ϟ

Paul Fernyhough

Here are all the papers by Paul Fernyhough that you can download and read on OA.mg.
Paul Fernyhough’s last known institution is . Download Paul Fernyhough PDFs here.

Claim this Profile →
DOI: 10.1073/pnas.1414665111
2014
Cited 176 times
Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling
Significance We provide new, exciting evidence for a previously unidentified signaling pathway that mechanistically links mitochondrial respiratory chain defects to necrosis and heart failure induced by the chemotherapy agent doxorubicin (DOX). We specifically show that DOX disrupts protein complexes between the key respiratory chain proteins, including uncoupling protein 3 and cytochrome c oxidase, resulting in abnormal mitochondrial respiration and necrosis through a mechanism contingent on Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Perhaps most compelling is our finding that inhibiting Bnip3 completely abrogated the cardiotoxic effects of DOX. These exciting findings have important clinical implications not only for preventing heart failure by targeting Bnip3 in cancer patients undergoing chemotherapy, but also for understanding the pathogenesis of other diseases in which mitochondrial function is compromised.
DOI: 10.1096/fj.01-0253hyp
2001
Cited 260 times
A role for mitogen‐activated protein kinases in the etiology of diabetic neuropathy
The onset of diabetic neuropathy, a complication of diabetes mellitus, has been linked to poor glycemic control. We tested the hypothesis that the mitogen-activated protein kinases (MAPK) form transducers for the damaging effects of high glucose. In cultures of adult rat sensory neurons, high glucose activated JNK and p38 MAPK but did not result in cell damage. However, oxidative stress activated ERK and p38 MAPKs and resulted in cellular damage. In the dorsal root ganglia of streptozotocin-induced diabetic rats (a model of type I diabetes), ERK and p38 were activated at 8 wk duration, followed by activation of JNK at 12 wk duration. We report activation of JNK and increases in total levels of p38 and JNK in sural nerve of type I and II diabetic patients. These data implicate MAPKs in the etiology of diabetic neuropathy both via direct effects of glucose and via glucose-induced oxidative stress.
DOI: 10.1093/brain/aws097
2012
Cited 177 times
Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes
Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.
DOI: 10.1016/s0021-9258(18)68948-3
1988
Cited 170 times
Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C.
The formation of vertebrate neural circuitry is regulated in part by neurotrophic agents, such as nerve growth factor (NGF); however, the biochemical mechanisms involved in neurite outgrowth have yet to be completely resolved. Phorbol ester tumor promoters are known to influence the extension of neurites in a variety of neurodevelopmental systems, and protein kinase C, the major phorbol ester receptor, has been implicated in this process. In the present study, sphingosine, a specific pharmacological inhibitor of protein kinase C, was employed to investigate the role of this enzyme in the elaboration of neurites in PC12 pheochromocytoma cells. Normally, PC12 cells respond to NGF by morphologically differentiating into sympathetic neuron-like cells, exhibiting a marked hypertrophy, and extending slender neurites piloted by well defined growth cones. The elaboration of NGF-induced neurites was found to be reversibly inhibited by sphingosine in a dose-dependent manner (IC50 = 2.5-5 microM), while similar concentrations of several structural analogs were inactive. The suppression of neurite outgrowth by sphingosine was antagonized by the addition of 12-O-tetradecanoylphorbol 13-acetate (TPA), which binds to and directly activates protein kinase C. In the presence of NGF, TPA treatment increased the incidence of neurite outgrowth, and this increase, in turn, was antagonized by sphingosine. The binding of [3H]phorbol 12,13-dibutyrate to specific phorbol ester binding sites in PC12 cells was inhibited by sphingosine at concentrations similar to those which inhibited neurite outgrowth. The effects of sphingosine on TPA-directed protein phosphorylation were examined in situ, revealing inhibition of [32P]phosphate incorporation into cellular proteins. The specific TPA-directed phosphorylation of tyrosine hydroxylase was inhibited by sphingosine, as was the resulting increase in enzyme activity. The effects of sphingosine on the levels of alpha- and beta-tubulin mRNAs were also examined in an effort to delimit the locus of protein kinase C action. Concentrations of sphingosine which suppressed neurite outgrowth did not inhibit the NGF-directed elevation of tubulin transcript levels. Taken together, these results reveal the presence of a sphingosine-sensitive pathway in neurite outgrowth and indicate that protein kinase C plays a role in mediating the neuritogenic effects of NGF. Furthermore, the results suggest that protein kinase C acts at a distal segment of the neurite growth pathway.
DOI: 10.2337/diab.46.2.s43
1997
Cited 169 times
Role of Neurotrophins in Diabetic Neuropathy and Treatment with Nerve Growth Factors
In rodent models of diabetes, there are expression deficits in nerve growth factor (NGF) and in mRNA for its high-affinity receptor, trkA, leading to decreased retrograde axonal transport of NGF and decreased support of NGF-dependent sensory neurons, with reduced expression of their neuropeptides, substance P and calcitonin gene-related peptide (CGRP). Treatment of diabetic rats with intensive insulin normalized these deficits, and treatment with exogenous NGF caused dose-related increases, giving levels of NGF and neuropeptides that were greater than those of controls. Neurotrophin-3 (NT-3) mRNA was also deficient in leg muscle from diabetic rats, and administration of recombinant NT-3 to diabetic rats increased the conduction velocity of sensory nerves without affecting motor conduction velocity. In regenerating nerves after experimental crush injury, expression of NGF in the nerve trunk is increased in diabetes to a greater extent than in controls, but this is offset by a greater reduction in the neuronal expression of trkA in dorsal root ganglia of diabetic rats. Nonetheless, targeted administration of exogenous NGF via impregnated conduits stimulated regeneration in both control and diabetic rats. These findings implicate deficient neurotrophic support in diabetic neuropathy and suggest that its correction should be a paramount therapeutic target.
DOI: 10.2337/diabetes.52.8.2129
2003
Cited 165 times
Insulin Prevents Depolarization of the Mitochondrial Inner Membrane in Sensory Neurons of Type 1 Diabetic Rats in the Presence of Sustained Hyperglycemia
Mitochondrial dysfunction has been proposed as a mediator of neurodegeneration in diabetes complications. The aim of this study was to determine whether deficits in insulin-dependent neurotrophic support contributed to depolarization of the mitochondrial membrane in sensory neurons of streptozocin (STZ)-induced diabetic rats. Whole cell fluorescent video imaging using rhodamine 123 (R123) was used to monitor mitochondrial inner membrane potential (deltapsi(m)). Treatment of cultured dorsal root ganglia (DRG) sensory neurons from normal adult rats for up to 1 day with 50 mmol/l glucose had no effect; however, 1.0 nmol/l insulin increased deltapsi(m) by 100% (P < 0.05). To determine the role of insulin in vivo, STZ-induced diabetic animals were treated with background insulin and the deltapsi(m) of DRG sensory neurons was analyzed. Insulin therapy in STZ-induced diabetic rats had no effect on raised glycated hemoglobin or sciatic nerve polyol levels, confirming that hyperglycemia was unaffected. However, insulin treatment significantly normalized diabetes-induced deficits in sensory and motor nerve conduction velocity (P < 0.05). In acutely isolated DRG sensory neurons from insulin-treated STZ animals, the diabetes-related depolarization of the deltapsi(m) was corrected (P < 0.05). The results demonstrate that loss of insulin-dependent neurotrophic support may contribute to mitochondrial membrane depolarization in sensory neurons in diabetic neuropathy.
DOI: 10.2337/db09-0034
2009
Cited 148 times
Development of Selective Axonopathy in Adult Sensory Neurons Isolated From Diabetic Rats
Reactive oxygen species (ROS) are pro-oxidant factors in distal neurodegeneration in diabetes. We tested the hypothesis that sensory neurons exposed to type 1 diabetes would exhibit enhanced ROS and oxidative stress and determined whether this stress was associated with abnormal axon outgrowth.Lumbar dorsal root ganglia sensory neurons from normal or 3- to 5-month streptozotocin (STZ)-diabetic rats were cultured with 10 or 25-50 mmol/l glucose. Cell survival and axon outgrowth were assessed. ROS were analyzed using confocal microscopy. Immunofluorescent staining detected expression of manganese superoxide dismutase (MnSOD) and adducts of 4-hydroxy-2-nonenal (4-HNE), and MitoFluor Green dye detected mitochondria.Dorsal root ganglion neurons from normal rats exposed to 25-50 mmol/l glucose did not exhibit oxidative stress or cell death. Cultures from diabetic rats exhibited a twofold (P < 0.001) elevation of ROS in axons after 24 h in 25 mmol/l glucose compared with 10 mmol/l glucose or mannitol. Perikarya exhibited no change in ROS levels. Axonal outgrowth was reduced by approximately twofold (P < 0.001) in diabetic cultures compared with control, as was expression of MnSOD. The antioxidant N-acetyl-cysteine (1 mmol/l) lowered axonal ROS levels, normalized aberrant axonal structure, and prevented deficits in axonal outgrowth in diabetic neurons (P < 0.05).Dorsal root ganglia neurons with a history of diabetes expressed low MnSOD and high ROS in axons. Oxidative stress was initiated by high glucose concentration in neurons with an STZ-induced diabetic phenotype. Induction of ROS was associated with impaired axonal outgrowth and aberrant dystrophic structures that may precede or predispose the axon to degeneration and dissolution in human diabetic neuropathy.
DOI: 10.1111/jns5.12072
2014
Cited 137 times
Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the <scp>EASD</scp> (Neurodiab)
NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy. The discussion was divided into five areas: (1) status of commonly used rodent models of diabetes, (2) nerve structure, (3) electrophysiological assessments of nerve function, (4) behavioral assessments of nerve function, and (5) the role of biomarkers in disease phenotyping. Participants discussed the current understanding of each area, gold standards (if applicable) for assessments of function, improvements of existing techniques, and utility of known and exploratory biomarkers. The research opportunities in each area were outlined, providing a possible roadmap for future studies. The meeting concluded with a discussion on the merits and limitations of a unified approach to phenotyping rodent models of diabetic neuropathy and a consensus formed on the definition of the minimum criteria required for establishing the presence of the disease. A neuropathy phenotype in rodents was defined as the presence of statistically different values between diabetic and control animals in 2 of 3 assessments (nocifensive behavior, nerve conduction velocities, or nerve structure). The participants propose that this framework would allow different research groups to compare and share data, with an emphasis on data targeted toward the therapeutic efficacy of drug interventions.
DOI: 10.1016/j.nbd.2012.03.016
2013
Cited 136 times
The role of aberrant mitochondrial bioenergetics in diabetic neuropathy
Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich ataxia, Charcot-Marie-Tooth disease type 2 and human immunodeficiency virus-associated distal-symmetric neuropathy.
DOI: 10.2337/db10-0818
2010
Cited 133 times
Diminished Superoxide Generation Is Associated With Respiratory Chain Dysfunction and Changes in the Mitochondrial Proteome of Sensory Neurons From Diabetic Rats
OBJECTIVE Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. RESEARCH DESIGN AND METHODS Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). RESULTS Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P &amp;lt; 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. CONCLUSIONS Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
DOI: 10.2337/db09-1299
2010
Cited 129 times
Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment
Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function.Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed.Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31-44% and with Asc + TMPD by 29-39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins.Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS.
DOI: 10.1016/j.ceca.2009.11.008
2010
Cited 116 times
Abnormal calcium homeostasis in peripheral neuropathies
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.
DOI: 10.1007/s11892-015-0671-9
2015
Cited 114 times
Mitochondrial Dysfunction in Diabetic Neuropathy: a Series of Unfortunate Metabolic Events
DOI: 10.1586/eem.09.55
2010
Cited 112 times
Mitochondrial stress and the pathogenesis of diabetic neuropathy
Diabetic neuropathy is a major complication of diabetes that affects the sensory and autonomic nervous systems and leads to significant morbidity and impact on quality of life of patients. Mitochondrial stress has been proposed as a major mediator of neurodegeneration in diabetes. This review briefly summarizes the nature of sensory and autonomic nerve dysfunction and presents these findings in the context of diabetes-induced nerve degeneration mediated by alterations in mitochondrial ultrastructure, physiology and trafficking. Diabetes-induced dysfunction in calcium homeostasis is discussed at length and causative associations with sub-optimal mitochondrial physiology are developed. It is clear that across a range of complications of diabetes that mitochondrial physiology is impaired, in general a reduction in electron transport chain capability is apparent. This abnormal activity may predispose mitochondria to generate elevated reactive oxygen species (ROS), although experimental proof remains lacking, but more importantly will deleteriously alter the bioenergetic status of neurons. It is proposed that the next five years of research should focus on identifying changes in mitochondrial phenotype and associated cellular impact, identifying sources of ROS in neurons and analyzing mitochondrial trafficking under diabetic conditions.
DOI: 10.1152/ajpheart.00237.2020
2021
Cited 72 times
Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury
Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.
DOI: 10.1080/14737175.2021.1847645
2020
Cited 55 times
Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson's disease, Huntington's disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
DOI: 10.1089/ars.2021.0152
2022
Cited 27 times
Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
DOI: 10.2337/diabetes.48.4.881
1999
Cited 164 times
Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy.
Aberrant neurofilament phosphorylation occurs in many neurodegenerative diseases, and in this study, two animal models of type 1 diabetes--the spontaneously diabetic BB rat and the streptozocin-induced diabetic rat--have been used to determine whether such a phenomenon is involved in the etiology of the symmetrical sensory polyneuropathy commonly associated with diabetes. There was a two- to threefold (P &amp;lt; 0.05) elevation of neurofilament phosphorylation in lumbar dorsal root ganglia (DRG) of diabetic rats that was localized to perikarya of medium to large neurons using immunocytochemistry. Additionally, diabetes enhanced neurofilament M phosphorylation by 2.5-fold (P &amp;lt; 0.001) in sural nerve of BB rats. Neurofilaments are substrates of the mitogen-activated protein kinase (MAPK) family, which includes c-jun NH2-terminal kinase (JNK) or stress-activated protein kinase (SAPK1) and extracellular signal-regulated kinases (ERKs) 1 and 2. Diabetes induced a significant three- to fourfold (P &amp;lt; 0.05) increase in phosphorylation of a 54-kDa isoform of JNK in DRG and sural nerve, and this correlated with elevated c-Jun and neurofilament phosphorylation. In diabetes, ERK phosphorylation was also increased in the DRG, but not in sural nerve. Immunocytochemistry showed that JNK was present in sensory neuron perikarya and axons. Motoneuron perikarya and peroneal nerve of diabetic rats showed no evidence of increased neurofilament phosphorylation and failed to exhibit phosphorylation of JNK. It is hypothesized that in sensory neurons of diabetic rats, aberrant phosphorylation of neurofilament may contribute to the distal sensory axonopathy observed in diabetes.
DOI: 10.1016/0006-8993(93)91496-f
1993
Cited 147 times
Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neurones
Insulin and the insulin-like growth factors (IGFs) may directly affect the growth, development, and maintenance of the vertebrate nervous system. Previous in vitro studies have focused on embryonic nervous tissue. In this study the effects of insulin, IGF-I, IGF-II and nerve growth factor (NGF) on regeneration and neuronal survival were studied in cultured adult rat sensory neurones in a cell culture environment that limited non-neuronal cell mediated effects. Regeneration, as assessed by neurite outgrowth, was significantly enhanced by insulin and IGF-I in a dose-dependent manner. The half-maximally effective concentrations, ED50's, were approximately 1 nM and 0.1 nM for insulin and IGF-I, respectively. Concentrations of IGF-I as low as 10pM were active. There was some evidence that IGF-II stimulated regeneration, although this failed to reach statistical significance. NGF also promoted regeneration, confirming previous studies, exhibiting an ED50 of approximately 0.3 ng/ml and inducing a maximal response 2-fold greater than that observed with insulin or IGF-I. Combined treatment with NGF and insulin had an additive effect. Specific anti-NGF antiserum inhibited the regenerative response to NGF but failed to block the response to IGF-I, supporting the view that IGF-I was acting directly on sensory neurones rather than stimulating NGF production by non-neuronal cells. Insulin, IGF-I and NGF had no effect on neuronal survival in this culture system. These results show that adult sensory neurones can respond with enhanced regenerative growth to insulin and IGF-I, in addition to NGF although the response to IGF-II was less clear.
DOI: 10.1016/0166-2236(94)90169-4
1994
Cited 127 times
Diabetic neuropathy, nerve growth factor and other neurotrophic factors
Diabetic neuropathy typically presents as an insidious symmetrical distal degenerative disease of peripheral nerves. A failure of neurotrophic factors to regulate neuronal phenotype might be expected to result in such a clinical picture. Experimentally, diabetic rats show reduced expression of target-derived nerve growth factor as well as reduced expression of neuronal genes that are responsive to nerve growth factor. The latter is corrected by administration of exogenous nerve growth factor. Thus, deficient neurotrophic support might contribute to the pathogenesis of diabetic neuropathy, and any successful treatment might include exogenous neurotrophins or other strategies to correct their deficiency of action.
DOI: 10.1016/j.mcn.2004.08.009
2005
Cited 120 times
Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons
We tested the hypothesis that neurotrophic factors control neuronal metabolism by directly regulating mitochondrial function in the absence of effects on survival. Real-time whole cell fluorescence video microscopy was utilized to analyze mitochondrial inner membrane potential (Δψm), which drives ATP synthesis, in cultured adult sensory neurons. These adult neurons do not require neurotrophic factors for survival. Insulin and other neurotrophic factors increased Δψm 2-fold compared with control over a 6- to 24-h period (P < 0.05). Insulin modulated Δψm by activation of the phosphoinositide 3-kinase (PI 3-K) pathway. Insulin also induced rapid and long-term (30 h) PI 3-K-dependent phosphorylation of Akt and cAMP response element binding protein (CREB). Additionally, insulin elevated the redox state of the mitochondrial NAD(P)H pool, increased hexokinase activity (first committed step of glycolysis), and raised ATP levels. This study demonstrates that insulin utilizes the PI 3-K/Akt pathway to augment ATP synthesis that we propose contributes to the energy requirement for neurotrophic factor-driven axon regeneration.
DOI: 10.1016/0169-328x(94)90391-3
1994
Cited 118 times
Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor
Rats with streptozotocin-induced diabetes of 4 to 6 weeks duration showed a depletion of both substance P (P < 0.01) and calcitonin gene-related peptide (P < 0.01) in the sciatic nerve. Since expression of both peptides is sensitive to nerve growth factor (NGF) in vitro we examined the effect of treatment of diabetic rats with NGF, which significantly increased the levels of both peptides in treated diabetic animals (P < 0.01 for both). Treatment of non-diabetic rats with a similar NGF regime raised the mean peptide levels to a value similar to that seen in treated diabetic rats but the change was not statistically significant. In vehicle-treated diabetic rats the depletions of sciatic nerve neuropeptides were accompanied by a significant (P < 0.05) reduction in the level of CGRP mRNA in the 4th and 5th lumbar dorsal root ganglia, this was accompanied by an analogous reduction in the mRNA for γ-preprotachykinin A (γ-PPT), which did not attain statistical significance. Treatment of diabetic rats with NGF also prevented the deficits in the levels of CGRP and γ-PPT mRNA in the lumbar dorsal root ganglia (P < 0.05). Treatment of other diabetic rats with the related neurotrophin, brain-derived neurotrophic factor (BDNF), had no effect on the levels of substance P and calcitonin gene-related peptide in the sciatic nerve.
DOI: 10.1016/0169-328x(89)90044-2
1989
Cited 100 times
Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation
Neurotrophic factors may increase axon and dendrite growth in part by regulating the content of cytoskeletal elements such as microtubules, which are comprised of tubulin subunits. The mechanism by which insulin, insulin-like growth factors (IGFs), and nerve growth factor (NGF) can increase the relative abundance of tubulin mRNAs as a prelude to neurite formation was studied. Insulin significantly increased the abundance of tubulin mRNAs relative to total RNA in cultured human neuroblastoma SH-SY5Y cells. This increase was not the result of a generalized elevation of all transcripts, because tubulin mRNAs were elevated relative to poly(A)+ RNA as well. Moreover, whereas polymerases I and III were elevated in activity, polymerase II was not. Tubulin mRNAs were stabilized against degradation in the presence of actinomycin D by both insulin and IGF-I. In contrast, actin and histone 3.3 mRNAs were neither increased nor stabilized. Insulin did not alter alpha- or beta-tubulin gene transcription rates in nuclear run-off experiments, and did increase the relative synthesis of tubulin proteins. These results suggest that tubulin mRNA levels are increased mainly through selective stabilization by insulin and IGFs. Because NGF is known to stabilize tubulin mRNA levels also, stabilization of tubulin mRNAs is suggested to be a common event in the pathway leading to neurite elongation directed by neuritogenic polypeptides.
DOI: 10.2337/db07-1737
2008
Cited 100 times
Distal Degenerative Sensory Neuropathy in a Long-Term Type 2 Diabetes Rat Model
Peripheral neuropathy associated with type 2 diabetes (DPN) is not widely modeled. We describe unique features of DPN in type 2 diabetic Zucker diabetic fatty (ZDF) rats.We evaluated the structural, electrophysiological, behavioral, and molecular features of DPN in ZDF rats and littermates over 4 months of hyperglycemia. The status of insulin signaling transduction molecules that might be interrupted in type 2 diabetes and selected survival-, stress-, and pain-related molecules was emphasized in dorsal root ganglia (DRG) sensory neurons.ZDF rats developed slowing of motor sciatic-tibial and sensory sciatic digital conduction velocity and selective mechanical allodynia with preserved thermal algesia. Diabetic sural axons, preserved in number, developed atrophy, but there was loss of large-calibre dermal and small-calibre epidermal axons. In diabetic rats, insulin signal transduction pathways in lumbar DRGs were preserved or had trends toward upregulation: mRNA levels of insulin receptor beta-subunit (IRbeta), insulin receptor substrate (IRS)-1, and IRS-2. The numbers of neurons expressing IRbeta protein were also preserved. There were trends toward early rises of mRNA levels of heat shock protein 27 (HSP27), the alpha2delta1 calcium channel subunit, and phosphatidylinositol 3-kinase in diabetes. Others were unchanged, including nuclear factor-kappaB (NF-kappaB; p50/p105) and receptor for advanced glycosylation endproducts (RAGE) as was the proportion of neurons expressing HSP27, NF-kappaB, and RAGE protein.ZDF type 2 diabetic rats develop a distal degenerative sensory neuropathy accompanied by a selective long-term pain syndrome. Neuronal insulin signal transduction molecules are preserved.
DOI: 10.1016/j.mito.2011.06.007
2011
Cited 71 times
Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.
DOI: 10.1172/jci88321
2017
Cited 67 times
Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy
Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.
DOI: 10.1007/s13365-015-0320-8
2015
Cited 54 times
Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress
Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress.
DOI: 10.1016/j.molmet.2018.11.008
2019
Cited 46 times
Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes
Diabetic sensorimotor polyneuropathy (DSPN) affects approximately half of diabetic patients leading to significant morbidity. There is impaired neurotrophic growth factor signaling, AMP-activated protein kinase (AMPK) activity and mitochondrial function in dorsal root ganglia (DRG) of animal models of type 1 and type 2 diabetes. We hypothesized that sub-optimal insulin-like growth factor 1 (IGF-1) signaling in diabetes drives loss of AMPK activity and mitochondrial function, both contributing to development of DSPN. Age-matched control Sprague-Dawley rats and streptozotocin (STZ)-induced type 1 diabetic rats with/without IGF-1 therapy were used for in vivo studies. For in vitro studies, DRG neurons from control and STZ-diabetic rats were cultured and treated with/without IGF-1 in the presence or absence of inhibitors or siRNAs. Dysregulation of mRNAs for IGF-1, AMPKα2, ATP5a1 (subunit of ATPase), and PGC-1β occurred in DRG of diabetic vs. control rats. IGF-1 up-regulated mRNA levels of these genes in cultured DRGs from control or diabetic rats. IGF-1 treatment of DRG cultures significantly (P < 0.05) increased phosphorylation of Akt, P70S6K, AMPK and acetyl-CoA carboxylase (ACC). Mitochondrial gene expression and oxygen consumption rate (spare respiratory capacity), ATP production, mtDNA/nDNA ratio and neurite outgrowth were augmented (P < 0.05). AMPK inhibitor, Compound C, or AMPKα1-specific siRNA suppressed IGF-1 elevation of mitochondrial function, mtDNA and neurite outgrowth. Diabetic rats treated with IGF-1 exhibited reversal of thermal hypoalgesia and, in a separate study, reversed the deficit in corneal nerve profiles. In diabetic rats, IGF-1 elevated the levels of AMPK and P70S6K phosphorylation, raised Complex IV-MTCO1 and Complex V-ATP5a protein expression, and restored the enzyme activities of Complex IV and I in the DRG. IGF-1 prevented TCA metabolite build-up in nerve. In DRG neuron cultures IGF-1 signals via AMPK to elevate mitochondrial function and drive axonal outgrowth. We propose that this signaling axis mediates IGF-1-dependent protection from distal dying-back of fibers in diabetic neuropathy.
DOI: 10.1111/j.1460-9568.1995.tb01098.x
1995
Cited 103 times
Human Recombinant Nerve Growth Factor Replaces Deficient Neurotrophic Support in the Diabetic Rat
Abstract Manipulation of neurotrophic support is a developing strategy for new therapy aimed at neurodegenerative diseases. This study demonstrates reduced content and retrograde transport of endogenous nerve growth factor (NGF) in sciatic nerve of diabetic rats. There were also reductions in the diabetic rats in NGF protein and mRNA in skin and muscle of the hindlimb. These deficits correlated with reductions in substance P and calcitonin gene‐related peptide–both products of NGF‐influenced genes in primary afferents. These manifestations of deficient neurotrophic support were corrected by intensive insulin treatment and surmounted by administration of exogenous human recombinant NGF in a dose‐related manner. Impaired neurotrophic support may, therefore, participate in the pathogenesis of diabetic and other peripheral neuropathies.
DOI: 10.1016/j.mcn.2004.08.017
2005
Cited 100 times
α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons
The successful regeneration of peripheral branches of sensory neurons following injury is attributed to the presence of neurotrophins and interaction of regenerating axons with the extracellular matrix. Here, we show that the laminin receptor, α7β1 integrin is a crucial mediator of neurite outgrowth from distinct populations of sensory neurons. Following sciatic nerve crush, α7 integrin is expressed by medium–large diameter, NF200-immunoreactive (IR), and medium diameter, CGRP-IR, neurons, but very few small diameter non-peptidergic neurons. The functional significance of α7 integrin expression following injury was addressed using dissociated adult rat and mouse sensory neurons. By using function-blocking antibodies and neurons isolated from α7 integrin null mice, we demonstrate that NGF- and NT-3-stimulated neurite outgrowth is reduced in the absence of α7 integrin signaling. In contrast, GDNF-stimulated neurite outgrowth is less dependent on α7 integrin. These results define an essential interaction between α7 integrin and laminin for mediating neurite outgrowth of subpopulations of injured adult sensory neurons.
DOI: 10.1046/j.1471-4159.1995.64031231.x
1995
Cited 99 times
Altered Neurotrophin mRNA Levels in Peripheral Nerve and Skeletal Muscle of Experimentally Diabetic Rats
Abstract: The levels of neurotrophin mRNA in sensory ganglia, sciatic nerve, and skeletal muscle were measured in the streptozotocin‐diabetic rat using northern blotting. Periods of diabetes of 4, 6, and 12 weeks significantly elevated brain‐derived neurotrophic factor (BDNF) mRNA levels in soleus muscle compared with age‐matched controls, the increase being highest at 6 weeks. At all time periods studied, the levels of nerve growth factor (NGF) mRNA in soleus muscle were decreased by 21–47%. Following 12 weeks of diabetes, BDNF mRNA levels were increased approximately two‐to threefold in L4 and L5 dorsal root ganglia (DRG), and in sciatic nerve, NGF mRNA levels were raised 1.65‐fold. Intensive insulin treatment of diabetic rats for the final 4 weeks of the 12‐week period of diabetes reversed the up‐regulation of BDNF mRNA in DRG and muscle and NGF mRNA in sciatic nerve. All diabetes‐induced changes in neurotrophin mRNA were not paralleled by similar alterations in the levels of β‐actin mRNA in muscle and nerve, or of GAP‐43 mRNA in DRG and nerve. It is proposed that the up‐regulation of neurotrophin mRNA is an endogenous protective and/or repair mechanism induced by insult and, as such, appears as an early marker of peripheral nerve and muscle damage in experimental diabetes.
DOI: 10.1016/0306-4522(94)90368-9
1994
Cited 98 times
Deficits in sciatic nerve neuropeptide content coincide with a reduction in target tissue nerve growth factor messenger RNA in streptozotocin-diabetic rats: Effects of insulin treatment
The role of sub-optimal neurotrophic support in the aetiology of the sensory neuron dysfunction associated with diabetic neuropathy was investigated. The status of sciatic nerve neuropeptide content was related to target tissue nerve growth factor messenger RNA levels in streptozotocin-diabetic rats. The levels of substance P and calcitonin gene-related peptide in diabetic sciatic nerve were significantly lowered by approximately 50% and 28%, respectively, compared with aged matched controls and insulin-treated diabetic rats (P < 0.01) for both peptides and both comparisons). Measurements of nerve growth factor messenger RNA levels in sensory neuron target tissues, namely foot-skin and soleus muscle, revealed deficits of approximately 50% in diabetic rats, with insulin treatment reversing the decrease in foot-skin but not in soleus muscle. The results show a possible correlation between deficient neuropeptide gene expression in sensory neurons and reduced nerve growth factor messenger RNA levels in target tissue.
DOI: 10.1007/s00125-002-0785-x
2002
Cited 95 times
Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3
In diabetic sensory polyneuropathy the earliest and most severe pathophysiology occurs in neurones with the longest axons. The aim of this study was to characterise a diabetes-induced neurodegenerative marker that was selective for sensory neurones with the longest axons. We studied alterations in calcium homeostasis since this occurs in other neurodegenerative diseases.Sensory neurones were cultured from control and streptozotocin-diabetic rats, treated with or without human recombinant neurotrophin-3 (hrNT-3), and neurones from L4-L6 dorsal root ganglia (DRG) which exhibit the longest axons in vivo were compared with those from C5-L3 DRG. Fluorescent video-imaging was used to measure cytoplasmic calcium dynamics.Streptozotocin diabetes of 8 to 14 weeks, induced an increase in resting internal Ca(2+) concentration ([Ca(2+)](i)), from 67 +/- 7 nmol/l in small neurones and 79 +/- 9 nmol/l in big neurones obtained from control animals to 214 +/- 19 nmol/l in small neurones and 273 +/- 30 nmol/l in big neurones after 14 weeks of diabetes ( p < 0.05) in L4-L6 DRG cultures. Neurones from C5-L3 ganglia and non-neuronal cells were not affected. Treatment of 14-week streptozotocin-diabetic rats with subcutaneous injection of 5 mg/kg NT-3 normalised the increase in resting [Ca(2+)](i). The amplitudes induced by depolarisation, caffeine and ATP [Ca(2+)](i) responses were reduced in small ( < 30 microm diameter) but not big ( > 35 microm diameter) neurones of L4-L6 DRG from streptozotocin-diabetic animals; the C5-L3 DRG were not similarly affected and the changes in the L4-L6 DRG were corrected by NT-3 treatment.Altered calcium homeostasis could be an early molecular marker linked to the onset of diabetic sensory neuropathy. This neurodegenerative index can be corrected by NT-3 therapy and should encourage further work aimed at understanding the mechanistic basis of these observations.
DOI: 10.1007/s001250050907
1998
Cited 91 times
Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozotocin-diabetic rats
Neurotrophin-3 (NT-3) acts as a target-derived neurotrophic factor for large calibre sensory neurones and plays a role in the maintenance of the adult phenotype of proprioceptive and mechanoreceptive fibres. Large fibre sensory neuropathy is common in diabetes mellitus and the aim of this study was to determine whether endogenous NT-3-dependent neurotrophic support was sub-optimal in the streptozotocin-diabetic rat. NT-3 gene expression was analysed by Northern blotting and ELISA in hindlimb skeletal muscle and found to be decreased by up to 70% (p < 0.05) in rats with 4-6 weeks of diabetes compared to aged-matched controls. Treatment of other diabetic rats with insulin prevented development of deficits of both NT-3 protein and of its mRNA. The deficits in target tissue production of NT-3 were coincident with significant decreases in its anterograde and retrograde axonal transport in sciatic nerve at 6 weeks of diabetes. The mRNA expression in lumbar dorsal root ganglia of the specific receptor for NT-3, trkC, was also down-regulated at 12 weeks of diabetes by 50% (p < 0.05). The observed decreases in NT-3 target tissue production and related axonal transport suggest that large calibre sensory neurones expressing trkC may be receiving sub-optimal neurotrophic support in experimental diabetes.
DOI: 10.1523/jneurosci.3127-04.2005
2005
Cited 88 times
Activation of Nuclear Factor-κB via Endogenous Tumor Necrosis Factor α Regulates Survival of Axotomized Adult Sensory Neurons
Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo , and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-κB (NF-κB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro . Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor α (TNFα), a potent activator of NF-κB activity. We tested the hypothesis that activation of NF-κB stimulated by endogenous TNFα was required for survival of axotomized adult sensory neurons. Peripheral axotomy of lumbar DRG neurons by sciatic nerve crush induced a very rapid (within 2 h) and significant elevation in NF-κB-binding activity. This phenomenon was mimicked in cultured neurons in which there was substantial NF-κB nuclear translocation and a significant rise in NF-κB DNA-binding activity after plating. Inhibitors of NF-κB (SN50 or NF-κB decoy DNA) resulted in necrotic cell death of medium to large neurons (≥40 μm) within 24 h (60 and 75%, respectively), whereas inhibition of p38 and mitogen-activated protein/extracellular signal-regulated kinase did not effect survival. ELISA revealed that these cultures contained TNFα, and exposure to an anti-TNFα antibody inhibited NF-κB DNA-binding activity by ∼35% and killed ∼40% of medium to large neurons within 24 h. The results show for the first time that cytokine-mediated activation of NF-κB is a component of the signaling pathway responsible for maintenance of adult sensory neuron survival after axon damage.
DOI: 10.1111/j.1471-4159.1990.tb02312.x
1990
Cited 78 times
Chicken Growth‐Associated Protein GAP‐43 Is Tightly Bound to the Actin‐Rich Neuronal Membrane Skeleton
Abstract: We have identified the chicken equivalent of growth‐associated protein GAP‐43 in a detergent‐resistant membrane skeleton from cultures of chick neurones and embryonic chick brain. Antisera to the membrane skeleton protein, the 3D5 antigen, precipitate the translation product of chick GAP‐43 cDNA, and the 3D5 antigen is also detected by antisera against synthetic peptides from the known amino acid sequence of rat GAP‐43. The chick protein and the rat GAP‐43 are biochemically similar proteins that both serve as major targets of phosphorylation by endogenous protein kinase C. The detergent‐resistant complex in which GAP‐43 is found also contains actin ˜5% of the total protein) and a neurone‐specific cell surface glycoprotein. We suggest that the membrane skeleton of neurones may be a primary site of action of GAP‐43.
DOI: 10.1016/j.ceca.2007.11.010
2008
Cited 78 times
Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes
The World Health Organization (WHO) predicts there will be 300 million people world-wide with diabetes mellitus by 2025. Currently it is estimated that there are 20 and 60 million people suffering from diabetes mellitus in North America and Europe, respectively. Within this huge population of diabetic persons approximately 50% will develop some form of sensory polyneuropathy, which involves the dying back of distal axons and a failure of axons to regenerate. This leads to incapacitating pain, sensory loss and poor wound healing. The end result is lower extremity amputation with approximately 90,000 diabetes-related amputations occurring each year in North America and the expectation of a 5-fold increase over the next 10 years due to increased incidence of type 2 diabetes. Abnormal neuronal Ca2+ homeostasis and impaired mitochondrial function have been implicated in numerous CNS and PNS diseases including diabetic sensory neuropathy. The endoplasmic reticulum (ER), in part, regulates cellular Ca2+ homeostasis and this process is linked to regulation of mitochondrial function and activity of anti-apoptotic signal transduction pathways. Here we review the current state of research regarding role of Ca2+ dyshomeostasis and mitochondrial physiology in neuronal dysfunction in diabetes. The central impact of diabetes-induced alteration of Ca2+ handling on sensory neurone function is discussed and related to abnormal ER performance. New results are presented showing suboptimal Ca2+ concentration in the ER lumen in association with reduced SERCA2 expression in sensory neurones from type 1 diabetic rats. We hypothesize that deficits in neurotrophic factor support, specifically linked to diabetes-induced lowered expression of insulin and neurotrophin-3, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca2+ homeostasis and associated mitochondrial dysfunction. The role of hyperglycaemia in diabetes is also discussed and we propose that high glucose concentration may impact at other sites to contribute to the heterogeneous aetiology of nerve damage in diabetes.
DOI: 10.1128/jvi.02654-09
2010
Cited 65 times
Role of Oxidative Stress in Rabies Virus Infection of Adult Mouse Dorsal Root Ganglion Neurons
Rabies virus infection of dorsal root ganglia (DRG) was studied in vitro with cultured adult mouse DRG neurons. Recent in vivo studies of transgenic mice that express the yellow fluorescent protein indicate that neuronal process degeneration, involving both dendrites and axons, occurs in mice infected with the challenge virus standard (CVS) strain of rabies virus by footpad inoculation. Because of the similarities of the morphological changes in experimental rabies and in diabetic neuropathy and other diseases, we hypothesize that neuronal process degeneration occurs as a result of oxidative stress. DRG neurons were cultured from adult ICR mice. Two days after plating, they were infected with CVS. Immunostaining was evaluated with CVS- and mock-infected cultures for neuron specific beta-tubulin, rabies virus antigen, and amino acid adducts of 4-hydroxy-2-nonenal (4-HNE) (marker of lipid peroxidation and hence oxidative stress). Neuronal viability (by trypan blue exclusion), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, and axonal growth were also assessed with the cultures. CVS infected 33 to 54% of cultured DRG neurons. Levels of neuronal viability and TUNEL staining were similar in CVS- and mock-infected DRG neurons. There were significantly more 4-HNE-labeled puncta at 2 and 3 days postinfection in CVS-infected cultures than in mock-infected cultures, and axonal outgrowth was reduced at these time points in CVS infection. Axonal swellings with 4-HNE-labeled puncta were also associated with aggregations of actively respiring mitochondria. We have found evidence that rabies virus infection in vitro causes axonal injury of DRG neurons through oxidative stress. Oxidative stress may be important in vivo in rabies and may explain previous observations of the degeneration of neuronal processes.
DOI: 10.1007/s12640-009-9074-5
2009
Cited 64 times
4-Hydroxy-2-Nonenal Induces Mitochondrial Dysfunction and Aberrant Axonal Outgrowth in Adult Sensory Neurons that Mimics Features of Diabetic Neuropathy
Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 μM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.
DOI: 10.1016/j.expneurol.2013.08.018
2013
Cited 60 times
Receptor for advanced glycation end-products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons
The receptor for advanced glycation end-products (RAGE) is implicated in neuronal differentiation during embryogenesis and in regulation of peripheral nerve regeneration. However, the role of RAGE ligands and the signaling pathways utilized by activated RAGE in mediating axon regeneration in adult neurons remain unknown. We tested the hypothesis that RAGE signaling modulated neurotrophin-induced neurite outgrowth in cultured adult sensory neurons. Dorsal root ganglia (DRG) neurons from adult rats in vitro were exposed to specific RAGE ligands, signal transduction inhibitors and function blocking anti-RAGE IgG to assess their impact on neurite outgrowth. RAGE ligands including human glycated albumin (HGA), S100 calcium binding protein (S100B) and high mobility group 1 protein (HMGB1; alternatively termed amphoterin) in the presence of neurotrophins elevated neurite outgrowth 2-fold (p < 0.05). shRNA to RAGE or anti-RAGE IgG blockade of RAGE inhibited neurite outgrowth by 40–90% (p < 0.05). Western blotting and gene reporter analysis showed RAGE ligands activated NF-κB, JAK-STAT and ERK pathways. RAGE ligand induction of neurite outgrowth was blocked by inhibition of NF-κB, JAK-STAT or ERK pathways revealing the necessity for combined activation for optimal growth. RAGE ligands rapidly elevated NF-κB p65 expression in the cytoplasm while triggering translocation of NF-κB p50 to the nucleus. shRNA blockade of p50 demonstrated that translocation of p50 to the nucleus was implicated in driving axonal outgrowth. RAGE signaling is a complex mediator of neurotrophin-dependent neurite outgrowth, operating through divergent but partly inter-dependent pathways.
DOI: 10.1016/j.neuropharm.2012.09.015
2013
Cited 52 times
Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
DOI: 10.1006/mcne.2001.1015
2001
Cited 85 times
Nerve Growth Factor Modulates the Activation Status and Fast Axonal Transport of ERK 1/2 in Adult Nociceptive Neurones
Mature dorsal root ganglion cells respond to neurotrophins, and the intracellular signalling pathways activated by neurotrophins have been characterized in vitro. We have now used immunocytochemistry and Western blots to examine the expression and activation of extracellular signal-regulated protein kinase-1/2 (ERK) in rat dorsal root ganglion cells in vivo, using antisera to total (tERK) and phosphorylated (pERK) forms. This has revealed a number of novel findings. tERK immunoreactivity is present in most dorsal root ganglion cells but is expressed most strongly in small (nociceptive) cells and, surprisingly, is absent in a population of large cells that expressed trkB or trkC but mainly lack p75(NTR) immunoreactivity. In contrast pERK is prominent in a few trkA cells and in satellite glial cells, and is further increased by NGF treatment. tERK and pERK both undergo fast anterograde and retrograde axonal transport, indicated by accumulation at a sciatic nerve ligature, and NGF reduces the level of retrograde pERK transport.
DOI: 10.1098/rstb.1996.0042
1996
Cited 78 times
Neurotrophins and peripheral neuropathy
The most common form of peripheral neuropathy is that associated with diabetes mellitus. In rodent models of diabetes there are expression deficits in nerve growth factor (NGF) and in its high-affinity receptor, trkA, leading to decreased retrograde axonal transport of NGF and decreased support of NGF-dependent sensory neurons, with reduced expression of their neuropeptides, substance P and calcitonin gene-related peptide (CGRP). Treatment of diabetic rats with intensive insulin normalized these deficits and treatment with exogenous NGF caused dose-related increases, giving levels of NGF and neuropeptides which were greater than those of controls. Neurotrophin-3 (NT-3) mRNA was also deficient in leg muscle from diabetic rats and administration of recombinant NT-3 to diabetic rats increased the conduction velocity of sensory nerves without affecting motor conduction velocity. These findings implicate deficient neurotrophic support in diabetic neuropathy and suggest that its correction should be a paramount therapeutic target.
DOI: 10.1111/j.1085-9489.2003.03028.x
2003
Cited 76 times
Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy
Symmetrical sensory polyneuropathy, the most common form of diabetic neuropathy in humans, is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers--the latter probably the result of a dying-back of distal axons. Mitochondrial dysfunction has recently been proposed as an etiological factor in this degenerative disease of the peripheral nervous system. Lack of neurotrophic support has been proposed as a contributing factor in the etiology of diabetic neuropathy based on studies in animal models of Type I diabetes. We have recently demonstrated that insulin and neurotrophin-3 (NT-3) modulate mitochondrial membrane potential in cultured adult sensory neurons. We therefore tested the hypothesis that diabetes-induced mitochondrial dysfunction is caused by impairments in neurotrophic support. We have used real-time fluorescence video microscopy to analyze mitochondrial membrane potential in cultured adult sensory neurons isolated from normal and diabetic rats. Diabetes caused a significant loss of mitochondrial membrane potential in all sub-populations of sensory neurons which can be prevented by in vivo treatment with insulin or NT-3. The mechanism of insulin and NT-3-dependent modulation of mitochondrial membrane potential involves the activation of the phosphoinositide 3 kinase (PI 3 kinase) pathway. Downstream targets of PI 3 kinase, such as Akt and the transcription factor cAMP response element-binding protein (CREB), are activated by insulin and NT-3 and regulate sensory neuron gene expression. These alterations in gene expression modulate critical components of metabolite pathways and the electron transport chain associated with the neuronal mitochondrion. Our results show that in adult sensory neurons, treatment with insulin can elevate the input of reducing equivalents into the mitochondrial electron transport chain, which leads to greater mitochondrial membrane polarization and enhanced ATP synthesis.
DOI: 10.1016/j.expneurol.2005.03.001
2005
Cited 73 times
Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats
Sensory neurons from streptozotocin (STZ)-diabetic rats exhibit depolarization of mitochondria and the related induction of reactive oxygen species has been proposed to contribute to the etiology of sensory polyneuropathy in diabetes. There is deficient neurotrophin-3 (NT-3)-dependent neurotrophic support of sensory neurons in diabetes and treatment of STZ-diabetic rats with NT-3 prevents neuropathological alterations in peripheral nerve. Therefore, we hypothesized that loss of NT-3 may contribute to mitochondrial dysfunction in sensory neurons in diabetic sensory neuropathy. The specific aim of this study was to determine whether treatment of STZ-diabetic rats with systemic NT-3 could prevent depolarization of the mitochondrial inner membrane potential (Deltapsi(m)). In vitro studies with cultured DRG neurons from control rats revealed that treatment with 50 ng/ml NT-3 for 6 h enhanced the Deltapsi(m), e.g., a higher polarized membrane potential, compared to untreated neurons (P < 0.05). Studies on DRG sensory neurons from control vs. STZ-diabetic rats demonstrated that NT-3 therapy prevented the diabetes-induced depolarization of Deltapsi(m) (P < 0.05) in parallel with normalization of diabetes-dependent deficits in sensory nerve conduction velocity. Furthermore, alterations in mitochondrial function in vitro and in vivo correlated with the level of activation/expression of Akt in DRG neurons.
DOI: 10.1111/j.1460-9568.2007.05557.x
2007
Cited 66 times
Insulin‐like growth factor‐1‐dependent maintenance of neuronal metabolism through the phosphatidylinositol 3‐kinase–Akt pathway is inhibited by C<sub>2</sub>‐ceramide in CAD cells
Abstract Ceramide is a lipid second‐messenger generated in response to stimuli associated with neurodegeneration that induces apoptosis, a mechanism underlying neuronal death in Parkinson's disease. We tested the hypothesis that insulin‐like growth factor‐1 (IGF‐1) could mediate a metabolic response in CAD cells, a dopaminergic cell line of mesencephalic origin that differentiate into a neuronal‐like phenotype upon serum removal, extend processes resembling neurites, synthesize abundant dopamine and noradrenaline and express the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine β‐hydroxylase, and that this process was phosphatidylinositol 3‐kinase (PI 3‐K)–Akt‐dependent and could be inhibited by C 2 ‐ceramide. The metabolic response was evaluated as real‐time changes in extracellular acidification rate (ECAR) using microphysiometry. The IGF‐1‐induced ECAR response was associated with increased glycolysis, determined by increased NAD(P)H reduction, elevated hexokinase activity and Akt phosphorylation. C 2 ‐ceramide inhibited all these changes in a dose‐dependent manner, and was specific, as it was not induced by the inactive C 2 ‐ceramide analogue C 2 ‐dihydroceramide. Inhibition of the upstream kinase, PI 3‐K, also inhibited Akt phosphorylation and the metabolic response to IGF‐1, similar to C 2 ‐ceramide. Decreased mitochondrial membrane potential occurred after loss of Akt phosphorylation. These results show that IGF‐1 can rapidly modulate neuronal metabolism through PI 3‐K–Akt and that early metabolic inhibition induced by C 2 ‐ceramide involves blockade of the PI 3‐K–Akt pathway, and may compromise the first step of glycolysis. This may represent a new early event in the C 2 ‐ceramide‐induced cell death pathway that could coordinate subsequent changes in mitochondria and commitment of neurons to apoptosis.
DOI: 10.2174/138945008783431727
2008
Cited 63 times
Growth Factors as Therapeutics for Diabetic Neuropathy
There has been a rapid growth in appreciation of the diverse array of neurotrophic factors, growth factors and other biological molecules that have the capacity to support adult neurons and direct reparative processes after injury to the nervous system. Understanding the mechanisms by which these factors operate offers the opportunity to use either the factors themselves or other agents that manipulate relevant signal transduction pathways as therapeutics for a wide range of neurodegenerative diseases, including diabetic neuropathy. In this review, we aim to summarize current knowledge of the extent to which loss of neurotrophic support contributes to the pathogenesis of diabetic neuropathy, present preclinical evidence that supports the potential efficacy of growth factors or their mimetics against indices of diabetic neuropathy and highlight the emerging approaches to manipulating neuronal support mechanisms that show potential for translation to clinical use. Recent advances in directly assessing the progression of nerve damage in diabetic patients will hopefully facilitate renewed clinical evaluation of treatments for degenerative diabetic neuropathy and provide the framework for advancing the potential of growth factors as a therapy for this widespread and currently untreatable condition. Keywords: STZ-diabetic rats, Myelinated fibers, IGF binding proteins, C peptide, Ciliary neurotrophic factor
DOI: 10.1016/j.mcn.2007.02.020
2007
Cited 61 times
Preconditioning injury-induced neurite outgrowth of adult rat sensory neurons on fibronectin is mediated by mobilisation of axonal α5 integrin
A preconditioning sciatic nerve crush promotes the capacity of adult sensory neurons to regenerate following a subsequent injury to their axons. The increase in regeneration is detected in cultures of dissociated neurons, as an earlier and enhanced rate of neurite elongation. We compare neurotrophin-stimulated neurite outgrowth from sensory neurons on laminin and fibronectin. There is a poor response of sensory neurons to fibronectin in comparison to laminin, but this is enhanced by a preconditioning lesion to the sciatic nerve 7 days prior to culture. By using specific integrin-binding fibronectin fragments and function-blocking antibodies, we demonstrate that the enhanced preconditioned neurite outgrowth on fibronectin is largely mediated by alpha5beta1 integrin. Preconditioning injury alter the subcellular localisation of alpha5 integrin in preconditioned neurites. We show that alpha5 integrin localises to adhesion complexes in the growth cone and neurites of preconditioned neurons, but not control neurons.
DOI: 10.1007/s13365-013-0214-6
2013
Cited 39 times
Mitochondrial dysfunction in rabies virus infection of neurons
Infection with the challenge virus standard-11 (CVS) strain of fixed rabies virus induces neuronal process degeneration in adult mice after hindlimb footpad inoculation. CVS-induced axonal swellings of primary rodent dorsal root ganglion neurons are associated with 4-hydroxy-2-nonenal protein adduct staining, indicating a critical role of oxidative stress. Mitochondrial dysfunction is the major cause of oxidative stress. We hypothesized that CVS infection induces mitochondrial dysfunction leading to oxidative stress. We investigated the effects of CVS infection on several mitochondrial parameters in different cell types. CVS infection significantly increased maximal uncoupled respiration and complex IV respiration and complex I and complex IV activities, but did not affect complex II-III or citrate synthase activities. Increases in complex I activity, but not complex IV activity, correlated with susceptibility of the cells to CVS infection. CVS infection maintained coupled respiration and rate of proton leak, indicating a tight mitochondrial coupling. Possibly as a result of enhanced complex activity and efficient coupling, a high mitochondrial membrane potential was generated. CVS infection reduced the intracellular ATP level and altered the cellular redox state as indicated by a high NADH/NAD+ ratio. The basal production of reactive oxygen species (ROS) was not affected in CVS-infected neurons. However, a higher rate of ROS generation occurred in CVS-infected neurons in the presence of mitochondrial substrates and inhibitors. We conclude that CVS infection induces mitochondrial dysfunction leading to ROS overgeneration and oxidative stress.
DOI: 10.1042/bsr20150244
2016
Cited 34 times
Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria
Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.
DOI: 10.1186/s13287-018-0867-4
2018
Cited 31 times
Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior
Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) from young healthy donors are immunoprivileged and their clinical application for regenerative medicine is under evaluation. However, data from preclinical and initial clinical trials indicate that allogeneic MSCs after transplantation provoke a host immune response and are rejected. In the current study, we evaluated the effect of an increase in passage number in cell culture on immunoprivilege of the MSCs. Since only limited numbers of MSCs can be sourced at a time from a donor, it is imperative to expand them in culture to meet the necessary numbers required for cell therapy. Presently, the most commonly used passages for transplantation include passages (P)3-7. Therefore, in this study we included clinically relevant passages, i.e., P3, P5, and P7, for evaluation.The immunoprivilege of MSCs was assessed with the mixed leukocyte reaction assay, where rat MSCs were cocultured with peripheral blood leukocytes for 72 h. Leukocyte-mediated cytotoxicity, apoptosis (Bax/Bcl-xl ratio), leukocyte proliferation, and alterations in cellular bioenergetics in MSCs were assessed after the coculture. Furthermore, the expression of various oxidized phospholipids (oxidized phosphatidylcholine (ox-PC)) was analyzed in MSCs using a lipidomic platform. To determine if the ox-PCs were acting in tandem with downstream intracellular protein alterations, we performed proteome analysis using a liquid chromatography/mass spectrometry (LC/MS) proteomic platform.Our data demonstrate that MSCs were immunoprivileged at all three passages since coculture with leukocytes did not affect the survival of MSCs at P3, P5, and P7. We also found that, with an increase in the passage number of MSCs, leukocytes did not cause any significant effect on cellular bioenergetics (basal respiration rate, spare respiratory capacity, maximal respiration, and coupling efficiency). Interestingly, in our omics data, we detected alterations in some of the ox-PCs and proteins in MSCs at different passages; however, these changes were not significant enough to affect their immunoprivilege.The outcome of this study demonstrates that an increase in passage number (from P3 to P7) in the cell culture does not have any significant effect on the immunoprivilege of MSCs.
DOI: 10.1007/s00018-022-04201-9
2022
Cited 13 times
CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth
Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPβ, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPβ overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPβ can be a promising therapeutic approach.
DOI: 10.1126/sciadv.abl4370
2022
Cited 13 times
Development of iPSC-based clinical trial selection platform for patients with ultrarare diseases
A "Leap-of-Faith" approach is used to treat patients with previously unknown ultrarare pathogenic mutations, often based on evidence from patients having dissimilar but more prevalent mutations. This uncertainty reflects the need to develop personalized prescreening platforms for these patients to assess drug efficacy before considering clinical trial enrollment. In this study, we report an 18-year-old patient with ultrarare Leigh-like syndrome. This patient had previously participated in two clinical trials with unfavorable responses. We established an induced pluripotent stem cell (iPSC)-based platform for this patient, and assessed the efficacy of a panel of drugs. The iPSC platform validated the safety and efficacy of the screened drugs. The efficacy of three of the screened drugs was also investigated in the patient. After 3 years of treatment, the drugs were effective in shifting the metabolic profile of this patient toward healthy control. Therefore, this personalized iPSC-based platform can act as a prescreening tool to help in decision-making with respect to patient's participation in future clinical trials.
DOI: 10.1016/0014-5793(84)80927-8
1984
Cited 55 times
Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient
Phosphorylation of the light‐harvesting chlorophyll protein (LHCP) has been measured in intact chloroplasts prepared from maize mesophyll protoplasts. Maximum levels of phosphorylation were obtained in the absence of added reducible photosynthetic substrate and the presence of low concentrations of the ΔpH dissipating ionophore, nigericin. Assays of chlorophyll fluorescence indicated a high reduction level of plastoquinone under these conditions. It is suggested that the size of the transthylakoid pH gradient exerts control over the redox activation of the protein kinase and that protein phosphorylation is involved in the regulation of cyclic and non‐cyclic electron flow. Further evidence for this view was obtained from stimulation of protein phosphorylation by pyruvate which lowers ΔpH by ATP consumption and by inhibition of phosphorylation in strong light and by low levels of DCMU.
DOI: 10.1016/j.expneurol.2015.08.016
2015
Cited 33 times
The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats
Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth.IL-17A (10 ng/ml; p<0.05) significantly and dose-dependently increased total neurite outgrowth in cultures of adult dorsal root ganglia (DRG) sensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes.IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons.
DOI: 10.1007/s10571-014-0054-9
2014
Cited 33 times
Ciliary Neurotrophic Factor Reverses Aberrant Mitochondrial Bioenergetics Through the JAK/STAT Pathway in Cultured Sensory Neurons Derived from Streptozotocin-Induced Diabetic Rodents
DOI: 10.1016/b978-0-444-53480-4.00027-8
2014
Cited 33 times
Mechanisms of disease
Diabetic neuropathy is a major complication of diabetes that involves the sensory and autonomic nervous systems and leads to significant morbidity and impact on quality of life of patients. Mitochondrial stress has been proposed as a major mediator of insulin sensitivity in skeletal muscle in type 2 diabetes and a trigger of diabetic complications such as nephropathy and cardiomyopathy in humans and animal models. Recent studies in the peripheral nervous system in type 1 and type 2 diabetic animal models suggest a role for mitochondrial dysfunction in neurodegeneration in diabetes. This chapter focuses on the nature of sensory nerve dysfunction in diabetes and presents these findings in the context of diabetes-induced nerve degeneration mediated by alterations in mitochondrial physiology. Diabetes-induced dysfunction in calcium homeostasis is discussed and causative associations with suboptimal mitochondrial physiology are developed. Comparisons are made with mitochondrial-dependent dysfunction in muscle and cardiac tissue in diabetes. It is clear that across a range of complications of diabetes mitochondrial physiology is impaired; in general, a reduction in respiratory chain capability is apparent. Where appropriate, we provide clinical evidence for mitochondrial dysfunction in the pathogenesis of complications in patients with diabetes. This abnormal activity may predispose mitochondria to generate elevated reactive oxygen species (ROS), although experimental proof remains lacking, but more importantly will deleteriously alter the bioenergetic status of neurons.
DOI: 10.1152/ajpendo.00444.2016
2017
Cited 28 times
A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion
Human diabetic polyneuropathy (DPN) is a progressive complication of chronic diabetes mellitus. Preliminary evidence has suggested that intranasal insulin, in doses insufficient to alter hyperglycemia, suppresses the development of DPN. In this work we confirm this finding, but demonstrate that its impact is modified by sex and deletion of RAGE, the receptor for advanced glycosylation end products. We serially evaluated experimental DPN in male and female wild-type mice and male RAGE null (RN) mice, each with nondiabetic controls, during 16 wk of diabetes, the final 8 wk including groups given intranasal insulin. Age-matched nondiabetic female mice had higher motor and sensory conduction velocities than their male counterparts and had lesser conduction slowing from chronic diabetes. Intranasal insulin improved slowing in both sexes. In male RN mice, there was less conduction slowing with chronic diabetes, and intranasal insulin provided limited benefits. Rotarod testing and hindpaw grip power offered less consistent impacts. Mechanical sensitivity and thermal sensitivity were respectively but disparately changed and improved with insulin in wild-type female and male mice but not RN male mice. These studies confirm that intranasal insulin improves indexes of experimental DPN but indicates that females with DPN may differ in their underlying phenotype. RN mice had partial but incomplete protection from underlying DPN and lesser impacts from insulin. We also identify an important role for sex in the development of DPN and report evidence that insulin and AGE-RAGE pathways in its pathogenesis may overlap.
DOI: 10.1016/s0143-4160(02)00094-5
2002
Cited 54 times
Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca2+ release in cultured dorsal root ganglia neurones
The action of Xestospongin C (XeC) on calcium concentration in the cytosol ([Ca2+]i) and within the lumen of endoplasmic reticulum (ER) ([Ca2+]L) was studied using cultured dorsal root ganglia (DRG) neurones. Application of 2.5 μM of XeC triggered a slow [Ca2+]i transient as measured by Fura-2 video-imaging. The kinetics and amplitude of XeC-induced [Ca2+]i response was similar to that triggered by 1 μM thapsigargin (TG). The [Ca2+]L was monitored in cells loaded with low-affinity Ca2+ indicator Mag-Fura-2. The cytosolic portion of Mag-Fura-2 was removed by permeabilisation of the plasmalemma with saponin. Application of XeC to these permeabilised neurones resulted in a slow depletion of the ER Ca2+ store. XeC, however, failed to inhibit inositol 1,4,5-trisphosphate (InsP3)-induced [Ca2+]L responses. We conclude that XeC is a potent inhibitor of sarco(endo)plasmic reticulum calcium ATPase, and it cannot be regarded as a specific inhibitor of InsP3 receptors in cultured DRG neurones.
DOI: 10.1016/s0169-328x(97)00215-5
1997
Cited 53 times
Diabetes and axotomy-induced deficits in retrograde axonal transport of nerve growth factor correlate with decreased levels of p75LNTR protein in lumbar dorsal root ganglia
The effect of sensory neurone axotomy on the level of retrograde axonal transport of nerve growth factor (NGF) was studied in the sciatic nerve of age-matched normal and 8-week streptozocin-diabetic rats. In normal rats a 10-day sciatic nerve crush induced a 41% decrease in transported NGF, however, axotomy of sensory neurones of diabetic rats did not significantly effect the already deficient levels of NGF undergoing retrograde transport. At first sight, this result indicated that transported NGF levels in the sciatic nerve of diabetic rats are at a residual level due to deficient availability of target-derived NGF. To confirm this, the relationship of the transported NGF to the level of sensory neurone expression of the NGF receptor proteins was analysed. Western blots of L4 and L5 dorsal root ganglia (DRG) homogenates revealed no effect of axotomy and/or diabetes on the levels of the 145-kDa tyrosine kinase form of trkA. However, the expression of p75LNTR protein in the intact DRG was reduced in diabetic compared with normal rats (56%; P<0.01), and axotomy reduced the levels in the ipsilateral ganglia of normal but not diabetic rats – as seen for NGF axonal transport. Reductions in retrograde axonal transport of NGF in both diabetes and/or axotomy were associated with the levels of p75LNTR within the lumbar DRG.
DOI: 10.1016/0304-3940(94)11215-5
1995
Cited 52 times
Nerve growth factor and neurotrophin-3 enhance neurite outgrowth and up-regulate the levels of messenger RNA for growth-associated protein GAP-43 and Tα1 α-tubulin in cultured adult rat sensory neurones
The effect of nerve growth factor (NGF) and neurotrophin-3 (NT-3) on neurite outgrowth was related to the level of mRNA for the growth-associated protein GAP-43 and the neurone specific alpha-tubulin, T alpha 1, in dissociated cultures of adult rat sensory neurones. Treatment with NGF or NT-3 for 3 days enhanced neurite outgrowth in a dose-dependent manner and by 7-fold and 5-fold, respectively, over control at the highest concentrations used. NGF and NT-3 elevated the level of mRNA encoding GAP-43 by 2.3-fold and T alpha 1 alpha-tubulin by 3.2-3.5-fold. The estimated ED50 values were 0.1-0.3 ng/ml for NGF and 2 ng/ml for NT-3 for both neurite outgrowth and mRNA up-regulation.
DOI: 10.2337/diabetes.52.9.2372
2003
Cited 50 times
Neurotrophin-3 Prevents the Proximal Accumulation of Neurofilament Proteins in Sensory Neurons of Streptozocin-Induced Diabetic Rats
The relation between neurofilament expression and/or phosphorylation in the proximal versus distal components of the sensory peripheral neuraxis was studied and related to disorders in structure and function of the distal axon of streptozocin (STZ)-induced diabetic rats studied for 14 weeks. The ability of neurotrophin-3 (NT-3) to prevent abnormalities in neurofilament biology was also investigated. Compared with age-matched controls, neurofilament heavy (NF-H) (3.3-fold) and neurofilament medium (NF-M) (2.5-fold), but not neurofilament light (NF-L), subunits accumulated in the proximal axon of sensory neurons of the lumbar dorsal root ganglia (DRG) in untreated diabetic rats. Neurofilament accumulation was prevented by NT-3. Small- and large-diameter sensory neurons exhibited elevated levels of NF-H protein accumulation and phosphorylation in the DRG of untreated diabetic rats, levels that were ameliorated by NT-3. The sural nerve of untreated diabetic rats showed a 50% decrease in the levels of NF-H and NF-M, but not NF-L, subunits; NT-3 only partially normalized the defect in NF-M expression. These observations were associated with significant lowering of motor and sensory nerve conduction velocity but no alteration in the mean axonal diameter of myelinated axons in the sural nerve in untreated diabetic rats. It is proposed that the accumulation of NF-H and NF-M subunits in the proximal axon is an etiologic factor in the distal axon degeneration observed in diabetes.
DOI: 10.1016/j.brainres.2011.09.029
2011
Cited 32 times
Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy
The presence of a proinflammatory environment in the sensory neuron axis in diabetes was tested by measuring levels of proinflammatory cytokines in lumbar dorsal root ganglia (DRG) and peripheral nerve from age matched control and streptozotocin (STZ)-induced diabetic rats. The levels of tumor necrosis factor-α (TNFα) and other cytokines were diminished in lumbar DRG from diabetic animals. Consequently, we tested the hypothesis that TNFα modulated axonal plasticity in adult sensory neurons and posited that impairments in this signal transduction pathway may underlie degeneration in diabetic sensory neuropathy. Cultured adult rat sensory neurons were grown under defined conditions and TNFα caused a dose-dependent 2-fold (P<0.05) elevation in neurite outgrowth. Neurons derived from 3 to 5month STZ-induced diabetic rats exhibited significantly reduced levels of neurite outgrowth in response to TNFα. TNFα enhanced NF-κB activity as assessed using Western blotting and plasmid reporter technology. Blockade of TNFα-induction of NF-κB activation caused inhibition of neurite outgrowth in cultured neurons. Immunofluorescent staining for NF-κB subunit p50 within neuronal nuclei revealed that medium to large diameter neurons were most susceptible to NF-κB inhibition and was associated with decreased neurite outgrowth. The results demonstrating reduced cytokine expression in DRG confirm that diabetic sensory neuropathy does not involve a neuroinflammatory component at this stage of the disease in experimental animal models. In addition, it is hypothesized that reduced TNFα expression in the DRG and possibly associated deficits in anterograde transport may contribute to impaired collatoral sprouting and regeneration in target tissue in type 1 diabetes.
DOI: 10.1042/an20110038
2012
Cited 29 times
Sensory Neurons Derived from Diabetic Rats Have Diminished Internal Ca<sup>2+</sup> Stores Linked to Impaired Re-uptake by the Endoplasmic Reticulum
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca 2+ signalling. Previous work has described abnormalities in Ca 2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca 2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca 2+ homoeostasis including (i) axonal levels of intracellular Ca 2+ , (ii) Ca 2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca 2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca 2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca 2+ into the ER was reduced by 2-fold ( P&lt;0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca 2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca 2+ homoeostasis possibly triggered by suboptimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.
DOI: 10.1016/j.ceca.2014.07.005
2014
Cited 27 times
Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca2+ homoeostasis and aberrant Ca2+ signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca2+ homeostasis and Ca2+ signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca2+ homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.
DOI: 10.1186/1756-6606-6-45
2013
Cited 27 times
Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons
A luminex-based screen of cytokine expression in dorsal root ganglia (DRG) and nerve of type 1 diabetic rodents revealed interleukin-1 (IL-1α) and IL-1β to be significantly depressed. We, therefore, tested the hypothesis that impaired IL-1α and IL-1β expression in DRG may contribute to aberrant axon regeneration and plasticity seen in diabetic sensory neuropathy. In addition, we determined if these cytokines could optimize mitochondrial bioenergetics since mitochondrial dysfunction is a key etiological factor in diabetic neuropathy.Cytokines IL-1α and IL-1β were reduced 2-fold (p<0.05) in DRG and/or nerve of 2 and 5 month streptozotocin (STZ)-diabetic rats. IL-2 and IL-10 were unchanged. IL-1α and IL-1β induced similar 2 to 3-fold increases in neurite outgrowth in cultures derived from control or diabetic rats (p<0.05). STAT3 phosphorylation on Tyr705 or Ser727 was depressed in DRG from STZ-diabetic mice and treatment of cultures derived from STZ-diabetic rats with IL-1β for 30 min raised phosphorylation of STAT3 on Tyr705 and Ser727 by 1.5 to 2-fold (p<0.05). shRNA-based or AG490 inhibition of STAT3 activity or shRNA blockade of endogenous IL-1β expression completely blocked neurite outgrowth. Cultured neurons derived from STZ-diabetic mice were treated for 24 hr with IL-1β and maximal oxygen consumption rate and spare respiratory capacity, both key measures of bioenergetic fidelity that were depressed in diabetic compared with control neurons, were enhanced 2-fold. This effect was blocked by AG490.Endogenous synthesis of IL-1β is diminished in nerve tissue in type 1 diabetes and we propose this defect triggers reduced STAT3 signaling and mitochondrial function leading to sup-optimal axonal regeneration and plasticity.
DOI: 10.1016/j.neuropharm.2018.09.020
2018
Cited 24 times
Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons
A major cellular effector activated by G protein coupled receptors is extracellular signal-regulated kinase (ERK). The ERK signaling cascade regulates a variety of cellular processes including growth and proliferation. Both G protein and β-arrestin-mediated signaling lead to ERK activation by phosphorylation through different kinases. Recently, we have shown muscarinic acetylcholine type 1 receptor (M1R) antagonists, muscarinic toxin 7 (MT7) and pirenzepine, elevated neurite outgrowth and protected from small and large fiber neuropathy in adult sensory neurons in various animal models. Thus, we tested the novel hypothesis that muscarinic antagonists could drive neurite outgrowth through altered M1R-ERK signaling. We have used two dimensional isoelectric focusing/SDS-PAGE combined with analysis using multiple phospho-epitope specific antibodies to study ERK1/2 phosphorylation and activation of its downstream nuclear effector cyclic response element binding protein (CREB). Activated CREB is known to exhibit neuroprotective and growth promoting effects. One hour of treatment with MT7 and pirenzepine activated ERK through M1R and induced a significant increase in levels of pCREB(S133) in cultured sensory neurons. Further, pharmacological blockade or siRNA based knockdown of ERK abolished the MT7 and pirenzepine mediated neuritogenic effect. In addition, we have shown drug-induced alterations of charged protein fractions that may possess additional post-translationally modified forms of ERK and CREB. For the first time we show that long-term treatment, e.g. 1 h, with muscarinic antagonists selective or specific for M1R can activate a biased β-arrestin dependent ERK-CREB signal cascade. Our study gives novel insight into muscarinic antagonist-mediated modulation of M1R-ERK-CREB signaling which could be exploited for therapy in neuropathic diseases.
DOI: 10.1016/j.expneurol.2017.08.005
2017
Cited 23 times
Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats
Diabetic neuropathy affects approximately 50% of diabetic patients. Down-regulation of mitochondrial gene expression and function has been reported in both human tissues and in dorsal root ganglia (DRG) from animal models of type 1 and type 2 diabetes. We hypothesized that loss of direct insulin signaling in diabetes contributes to loss of mitochondrial function in DRG neurons and to development of neuropathy. Sensory neurons obtained from age-matched adult control or streptozotocin (STZ)-induced type 1 diabetic rats were cultured with or without insulin before determining mitochondrial respiration and expression of mitochondrial respiratory chain and insulin signaling-linked proteins. For in vivo studies age-matched control rats and diabetic rats with or without trace insulin supplementation were maintained for 5 months before DRG were analyzed for respiratory chain gene expression and cytochrome c oxidase activity. Insulin (10 nM) significantly (P < 0.05) increased phosphorylation of Akt and P70S6K by 4-fold and neurite outgrowth by 2-fold in DRG cultures derived from adult control rats. Insulin also augmented the levels of selective mitochondrial respiratory chain proteins and mitochondrial bioenergetics parameters in DRG cultures from control and diabetic rats, with spare respiratory capacity increased by up to 3-fold (P < 0.05). Insulin-treated diabetic animals exhibited improved thermal sensitivity in the hind paw and had increased dermal nerve density compared to untreated diabetic rats, despite no effect on blood glucose levels. In DRG of diabetic rats there was suppressed expression of mitochondrial respiratory chain proteins and cytochrome c oxidase activity that was corrected by insulin therapy. Insulin elevates mitochondrial respiratory chain protein expression and function in sensory neurons and this is associated with enhanced neurite outgrowth and protection against indices of neuropathy.
DOI: 10.3389/fnins.2018.00402
2018
Cited 23 times
Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mitochondrial Trafficking in Adult Sensory Neurons
The muscarinic acetylcholine type 1 receptor (M1R) is a metabotropic G protein-coupled receptor. Knockout of M1R or exposure to selective or specific receptor antagonists elevates neurite outgrowth in adult sensory neurons and is therapeutic in diverse models of peripheral neuropathy. We tested the hypothesis that endogenous M1R activation constrained neurite outgrowth via a negative impact on the cytoskeleton and subsequent mitochondrial trafficking. We overexpressed M1R in primary cultures of adult rat sensory neurons and cell lines and studied the physiological and molecular consequences related to regulation of cytoskeletal/mitochondrial dynamics and neurite outgrowth. In adult primary neurons, overexpression of M1R caused disruption of the tubulin, but not actin, cytoskeleton and significantly reduced neurite outgrowth. Over-expression of a M1R-DREADD mutant comparatively increased neurite outgrowth suggesting that acetylcholine released from cultured neurons interacts with M1R to suppress neurite outgrowth. M1R-dependent constraint on neurite outgrowth was removed by selective (pirenzepine) or specific (muscarinic toxin 7) M1R antagonists. M1R-dependent disruption of the cytoskeleton also diminished mitochondrial abundance and trafficking in distal neurites, a disorder that was also rescued by pirenzepine or muscarinic toxin 7. M1R activation modulated cytoskeletal dynamics through activation of the G protein (Gα13) that inhibited tubulin polymerization and thus reduced neurite outgrowth. Our study provides a novel mechanism of M1R control of Gα13 protein-dependent modulation of the tubulin cytoskeleton, mitochondrial trafficking and neurite outgrowth in axons of adult sensory neurons. This novel pathway could be harnessed to treat dying-back neuropathies since anti-muscarinic drugs are currently utilized for other clinical conditions.
DOI: 10.3390/cancers12030650
2020
Cited 20 times
Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated β2-microglobulin (β2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70- CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton's tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells.
DOI: 10.3390/cells9061541
2020
Cited 20 times
Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer’s Mice
Alzheimer’s disease (AD) is a major public health concern worldwide. Advanced age and female sex are two of the most prominent risk factors for AD. AD is characterized by progressive neuronal loss, especially in the cortex and hippocampus, and mitochondrial dysfunction has been proposed to be an early event in the onset and progression of the disease. Our results showed early perturbations in mitochondrial function in 3xTg mouse brain, with the cortex being more susceptible to mitochondrial changes than the hippocampus. In the cortex of 3xTg females, decreased coupled and uncoupled respiration were evident early (at 2 months of age), while in males it appeared later at 6 months of age. We observed increased coupled respiration in the hippocampus of 2-month-old 3xTg females, but no changes were detected later in life. Changes in mitochondrial dynamics were indicated by decreased mitofusin (Mfn2) and increased dynamin related protein 1 (Drp1) (only in females) in the hippocampus and cortex of 3xTg mice. Our findings highlight the importance of controlling and accounting for sex, brain region, and age in studies examining brain bioenergetics using this common AD model in order to more accurately evaluate potential therapies and improve the sex-specific translatability of preclinical findings.
DOI: 10.1007/s12035-020-01900-x
2020
Cited 19 times
Muscarinic Toxin 7 Signals Via Ca2+/Calmodulin-Dependent Protein Kinase Kinase β to Augment Mitochondrial Function and Prevent Neurodegeneration
Abstract Mitochondrial dysfunction is implicated in a variety of neurodegenerative diseases of the nervous system. Peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) is a regulator of mitochondrial function in multiple cell types. In sensory neurons, AMP-activated protein kinase (AMPK) augments PGC-1α activity and this pathway is depressed in diabetes leading to mitochondrial dysfunction and neurodegeneration. Antimuscarinic drugs targeting the muscarinic acetylcholine type 1 receptor (M 1 R) prevent/reverse neurodegeneration by inducing nerve regeneration in rodent models of diabetes and chemotherapy-induced peripheral neuropathy (CIPN). Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) is an upstream regulator of AMPK activity. We hypothesized that antimuscarinic drugs modulate CaMKKβ to enhance activity of AMPK, and PGC-1α, increase mitochondrial function and thus protect from neurodegeneration. We used the specific M 1 R antagonist muscarinic toxin 7 (MT7) to manipulate muscarinic signaling in the dorsal root ganglia (DRG) neurons of normal rats or rats with streptozotocin-induced diabetes. DRG neurons treated with MT7 (100 nM) or a selective muscarinic antagonist, pirenzepine (1 μM), for 24 h showed increased neurite outgrowth that was blocked by the CaMKK inhibitor STO-609 (1 μM) or short hairpin RNA to CaMKKβ. MT7 enhanced AMPK phosphorylation which was blocked by STO-609 (1 μM). PGC-1α reporter activity was augmented up to 2-fold ( p &lt; 0.05) by MT7 and blocked by STO-609. Mitochondrial maximal respiration and spare respiratory capacity were elevated after 3 h of exposure to MT7 ( p &lt; 0.05). Diabetes and CIPN induced a significant ( p &lt; 0.05) decrease in corneal nerve density which was corrected by topical delivery of MT7. We reveal a novel M 1 R-modulated, CaMKKβ-dependent pathway in neurons that represents a therapeutic target to enhance nerve repair in two of the most common forms of peripheral neuropathy.
DOI: 10.1016/s0306-4522(98)00582-x
1999
Cited 51 times
Focally administered nerve growth factor suppresses molecular regenerative responses of axotomized peripheral afferents in rats
Effects of delivery of nerve growth factor, from a catheterized osmotic mini-pump to the proximal stump of a transected sciatic nerve, were compared with the effects of normal saline. A pilot measured retrograde axonal transport of nerve growth factor to determine a pump concentration which raised axonal transport ipsilaterally, but not contralaterally. The effects of this delivery over 12 days were then determined on expression of growth-associated protein-43, trkA, p75NTR and preprotachykinin A ipsilateral and contralateral to the pump in dorsal root ganglia at L4 and L5 (pooled). Ganglionic expression was measured both as messenger RNA and protein. Axotomy (saline pumps) increased growth-associated protein-43 messenger RNA (318 +/- 14%: all changes are percent of contralateral, non-axotomized ganglia with saline pumps) and immunoreactivity (431 +/- 43%). The increase was significantly less (P < 0.001) ipsilateral to nerve growth factor pumps (191 +/- 45%). Axotomy reduced expression of p75NTR (messenger RNA: 52 +/- 17%, P < 0.01; immunoreactivity: 74 +/- 3%, P < 0.05). These decreases were converted to increases by nerve growth factor delivery (respectively 143 +/- 40% and 281 +/- 67%; both P < 0.01). With trkA, axotomy decreased the expression of the messenger RNA (68 +/- 40%, P < 0.01) and of the primary translation product--110,000 mol. wt protein (55 +/- 12%, P < 0.01)--but not the fully glycosylated trkA protein (mol. wt 145,000). Nerve growth factor delivery did not affect trkA expression. Axotomy reduced messenger RNA for the substance P precursor, preprotachykinin A, to 42 +/- 17% (P < 0.01) and this reduction was prevented by nerve growth factor treatment. We suggest that the primary effect of nerve growth factor on axotomized C-fibres is not to promote regeneration, although that may be its secondary effect via an action on Schwann cells. It is possible that reduced neuronal sensitivity to nerve growth factor during regeneration is advantageous in suppressing nociception.
DOI: 10.1016/0169-328x(95)00303-a
1996
Cited 48 times
Regenerating sensory neurones of diabetic rats express reduced levels of mRNA for GAP-43, γ-preprotachykinin and the nerve growth factor receptors, trkA and p75NGFR
Nerve growth factor (NGF) is considered to play a role in neurite outgrowth of small fibres which express its high-affinity receptor, trkA. Nerve regeneration is delayed in diabetes mellitus following an experimental crush injury. In steady-state (i.e., in the absence of axotomy) diabetic rats also show reduced expression of NGF in certain target tissues. This study was designed to measure expression of messenger RNA (mRNA) coding for NGF and its receptors, trkA and p75NGFR, during nerve regeneration and degeneration in rats with streptozotocin-induced diabetes; mRNA coding for preprotachykinin A (the substance P precursor), whose expression is stimulated y NGF, and mRNA for growth-associated protein-43 (GAP-43) were also measured in blots from L4 + L5 (pooled unilaterally) dorsal root ganglia. Unexpectedly, distal stumps of diabetic injured sciatic nerve contained higher levels of NGF mRNA than those of control rats. In ipsilateral dorsal root ganglia of control animals, mRNA for trkA and preprotachykinin A were decreased and GAP-43 mRNA increased after nerve injury; mRNA for p75NGFR was decreased only 3 weeks after nerve transection. In diabetic rats, the levels of all of these mRNA, both in intact and lesioned dorsal root ganglia, were lower than those from control rats. These results suggest that regenerating sensory neurones of diabetic rats receive less NGF support in spite of enhanced NGF mRNA levels in distal stumps compared to non-diabetic rats. Reduced expression of its high-affinity receptor, trkA, in ganglia of diabetic rats might explain this discrepancy.
DOI: 10.1007/bf00966311
1987
Cited 36 times
Nerve growth factor modulates tubulin transcript levels in pheochromocytoma PC12 cells
DOI: 10.1016/0005-2728(83)90235-9
1983
Cited 34 times
The influence of metabolic state on the level of phosphorylation of the light-harvesting chlorophyll-protein complex in chloroplasts isolated from maize mesophyll
The activity of the protein kinase that phosphorylates the light-harvesting chlorophyll-protein of Photosystem II (LHCP) has been investigated in intact chloroplasts isolated from maize mesophyll cells. Measurements of 32P incorporation into LHCP, ATP concentration, ATPADP ratio, ΔpH, chlorophyll fluorescence and oxygen evolution were made in the presence of different metabolic substrates. Without added substrate a high level of LHCP phosphorylation was observed which was suppressed by addition of oxaloacetate or phosphoglycerate but stimulated by pyruvate. Whereas no correlation was observed between LHCP phosphorylation and adenylate status, a clear effect of redox state on protein kinase activity was observed. A correlation between a highly reduced electron-transfer chain (produced under conditions which favour cyclic electron flow) and the maximum level of protein phosphorylation was observed. The regulation of kinase activity and its dependence on electron transfer and carbon assimilation are discussed.
DOI: 10.1097/nen.0b013e3181a7c14e
2009
Cited 32 times
Nuclear Factor-κB Activation in Axons and Schwann Cells in Experimental Sciatic Nerve Injury and Its Role in Modulating Axon Regeneration: Studies With Etanercept
Early inflammatory events may inhibit functional recovery after injury in both the peripheral and central nervous systems. We investigated the role of the inflammatory tumor necrosis factor/nuclear factor-kappaB (NF-kappaB) axis on events subsequent to sciatic nerve crush injury in adult rats. Electrophoretic mobility shift assays revealed that within 6 hours after crush, NF-kappaB DNA-binding activity increased significantly in a 1-cm section around the crush site. By immunofluorescence staining, there was increased nuclear localization of the NF-kappaB subunits p50 but not p65 or c-Rel in Schwann cells but no obvious inflammatory cell infiltration. In rats injected subcutaneously with etanercept, a tumor necrosis factor receptor chimera that binds free cytokine, the injury-induced rise in NF-kappaB DNA-binding activity was inhibited, and nuclear localization of p50 in Schwann cells was lowered after the injury. Axonal growth 3 days after nerve crush assessed with immunofluorescence for GAP43 demonstrated that the regeneration distance of leading axons from the site of nerve crush was greater in etanercept-treated animals than in saline-treated controls. These data indicate that tumor necrosis factor mediates rapid activation of injury-induced NF-kappaB DNA binding in Schwann cells and that these events are associated with inhibition of postinjury axonal sprouting.
DOI: 10.1016/j.molmet.2021.101191
2021
Cited 13 times
Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1
The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis.DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements.Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration.We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.
DOI: 10.2337/diabetes.47.11.1779
1998
Cited 40 times
Effect of nerve growth factor treatment on p75NTR gene expression in lumbar dorsal root ganglia of streptozocin-induced diabetic rats.
Previous work shows that gene expression for p75NTR in lumbar dorsal root ganglia (DRG) is deficient in streptozocin-induced diabetic rats, while expression of trkA protein is unaffected. This is the first study on the effect of diabetes on immunohistochemical staining and axonal transport of p75NTR in sensory neurons. We also investigated the novel effect of nerve growth factor (NGF) treatment on the levels of mRNA and protein of the NGF receptors, trkA and p75NTR, in normal and diabetic rats. Immunohistochemical staining for p75NTR was significantly reduced in DRG of 12-week streptozocin-induced diabetic rats, confirming the previous work. Anterograde and retrograde axonal transport of p75NTR within the sciatic nerve was similarly decreased in diabetic rats, while levels of transport of trkA were unaffected. Treatment with systemic NGF reversed the diabetes-induced deficit in p75NTR transcripts and protein within the DRG and left expression levels of trkA unchanged. We propose that in sensory neurons of diabetic rats, the ability to capture and retrogradely transport NGF may be impaired because of suboptimal production of p75NTR receptors and that NGF therapy may overcome this deficiency.
DOI: 10.1016/s0074-7742(02)50075-1
2002
Cited 35 times
Neurofilaments in diabetic neuropathy
This review discusses the role of abnormal neurofilament (NF) expression, processing, and structure as an etiological factor in diabetic neuropathy. Diabetic sensory and autonomic neuropathy in humans is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers-- the latter is probably the result of a dying-back of distal axons. NF filaments are composed of three subunit proteins, NFL, NFM, and NFH, and are major constituents of the axonal cylinder. It is clear that any abnormality in synthesis, delivery, or processing of these critical proteins could lead to severe impairments in axon structure and function. This article describes mechanisms of synthesis, phosphorylation, and delivery of NF and discusses how these processes may be abnormal in diabetics. The pathological alterations in the ganglion and preipheral nerve that occur in sensory and autonomic neuropath will be outlined and related to possible abnormal processing of NF. A major focus is the role or aberrant NF phosphorylation and its possible involvement in the imparied delivery of NF to the distal axon. Identification of stress-activated protein kinases (SAPKs) as NF kinases is discussed in detail and it is proposed that hyperglycemia-induced activation of SAPKs may be a primary etiological event in diabetic neuropathy.
DOI: 10.1111/j.1399-3054.1982.tb00328.x
1982
Cited 29 times
Light‐dependent inhibition of photosynthetic electron transport by zinc
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N′,N′‐tetramethyl‐ p ‐phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6‐dichlorophenol‐indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m −2 s −1 produced a logarithmic reduction in the zinc‐induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m −2 s −1 . Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg 2 . The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.
DOI: 10.1101/lm.046284.117
2018
Cited 18 times
Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
DOI: 10.1016/j.expneurol.2018.08.001
2018
Cited 18 times
High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons
In peripheral nerve under hyperglycemic conditions high flux of d-glucose through the polyol pathway drives an aberrant redox state contributing to neurodegeneration in diabetic sensorimotor polyneuropathy (DSPN). Sirtuins, including SIRT2, detect the redox state via the NAD+/NADH ratio to regulate mitochondrial function via, in part, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). In adult dorsal root ganglia (DRG) sensory neurons mitochondrial dysfunction has been proposed as an etiological factor in dying-back neuropathy in diabetes. We tested the hypothesis that a high concentration of d-glucose depleted SIRT2 expression via enhancement of polyol pathway activity. We posited that this would lead to impaired mitochondrial function and suppression of neurite outgrowth in cultured sensory neurons. The use of dominant negative mutants or neurons from SIRT2 knockout (KO) mice to block SIRT2 signaling revealed that neurons derived from control or type 1 diabetic rodents required SIRT2 for optimal neurite outgrowth. Over-expression of WT-SIRT2 elevated neurite outgrowth in normal and diabetic cultures. SIRT2 protein isoforms 2.1 and 2.2 were reduced by 20-30% in DRG of type 1 diabetic mice (p < .05). After 72 h exposure to high d-glucose (25 mM vs 5 mM) cultured sensory neurons showed a significant 2-fold (p < .05) decrease in SIRT2 expression, P-AMPK, levels of respiratory Complexes II/III and respiratory capacity. DRG neurons expressed aldose reductase and the aforementioned deficits were prevented by treatment with aldose reductase inhibitors (lidorestat or sorbinil) or sorbitol dehydrogenase inhibitor (SDI-158). In cultures derived from type 1 diabetic rats treatment with SDI-158 elevated expression of SIRT2, P-AMPK/PGC-1α and neurite outgrowth (p < .05). SIRT2 KO neurons exhibited deficits in the LKB-1/AMPK/PGC-1α pathway and mitochondrial function. In cultured neurons the SIRT2 pathway enhances axonal outgrowth and this signaling axis encompassing activation of AMPK/PGC-1α is impaired in DSPN, in part, due to enhanced polyol pathway activity caused by hyperglycemia.
DOI: 10.1016/j.mcn.2018.05.006
2018
Cited 17 times
Depressed mitochondrial function and electron transport Complex II-mediated H 2 O 2 production in the cortex of type 1 diabetic rodents
Abnormalities in mitochondrial function under diabetic conditions can lead to deficits in function of cortical neurons and their support cells exhibiting a pivotal role in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. We aimed to assess mitochondrial respiration rates and membrane potential or H2O2 generation simultaneously and expression of proteins involved in mitochondrial dynamics, ROS scavenging and AMPK/SIRT/PGC-1α pathway activity in cortex under diabetic conditions. Cortical mitochondria from streptozotocin (STZ)-induced type 1 diabetic rats or mice, and aged-matched controls were used for simultaneous measurements of mitochondrial respiration rates and mitochondrial membrane potential (mtMP) or H2O2 using OROBOROS oxygraph. Measurements of enzymatic activities of respiratory complexes were performed using spectophotometry. Protein levels in cortical mitochondria and homogenates were determined by Western blotting. Mitochondrial coupled respiration rates and FCCP-induced uncoupled respiration rates were significantly decreased in mitochondria of cortex of STZ-diabetic rats compared to controls. The mtMP in the presence of ADP was significantly depolarized and succinate-dependent respiration rates and H2O2 were significantly diminished in cortical mitochondria of diabetic animals compared to controls, accompanied with reduced expression of CuZn- and Mn-superoxide dismutase. The enzymatic activities of Complex I, II, and IV and protein levels of certain components of Complex I and II, mitofusin 2 (Mfn2), dynamin-related protein 1 (DRP1), P-AMPK, SIRT2 and PGC-1α were significantly diminished in diabetic cortex. Deficits in mitochondrial function, dynamics, and antioxidant capabilities putatively mediated through sub-optimal AMPK/SIRT/PGC-1α signaling, are involved in the development of early sub-clinical neurodegeneration in the cortex under diabetic conditions.
DOI: 10.1007/s00401-024-02710-4
2024
A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin
DOI: 10.1101/2024.04.25.591203
2024
T2R14 mediated antimicrobial responses through interactions with CFTR
Bitter taste receptors (T2Rs), are a subset of G protein-coupled receptors (GPCRs) that play a key role in responding to microbial presence at epithelial surfaces. In epithelia, the activities of ion channels and transporters, and of T2Rs, mutually affect each other. The normal function of one such anion channel, cystic fibrosis transmembrane conductance regulator (CFTR), is essential for the maintenance of healthy epithelia, not just in the respiratory but in the digestive and reproductive system as well. Based on evidence that T2R14 activity is affected upon mutations in CFTR, we explored the possibility that T2R14 and CFTR directly interact in cell membranes. The biophysical interaction between these proteins was mapped to specific regions of the CFTR, and was dependent on agonist stimulation of T2R14. Further, T2R14 was found to couple to Gαq, in addition to the canonical Gαi, in response to bacterial and fungal quorum sensing molecules. Whether the interaction with CFTR affects T2R14 driven responses to microbial signals is under investigation.
1999
Cited 35 times
Neurotrophin-3 reverses nerve conduction velocity deficits in streptozotocin-diabetic rats.
The ability of neurotrophin-3 (NT-3) to reverse established nerve disorders was investigated in the peripheral neuraxis of streptozotocin-diabetic rats. Sciatic sensory and motor nerve conduction velocity deficits established after 2 months of diabetes were completely normalized by one further month of treatment with either NT-3 or insulin. None of these conduction velocity changes were associated with altered mean axonal caliber in the sciatic nerve. In the dorsal and ventral roots, mean axonal caliber was significantly decreased after 8 weeks of diabetes (both P < 0.05). Subsequently, one month of insulin, but not NT-3, treatment increased mean axonal caliber to age-matched control values. NT-3 treatment was also without effect on the significant (both P < 0.05) decrease in phosphorylated heavy neurofilament (NFH) subunits seen in dorsal and ventral roots of 12 week diabetic rats. In the sural nerve, diabetes attenuated a maturation-associated increase in mean axonal caliber over the first 8 weeks of diabetes, and induced atrophy between weeks 8 and 12 that was ameliorated by both NT-3 and insulin treatment. Reductions in sural nerve axonal caliber were associated with a tendency for elevation of both phosphorylated NFH levels in large fibers and the ratio of phosphorylated to nonphosphorylated NFH that was attenuated by NT-3. These data demonstrate that NT-3 corrects established sciatic nerve conduction deficits in diabetic rats in a manner independent of changes in axonal caliber in this nerve. Further, although NT-3 was without effect on decreases in axonal caliber and NFH subunit phosphorylation in the spinal roots, reversal of axonal caliber deficits in peripheral nerves of sensory fibers may involve NT-3-mediated normalization of aberrant neurofilament phosphorylation.
DOI: 10.1046/j.1464-5491.1999.00035.x
1999
Cited 35 times
Increased nerve growth factor mRNA in lateral calf skin biopsies from diabetic patients
This study set out to establish a novel procedure for the measurement of human nerve growth factor (NGF) messenger ribonucleic acid (mRNA) and to use this method to measure NGF expression in skin biopsies from control subjects and from patients with early neuropathies. NGF mRNA levels were related to functional measures of the competence of NGF-responsive nerves.mRNA levels were measured by competitive reverse transcription with polymerase chain reaction amplification (cRT-PCR). Functional correlates of this observation were assessed by indices of thermal sensitivity--mediated by C-fibres, whose phenotype is regulated by NGF.NGF mRNA was increased in skin biopsies from 19 diabetic patients (5.12+/-3.88 (SD)) compared with samples from eight controls (1.57+/-0.95; P=0.001). Diabetic patients showed significantly (P < 0.001) diminished detection of cool and warm stimuli compared to age matched control group (n=24), but there were no differences in detection of heat as pain, or correlation with NGF mRNA levels.These findings suggest abnormally increased expression of NGF in diabetic neuropathy, which may represent a compensatory mechanism for impaired phenotype in NGF-responsive neurones.
DOI: 10.1006/exnr.1999.7306
2000
Cited 34 times
Contraction-Induced Muscle Fiber Damage Is Increased in Soleus Muscle of Streptozotocin-Diabetic Rats and Is Associated with Elevated Expression of Brain-Derived Neurotrophic Factor mRNA in Muscle Fibers and Activated Satellite Cells
The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically stimulating the sciatic nerve. In 6-week diabetic rats, intense contraction of the soleus muscle resulted in a two- to four-fold elevation of BDNF mRNA and increased plasma levels of creatine kinase that were associated with severe focal muscle fiber damage and concomitant satellite cell activation. Focal muscle fiber damage and concomitant satellite cell activation were also observed in the soleus muscle of nonstimulated diabetic rats, but to a much lesser extent. No effects of muscle contraction, i.e., experimentally induced or during normal daily activity, on muscle fiber structure or BDNF mRNA expression were seen in diabetic extensor digitorum longus (EDL) muscle. Using a nonradioactive in situ hybridization technique for electron microscopy, the elevated expression of BDNF mRNA in the diabetic soleus muscle was localized within muscle fibers as well as activated satellite cells. This study shows that diabetic soleus muscle, in contrast to diabetic EDL and to soleus and EDL muscle of normal animals, is highly susceptible to contraction-induced damage. Intense contraction and the associated muscle fiber damage in the diabetic soleus muscle result in an upregulation of BDNF mRNA in muscle fibers and activated satellite cells, which may be involved in the restoration and/or maintenance of nerve/muscle integrity.
DOI: 10.1016/j.brainres.2007.08.015
2007
Cited 26 times
Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes
The effect of streptozotocin (STZ)-induced diabetes on expression and activity of hexokinase, the first enzyme and rate-limiting step in glycolysis, was studied in sensory neurons of lumbar dorsal root ganglia (DRG). The DRG and sciatic nerve of adult rats expressed the hexokinase I isoform only. Immunofluorescent staining of lumbar DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large, mainly proprioceptive neurons, had very low or negative staining for hexokinase I. Intracellular localization and biochemical studies on intact DRG from adult rats and cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. Duration of STZ-diabetes of 6 or 12 weeks diminished hexokinase activity by 28% and 30%, respectively, in lumbar DRG compared with age matched controls (P<0.05). Quantitative Western blotting showed no effect of diabetes on hexokinase I protein expression in homogenates or mitochondrial preparations from DRG. Immunofluorescent staining for hexokinase I showed no diabetes-dependent change in small-medium neuron expression in DRG, however, large neurons became positive for hexokinase I (P<0.05). Such complex effects of diabetes on hexokinase I expression in the DRG may be due to glucose-driven up-regulation of expression or the result of impaired axonal transport and perikaryal accumulation in the large neuron sub-population. Because hexokinase is the rate-limiting enzyme of glycolysis these results imply that metabolic flux through the glycolytic pathway is reduced in diabetes. This finding, therefore, questions the role of high glucose-induced metabolic flux as a key driving force in reactive oxygen species generation by mitochondria.
DOI: 10.1016/j.neulet.2008.01.057
2008
Cited 23 times
Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons
Hexokinase is known as the first enzyme and rate-limiting step in glycolysis. The role of hexokinase activity and localization in regulating the rate of axonal regeneration was studied in cultured adult sensory neurons of dorsal root ganglia (DRG). Immunofluorescent staining of DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large neurons had negative staining for hexokinase I. Intracellular localization and biochemical studies in cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. The hypothesis that neurotrophic factor dependent activation of Akt would regulate hexokinase association with the mitochondria was tested and quantitative Western blotting showed no effect of blockade of the phosphoinositide 3-kinase (PI 3-kinase)/Akt pathway using the inhibitor LY294002, indicating this interaction of hexokinase with mitochondria was not neurotrophic factor or Akt-dependent. Finally, pharmacological blockade of hexokinase activity and inhibition of localization to the mitochondrial compartment with hexokinase II VDAC binding domain (Hxk2VBD) peptide caused a significant inhibition of neurotrophic factor-directed axon outgrowth. The results support a key role for hexokinase activity and/or localization to the mitochondria in the regulation of neurite outgrowth in cultured adult sensory neurons.
DOI: 10.1016/b978-0-12-387040-7.00008-1
2011
Cited 17 times
Role of Oxidative Stress in Rabies Virus Infection
Recent studies in an experimental model of rabies indicated that there are major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult mouse dorsal root ganglion (DRG) neurons are a good in vitro model for studying the mechanisms involved in rabies virus-induced degeneration of neurites (axons) because, unlike other neuronal cell types, these neurons are fairly permissive to rabies virus infection. DRG neurons infected with the challenge virus standard-11 (CVS) strain of rabies virus show axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress, and also reduced axonal growth in comparison with mock-infected DRG neurons. Treatment with the antioxidant N-acetyl cysteine prevented the reduction in axonal outgrowth that occurred with CVS infection. The axonal swellings with 4-HNE-labeled puncta were found to be associated with aggregations of actively respiring mitochondria. We postulate that rabies virus infection likely induces mitochondrial dysfunction resulting in oxidative stress and degenerative changes involving neuronal processes. This mitochondrial dysfunction may be the result of either direct or indirect effects of the virus on the mitochondrial electron-transport chain or it may occur through other mechanisms. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection. This information may prove helpful in the design of future therapeutic effects for this dreaded ancient disease.
DOI: 10.1128/jvi.00550-12
2012
Cited 17 times
Role of Nuclear Factor-κB in Oxidative Stress Associated with Rabies Virus Infection of Adult Rat Dorsal Root Ganglion Neurons
Recent studies in an experimental model of rabies showed major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult rat dorsal root ganglion (DRG) neurons infected with the challenge virus standard-11 strain of rabies virus (CVS) showed axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress and reduced axonal growth compared to that of mock-infected DRG neurons. We have evaluated whether nuclear factor (NF)-κB might act as a critical bridge linking CVS infection and oxidative stress. On Western immunoblotting, CVS infection induced expression of the NF-κB p50 subunit compared to that of mock infection. Ciliary neurotrophic factor, a potent activator of NF-κB, had no effect on mock-infected rat DRG neurons and reduced the number of 4-HNE-labeled puncta. SN50, a peptide inhibitor of NF-κB, and CVS infection had an additive effect in producing axonal swellings, indicating that NF-κB is neuroprotective. The fluorescent signal for subunit p50 was quantitatively evaluated in the nucleus and cytoplasm of mock- and CVS-infected rat DRG neurons. At 24 h postinfection (p.i.), there was a significant increase in the nucleus/cytoplasm ratio, indicating increased transcriptional activity of NF-κB, perhaps as a response to stress. At both 48 and 72 h p.i., there was significantly reduced nuclear localization of NF-κB. CVS infection may induce oxidative stress by inhibiting nuclear activation of NF-κB. A rabies virus protein may directly inhibit NF-κB activity. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection.
DOI: 10.1016/j.neuroscience.2017.08.006
2017
Cited 16 times
Brain region- and sex-specific alterations in mitochondrial function and NF-κB signaling in the TgCRND8 mouse model of Alzheimer’s disease
Alzheimer's disease (AD) is the most common late onset neurodegenerative disorder with indications that women are disproportionately affected. Mitochondrial dysfunction has been one of the most discussed hypotheses associated with the early onset and progression of AD, and it has been attributed to intraneuronal accumulation of amyloid β (Aβ). It was suggested that one of the possible mediators for Aβ-impaired mitochondrial function is the nuclear factor kappa B (NF-κB) signaling pathway. NF-κB plays important roles in brain inflammation and antioxidant defense, as well as in the regulation of mitochondrial function, and studies have confirmed altered NF-κB signaling in AD brain. In this study, we looked for sex-based differences in impaired bioenergetic processes and NF-κB signaling in the AD-like brain using transgenic (Tg) CRND8 mice that express excessive brain Aβ, but without tau pathology. Our results show that mitochondrial dysfunction is not uniform in affected brain regions. We observed increased basal and coupled respiration in the hippocampus of TgCRND8 females only, along with a decreased Complex II-dependent respiratory activity. Cortical mitochondria from TgCRND8 mice have reduced uncoupled respiration capacity, regardless of sex. The pattern of changes in NF-κB signaling was the same in both brain structures, but was sex specific. Whereas in females there was an increase in all three subunits of NF-κB, in males we observed increase in p65 and p105, but no changes in p50 levels. These results demonstrate that mitochondrial function and inflammatory signaling in the AD-like brain is region- and sex-specific, which is an important consideration for therapeutic strategies.
DOI: 10.1016/j.neuropharm.2019.107755
2019
Cited 15 times
Poly(ADP-ribose) polymerase-1 inhibits mitochondrial respiration by suppressing PGC-1α activity in neurons
Poly(ADP-ribose) polymerase-1 (PARP1) is a ubiquitous nuclear enzyme that regulates DNA repair and genomic stability. In oxidative genotoxic conditions, PARP1 activity is enhanced significantly, leading to excessive depletion of nicotinamide adenine dinucleotide (NAD+) and mitochondrial dysfunction. We hypothesized that PARP1-induced NAD+ depletion inhibits NAD+-dependent sirtuin deacetylase activity, thereby interfering with the mitochondrial regulator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). The DNA alkylator, N′-Nitro-N-nitroso-N-methylguanidine (MNNG), induced NAD+ depletion, inhibited sirtuin deacetylase activity and enhanced acetylation of PGC-1α. This was associated with reduced interaction between PGC-1α and nuclear respiratory factor 1 (NRF-1), which is a nuclear transcription factor that drives mitochondrial replication by regulating mitochondrial transcription factor A (TFAM). MNNG also reduced binding of NRF-1 to the tfam upstream promoter region and reduced TFAM mRNA, mitochondrial DNA copy number and respiratory function. MNNG effects were mitigated by PARP1 inhibition and genetic loss of function, by enhancing intracellular NAD+ levels, and with sirtuin (SIRT1) gain of function, supporting a mechanism dependent on PARP1 activity, NAD+-depletion and SIRT1 inhibition. This and other work from our group supports a destructive sequelae of events related to PARP1-induced sirtuin inhibition and sirtuin-mediated regulation of transcription.
DOI: 10.1124/jpet.120.265447
2020
Cited 13 times
Topical Delivery of Muscarinic Receptor Antagonists Prevents and Reverses Peripheral Neuropathy in Female Diabetic Mice
Muscarinic antagonists promote sensory neurite outgrowth in vitro and prevent and/or reverse multiple indices of peripheral neuropathy in rodent models of diabetes, chemotherapy-induced peripheral neuropathy, and HIV protein-induced neuropathy when delivered systemically. We measured plasma concentrations of the M<sub>1</sub> receptor–selective muscarinic antagonist pirenzepine when delivered by subcutaneous injection, oral gavage, or topical application to the skin and investigated efficacy of topically delivered pirenzepine against indices of peripheral neuropathy in diabetic mice. Topical application of 2% pirenzepine to the paw resulted in plasma concentrations 6 hours postdelivery that approximated those previously shown to promote neurite outgrowth in vitro. Topical delivery of pirenzepine to the paw of mice with streptozotocin-induced diabetes dose-dependently (0.1%–10.0%) prevented tactile allodynia, thermal hypoalgesia, and loss of epidermal nerve fibers in the treated paw and attenuated large fiber motor nerve conduction slowing in the ipsilateral limb. Efficacy against some indices of neuropathy was also noted in the contralateral limb, indicating systemic effects following local treatment. Topical pirenzepine also reversed established paw heat hypoalgesia, whereas withdrawal of treatment resulted in a gradual decline in efficacy over 2–4 weeks. Efficacy of topical pirenzepine was muted when treatment was reduced from 5 to 3 or 1 day/wk. Similar local effects were noted with the nonselective muscarinic receptor antagonist atropine when applied either to the paw or to the eye. Topical delivery of muscarinic antagonists may serve as a practical therapeutic approach to treating diabetic and other peripheral neuropathies. <h3>SIGNIFICANCE STATEMENT</h3> Muscarinic antagonist pirenzepine alleviates diabetic peripheral neuropathy when applied topically in mice.
DOI: 10.3390/nu12113589
2020
Cited 12 times
Sex-Specific Effects of Chronic Creatine Supplementation on Hippocampal-Mediated Spatial Cognition in the 3xTg Mouse Model of Alzheimer’s Disease
The creatine (Cr) energy system has been implicated in Alzheimer’s disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8–9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid β (Aβ) species, whereas Aβ trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.
DOI: 10.1155/2022/8566970
2022
Cited 5 times
Enhancement of Mitochondrial Function by the Neurogenic Molecule NSI-189 Accompanies Reversal of Peripheral Neuropathy and Memory Impairment in a Rat Model of Type 2 Diabetes
Mitochondrial dysfunction contributes to many forms of peripheral and central nervous system degeneration. Therapies that protect mitochondrial number and function have the potential to impact the progression of conditions such as diabetic neuropathy. We therefore assessed indices of mitochondrial function in dorsal root ganglia (DRG) and brain cortex of the Zucker diabetic fatty (ZDF) rat model of type 2 diabetes and tested the therapeutic impact of a neurogenic compound, NSI-189, on both mitochondrial function and indices of peripheral and central neurological dysfunction.ZDF rats were maintained for 16 weeks of untreated diabetes before the start of oral treatment with NSI-189 for an additional 16 weeks. Nerve conduction velocity, sensitivity to tactile and thermal stimuli, and behavioral assays of cognitive function were assessed monthly. AMP-activated protein kinase (AMPK) phosphorylation, mitochondrial protein levels, and respiratory complex activities were assessed in the DRG and brain cortex after 16 weeks of treatment with NSI-189.Treatment with NSI-189 selectively elevated the expression of protein subunits of complexes III and V and activities of respiratory complexes I and IV in the brain cortex, and this was accompanied by amelioration of impaired memory function and plasticity. In the sensory ganglia of ZDF rats, loss of AMPK activity was ameliorated by NSI-189, and this was accompanied by reversal of multiple indices of peripheral neuropathy.Efficacy of NSI-189 against dysfunction of the CNS and PNS function in type 2 diabetic rats was accompanied by improvement of mitochondrial function. NSI-189 exhibited actions at different levels of mitochondrial regulation in central and peripheral tissues.
DOI: 10.2337/diab.44.1.25
1995
Cited 28 times
Reduced Levels of mRNA Encoding Endoskeletal and Growth-Associated Proteins in Sensory Ganglia in Experimental Diabetes
This study investigated changes in levels of mRNAs encoding the three neurofilament (NF) proteins NF-L (low), NF-M (medium), and NF-H (high) and two growth-associated proteins, GAP-43 and Tα1 α-tubulin, in lumbar dorsal root ganglia of control and streptozocin-induced diabetic rats. After 8 weeks of diabetes the animals were killed, and total RNA was isolated from the L4 and L5 dorsal root ganglia and subjected to Northern blotting, with constant amounts of total RNA loaded onto each lane. A truncated sense RNA for GAP-43 was included as an internal standard during RNA isolation to enable accurate quantification of mRNA levels. The filters were probed sequentially with 32P-labeled cDNAs encoding NF-L, NF-M, NF-H, GAP-43, T α 1 α-tubulin, and citrate synthase. Hybridizing RNAs were detected by autoradiography and quantified by image analysis. Hybridization signals were normalized to those of the internal standard. In diabetes, NF-L mRNA levels (2.5- and 4-kilobase [kb] transcripts) were decreased by 35 (P = 0.002) and 34% (P &amp;lt; 0.001), respectively, the NF-H mRNA level was decreased by 65% (P &amp;lt; 0.001), but the NF-M mRNA remained unchanged. T α 1 α-tubulin and GAP-43 mRNA levels were reduced by 56 (P &amp;lt; 0.001) and 30% (P &amp;lt; 0.05), respectively. Levels of citrate synthase mRNA were unchanged. These data indicate a selective defect of expression of growth-associated and endoskeletal proteins in experimentally induced diabetes.
DOI: 10.1111/j.1471-4159.1992.tb10949.x
1992
Cited 26 times
Actin Depolymerizing Factor Is a Component of Slow Axonal Transport
We examined the low molecular weight proteins transported with actin in the chicken sciatic nerve after injection of [35S]methionine into the lumbar spinal cord. A prominent component of slow axonal transport with apparent molecular mass 19 kDa comigrated on two-dimensional gels with chicken actin depolymerizing factor (ADF), previously shown to be a major actin-binding protein in brain. There was comparatively little radioactivity associated with the actin monomer sequestering proteins, profilin or cofilin, and examination of the rapid component of axonal transport failed to reveal appreciable quantities of actin, ADF, profilin, or cofilin. These results show that both actin and ADF are carried by slow axonal transport and raise the possibility that actin travels within the axon in an unpolymerized form in a complex with ADF.