature in traumatic and neurodegenerative disorders of the CNS. Following a focal lesion to axons, extended axonal disintegration by acute axonal degeneration (AAD) occurs within several hours. During AAD, the accumulation of autophagic proteins including Unc-51 like autophagy activating kinase 1 (ULK1) has been demonstrated, but its role is incompletely understood. Here, we study the effect of ULK1 inhibition in different models of lesion-induced axonal degeneration in vitro and in vivo. Overexpression of a dominant negative of ULK1 (ULK1.DN) in primary rat cortical neurons attenuates axotomy-induced AAD in vitro. Both ULK1.DN and the ULK1 inhibitor SBI-0206965 protect against AAD after rat optic nerve crush in vivo. ULK1.DN additionally attenuates long-term axonal degeneration after rat spinal cord injury in vivo. Mechanistically, ULK1.DN decreases autophagy and leads to an mTOR-mediated increase in translational proteins. Consistently, treatment with SBI-0206965 results in enhanced mTOR activation. ULK1.DN additionally modulates the differential splicing of the degeneration-associated genes Kif1b and Ddit3 . These findings uncover ULK1 as an important mediator of axonal degeneration in vitro and in vivo, and elucidate its function in splicing, defining it as a putative therapeutic target.
DOI: 10.1016/j.neurobiolaging.2019.10.018
2020
Cited 24 times
SQSTM1/p62 variants in 486 patients with familial ALS from Germany and Sweden
Several studies reported amyotrophic lateral sclerosis (ALS)-linked mutations in TBK1, OPTN, VCP, UBQLN2, and SQSTM1 genes encoding proteins involved in autophagy. SQSTM1 was originally identified by a candidate gene approach because it encodes p62, a multifunctional protein involved in protein degradation both through proteasomal regulation and autophagy. Both p62 and optineurin (encoded by OPTN) are direct interaction partners and substrates of TBK1, and these 3 proteins form the core of a genetic and functional network that may connect autophagy with ALS. Considering the molecular and conceptual relevance of the TBK1/OPTN/SQSTM1 "triangle," we here performed a targeted screen for SQSTM1 variants in 486 patients with familial ALS from Germany and Sweden by analyzing whole-exome sequencing data. We report 9 novel and 5 previously reported rare variants in SQSTM1 and discuss the current evidence for SQSTM1 as a primary disease gene for ALS. We conclude that the evidence for causality remains vague for SQSTM1 and is weaker than for the other autophagy genes, for example, TBK1 and OPTN.
DOI: 10.1136/svn-2021-001095
2021
Cited 22 times
Cerebral venous sinus thrombosis after ChAdOx1 nCov-19 vaccination with a misleading first cerebral MRI scan
Vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) have been recently described as rare complications following vaccination against SARS-CoV-2 with vector vaccines. We report a case of a young woman who presented with VITT and cerebral CVST 7 days following vaccination with ChAdOx1 nCov-19 (AstraZeneca). While the initial MRI was considered void of pathological findings, MRI 3 days later revealed extensive CVST of the transversal and sigmoidal sinus with intracerebral haemorrhage. Diagnostic tests including a platelet-factor-4-induced platelet activation assay confirmed the diagnosis of VITT. Treatment with intravenous immunoglobulins and argatroban resulted in a normalisation of platelet counts and remission of CVST.
DOI: 10.3390/brainsci13010110
2023
Cited 4 times
Health-Related Quality of Life in Spinal Muscular Atrophy Patients and Their Caregivers—A Prospective, Cross-Sectional, Multi-Center Analysis
Spinal muscular atrophy (SMA) is a disabling disease that affects not only the patient’s health-related quality of life (HRQoL), but also causes a high caregiver burden (CGB). The aim of this study was to evaluate HRQoL, CGB, and their predictors in SMA. In two prospective, cross-sectional, and multi-center studies, SMA patients (n = 39) and SMA patient/caregiver couples (n = 49) filled in the EuroQoL Five Dimension Five Level Scale (EQ-5D-5L) and the Short Form Health Survey 36 (SF-36). Caregivers (CGs) additionally answered the Zarit Burden Interview (ZBI) and the Hospital Anxiety and Depression Scale (HADS). Patients were clustered into two groups with either low or high HRQoL (EQ-5D-5L index value <0.259 or >0.679). The latter group was mostly composed of ambulatory type III patients with higher motor/functional scores. More severely affected patients reported low physical functioning but good mental health and vitality. The CGB (mean ZBI = 22/88) correlated negatively with patients’ motor/functional scores and age. Higher CGB was associated with a lower HRQoL, higher depression and anxiety, and more health impairments of the CGs. We conclude that patient and CG well-being levels interact closely, which highlights the need to consider the health of both parties while evaluating novel treatments.
DOI: 10.1007/s00234-007-0342-x
2008
Cited 51 times
Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting
Intracranial angioplasty and stenting (ICAS) is a therapeutic option in symptomatic intracranial atherosclerotic disease. Adequate follow-up examination is necessary to exclude in-stent restenosis. Conventional intraarterial digital subtraction angiography (ia-DSA) is the current gold standard, but it is an invasive technique and carries the risk of neurological complications. Angiographic CT (ACT) is a new technique that provides a volume dataset of the highest spatial resolution and high contrast resolution derived from a rotational acquisition of a c-arm-mounted flat-panel detector. The feasibility of ACT with intravenous administration of contrast medium (iv-ACT) for follow-up after ICAS is demonstrated. In two patients iv-ACT was performed as a follow-up examination 12 months after ICAS. High-resolution volume data from the rotational acquisitions were processed to provide delineation of the stent lumen as well as imaging of the brain parenchyma and vessels. In both patients the patency of the stent lumen was assessed successfully. In addition, all other brain vessels were displayed in a manner similar to their appearance on CT angiograms. The brain parenchyma was also adequately imaged in a manner similar to its appearance on CT images. We demonstrated the feasibility and diagnostic value of iv-ACT for follow-up imaging after ICAS. This new application has the potential to become the imaging method of choice after ICAS since it not only enables visualization of the patency of the stent lumen but also is minimally invasive and provides additional information about all brain arteries and the brain parenchyma.
DOI: 10.1016/j.nbd.2010.02.011
2010
Cited 43 times
TGF-β 1 enhances neurite outgrowth via regulation of proteasome function and EFABP
Malfunction of the ubiquitin-proteasome system has been implicated as a causal factor in the pathogenesis of aggregation-related disorders, e.g. Parkinson's disease. We show here that Transforming growth factor-beta 1 (TGF-beta), a multifunctional cytokine and trophic factor for dopaminergic (DAergic) neurons modulates proteasome function in primary midbrain neurons. TGF-beta differentially inhibited proteasomal subactivities with a most pronounced time-dependent inhibition of the peptidyl-glutamyl peptide hydrolyzing-like and chymotrypsin-like subactivity. Regulation of proteasomal activity could be specifically quantified in the DAergic subpopulation. Protein blot analysis revealed an accumulation of ubiquitinated proteins after TGF-beta treatment. The identity of these enriched proteins was further analyzed by 2D-gel electrophoresis and mass spectrometry. We found epidermal fatty acid binding protein (EFABP) to be strongly increased and ubiquitinated after TGF-beta treatment and confirmed this finding by co-immunoprecipitation. While application of TGF-beta increased neurite regeneration in a scratch lesion model, downregulation of EFABP by siRNA significantly decreased this effect. We thus postulate that a differential regulation of proteasomal function, as demonstrated for TGF-beta, can result in an enrichment of proteins, such as EFABP, that mediate physiological functions, such as neurite regeneration.
DOI: 10.1007/s00702-015-1418-0
2015
Cited 33 times
Advanced stages of PD: interventional therapies and related patient-centered care
DOI: 10.1016/j.nbd.2012.11.007
2013
Cited 32 times
Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro
The ability of fish retinal ganglion cells (RGCs) to regenerate their axons was shown to require the re-expression and function of the two proteins reggie-1 and -2. RGCs in mammals fail to upregulate reggie expression and to regenerate axons after lesion suggesting the possibility that induced upregulation might promote regeneration. In the present study, RGCs in adult rats were induced to express reggie-1 by intravitreal injection of adeno-associated viral vectors (AAV2/1) expressing reggie-1 (AAV.R1-EGFP) 14d prior to optic nerve crush. Four weeks later, GAP-43-positive regenerating axons had crossed the lesion and grown into the nerve at significantly higher numbers and length (up to 5 mm) than the control transduced with AAV.EGFP. Consistently, after transduction with AAV.R1-EGFP as opposed to AAV.EGFP, primary RGCs in vitro grew long axons on chondroitin sulfate proteoglycan (CSPG) and Nogo-A, both glial cell-derived inhibitors of neurite growth, suggesting that reggie-1 can provide neurons with the ability to override inhibitors of neurite growth. This reggie-1-mediated enhancement of growth was reproduced in mouse hippocampal and N2a neurons which generated axons 40–60% longer than their control counterparts. This correlates with the reggie-1-dependent activation of Src and PI3 kinase (PI3K), of the Rho family GTPase Rac1 and downstream effectors such as cofilin. This increased growth also depends on TC10, the GTPase involved in cargo delivery to the growth cone. Thus, the upregulation of reggie-1 in mammalian neurons provides nerve cells with neuron-intrinsic properties required for axon growth and successful regeneration in the adult mammalian CNS.
DOI: 10.3389/fncel.2014.00273
2014
Cited 32 times
Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells
The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush.
DOI: 10.3389/fphar.2017.00017
2017
Cited 29 times
Rho Kinase Inhibition with Fasudil in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis—Symptomatic Treatment Potential after Disease Onset
Despite an improved understanding of the genetic background and the pathomechanisms of amyotrophic lateral sclerosis (ALS) no novel disease-modifying therapies have been successfully implemented in clinical routine. Riluzole still remains the only clinically approved substance in human ALS treatment with limited efficacy. We have previously identified pharmacological rho kinase (ROCK) inhibitors as orally applicable substances in SOD1.G93A transgenic ALS mice (SOD1G93A), which are able to extend survival time and improve motor function after presymptomatic treatment. Here, we have evaluated the therapeutic effect of the orally administered ROCK inhibitor Fasudil starting at a symptomatic disease stage, more realistically reflecting the clinical situation. Oral Fasudil treatment was initiated at a symptomatic stage at 80 days of life (d80) with 30 or 100 mg/kg body weight in both female and male mice. While baseline neurological scoring and survival were not influenced, Fasudil significantly improved motor behavior in male mice. Spinal cord pathology of motoneurons (MN) and infiltrating microglial cells (MG) at disease end-stage were not significantly modified. Although treatment after symptom onset was less potent than treatment in asymptomatic animals, our study shows the therapeutic benefits of this well-tolerated substance, which is already in clinical use for other indications.
DOI: 10.1038/srep37050
2016
Cited 27 times
Calpain-mediated cleavage of collapsin response mediator protein-2 drives acute axonal degeneration
Axonal degeneration is a key initiating event in many neurological diseases. Focal lesions to axons result in a rapid disintegration of the perilesional axon by acute axonal degeneration (AAD) within several hours. However, the underlying molecular mechanisms of AAD are only incompletely understood. Here, we studied AAD in vivo through live-imaging of the rat optic nerve and in vitro in primary rat cortical neurons in microfluidic chambers. We found that calpain is activated early during AAD of the optic nerve and that calpain inhibition completely inhibits axonal fragmentation on the proximal side of the crush while it attenuates AAD on the distal side. A screening of calpain targets revealed that collapsin response mediator protein-2 (CRMP2) is a main downstream target of calpain activation in AAD. CRMP2-overexpression delayed bulb formation and rescued impairment of axonal mitochondrial transport after axotomy in vitro. In vivo, CRMP2-overexpression effectively protected the proximal axon from fragmentation within 6 hours after crush. Finally, a proteomic analysis of the optic nerve was performed at 6 hours after crush, which identified further proteins regulated during AAD, including several interactors of CRMP2. These findings reveal CRMP2 as an important mediator of AAD and define it as a putative therapeutic target.
DOI: 10.1038/s41598-020-65503-1
2020
Cited 24 times
Increased alpha-synuclein tear fluid levels in patients with Parkinson’s disease
Abstract The objective of the study was to estimate if altered levels of alpha-synuclein can be detected in tear fluid of patients with Parkinson’s disease (PD). Therefore, tear fluid samples of 75 PD patients, 75 control subjects and 31 atypical Parkinsonian patients were collected and analyzed in triplicates using an ultra-sensitive single molecule array (SIMOA) system and applying a human alpha-synuclein immunoassay. In PD, levels of total soluble alpha-synuclein were significantly increased compared to control subjects (p = 0.03; AUC PD vs. controls 0.60). There was no difference comparing PD patients stratified by Hoehn &amp; Yahr stages and atypical Parkinsonian syndromes stratified by tauopathies and non-PD-synucleinopathies against each other (p &gt; 0.05). In conclusion, alpha-synuclein can be detected and quantified in tear fluid, revealing small but significant differences in total alpha-synuclein levels between PD and control subjects. Tear fluid can be collected non-invasively and risk-free, therefore presenting a promising source for further biomarker research.
DOI: 10.1016/j.jtemb.2019.126412
2020
Cited 23 times
Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson’s disease
The aim of the study was to investigate if speciation analysis by liquid chromatography coupled to mass spectrometry could be used to detect organic and inorganic binding forms of selenium in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) and age-matched control subjects (AMC).PD patients and control subjects were enrolled from three different neurological departments. CSF samples were collected according to standardized biomarker protocols and subjected to inductively coupled plasma mass spectrometry (ICP-MS) for total selenium determination and ion exchange chromatography (IEC) hyphenated to ICP-MS for selenium speciation analysis.75 PD patients and 68 age-matched controls were enrolled for speciation analysis. 8 different species could be detected, but only selenoprotein P (SELENOP), human serum albumin-bound Se (Se-HSA), selenomethionine (Se-Met) and an unidentified Se-compound (U2) presented with more than 50% values above the limit of quantification, without showing significant differences between both groups (p > 0.05). The Se-HSA / Se-Met ratio yielded a significant difference between PD and AMC (p = 0.045). The inorganic species Se-IV and Se-VI were only detectable in a minor part of PD and AMC samples. A highly significant correlation between total selenium levels and SELENOP (PD p < 0.0001; AMC p < 0.0001) and Se-HSA (PD p < 0.0001; AMC p < 0.0001) could be demonstrated, respectively.Speciation analysis yielded new insight into selenium homeostasis in PD but cannot be used to establish a diagnostic biomarker. The small number of detectable values for Se-IV and Se-VI suggests an inferior role of these potentially neurotoxic binding forms in PD pathology in contrast to other neurodegenerative disorders.
DOI: 10.1177/1756286419887616
2020
Cited 22 times
Intrathecal nusinersen administration in adult spinal muscular atrophy patients with complex spinal anatomy
Intrathecal administration of nusinersen in adult spinal muscular atrophy (SMA) patients presents challenges owing to severe scoliosis and previous spinal surgery with metal implantation. In patients with a complex spinal situation, the potential risks of the intrathecal administration may lead to delayed treatment initiation.In this study, we analyzed 53 CT-guided lumbar punctures of 11 adult nonambulatory SMA type 2 and 3 patients. All patients had scoliosis and six patients had previously undergone metal implantation.Drug administration was successful in 100% of the patients and none of the patients opted for treatment discontinuation. Complete osseous fusion precluded conventional posterior interlaminar access in eight lumbar punctures in four patients, which required alternative routes including transforaminal punctures and translaminar drilling. Median duration of all lumbar punctures was 9 min and median radiation exposure was 100 mGy* cm. The most common adverse event was post-lumbar puncture syndrome that occurred in five lumbar punctures (9.4%).Our data demonstrate that nusinersen can be successfully, safely, and rapidly administered in adult SMA patients with complex spinal conditions and suggest the translaminar drilling technique as an alternative delivery route. Therefore, intrathecal nusinersen treatment should not be withheld from patients because of severe spine deformities, however, drug efficacy in adult SMA patients needs to be investigated in further studies.
DOI: 10.1186/s42466-022-00224-6
2022
Cited 10 times
ALSFRS-R-SE: an adapted, annotated, and self-explanatory version of the revised amyotrophic lateral sclerosis functional rating scale
Abstract Background The ALS Functional Rating Scale in its revised version (ALSFRS-R) is a disease-specific severity score that reflects motor impairment and functional deterioration in people with amyotrophic lateral sclerosis (ALS). It has been widely applied in both clinical practice and ALS research. However, in Germany, several variants of the scale, each differing slightly from the others, have developed over time and are currently in circulation. This lack of uniformity potentially hampers data interpretation and may decrease item validity. Furthermore, shortcomings within the standard ALSFRS-R questions and answer options can limit the quality and conclusiveness of collected data. Methods In a multistage consensus-building process, 18 clinical ALS experts from the German ALS/MND network analyzed the ALSFRS-R in its current form and created an adapted, annotated, and revised scale that closely adheres to the well-established standardized English version. Results Ten German-language variants of the ALSFRS-R were collected, three of which contained instructions for self-assessment. All of these variants were compiled and a comprehensive linguistic revision was undertaken. A short introduction was added to the resulting scale, comprising general instructions for use and explanations for each of the five reply options per item. This adapted version of the scale, named ALSFRS-R-SE (with the “SE” referring to “self-explanatory”), was carefully reviewed for language and comprehensibility, in both German and English. Conclusion An adapted and annotated version of the ALSFRS-R scale was developed through a multistage consensus process. The decision to include brief explanations of specific scale items and reply options was intended to facilitate ALSFRS-R-SE assessments by both healthcare professionals and patients. Further studies are required to investigate the accuracy and utility of the ALSFRS-R-SE in controlled trials and clinical real-world settings.
DOI: 10.1111/bpa.13196
2023
Cited 4 times
Alpha‐synuclein fibrils amplified from multiple system atrophy and Parkinson's disease patient brain spread after intracerebral injection into mouse brain
Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB) are neurodegenerative disorders with alpha-synuclein (α-syn) aggregation pathology. Different strains of α-syn with unique properties are suggested to cause distinct clinical and pathological manifestations resulting in PD, MSA, or DLB. To study individual α-syn spreading patterns, we injected α-syn fibrils amplified from brain homogenates of two MSA patients and two PD patients into the brains of C57BI6/J mice. Antibody staining against pS129-α-syn showed that α-syn fibrils amplified from the brain homogenates of the four different patients caused different levels of α-syn spreading. The strongest α-syn pathology was triggered by α-syn fibrils of one of the two MSA patients, followed by comparable pS129-α-syn induction by the second MSA and one PD patient material. Histological analysis using an antibody against Iba1 further showed that the formation of pS129-α-syn is associated with increased microglia activation. In contrast, no differences in dopaminergic neuron numbers or co-localization of α-syn in oligodendrocytes were observed between the different groups. Our data support the spreading of α-syn pathology in MSA, while at the same time pointing to spreading heterogeneity between different patients potentially driven by individual patient immanent factors.
2000
Cited 53 times
Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo.
Transforming growth factor-betas (TGF-betas) constitute an expanding family of multifunctional cytokines with prominent roles in development, cell proliferation, differentiation, and repair. We have cloned, expressed, and raised antibodies against a distant member of the TGF-betas, growth/differentiation factor-15 (GDF-15). GDF-15 is identical to macrophage inhibitory cytokine-1 (MIC-1). GDF-15/MIC-1 mRNA and protein are widely distributed in the developing and adult CNS and peripheral nervous systems, including choroid plexus and CSF. GDF-15/MIC-1 is a potent survival promoting and protective factor for cultured and iron-intoxicated dopaminergic (DAergic) neurons cultured from the embryonic rat midbrain floor. The trophic effect of GDF-15/MIC-1 was not accompanied by an increase in cell proliferation and astroglial maturation, suggesting that GDF-15/MIC-1 probably acts directly on neurons. GDF-15/MIC-1 also protects 6-hydroxydopamine (6-OHDA)-lesioned nigrostriatal DAergic neurons in vivo. Unilateral injections of GDF-15/MIC-1 into the medial forebrain bundle just above the substantia nigra (SN) and into the left ventricle (20 microgram each) immediately before a 6-OHDA injection (8 microgram) prevented 6-OHDA-induced rotational behavior and significantly reduced losses of DAergic neurons in the SN. This protection was evident for at least 1 month. Administration of 5 microgram of GDF-15/MIC-1 in the same paradigm also provided significant neuroprotection. GDF-15/MIC-1 also promoted the serotonergic phenotype of cultured raphe neurons but did not support survival of rat motoneurons. Thus, GDF-15/MIC-1 is a novel neurotrophic factor with prominent effects on DAergic and serotonergic neurons. GDF-15/MIC-1 may therefore have a potential for the treatment of Parkinson's disease and disorders of the serotonergic system.
DOI: 10.1016/j.bbrc.2004.01.170
2004
Cited 52 times
Transfection of “naked” siRNA results in endosomal uptake and metabolic impairment in cultured neurons
RNA interference is rapidly becoming a powerful tool for gene silencing in mammalian cells. Introduction of siRNA into primary cells, however, remains one of the major difficulties of this novel technique. Using cationic lipid-based transfection reagents satisfactory transfection results are observed in cell lines, but low transfection efficiency and cytotoxicity limit applications in primary cells, especially primary neurons. The application of “naked” siRNA has been previously used successfully in nematodes and mammals in vivo. We therefore evaluated the effects of non-cationic-lipid-based siRNA application to primary hippocampal neuron cultures. “Naked” siRNA was bound to the cell surface and was taken up into endosomes. No significant silencing effect of endogenous or reporter genes was observed, rather application of “naked” siRNA was accompanied by a moderate downregulation of metabolic activity in culture. We postulate that endosomal degradation of “naked” siRNA in neurons prevents the induction of significant RNAi-mediated mRNA-downregulation and is accompanied by a global impairment of the cell metabolism. Transfection methods circumventing the endosomal pathway therefore might prove useful for siRNA transduction of primary neurons.
DOI: 10.1002/ana.21668
2009
Cited 39 times
Role of n‐type voltage‐dependent calcium channels in autoimmune optic neuritis
Abstract Objective The aim of this study was to investigate the role of voltage‐dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. Methods Calcium ion (Ca 2+ ) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese‐enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the most relevant channel subtype (N‐type VDCCs), we correlated immunohistochemistry of channel expression with ON histopathology. In the confirmatory part of this work, we performed a treatment study using ω‐conotoxin GVIA, an N‐type specific blocker. Results We observed that pathological Ca 2+ influx into ONs during optic neuritis is mediated via N‐type VDCCs. By analyzing the expression of VDCCs in the inflamed ONs, we detected an upregulation of α 1B , the pore‐forming subunit of N‐type VDCCs, in demyelinated axons. However, high expression levels were also found on macrophages/activated microglia, and lower levels were detected on astrocytes. The relevance of N‐type VDCCs for inflammation‐induced axonal degeneration and the severity of optic neuritis was corroborated by treatment with ω‐conotoxin GVIA. This blocker led to decreased axon and myelin degeneration in the ONs together with a reduced number of macrophages/activated microglia. These protective effects were confirmed by analyzing the spinal cords of the same animals. Interpretation We conclude that N‐type VDCCs play an important role in inflammation‐induced axon degeneration via two mechanisms: First, they directly mediate toxic Ca 2+ influx into the axons; and second, they contribute to macrophage/microglia function, thereby promoting secondary axonal damage. Ann Neurol 2009;66:81–93
DOI: 10.1007/s12325-017-0571-2
2017
Cited 24 times
An Observational Study of the Effect of Levodopa–Carbidopa Intestinal Gel on Activities of Daily Living and Quality of Life in Advanced Parkinson’s Disease Patients
Continuous delivery of levodopa-carbidopa intestinal gel (LCIG) by percutaneous endoscopic gastrojejunostomy (PEG-J) in advanced Parkinson's disease (PD) patients reduces variability in plasma levels, providing better control of motor fluctuations ("on" and "off" states). The MONOTREAT study assessed the effect of LCIG on activities of daily living, motor and non-motor symptoms, and quality of life in advanced PD patients.This prospective, observational study included patients with advanced, levodopa-responsive PD with either 2-4 h of "off" time or 2 h of dyskinesia daily. Patients received LCIG via PEG-J for 16 h continuously. Effectiveness was assessed using Unified PD Rating Scale parts II and III, the Non-Motor Symptom Scale, and the PD Questionnaire-8.The mean (SD) treatment duration was 275 (157) days. Patients experienced significant improvement from baseline in activities of daily living at final visit (p < 0.05) as well as at months 3 and 6 (p < 0.0001). Patients also experienced significant improvements from baseline in quality of life and non-motor symptoms at all time points (p < 0.001 for all). Specifically, patients manifested significant improvements in mean change from baseline at every study visit in five of nine non-motor symptom score domains: sleep/fatigue, mood/cognition, gastrointestinal tract, urinary, and miscellaneous. One-third of patients (32.8%) experienced an adverse event; 21.9% experienced a serious adverse event; 11.1% discontinued because of an adverse event.This study demonstrated significant and clinically relevant improvements in measures of activities of daily living, quality of life, and a specific subset of non-motor symptoms after treatment with LCIG.AbbVie Inc.
DOI: 10.1007/s12035-018-1313-4
2018
Cited 22 times
Cerebrospinal Fluid Total and Phosphorylated α-Synuclein in Patients with Creutzfeldt–Jakob Disease and Synucleinopathy
DOI: 10.1002/acn3.51256
2020
Cited 18 times
TDP‐43 as structure‐based biomarker in amyotrophic lateral sclerosis
Abstract Pathologic alterations of Transactivation response DNA‐binding protein 43 kilo Dalton (TDP‐43) are a major hallmark of amyotrophic lateral sclerosis (ALS). In this pilot study, we analyzed the secondary structure distribution of TDP‐43 in cerebrospinal fluid of ALS patients ( n = 36) compared to Parkinson´s disease patients (PD; n = 30) and further controls (Ctrl; n = 24) using the immuno‐infrared sensor technology. ALS patients could be discriminated from PD and Ctrl with a sensitivity/specificity of 89 %/77 % and 89 %/83 %, respectively. Our findings demonstrate that TDP‐43 misfolding measured by the immuno‐infrared sensor technology has the potential to serve as a biomarker candidate for ALS.
DOI: 10.3390/brainsci11030372
2021
Cited 15 times
A Nation-Wide, Multi-Center Study on the Quality of Life of ALS Patients in Germany
Improving quality of life (QoL) is central to amyotrophic lateral sclerosis (ALS) treatment. This Germany-wide, multicenter cross-sectional study analyses the impact of different symptom-specific treatments and ALS variants on QoL. Health-related QoL (HRQoL) in 325 ALS patients was assessed using the Amyotrophic Lateral Sclerosis Assessment Questionnaire 5 (ALSAQ-5) and EuroQol Five Dimension Five Level Scale (EQ-5D-5L), together with disease severity (captured by the revised ALS Functional Rating Scale (ALSFRS-R)) and the current care and therapies used by our cohort. At inclusion, the mean ALSAQ-5 total score was 56.93 (max. 100, best = 0) with a better QoL associated with a less severe disease status (β = −1.96 per increase of one point in the ALSFRS-R score, p &lt; 0.001). “Limb-onset” ALS (lALS) was associated with a better QoL than “bulbar-onset” ALS (bALS) (mean ALSAQ-5 total score 55.46 versus 60.99, p = 0.040). Moreover, with the ALSFRS-R as a covariate, using a mobility aid (β = −7.60, p = 0.001), being tracheostomized (β = −14.80, p = 0.004) and using non-invasive ventilation (β = −5.71, p = 0.030) were associated with an improved QoL, compared to those at the same disease stage who did not use these aids. In contrast, antidepressant intake (β = 5.95, p = 0.007), and increasing age (β = 0.18, p = 0.023) were predictors of worse QoL. Our results showed that the ALSAQ-5 was better-suited for ALS patients than the EQ-5D-5L. Further, the early and symptom-specific clinical management and supply of assistive devices can significantly improve the individual HRQoL of ALS patients. Appropriate QoL questionnaires are needed to monitor the impact of treatment to provide the best possible and individualized care.
DOI: 10.1002/ctm2.357
2021
Cited 15 times
MicroRNAs from extracellular vesicles as a signature for Parkinson's disease
In the present study, we have demonstrated that extracellular vesicles (EVs) derived from cerebrospinal fluid (CSF) represent a promising source for the identification of a novel miRNA signatures in Parkinson's disease (PD). Using next-generation small-RNA sequencing, we present for the first time the complete and quantitative microRNAome of EVs isolated from human CSF of PD and age-correlated controls (CTR). In parallel, we performed CSF proteomic profiling of overlapping patient cohorts, which revealed the deregulation of disease-relevant pathways similar to the ones obtained with the parallel miRNA analyses, supporting the results for the identified signature. Novel molecular signatures and disease biomarkers are urgently needed for PD, not only to improve diagnostic precision, but also to enable monitoring of treatment responses, as well as stratification of patients according to the molecular background, rather than solely on clinical phenotypes.1 Circulating miRNAs are auspicious targets for biomarker studies because their expression reflects the functional state of cells and is directly influenced by pathological stimuli.2 CSF is in direct contact with the brain parenchyma, and molecular alterations in its composition may reflect specific changes related to PD pathology in the brain. MiRNA species circulating in CSF seem to overlap with miRNAs expressed in brain tissue.3 Furthermore, miRNAs and other small-RNAs are enriched in the vesicular fraction of human CSF.3, 4 In order to characterize the size and particle distribution in our CSF EV preparations, we used Nanoparticle Tracking Analyses and observed a similar enrichment as previously reported (Figure 1A). Small-RNA sequencing ratified the miRNA abundance in CSF EVs—they represented, on average, 97.4% of all mapped small-RNAs in the discovery cohort (Figure 1C). In total, we detected 688 miRNAs. A total of 208 of these had a base mean higher than 5 reads and were analyzed further. Differential expression analyses revealed differences in the levels of 22 miRNAs in the PD versus CTR comparison (Figure 1D). The majority of the differentially expressed miRNAs were upregulated in PD subjects, whereas downregulated miRNAs showed only subtle levels of deregulation (–0.60 ≤ log2FC ≤ –0.16). Among upregulated species figured brain-enriched miRNAs miR-9-5p, let-7b, miR-181a-5p, and miR-181b-5p (Figures 1D and 1E). To reduce bias by a potential erythrocyte contamination, we strictly selected CSF samples with a low number of red blood cells (<100/μl CSF). Furthermore, because miR-451a is highly enriched in red blood cells, it was excluded from feature-selection analyses. To explore the overall miRNA expression differences in the cohorts, hierarchical clustering analyses were performed (Figure 1F). Grouping samples based on miRNA expression levels revealed differences in the overall miRNA abundance between PD and CTR samples. PD samples showed expression heterogeneity, as some of these subjects clustered close to/among CTRs. Repeating the analysis with PD samples only revealed five different subclusters (Figure 1G) that did not correlate with the distribution of clinical parameters (e.g., disease duration; age of death; Levodopa-equivalent dose; scores for disease severity [PDNMS; MDS-UPDRS; MoCA; mH&Y]). This suggests a molecular diversity in PD cases that is reflected by miRNA expression. Using machine learning approaches (measure of relevance [MoR]; reliability analysis [RiA]; random forest) with the small-RNA sequencing data, we found an iterative signature comprising miR-126-5p, miR-99a-5p, and miR-501-3p, which could differentiate PD and CTR samples in our discovery cohorts (42 PD; 43 CTR) (Figures 2A–2D). Sample numbers for the discovery cohort were similar to other studies in the field4 and were shown to be adequate for algorithm training. The panel was able to classify PD/CTR samples in an independent validation cohort (nine PD; 11 CTR) with an area under the curve (AUC) value of 0.85 (Precision–recall AUC = 0.88; sensitivity = 0.78; specificity = 0.95). Mean decrease in Gini (Figure 2D) indicated miR-126-5p as the most discriminative variable, followed by miR-99a-5p and miR-501-3p. A third independent cohort (25 PD; 25 CTR) was used for validation purposes. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments confirmed the differential expression of miR-126-5p and miR-99a-5p when comparing PD and CTR cohorts (Figure S2). The individual expression of each signature miRNA in PD subjects of the discovery cohort (Figure 2E) delineated a similar heterogeneity to the one observed in the global miRNA analysis (Figure 1G), confirming the molecular diversity within PD cases. Subclusters 1 and 3 present opposing expression for the signature miRNAs, whereas subclusters 2 and 5 present similar levels for these candidates. These findings suggest that the identified signature would be a useful tool for distinguishing disease subgroups based on miRNA expression. On the other hand, the inclusion of additional patients/cohorts with variate compositions might explain the lack of reproducibility of studies in the field,5 as well as the discrepant results for some candidates during the additional validation studies we presented here. Using samples from patients with different molecular backgrounds, which cannot be distinguished by clinical phenotype alone, as well as the smaller size of the validation cohort might explain the differences in the results observed for miR-501-3p with RNA sequencing and qRT-PCR experiments. Regarding the biological role of the three signature miRNAs, functional annotation analyses with their predicted targets indicated that these candidates likely originate in neurons. Neuron-related terms comprised the most frequent enriched categories for Gene Ontology-Biological Processes (GO-BP) results (8/35 enriched GO-BP terms), indicating their neuronal origin. Terms including neuron death, vesicle-mediated transport, and proteasomal-protein catabolic process indicate the participation of these miRNAs in processes directly related to PD pathogenesis6 (Figures 2H and 2J). These findings are corroborated by KEGG pathway (Kyoto Encyclopedia of Genes and Genomes) enrichment results: 19 out of 64 annotated KEGG pathways were neuron related (Figures 2G and 2I). Among the top 15 pathways figure retrograde endocannabinoid signaling and cholinergic-dopaminergic synapse, categories with important involvement in PD pathology.6, 7 Furthermore, each candidate of our panel has been linked to neurodegenerative mechanisms previously: miR-126 has been linked to insulin/IGF-1/PI3K signaling and found in increased levels in PD substantia nigra8; miR-99a-5p has been associated with neuroinflammation/neurodegeneration processes by regulating microglial functions9; miR-501-3p is a regulator of dendritic spine remodeling, and was also found upregulated in Alzheimer's disease brains.10 Aiming to identify differentially expressed proteins and to explore disease-relevant pathways further, an overlapping cohort (64 PD; 61 CTR) was analyzed using mass spectrometry using total CSF (Figure 3A). In total, 67 proteins were found differentially expressed between conditions (45 downregulated in PD/22 upregulated in PD) (Figure 3B). Functional annotation showed an important enrichment for inflammatory/immune-related terms, as well as neuronal-related terms (e.g., axon regeneration; neuronal development; synapse organization for GO-BP terms; complement/coagulation cascades for KEGG pathways) (Figure 3D). Remarkably, these results overlap with the pathways annotated for the signature miRNAs, especially for the regulation of neuron development/morphogenesis and synapse- and secretion-related terms. PPI networks with deregulated proteins revealed important hub-proteins (TGOLN2; SCG2; KNG1; APOA4) (Figure 3E). Proteins that have been previously postulated as PD biomarkers (VGF and EPHA4) were also identified in our studies (Table S4). Overall, although the parallel studies differed regarding the analyzed CSF compartments and the cohorts did not overlap completely, several disease-relevant pathways were coincidental, further supporting the results of the miRNA study. Limitations for the identification of molecular signatures in CSF EVs must be critically considered: the starting volume of CSF for isolation of sequencing-quality RNA (∼4.5 mL) is relatively high, limiting the number of available samples/additional analyses that can be performed. More efficient EV/RNA isolation protocols will significantly improve further CSF multiomics studies. It is important to highlight that the identification of such a miRNA signature in PD CSF must be taken as a starting point, and both the individual expression of each miRNA candidate as well as the combinatorial diagnostic value of the proposed panel must be validated in subsequent multicentric studies. Furthermore, we aimed to strictly select PD patients with a clear clinical phenotype to evaluate miRNA changes in a more advanced stage of the disease. A subsequent study recruiting patients shortly after onset of motor symptoms would be an important follow-up for this work to assess the value of the signature for the identification of early PD patients. In summary, we identified a novel miRNA signature in PD CSF composed of miR-126-5p, miR-99a-5p, and miR-501-3p. This signature could potentially contribute to an improved PD diagnosis, as well as to delineate future druggable targets for the disease by revealing important pathophysiological mechanisms. The validity of this signature as a diagnostic biomarker panel should be subsequently validated in larger multicentric studies. Our small-RNA data also indicate that profiling miRNA expression in CSF EVs might identify clinically inapparent subgroups of PD patients, which could be ultimately used for personalized diagnostic and therapeutic strategies for the disease. The authors appreciate the participation of patients in this study. We thank Woori Koh, Anna Fischbach, and Matthias Börger for their participation in patient recruitment. We also thank Barbara Müller for technical assistance and the Transcriptome Analysis Laboratory Göttingen for the performance of the small RNA sequencing. The authors declare no conflict of interest. RNA sequencing and proteomics datasets were deposited in public repositories — the European Genome-phenome Archive (EGA) and the Proteomics Identifications Database (PRIDE), respectively — following the applicable guidelines. RNA sequencing data are stored under the accession number EGAD00001006629. Proteomics data are available via ProteomeXchange with identifier PXD022234. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
DOI: 10.1002/mds.29071
2022
Cited 9 times
Adult‐Onset Neurodegeneration in Nucleotide Excision Repair Disorders (<scp>NERD<sub>ND</sub></scp>): Time to Move Beyond the Skin
Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations.The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs.In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments.We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage.We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
DOI: 10.1007/s00702-023-02641-6
2023
Cited 3 times
Parkinson’s disease therapy: what lies ahead?
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
DOI: 10.1007/s00415-023-11811-1
2023
Cited 3 times
Economic evaluation of Motor Neuron Diseases: a nationwide cross-sectional analysis in Germany
Abstract Background and objectives Motor Neuron Diseases (MND) are rare diseases but have a high impact on affected individuals and society. This study aims to perform an economic evaluation of MND in Germany. Methods Primary patient-reported data were collected including individual impairment, the use of medical and non-medical resources, and self-rated Health-Related Quality of Life (HRQoL). Annual socio-economic costs per year as well as Quality-Adjusted Life Years (QALYs) were calculated. Results 404 patients with a diagnosis of Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA) or Hereditary Spastic Paraplegia (HSP) were enrolled. Total annual costs per patient were estimated at 83,060€ in ALS, 206,856€ in SMA and 27,074€ in HSP. The main cost drivers were informal care (all MND) and disease-modifying treatments (SMA). Self-reported HRQoL was best in patients with HSP (mean EuroQoL Five Dimension Five Level (EQ-5D-5L) index value 0.67) and lowest in SMA patients (mean EQ-5D-5L index value 0.39). QALYs for patients with ALS were estimated to be 1.89 QALYs, 23.08 for patients with HSP and 14.97 for patients with SMA, respectively. Cost-utilities were estimated as follows: 138,960€/QALY for ALS, 525,033€/QALY for SMA, and 49,573€/QALY for HSP. The main predictors of the high cost of illness and low HRQoL were disease progression and loss of individual autonomy. Conclusion As loss of individual autonomy was the main cost predictor, therapeutic and supportive measures to maintain this autonomy may contribute to reducing high personal burden and also long-term costs, e.g., care dependency and absenteeism from work.
DOI: 10.1006/exnr.2000.7339
2000
Cited 44 times
GDNF and NT-4 Protect Midbrain Dopaminergic Neurons from Toxic Damage by Iron and Nitric Oxide
Free radical formation is considered to be a major cause of dopaminergic (DAergic) cell death in the substantia nigra leading to Parkinson's disease (PD). In this study we employed several radical donors including iron and sodium nitroprusside to induce toxic effects on DAergic neurons cultured from the embryonic rat midbrain floor. Overall cell survival was assessed by assaying LDH, and DAergic neuron survival was monitored by counting tyrosine hydroxylase-positive cells. Our data suggest that the DAergic neuron population is about fourfold more susceptible to free-radical-mediated damage than the total population of midbrain neurons. Application of the neurotrophic factors GDNF and NT-4, for which DAergic neurons have specific receptors, prior to toxin administration protected these neurons from toxin-mediated death, which, fully or in part, occurs under the signs of apoptosis. These findings underscore the importance of GDNF and NT-4 in designing future therapeutical concepts for PD.