ϟ

Pascal Poignard

Here are all the papers by Pascal Poignard that you can download and read on OA.mg.
Pascal Poignard’s last known institution is . Download Pascal Poignard PDFs here.

Claim this Profile →
DOI: 10.1126/science.1178746
2009
Cited 1,644 times
Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target
Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. This epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.
DOI: 10.1038/nature10373
2011
Cited 1,395 times
Broad neutralization coverage of HIV by multiple highly potent antibodies
Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies1,2,3. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
DOI: 10.1126/science.1207227
2011
Cited 1,065 times
Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding
Anti-HIV broadly neutralizing antibodies with similar specificities and modes of binding were found in multiple HIV-infected individuals.
DOI: 10.1016/j.immuni.2013.08.031
2013
Cited 764 times
Human Circulating PD-1+CXCR3−CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses
The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4⁺ T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1⁺CXCR5⁺CD4⁺ T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV⁺ individuals.
DOI: 10.1126/science.1213256
2011
Cited 658 times
A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield
An HIV antibody achieves potency and breadth by binding simultaneously to two conserved glycans on the viral envelope protein.
DOI: 10.1038/nature12744
2013
Cited 585 times
Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys
Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian-human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.
DOI: 10.1128/jvi.00110-09
2009
Cited 539 times
Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm
ABSTRACT The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC 50 ) neutralization titers of ≥100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC 50 titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.
DOI: 10.1038/nm.1974
2009
Cited 514 times
Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques
Neutralizing antibodies are thought to be crucial for HIV vaccine protection, but studies in animal models suggest that high antibody concentrations are required. This is a major potential hurdle for vaccine design. However, these studies typically apply a large virus inoculum to ensure infection in control animals in single-challenge experiments. In contrast, most human infection via sexual encounter probably involves repeated exposures to much lower doses of virus. Therefore, animal studies may have provided an overestimate of the levels of antibodies required for protection in humans. We investigated whether plasma concentrations of antibody corresponding to relatively modest neutralization titers in vitro could protect macaques from repeated intravaginal exposure to low doses of a simian immunodeficiency virus-HIV chimera (SHIV) that uses the CC chemokine receptor 5 (CCR5) co-receptor. An effector function-deficient variant of the neutralizing antibody was also included. The results show that a substantially larger number of challenges is required to infect macaques treated with neutralizing antibody than control antibody-treated macaques, and support the notion that effector function may contribute to antibody protection. Overall, the results imply that lower amounts of antibody than previously considered protective may provide benefit in the context of typical human exposure to HIV-1.
DOI: 10.1371/journal.ppat.1000433
2009
Cited 483 times
Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers
Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against vaginal challenge of rhesus macaques with the CCR5-using SHIV(SF162P3). The results show that, at 2G12 serum neutralizing titers of the order of 1:1 (IC(90)), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and support targeting the glycan shield of the envelope.
DOI: 10.1073/pnas.1214785109
2012
Cited 437 times
Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo
Most animal studies using passive administration of HIV broadly neutralizing monoclonal antibodies (bnMAbs) have associated protection against high-dose mucosal viral challenge with relatively high serum concentrations of antibody. We recently identified several bnMAbs remarkable for their in vitro potency against HIV. Of these bnMAbs, PGT121 is one of the most broad and potent antibodies isolated to date and shows 10- to 100-fold higher neutralizing activity than previously characterized bnMAbs. To evaluate the protective potency of PGT121 in vivo, we performed a protection study in rhesus macaques. Animals were i.v. administered 5 mg/kg, 1 mg/kg, or 0.2 mg/kg PGT121 24 h before being vaginally challenged with a single high dose of chimeric simian-human immunodeficiency virus (SHIV) SF162P3 . Sterilizing immunity was achieved in all animals administered 5 mg/kg and 1 mg/kg and three of five animals administered 0.2 mg/kg PGT121, with corresponding average antibody serum concentrations of 95 µg/mL, 15 µg/mL, and 1.8 µg/mL, respectively. The results suggest that a protective serum concentration for PGT121 is in the single-digit µg/mL for SHIV SF162P3 , showing that PGT121 can mediate sterilizing immunity at serum concentrations that are significantly lower than those observed in previous studies and that may be achievable through vaccination with the development of a suitable immunogen.
DOI: 10.1126/science.1225416
2012
Cited 384 times
Broadly Neutralizing Antibodies Present New Prospects to Counter Highly Antigenically Diverse Viruses
Certain human pathogens avoid elimination by our immune system by rapidly mutating the surface protein sites targeted by antibody responses, and consequently they tend to be problematic for vaccine development. The behavior described is prominent for a subset of viruses--the highly antigenically diverse viruses--which include HIV, influenza, and hepatitis C viruses. However, these viruses do harbor highly conserved exposed sites, usually associated with function, which can be targeted by broadly neutralizing antibodies. Until recently, not many such antibodies were known, but advances in the field have enabled increasing numbers to be identified. Molecular characterizations of the antibodies and, most importantly, of the sites of vulnerability that they recognize give hope for the discovery of new vaccines and drugs.
DOI: 10.1128/jvi.77.19.10557-10565.2003
2003
Cited 350 times
Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1
ABSTRACT Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the extraordinary neutralizing ability of Fab X5, we evaluated the abilities of different forms (immunoglobulin G [IgG], Fab, and single-chain Fv) of X5 and other CD4i monoclonal antibodies to neutralize a range of primary HIV-1 isolates. Our results show that, for a number of isolates, the size of the neutralizing agent is inversely correlated with its ability to neutralize. Thus, the poor ability of CD4i-specific antibodies to neutralize primary isolates is due, at least in part, to steric factors that limit antibody access to the gp120 epitopes. Studies of temperature-regulated neutralization or fusion-arrested intermediates suggest that the steric effects are important in limiting the binding of IgG to the viral envelope glycoproteins after HIV-1 has engaged CD4 on the target cell membrane. The results identify hurdles in using CD4i epitopes as targets for antibody-mediated neutralization in vaccine design but also indicate that the CD4i regions could be efficiently targeted by small molecule entry inhibitors.
DOI: 10.1016/j.immuni.2014.04.009
2014
Cited 347 times
Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers
Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.
DOI: 10.1371/journal.ppat.1001028
2010
Cited 342 times
A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals
A protective vaccine against HIV-1 will likely require the elicitation of a broadly neutralizing antibody (bNAb) response. Although the development of an immunogen that elicits such antibodies remains elusive, a proportion of HIV-1 infected individuals evolve broadly neutralizing serum responses over time, demonstrating that the human immune system can recognize and generate NAbs to conserved epitopes on the virus. Understanding the specificities that mediate broad neutralization will provide insight into which epitopes should be targeted for immunogen design and aid in the isolation of broadly neutralizing monoclonal antibodies from these donors. Here, we have used a number of new and established technologies to map the bNAb specificities in the sera of 19 donors who exhibit among the most potent cross-clade serum neutralizing activities observed to date. The results suggest that broad and potent serum neutralization arises in most donors through a limited number of specificities (1–2 per donor). The major targets recognized are an epitope defined by the bNAbs PG9 and PG16 that is associated with conserved regions of the V1, V2 and V3 loops, an epitope overlapping the CD4 binding site and possibly the coreceptor binding site, an epitope sensitive to a loss of the glycan at N332 and distinct from that recognized by the bNAb 2G12 and an epitope sensitive to an I165A substitution. In approximately half of the donors, key N-linked glycans were critical for expression of the epitopes recognized by the bNAb specificities in the sera.
DOI: 10.1016/j.immuni.2014.04.008
2014
Cited 321 times
Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers
All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.
DOI: 10.1128/jvi.67.12.7383-7393.1993
1993
Cited 316 times
Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.
DOI: 10.1128/jvi.01272-09
2010
Cited 307 times
Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIV<sub>Ba-L</sub>
The membrane-proximal external region (MPER) of HIV-1, located at the C terminus of the gp41 ectodomain, is conserved and crucial for viral fusion. Three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, 4E10, and Z13e1, are directed against linear epitopes mapped to the MPER, making this conserved region an important potential vaccine target. However, no MPER antibodies have been definitively shown to provide protection against HIV challenge. Here, we show that both MAbs 2F5 and 4E10 can provide complete protection against mucosal simian-human immunodeficiency virus (SHIV) challenge in macaques. MAb 2F5 or 4E10 was administered intravenously at 50 mg/kg to groups of six male Indian rhesus macaques 1 day prior to and again 1 day following intrarectal challenge with SHIV(Ba-L). In both groups, five out of six animals showed complete protection and sterilizing immunity, while for one animal in each group a low level of viral replication following challenge could not be ruled out. The study confirms the protective potential of 2F5 and 4E10 and supports emphasis on HIV immunogen design based on the MPER region of gp41.
DOI: 10.1084/jem.20132494
2014
Cited 293 times
Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques
It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti-HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.
DOI: 10.1073/pnas.1520112113
2016
Cited 274 times
CXCL13 is a plasma biomarker of germinal center activity
Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4(+) T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS(+) (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.
DOI: 10.1371/journal.ppat.1003342
2013
Cited 273 times
Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans
New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml−1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664) reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.
DOI: 10.1038/nature14264
2015
Cited 257 times
AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges
Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 μg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 μg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.
DOI: 10.1073/pnas.1103012108
2011
Cited 242 times
Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody
To guide vaccine design, we assessed whether human monoclonal antibodies (MAbs) b12 and b6 against the CD4 binding site (CD4bs) on HIV-1 gp120 and F240 against an immundominant epitope on gp41 could prevent vaginal transmission of simian HIV (SHIV)-162P4 to macaques. The two anti-gp120 MAbs have similar monomeric gp120-binding properties, measured in vitro, but b12 is strongly neutralizing and b6 is not. F240 is nonneutralizing. Applied vaginally at a high dose, the strongly neutralizing MAb b12 provided sterilizing immunity in seven of seven animals, b6 in zero of five animals, and F240 in two of five animals. Compared with control animals, the protection by b12 achieved statistical significance, whereas that caused by F240 did not. For two of three unprotected F240-treated animals there was a trend toward lowered viremia. The potential protective effect of F240 may relate to the relatively strong ability of this antibody to capture infectious virions. Additional passive transfer experiments also indicated that the ability of the administered anti-gp120 MAbs to neutralize the challenge virus was a critical influence on protection. Furthermore, when data from all of the experiments were combined, there was a significant increase in the number of founder viruses establishing infection in animals receiving MAb b6, compared with other nonprotected macaques. Thus, a gp120-binding, weakly neutralizing MAb to the CD4bs was, at best, completely ineffective at protection. A nonneutralizing antibody to gp41 may have a limited capacity to protect, but the results suggest that the central focus of HIV-1 vaccine research should be on the induction of potently neutralizing antibodies.
DOI: 10.1371/journal.ppat.1005369
2016
Cited 224 times
Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
DOI: 10.1016/j.immuni.2015.10.014
2015
Cited 177 times
Identification of Common Features in Prototype Broadly Neutralizing Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design
<h2>Summary</h2> Broadly neutralizing antibodies (bnAbs) directed to the V2 apex of the HIV envelope (Env) trimer isolated from individual HIV-infected donors potently neutralize diverse HIV strains, but strategies for designing immunogens to elicit bnAbs have not been identified. Here, we compared four prototypes (PG9, CH01, PGT145, and CAP256.VRC26.09) of V2 apex bnAbs and showed that all recognized a core epitope of basic V2 residues and the glycan-N160. Two prototype bnAbs were derived from VH-germlines that were 99% identical and used a common germline D-gene encoded YYD-motif to interact with the V2-epitope. We identified isolates that were neutralized by inferred germline (iGL) versions of three of the prototype bnAbs. Soluble Env derived from one of these isolates was shown to form a well-ordered Env trimer that could serve as an immunogen to initiate a V2-apex bnAb response. These studies illustrate a strategy to transition from panels of bnAbs to vaccine candidates.
DOI: 10.1371/journal.ppat.1003754
2013
Cited 175 times
The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies
Broadly neutralizing HIV antibodies (bnAbs) are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121-134 and found a positive correlation between the level of somatic hypermutation (SHM) and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121-134 but were still capable of neutralizing roughly 40-80% of PGT121-134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121-134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121-134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design.
DOI: 10.1146/annurev.immunol.19.1.253
2001
Cited 242 times
GP120: Biologic Aspects of Structural Features
HIV-1 particles are decorated with a network of densely arranged envelope spikes on their surface. Each spike is formed of a trimer of heterodimers of the gp120 surface and the gp41 transmembrane glycoproteins. These molecules mediate HIV-1 entry into target cells, initiating the HIV-1 replication cycle. They are a target for entry-blocking drugs and for neutralizing Abs that could contribute to vaccine protection. The crystal structure of the core of gp120 has been recently solved. It reveals the structure of the conserved HIV-1 receptor binding sites and some of the mechanisms evolved by HIV-1 to escape Ab responses. The gp120 consists of three faces. One is largely inaccessible on the native trimer, and two faces are exposed but apparently have low immunogenicity, particularly on primary viruses. We have modeled HIV-1 neutralization by a CD4 binding site monoclonal Ab, and we propose that neutralization takes place by inhibition of the interaction between gp120 and the target cell membrane receptors as a result of steric hindrance. Knowledge of gp120 structure and function should assist in the design of new drugs as well as of an effective vaccine. In the latter case, circumventing the low immunogenicity of the HIV-1 envelope spike is a major challenge.
DOI: 10.1128/jvi.77.1.642-658.2003
2003
Cited 231 times
Fine Mapping of the Interaction of Neutralizing and Nonneutralizing Monoclonal Antibodies with the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120
Alanine scanning mutagenesis was performed on monomeric gp120 of human immunodeficiency virus type 1 to systematically identify residues important for gp120 recognition by neutralizing and nonneutralizing monoclonal antibodies (MAbs) to the CD4 binding site (CD4bs). Substitutions that affected the binding of broadly neutralizing antibody b12 were compared to substitutions that affected the binding of CD4 and of two nonneutralizing anti-CD4bs antibodies (b3 and b6) with affinities for monomeric gp120 comparable to that of b12. Not surprisingly, the sensitivities to a number of amino acid changes were similar for the MAbs and for CD4. However, in contrast to what was seen for the MAbs, no enhancing mutations were observed for CD4, suggesting that the virus has evolved toward an optimal gp120-CD4 interaction. Although the epitope maps of the MAbs overlapped, a number of key differences between b12 and the other two antibodies were observed. These differences may explain why b12, in contrast to nonneutralizing antibodies, is able to interact not only with monomeric gp120 but also with functional oligomeric gp120 at the virion surface. Neutralization assays performed with pseudovirions bearing envelopes from a selection of alanine mutants mostly showed a reasonable correlation between the effects of the mutations on b12 binding to monomeric gp120 and neutralization efficacy. However, some mutations produced an effect on b12 neutralization counter to that predicted from gp120 binding data. It appears that these mutations have different effects on the b12 epitope on monomeric gp120 and functional oligomeric gp120. To determine whether monomeric gp120 can be engineered to preferentially bind MAb b12, recombinant gp120s were generated containing combinations of alanine substitutions shown to uniquely enhance b12 binding. Whereas b12 binding was maintained or increased, binding by five nonneutralizing anti-CD4bs MAbs (b3, b6, F105, 15e, and F91) was reduced or completely abolished. These reengineered gp120s are prospective immunogens that may prove capable of eliciting broadly neutralizing antibodies.
DOI: 10.1016/s1074-7613(00)80043-6
1999
Cited 230 times
Neutralizing Antibodies Have Limited Effects on the Control of Established HIV-1 Infection In Vivo
Neutralizing antibodies can protect against challenge with HIV-1 in vivo if present at appropriate concentrations at the time of viral challenge, but any role in the control of established infection is unclear. Here, we show that high serum concentrations of neutralizing monoclonal antibodies, either singly or as a cocktail, have little sustained effect on viral load in established HIV-1 infection in hu-PBL-SCID mice. In some instances, virus replication of neutralization-sensitive virus continues even in the presence of high levels of neutralizing antibody. In most instances, neutralization escape occurs in a few days, even from a cocktail of three antibodies that recognize distinct epitopes. The results imply that humoral immunity is unlikely to play a significant role in the control of established HIV-1 infection in humans.
DOI: 10.1073/pnas.1004600107
2010
Cited 191 times
Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1
Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize approximately 80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 A resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue "specificity loop" on the "hammerhead" subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 A facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.
DOI: 10.1016/s0042-6822(95)80094-8
1995
Cited 185 times
Epitope exposure on functional, oligomeric HIV-1 gp41 molecules
We have used cells infected with the HIV-1 molecular clone HX10 to study the binding of monoclonal antibodies (mAbs) to different epitopes within the extracellular domain of the HIV-1 transmembrane glycoprotein gp41. Gp41 mAb binding to the infected cells at 4 degrees was variable but weaker than the binding of an anti-gp120/V3 loop mAb and increased substantially for three of the gp41 antibodies at 37 degrees. Treatment of the cells with soluble CD4 (sCD4) at 37 degrees increased gp41 mAb binding to epitopes spanning residues 521-663, implying that these regions had probably been masked by gp120, which following interaction with sCD4 had subsequently dissociated from gp41. By contrast, the binding of a mAb to residues 662-667 which form a neutralization epitope was reduced by sCD4 binding. Another region which has been described as containing a neutralization epitope spans residues 725-750. MAbs to this region bound equally well to noninfected and HIV-infected cells, and binding was not increased in the presence of sCD4. These data strongly imply that this epitope is not exposed on the external surface of the membrane, a finding in accord with the proposed cytoplasmic localization of this region.
DOI: 10.1128/jvi.77.1.353-365.2003
2003
Cited 180 times
Heterogeneity of Envelope Molecules Expressed on Primary Human Immunodeficiency Virus Type 1 Particles as Probed by the Binding of Neutralizing and Nonneutralizing Antibodies
Virion capture assays, in which immobilized antibodies (Abs) capture virus particles, have been used to suggest that nonneutralizing Abs bind effectively to human immunodeficiency virus type 1 (HIV-1) primary viruses. Here, we show that virion capture assays, under conditions commonly reported in the literature, give a poor indication of epitope expression on the surface of infectious primary HIV-1. First, estimation of primary HIV-1 capture by p24 measurements shows a very poor correlation with an estimation based on infectivity measurements. Second, virion capture appears to require relatively low Ab affinity for the virion, as shown by the ability of a monoclonal Ab to capture a wild-type and a neutralization escape variant virus equally well. Nevertheless, in a more interpretable competition format, it is shown that nonneutralizing anti-CD4 binding site (CD4bs) Abs compete with a neutralizing anti-CD4bs Ab (b12) for virus capture, suggesting that the nonneutralizing anti-CD4bs Abs are able to bind to the envelope species that is involved in virion capture in these experiments. However, the nonneutralizing anti-CD4bs Abs do not inhibit neutralization by b12 even at considerable excess. This suggests that the nonneutralizing Abs are unable to bind effectively to the envelope species required for virus infectivity. The results were obtained for three different primary virus envelopes. The explanation that we favor is that infectious HIV-1 primary virions can express two forms of gp120, an accessible nonfunctional form and a functional form with limited access. Binding to the nonfunctional form, which needs only to be present at relatively low density on the virion, permits capture but does not lead to neutralization. The expression of a nonfunctional but accessible form of gp120 on virions may contribute to the general failure of HIV-1 infection to elicit cross-neutralizing Abs and may represent a significant problem for vaccines based on viruses or virus-like particles.
DOI: 10.1128/jvi.73.5.3544-3550.1999
1999
Cited 178 times
Highly Potent RANTES Analogues either Prevent CCR5-Using Human Immunodeficiency Virus Type 1 Infection In Vivo or Rapidly Select for CXCR4-Using Variants
The natural ligands for the CCR5 chemokine receptor, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES (regulated on T-cell activation, normal T-cell expressed and secreted), are known to inhibit human immunodeficiency virus (HIV) entry, and N-terminally modified RANTES analogues are more potent than native RANTES in blocking infection. However, potent CCR5 blocking agents may select for HIV-1 variants that use alternative coreceptors at less than fully inhibitory concentrations. In this study, two N-terminal chemical modifications of RANTES produced by total synthesis, aminooxypentane (AOP)-RANTES[2-68] and N-nonanoyl (NNY)-RANTES[2-68], were tested for their ability to prevent HIV-1 infection and to select for coreceptor switch variants in the human peripheral blood lymphocyte-SCID mouse model. Mice were infected with a CCR5-using HIV-1 isolate that requires only one or two amino acid substitutions to use CXCR4 as a coreceptor. Even though it achieved lower circulating concentrations than AOP-RANTES (75 to 96 pM as opposed to 460 pM under our experimental conditions), NNY-RANTES was more effective in preventing HIV-1 infection. However, in a subset of treated mice, these levels of NNY-RANTES rapidly selected viruses with mutations in the V3 loop of envelope that altered coreceptor usage. These results reinforce the case for using agents that block all significant HIV-1 coreceptors for effective therapy.
DOI: 10.1126/scitranslmed.3008104
2014
Cited 158 times
Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV
Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.
DOI: 10.1084/jem.20120423
2012
Cited 148 times
Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein
Two to three years after infection, a fraction of HIV-1-infected individuals develop serologic activity that neutralizes most viral isolates. Broadly neutralizing antibodies that recognize the HIV-1 envelope protein have been isolated from these patients by single-cell sorting and by neutralization screens. Here, we report a new method for anti-HIV-1 antibody isolation based on capturing single B cells that recognize the HIV-1 envelope protein expressed on the surface of transfected cells. Although far less efficient than soluble protein baits, the cell-based capture method identified antibodies that bind to a new broadly neutralizing epitope in the vicinity of the V3 loop and the CD4-induced site (CD4i). The new epitope is expressed on the cell surface form of the HIV-1 spike, but not on soluble forms of the same envelope protein. Moreover, the new antibodies complement the neutralization spectrum of potent broadly neutralizing anti-CD4 binding site (CD4bs) antibodies obtained from the same individual. Thus, combinations of potent broadly neutralizing antibodies with complementary activity can account for the breadth and potency of naturally arising anti-HIV-1 serologic activity. Therefore, vaccines aimed at eliciting anti-HIV-1 serologic breadth and potency should not be limited to single epitopes.
DOI: 10.1016/j.immuni.2016.04.016
2016
Cited 131 times
Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch
The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.
DOI: 10.1016/j.immuni.2016.06.026
2016
Cited 125 times
A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans
<h2>Summary</h2> The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the <sup>324</sup>GDIR<sup>327</sup> peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both <sup>324</sup>GDIR<sup>327</sup> peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env.
DOI: 10.1128/jvi.06973-11
2012
Cited 108 times
PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4
Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1.
DOI: 10.1128/jvi.00491-12
2012
Cited 108 times
A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced FcγRIIIa-Mediated Antiviral Activity <i>In Vitro</i> but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques
ABSTRACT Eliciting neutralizing antibodies is thought to be a key activity of a vaccine against human immunodeficiency virus (HIV). However, a number of studies have suggested that in addition to neutralization, interaction of IgG with Fc gamma receptors (FcγR) may play an important role in antibody-mediated protection. We have previously obtained evidence that the protective activity of the broadly neutralizing human IgG1 anti-HIV monoclonal antibody (MAb) b12 in macaques is diminished in the absence of FcγR binding capacity. To investigate antibody-dependent cellular cytotoxicity (ADCC) as a contributor to FcγR-associated protection, we developed a nonfucosylated variant of b12 (NFb12). We showed that, compared to fully fucosylated (referred to as wild-type in the text) b12, NFb12 had higher affinity for human and rhesus macaque FcγRIIIa and was more efficient in inhibiting viral replication and more effective in killing HIV-infected cells in an ADCC assay. Despite these more potent in vitro antiviral activities, NFb12 did not enhance protection in vivo against repeated low-dose vaginal challenge in the simian-human immunodeficiency virus (SHIV)/macaque model compared to wild-type b12. No difference in protection, viral load, or infection susceptibility was observed between animals given NFb12 and those given fully fucosylated b12, indicating that FcγR-mediated activities distinct from FcγRIIIa-mediated ADCC may be important in the observed protection against SHIV challenge.
DOI: 10.1016/j.immuni.2017.11.002
2017
Cited 94 times
HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage
Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.
DOI: 10.1038/srep06778
2014
Cited 86 times
Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding
B-cell repertoire analysis using next-generation sequencing has become a valuable tool for interrogating the genetic record of humoral response to infection. However, key obstacles such as low throughput, short read length, high error rate, and undetermined bias of multiplex PCR method have hindered broader application of this technology. In this study, we report several technical advances in antibody repertoire sequencing. We first demonstrated the ability to sequence antibody variable domains using the Ion Torrent PGM platform. As a test case, we analyzed the PGT121 class of antibodies from IAVI donor 17, an HIV-1-infected individual. We then obtained "unbiased" antibody repertoires by sequencing the 5'-RACE PCR products of B-cell transcripts from IAVI donor 17 and two HIV-1-uninfected individuals. We also quantified the bias of previously published gene-specific primers by comparing the repertoires generated by 5'-RACE PCR and multiplex PCR. We further developed a single-molecule barcoding strategy to reduce PCR-based amplification noise. Lastly, we evaluated several new PGM technologies in the context of antibody sequencing. We expect that, based upon long-read and high-fidelity next-generation sequencing technologies, the unbiased analysis will provide a more accurate view of the overall antibody repertoire while the barcoding strategy will facilitate high-resolution analysis of individual antibody families.
DOI: 10.1038/ncomms9167
2015
Cited 86 times
Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike
The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.
DOI: 10.1128/jvi.02905-14
2015
Cited 81 times
Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope
The high-mannose patch of human immunodeficiency virus (HIV) envelope (Env) elicits broadly neutralizing antibodies (bnAbs) during natural infection relatively frequently, and consequently, this region has become a major target of vaccine design. However, it has also become clear that antibody recognition of the region is complex due, at least in part, to variability in neighboring loops and glycans critical to the epitopes. bnAbs against this region have some shared features and some distinguishing features that are crucial to understand in order to design optimal immunogens that can induce different classes of bnAbs against this region. Here, we compare two branches of a single antibody lineage, in which all members recognize the high-mannose patch. One branch (prototype bnAb PGT128) has a 6-amino-acid insertion in CDRH2 that is crucial for broad neutralization. Antibodies in this branch appear to favor a glycan site at N332 on gp120, and somatic hypermutation is required to accommodate the neighboring V1 loop glycans and glycan heterogeneity. The other branch (prototype bnAb PGT130) lacks the CDRH2 insertion. Antibodies in this branch are noticeably effective at neutralizing viruses with an alternate N334 glycan site but are less able to accommodate glycan heterogeneity. We identify a new somatic variant within this branch that is predominantly dependent on N334. The crystal structure of PGT130 offers insight into differences from PGT128. We conclude that different immunogens may be required to elicit bnAbs that have the optimal characteristics of the two branches of the lineage described.Development of an HIV vaccine is of vital importance for prevention of new infections, and it is thought that elicitation of HIV bnAbs will be an important component of an effective vaccine. Increasingly, bnAbs that bind to the cluster of high-mannose glycans on the HIV envelope glycoprotein, gp120, are being highlighted as important templates for vaccine design. In particular, bnAbs from IAVI donor 36 (PGT125 to PGT131) have been shown to be extremely broad and potent. Combination of these bnAbs enhanced neutralization breadth considerably, suggesting that an optimal immunogen should elicit several antibodies from this family. Here we study the evolution of this antibody family to inform immunogen design. We identify two classes of bnAbs that differ in their recognition of the high-mannose patch and show that different immunogens may be required to elicit these different classes.
DOI: 10.1371/journal.ppat.1005110
2015
Cited 80 times
Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies
The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.
DOI: 10.1016/j.immuni.2019.06.004
2019
Cited 73 times
Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan
The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.
DOI: 10.1128/jvi.75.24.12198-12208.2001
2001
Cited 160 times
Neutralization Synergy of Human Immunodeficiency Virus Type 1 Primary Isolates by Cocktails of Broadly Neutralizing Antibodies
ABSTRACT Several reports have described the existence of synergy between neutralizing monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 (HIV-1). Synergy between human MAbs b12, 2G12, 2F5, and 4E10 in neutralization of primary isolates is of particular interest. Neutralization synergy of these MAbs, however, has not been studied extensively, and the mechanism of synergy remains unclear. We investigated neutralization synergy among this human antibody set by using the classical approach of titrating antibodies mixed at a fixed ratio as well as by an alternative, variable ratio approach in which the neutralization curve of one MAb is assessed in the presence and absence of a fixed, weakly neutralizing concentration of a second antibody. The advantage of this second approach is that it does not require mathematical analysis to establish synergy. No neutralization enhancement of any of the MAb combinations tested was detected for the T-cell-line-adapted molecular HIV-1 clone HxB2 using both assay formats. Studies of primary isolates (89.6, SF162, and JR-CSF) showed neutralization synergy which was relatively weak, with a maximum of two- to fourfold enhancement between antibody pairs, thereby increasing neutralization titers about 10-fold in triple and quadruple antibody combinations. Analysis of b12 and 2G12 binding to oligomeric envelope glycoprotein by using flow cytometry failed to demonstrate cooperativity in binding between these two antibodies. The mechanism by which these antibodies synergize is, therefore, not yet understood. The results lend some support to the notion that an HIV-1 vaccine that elicits moderate neutralizing antibodies to multiple epitopes may be more effective than hereto supposed, although considerable caution in extrapolating to a vaccine situation is required.
DOI: 10.1128/jvi.00756-11
2011
Cited 88 times
Direct Antibody Access to the HIV-1 Membrane-Proximal External Region Positively Correlates with Neutralization Sensitivity
ABSTRACT On the prereceptor-engaged HIV-1 envelope glycoprotein (Env) spike, epitope access by the membrane-proximal external region (MPER)-directed broadly neutralizing antibodies 2F5 and 4E10 remains unresolved. Data on binding to cell surface Env and entry data using primary isolates suggest inaccessibility of the 2F5 and 4E10 epitopes on the viral spike prior to receptor engagement, but trimer gel shift analysis and slow kinetics of shedding induced by 2F5 and 4E10 indicate otherwise. Therefore, it remains unclear if the epitopes themselves are formed in their antibody-bound state (or at least sampled) prior to receptor/coreceptor engagement or if receptor interactions both expose and form the MPER epitopes, presumably in the putative prefusion transitional intermediate. Here, we performed antibody-virus “washout experiments” using both lab-adapted and a panel of clade B primary isolates to analyze MPER accessibility. The neutralization activity of 2F5 and 4E10 against lab-adapted viruses and sensitive and moderately resistant viruses was largely unaffected by relatively rapid antibody-virus washing, suggesting direct interaction with the “static” spike. However, for more neutralization-resistant viruses, the 2F5 and 4E10 antibodies could neutralize only under the “no antibody-virus wash” conditions, implying that the MPER epitopes were not accessible prior to receptor engagement. Accessibility in the washout conditions could be precisely predicted by the relative resistance to neutralization in a standard neutralization format. These data are consistent with a model in which the local MPER antibody epitope conformations may be sampled on the native spike but are occluded to antibody by local steric or distal quaternary constraints adopted by highly resistant HIV-1 isolates.
DOI: 10.1073/pnas.1117531108
2011
Cited 86 times
Rapid development of glycan-specific, broad, and potent anti–HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque
It is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be a critical component of a successful vaccine against HIV. A significant fraction of HIV-infected individuals mount bNAb responses, providing support for the notion that such responses could be elicited through vaccination. Infection of macaques with simian immunodeficiency virus (SIV) or SIV/HIV chimeric virus (SHIV) has been widely used to model aspects of HIV infection, but to date, only limited bNAb responses have been described. Here, we screened plasma from 14 R5-tropic SHIV-infected macaques for broadly neutralizing activity and identified a macaque with highly potent cross-clade plasma NAb response. Longitudinal studies showed that the development of broad and autologous NAb responses occurred coincidentally in this animal. Serum-mapping studies, using pseudovirus point mutants and antigen adsorption assays, indicated that the plasma bNAbs are specific for epitopes that include carbohydrates and are critically dependent on the glycan at position 332 of Env gp120. The results described herein provide insight into the development and evolution of a broad response, suggest that certain bNAb specificities may be more rapidly induced by immunization than others, and provide a potential model for the facile study of the development of bNAb responses.
DOI: 10.1371/journal.ppat.1003202
2013
Cited 67 times
A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
DOI: 10.1016/j.celrep.2018.05.046
2018
Cited 53 times
Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design
<h2>Summary</h2> Broadly neutralizing antibodies (bnAbs) targeting the HIV envelope glycoprotein (Env) typically take years to develop. Longitudinal analyses of both neutralizing antibody lineages and viruses at serial time points during infection provide a basis for understanding the co-evolutionary contest between HIV and the humoral immune system. Here, we describe the structural characterization of an apex-targeting antibody lineage and autologous clade A viral Env from a donor in the Protocol C cohort. Comparison of Ab-Env complexes at early and late time points reveals that, within the antibody lineage, the CDRH3 loop rigidifies, the bnAb angle of approach steepens, and surface charges are mutated to accommodate glycan changes. Additionally, we observed differences in site-specific glycosylation between soluble and full-length Env constructs, which may be important for tuning optimal immunogenicity in soluble Env trimers. These studies therefore provide important guideposts for design of immunogens that prime and mature nAb responses to the Env V2-apex.
DOI: 10.1016/j.ymthe.2022.02.011
2022
Cited 21 times
Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization with a versatile adenovirus-inspired multimerization platform
Virus-like particles (VLPs) are highly suited platforms for protein-based vaccines. In the present work, we adapted a previously designed non-infectious adenovirus-inspired 60-mer dodecahedric VLP (ADDomer) to display a multimeric array of large antigens through a SpyTag/SpyCatcher system. To validate the platform as a potential COVID-19 vaccine approach, we decorated the newly designed VLP with the glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryoelectron microscopy structure revealed that up to 60 copies of this antigenic domain could be bound on a single ADDomer particle, with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated VLPs already showed a significant specific humoral response following prime vaccination, greatly reinforced by a single boost. Neutralization assays with SARS-CoV-2 spike pseudo-typed virus demonstrated the elicitation of strong neutralization titers, superior to those of COVID-19 convalescent patients. Notably, the presence of pre-existing immunity against the adenoviral-derived particles did not hamper the immune response against the antigen displayed on its surface. This plug and play vaccine platform represents a promising new highly versatile tool to combat emergent pathogens.
DOI: 10.1016/0167-5699(96)10007-4
1996
Cited 89 times
Antibody neutralization of HIV-1
Neutralizing antibodies are a major component of host defense against viruses, and appear to be particularly important in limiting the spread of cell-free virus. Results from vaccine trials in animal models suggest that these antibodies may contribute to protection against human immunodeficiency virus (HIV) infection. Here, Pascal Poignard and colleagues discuss recent developments in this area, with particular emphasis on the measurement, specificity and mechanism of the antibody response, and its significance for vaccine production.
DOI: 10.1128/jvi.02827-12
2013
Cited 60 times
Identification of an HIV-1 Clade A Envelope That Exhibits Broad Antigenicity and Neutralization Sensitivity and Elicits Antibodies Targeting Three Distinct Epitopes
ABSTRACT Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector.
DOI: 10.1128/jvi.05541-11
2011
Cited 59 times
A Panel of IgG1 b12 Variants with Selectively Diminished or Enhanced Affinity for Fcγ Receptors To Define the Role of Effector Functions in Protection against HIV
ABSTRACT Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.
DOI: 10.4049/jimmunol.1202165
2012
Cited 57 times
Anti-HIV B Cell Lines as Candidate Vaccine Biosensors
Challenge studies following passive immunization with neutralizing Abs suggest that an HIV vaccine could be efficacious were it able to elicit broadly neutralizing Abs (bNAbs). To better understand the requirements for activation of B cells producing bNAbs, we generated cell lines expressing bNAbs or their germline-reverted versions (gl-bNAbs) as BCRs. We then tested the abilities of the bNAb-expressing cells to recognize HIV pseudovirions and vaccine candidate proteins by binding and activation assays. The results suggest that HIV envelope (Env) Ag-expressing, infection-competent virions are poorly recognized by high-affinity bNAb-expressing cells, as measured by the inability of Ags to induce rapid increases in intracellular calcium levels. Other Ag forms appear to be highly stimulatory, in particular, soluble gp140 trimers and a multimerized, scaffolded epitope protein. Virions failed to efficiently activate bNAb-expressing B cells owing to delayed or inefficient BCR recognition, most likely caused by the low density of Env spikes. Importantly, B cells carrying gl-bNAb BCRs were not stimulated by any of the tested vaccine candidates. These data provide insight into why many HIV immunogens, as well as natural HIV infections, fail to rapidly stimulate bNAb responses and suggest that bNAb-expressing cell lines might be useful tools in evaluation of vaccine Ags for infectious diseases. Because soluble Env trimers or multimerized scaffolded epitopes are best at activating B cell-expressing bNAbs, these antigenic forms should be considered as preferred vaccine components, although they should be modified to better target naive gl-bNAb B cells.
DOI: 10.1186/s12977-016-0241-5
2016
Cited 41 times
Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies
Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the (323)IGDIR(327) motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family.Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch.These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch.
DOI: 10.1038/s41467-019-12973-1
2019
Cited 39 times
An MPER antibody neutralizes HIV-1 using germline features shared among donors
Abstract The membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 μg/ml (IC 50 ). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens.
DOI: 10.3389/fimmu.2021.742446
2021
Cited 26 times
Complement Alternative and Mannose-Binding Lectin Pathway Activation Is Associated With COVID-19 Mortality
The SARS-CoV-2 infection triggers excessive immune response resulting in increased levels of pro-inflammatory cytokines, endothelial injury, and intravascular coagulopathy. The complement system (CS) activation participates to this hyperinflammatory response. However, it is still unclear which activation pathways (classical, alternative, or lectin pathway) pilots the effector mechanisms that contribute to critical illness. To better understand the immune correlates of disease severity, we performed an analysis of CS activation pathways and components in samples collected from COVID-19 patients hospitalized in Grenoble Alpes University Hospital between 1 and 30 April 2020 and of their relationship with the clinical outcomes.We conducted a retrospective, single-center study cohort in 74 hospitalized patients with RT-PCR-proven COVID-19. The functional activities of classical, alternative, and mannose-binding lectin (MBL) pathways and the antigenic levels of the individual components C1q, C4, C3, C5, Factor B, and MBL were measured in patients' samples during hospital admission. Hierarchical clustering with the Ward method was performed in order to identify clusters of patients with similar characteristics of complement markers. Age was included in the model. Then, the clusters were compared with the patient clinical features: rate of intensive care unit (ICU) admission, corticoid treatment, oxygen requirement, and mortality.Four clusters were identified according to complement parameters. Among them, two clusters revealed remarkable profiles: in one cluster (n = 15), patients exhibited activation of alternative and lectin pathways and low antigenic levels of MBL, C4, C3, Factor B, and C5 compared to all the other clusters; this cluster had the higher proportion of patients who died (27%) and required oxygen support (80%) or ICU care (53%). In contrast, the second cluster (n = 19) presented inflammatory profile with high classical pathway activity and antigenic levels of complement components; a low proportion of patients required ICU care (26%) and no patient died in this group.These findings argue in favor of prominent activation of the alternative and MBL complement pathways in severe COVID-19, but the spectrum of complement involvement seems to be heterogeneous requiring larger studies.
DOI: 10.1084/jem.183.2.473
1996
Cited 73 times
Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation.
The spectrum of the anti-human immunodeficiency virus (HIV) neutralizing immune response has been analyzed by the production and characterization of monoclonal antibodies (mAbs) to the viral envelope glycoproteins, gp41 and gp120. Little is known, however, about the neutralization mechanism of these antibodies. Here we show that the binding of a group of neutralizing mAbs that react with regions of the gp120 molecule associated with and including the V2 and V3 loops, the C4 domain and supporting structures, induce the dissociation of gp120 from gp41 on cells infected with the T cell line-adapted HIV-1 molecular clone Hx10. Similar to soluble receptor-induced dissociation of gp120 from gp41, the antibody-induced dissociation is dose- and time-dependent. By contrast, mAbs binding to discontinuous epitopes overlapping the CD4 binding site do not induce gp120 dissociation, implying that mAb induced conformational changes in gp120 are epitope specific, and that HIV neutralization probably involves several mechanisms.
DOI: 10.1128/jvi.02083-14
2014
Cited 42 times
Drift of the HIV-1 Envelope Glycoprotein gp120 toward Increased Neutralization Resistance over the Course of the Epidemic: a Comprehensive Study Using the Most Potent and Broadly Neutralizing Monoclonal Antibodies
ABSTRACT Extending our previous analyses to the most recently described monoclonal broadly neutralizing antibodies (bNAbs), we confirmed a drift of HIV-1 clade B variants over 2 decades toward higher resistance to bNAbs targeting almost all the identified gp120-neutralizing epitopes. In contrast, the sensitivity to bNAbs targeting the gp41 membrane-proximal external region remained stable, suggesting a selective pressure on gp120 preferentially. Despite this evolution, selected combinations of bNAbs remain capable of neutralizing efficiently most of the circulating variants.
DOI: 10.1093/cid/cix057
2017
Cited 35 times
Virus-driven Inflammation Is Associated With the Development of bNAbs in Spontaneous Controllers of HIV
Understanding the mechanism(s) by which broadly neutralizing antibodies (bNAbs) emerge naturally following infection is crucial for the development of a protective vaccine against human immunodeficiency virus (HIV). Although previous studies have implicated high viremia and associated immune activation as potential drivers for the development of bNAbs, here we sought to unlink the effect of these 2 parameters by evaluating the key inflammatory predictors of bNAb development in HIV-infected individuals who spontaneously control HIV in the absence of antiretroviral therapy (“controllers”). The breadth of antibody-mediated neutralization against 11 tier 2 or 3 viruses was assessed in 163 clade B spontaneous controllers of HIV. Plasma levels of 17 cytokines were screened in the same set of subjects. The relationship of the inflammatory signature was assessed in the context of viral blips or viral RNA levels in peripheral blood or gastrointestinal biopsies from aviremic controllers (<50 copies RNA/mL) and in the context of viral sequence diversity analysis in the plasma of viremic controllers (<50–2000 copies RNA/mL). A unique inflammatory profile, including high plasma levels of CXCL13, sCD40L, IP10, RANTES, and TNFα, was observed in HIV controllers who developed bNAbs. Interestingly, viral load and tissue viremia, but not intermittent viral blips, were associated with these cytokine profiles. However, viral diversity was not significantly associated with increased breadth in controllers. These results suggest that low antigenic diversity in the setting of a unique inflammatory profile associated with antigen persistence may be linked to the evolution of neutralizing antibody breadth.
DOI: 10.1016/j.chembiol.2017.05.009
2017
Cited 35 times
Single-Virus Droplet Microfluidics for High-Throughput Screening of Neutralizing Epitopes on HIV Particles
Analyzing surface epitopes of single HIV particles holds great potential for the development of vaccine candidates. However, existing technologies do not allow corresponding screens at high throughput. We present here a single-virus droplet-based microfluidics platform enabling sorting of millions of HIV-1 particles with >99% efficiency, based on the expression of epitopes recognized by broadly neutralizing antibodies. We show that virus particles displaying these epitopes can be identified, sorted, and analyzed by next-generation sequencing: an approximately 1,900-fold enrichment of viral particles displaying neutralizing epitopes could be obtained in a single sort, thus opening the way for screening diverse virus libraries with optimal antigenic features for HIV vaccine candidates.
DOI: 10.3201/eid2710.211509
2021
Cited 22 times
SARS-CoV-2 Variants in Immunocompromised Patient Given Antibody Monotherapy
for providing the clinical information and for sending samples for SARS-CoV-2 molecular investigations for the lions.We also thank V.P
DOI: 10.3390/ijms23031911
2022
Cited 11 times
AKR1B10, One of the Triggers of Cytokine Storm in SARS-CoV2 Severe Acute Respiratory Syndrome
Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1β, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.
DOI: 10.1016/s0165-2478(97)00043-6
1997
Cited 64 times
Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design
Understanding the antibody response in HIV-1 infection is important to vaccine design. We have studied the antibody response to HIV-1 envelope at the molecular level and determined the characteristics of neutralizing and non-neutralizing antibodies. These antibodies were isolated from phage display libraries prepared from long-term seropositive asymptomatic individuals. The HIV-1 envelope is presented to the immune system in several antigenically distinct configurations: unprocessed gp160, gp120 and gp41 subunits and native envelope, each of which may be important in eliciting an antibody response in HIV-1 infection. The antibodies tested characteristically had poor affinities for native envelope as expressed on the surface of virions or infected cells, but had high affinities against non-native forms of HIV-1 envelope (viral debris). An exceptionally potent neutralizing antibody in contrast, bound native envelope with equivalent or somewhat higher affinity than this. This indicates that the antibody response in HIV-1 infection is principally elicited by viral debris rather than virions, and that these antibodies bind and neutralize viruses sub-optimally. Potential vaccines should be designed to elicit responses against native envelope.
DOI: 10.1016/j.vaccine.2014.02.020
2014
Cited 35 times
Profiling human antibody responses by integrated single-cell analysis
Comprehensive characterization of the antigen-specific B cells induced during infections or following vaccination would facilitate the discovery of novel antibodies and inform how interventions shape protective humoral responses. The analysis of human B cells and their antibodies has been performed using flow cytometry to evaluate memory B cells and expanded plasmablasts, while microtechnologies have also provided a useful tool to examine plasmablasts/plasma cells after vaccination. Here we present an integrated analytical platform, using arrays of subnanoliter wells (nanowells), for constructing detailed profiles for human B cells comprising the immunophenotypes of these cells, the distribution of isotypes of the secreted antibodies, the specificity and relative affinity for defined antigens, and for a subset of cells, the genes encoding the heavy and light chains. The approach combines on-chip image cytometry, microengraving, and single-cell RT-PCR. Using clinical samples from HIV-infected subjects, we demonstrate that the method can identify antigen-specific neutralizing antibodies, is compatible with both plasmablasts/plasma cells and activated memory B cells, and is well-suited for characterizing the limited numbers of B cells isolated from tissue biopsies (e.g., colon biopsies). The technology should facilitate detailed analyses of human humoral responses for evaluating vaccines and their ability to raise protective antibody responses across multiple anatomical compartments.
DOI: 10.1093/ve/vew018
2016
Cited 31 times
Rapid Sequencing of Complete<i>env</i>Genes from Primary HIV-1 Samples
The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.
DOI: 10.1128/jvi.73.4.2956-2962.1999
1999
Cited 54 times
Human Antibody Responses to Mature and Immature Forms of Viral Envelope in Respiratory Syncytial Virus Infection: Significance for Subunit Vaccines
A number of antibodies generated during human respiratory syncytial virus (RSV) infection have been cloned by the phage library approach. Antibodies reactive with an immunodominant epitope on the F glycoprotein of this virus have a high affinity for affinity-purified F antigen. These antibodies, however, have a much lower affinity for mature F glycoprotein on the surface of infected cells and are nonneutralizing. In contrast, a potent neutralizing antibody has a high affinity for mature F protein but a much lower affinity for purified F protein or F protein in viral lysates. The data indicate that at least two F protein immunogens are produced during natural RSV infection: immature F, found in viral lysates, and mature F, found on infected cells or virions. Binding studies with polyclonal human immunoglobulin G suggest that the antibody responses to the two immunogens are of similar magnitudes. Competitive binding studies suggest that overlap between the responses is relatively limited. A mature envelope with an antigenic configuration different from that of the immature envelope has an evolutionary advantage in that the infecting virus is less subject to neutralization by the humoral response to the immature envelope that inevitably arises following lysis of infected cells. Subunit vaccines may be at a disadvantage because they most often resemble immature envelope molecules and ignore this aspect of viral evasion.
DOI: 10.1128/jvi.77.19.10348-10356.2003
2003
Cited 46 times
Cellular Immunity Elicited by Human Immunodeficiency Virus Type 1/ Simian Immunodeficiency Virus DNA Vaccination Does Not Augment the Sterile Protection Afforded by Passive Infusion of Neutralizing Antibodies
High levels of infused anti-human immunodeficiency virus type 1 (HIV-1) neutralizing monoclonal antibodies (MAbs) can completely protect macaque monkeys against mucosal chimeric simian-human immunodeficiency virus (SHIV) infection. Antibody levels below the protective threshold do not prevent infection but can substantially reduce plasma viremia. To assess if HIV-1/SIV-specific cellular immunity could combine with antibodies to produce sterile protection, we studied the effect of a suboptimal infusion of anti-HIV-1 neutralizing antibodies in macaques with active cellular immunity induced by interleukin-2 (IL-2)-adjuvanted DNA immunization. Twenty female macaques were divided into four groups: (i). DNA immunization plus irrelevant antibody, (ii). DNA immunization plus infusion of neutralizing MAbs 2F5 and 2G12, (iii). sham DNA plus 2F5 and 2G12, and (iv). sham DNA plus irrelevant antibody. DNA-immunized monkeys developed CD4 and CD8 T-cell responses as measured by epitope-specific tetramer staining and by pooled peptide ELISPOT assays for gamma interferon-secreting cells. After vaginal challenge, DNA-immunized animals that received irrelevant antibody became SHIV infected but displayed lower plasma viremia than control animals. Complete protection against SHIV challenge occurred in three animals that received sham DNA plus MAbs 2F5 and 2G12 and in two animals that received the DNA vaccine plus MAbs 2F5 and 2G12. Thus, although DNA immunization produced robust HIV-specific T-cell responses, we were unable to demonstrate that these responses contributed to the sterile protection mediated by passive infusion of neutralizing antibodies. These data suggest that although effector T cells can limit viral replication, they are not able to assist humoral immunity to prevent the establishment of initial infection.
DOI: 10.1189/jlb.1007675
2008
Cited 36 times
Stimulation of the primary anti-HIV antibody response by IFN-α in patients with acute HIV-1 infection
Type I IFNs are needed for the production of antiviral antibodies in mice; whether they also stimulate primary antibody responses in vivo during human viral infections is unknown. This was assessed in patients acutely infected with HIV-1 and treated with IFN-alpha2b. Patients with acute HIV-1 infection were randomized to receive antiretroviral therapy alone (Group A, n=60) or combined for 14 weeks with pegylated-IFN-alpha2b (Group B, n=30). Emergence of anti-HIV antibodies was monitored during 32 weeks by Western blot (WB) analyses of serum samples. IFN-alpha2b treatment stimulated the production of anti-HIV antibodies. On Week 32, 19 weeks after the last IFN-alpha2b administration, there were 8.5 (6.5-10.0) HIV WB bands (median, interquartile range) in Group B and 7.0 (5.0-10.0) bands in Group A (P=0.054), and band intensities were stronger in Group B (P<0.05 for p18, p24, p34, p40, and p55 HIV antigens). IFN-alpha2b treatment also increased circulating concentrations of the B cell-activating factor of the TNF family (P<0.001) and ex vivo production of IL-12 (P<0.05), reflecting its effect on innate immune cells. Withdrawal of antiretroviral treatment on Week 36 resulted in a lower rebound of HIV replication in Group B than in Group A (P<0.05). Therefore, type I IFNs stimulate the emerging anti-HIV immune response in patients with acute HIV-1 infection, resulting in an improved control of HIV replication. Type I IFNs are thus critical in the development of efficient antiviral immune responses in humans, including the production of antiviral antibodies.
DOI: 10.1371/journal.pcbi.1003842
2014
Cited 27 times
IDEPI: Rapid Prediction of HIV-1 Antibody Epitopes and Other Phenotypic Features from Sequence Data Using a Flexible Machine Learning Platform
Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes) for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab), determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license), documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.
DOI: 10.1038/s41598-021-93828-y
2021
Cited 14 times
Clinical and laboratory characteristics of symptomatic healthcare workers with suspected COVID-19: a prospective cohort study
A comprehensive clinical and microbiological assessments of COVID-19 in front-line healthcare workers (HCWs) is needed. Between April 10th and May 28th, 2020, 319 HCWs with acute illness were reviewed. In addition to SARS-CoV-2 RT-PCR screening, a multiplex molecular panel was used for testing other respiratory pathogens. For SARS-CoV-2 positive HCWs, the normalized viral load, viral culture, and virus neutralization assays were performed weekly. For SARS-CoV-2 negative HCWs, SARS-CoV-2 serological testing was performed one month after inclusion. Among the 319 HCWs included, 67 (21.0%) were tested positive for SARS-CoV-2; 65/67 (97.0%) developed mild form of COVID-19. Other respiratory pathogens were found in 6/66 (9.1%) SARS-CoV-2 positive and 47/241 (19.5%) SARS-Cov-2 negative HCWs (p = 0.07). The proportion of HCWs with a viral load > 5.0 log10 cp/mL (Ct value < 25) was less than 15% at 8 days after symptom onset; 12% of HCWs were positive after 40 days (Ct > 37). More than 90% of cultivable virus had a viral load > 4.5 log10 cp/mL (Ct < 26) and were collected within 10 days after symptom onset. Among negative HCWs, 6/190 (3.2%) seroconverted. Our data suggest that the determination of viral load can be used for appreciating the infectiousness of infected HCWs. These data could be helpful for facilitating their return to work.
DOI: 10.1016/j.jinf.2021.10.009
2022
Cited 8 times
Persistence at one year of neutralizing antibodies after SARS-CoV-2 infection: Influence of initial severity and steroid use
Studies analyzing the persistence of protective immunity after SARS-CoV-2 infection are crucial to better understand the future dynamics of Covid-19 pandemic. We read with interest the results of Thangaraj et al.1 regarding the evolution over time of anti-SARS-CoV-2 antibodies up to 7 months after an infection. Following 755 individuals, they observed a clear waning of anti-nucleocapside and anti-spike antibodies, but the persistence of neutralizing, anti-receptor binding domain (RBD) antibodies (NAb) in 86.2% of participants 181–232 days after RT-PCR diagnosis; those with more severe Covid-19 had higher NAb titres.
DOI: 10.1371/journal.pone.0072054
2013
Cited 20 times
A Human Antibody to the CD4 Binding Site of gp120 Capable of Highly Potent but Sporadic Cross Clade Neutralization of Primary HIV-1
Primary isolates of HIV-1 resist neutralization by most antibodies to the CD4 binding site (CD4bs) on gp120 due to occlusion of this site on the trimeric spike. We describe 1F7, a human CD4bs monoclonal antibody that was found to be exceptionally potent against the HIV-1 primary isolate JR-FL. However, 1F7 failed to neutralize a patient-matched primary isolate, JR-CSF even though the two isolates differ by <10% in gp120 at the protein level. In an HIV-1 cross clade panel (n = 157), 1F7 exhibited moderate breadth, but occasionally achieved considerable potency. In binding experiments using monomeric gp120s of select resistant isolates and domain-swap chimeras between JR-FL and JR-CSF, recognition by 1F7 was limited by sequence polymorphisms involving at least the C2 region of Env. Putative N-linked glycosylation site (PNGS) mutations, notably at position 197, allowed 1F7 to neutralize JR-CSF potently without improving binding to the cognate, monomeric gp120. In contrast, flow cytometry experiments using the same PNGS mutants revealed that 1F7 binding is enhanced on cognate trimeric Env. BN-PAGE mobility shift experiments revealed that 1F7 is sensitive to the diagnostic mutation D368R in the CD4 binding loop of gp120. Our data on 1F7 reinforce how exquisitely targeted CD4bs antibodies must be to achieve cross neutralization of two closely related primary isolates. High-resolution analyses of trimeric Env that show the orientation of glycans and polymorphic elements of the CD4bs that affect binding to antibodies like 1F7 are desirable to understand how to promote immunogenicity of more conserved elements of the CD4bs.
DOI: 10.1371/annotation/f1f8c791-61e9-45c6-a455-92c6dadf9f06
2013
Cited 20 times
Correction: The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies
DOI: 10.1084/jem.20170633
2017
Cited 18 times
Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies
Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non–HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development.
DOI: 10.1016/j.xcrm.2022.100528
2022
Cited 7 times
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.
DOI: 10.1371/journal.ppat.1011416
2023
Antigen pressure from two founder viruses induces multiple insertions at a single antibody position to generate broadly neutralizing HIV antibodies
Vaccination strategies aimed at maturing broadly neutralizing antibodies (bnAbs) from naïve precursors are hindered by unusual features that characterize these Abs, including insertions and deletions (indels). Longitudinal studies of natural HIV infection cases shed light on the complex processes underlying bnAb development and have suggested a role for superinfection as a potential enhancer of neutralization breadth. Here we describe the development of a potent bnAb lineage that was elicited by two founder viruses to inform vaccine design. The V3-glycan targeting bnAb lineage (PC39-1) was isolated from subtype C-infected IAVI Protocol C elite neutralizer, donor PC39, and is defined by the presence of multiple independent insertions in CDRH1 that range from 1-11 amino acids in length. Memory B cell members of this lineage are predominantly atypical in phenotype yet also span the class-switched and antibody-secreting cell compartments. Development of neutralization breadth occurred concomitantly with extensive recombination between founder viruses before each virus separated into two distinct population "arms" that evolved independently to escape the PC39-1 lineage. Ab crystal structures show an extended CDRH1 that can help stabilize the CDRH3. Overall, these findings suggest that early exposure of the humoral system to multiple related Env molecules could promote the induction of bnAbs by focusing Ab responses to conserved epitopes.
DOI: 10.1016/j.jinf.2024.106120
2024
Tixagevimab-cilgavimab (AZD7442) for the treatment of patients hospitalized with COVID-19 (DisCoVeRy): A phase 3, randomized, double-blind, placebo-controlled trial
DOI: 10.1371/journal.pone.0042209
2012
Cited 16 times
Protection against High-Dose Highly Pathogenic Mucosal SIV Challenge at Very Low Serum Neutralizing Titers of the Antibody-Like Molecule CD4-IgG2
Passive transfer studies using monoclonal or polyclonal antibodies in the macaque model have been valuable for determining conditions for antibody protection against immunodeficiency virus challenge. Most studies have employed hybrid simian/human immunodeficiency virus (SHIV) challenge in conjunction with neutralizing human monoclonal antibodies. Passive protection against SIV, particularly the pathogenic prototype virus SIVmac239, has been little studied because of the paucity of neutralizing antibodies to this virus. Here, we show that the antibody-like molecule CD4-IgG2 potently neutralizes SIVmac239 in vitro. When administered by an osmotic pump to maintain concentrations given the short half-life of CD4-IgG2 in macaques, the molecule provided sterilizing immunity/protection against high-dose mucosal viral challenge to a high proportion of animals (5/7 at a 200 mg dose CD4-IgG2 and 3/6 at a 20 mg dose) at serum concentrations below 1.5 µg/ml. The neutralizing titers of such sera were predicted to be very low and indeed sera at a 1∶4 dilution produced no neutralization in a pseudovirus assay. Macaque anti-human CD4 titers did develop weakly at later time points in some animals but were not associated with the level of protection against viral challenge. The results show that, although SIVmac239 is considered a highly pathogenic virus for which vaccine-induced T cell responses in particular have provided limited benefit against high dose challenge, the antibody-like CD4-IgG2 molecule at surprisingly low serum concentration affords sterilizing immunity/protection to a majority of animals.
DOI: 10.1016/0966-842x(93)90072-y
1993
Cited 27 times
Human and simian immunodeficiency viruses: virus-receptor interactions
The major cellular receptor for the primate immunodeficiency viruses is the CD4 molecule. As well as mediating virion attachment to the cell surface, CD4 is thought to activate the viral fusion pathway. CD4 is not, however, sufficient for viral entry; other molecules are probably involved, and in certain circumstances these may substitute for CD4. Viral tropism and cytopathogenicity are also influenced by receptor interactions.
DOI: 10.1016/0169-4758(93)90044-g
1993
Cited 22 times
Cloned human CD4+ cytotoxic T lymphocytes specific for Toxoplasma gondii lyse tachyzoite-infected target cells
Infection with Toxoplasma gondii is an important cause of morbidity and mortality throughout the world. In immunocompetent hosts, the infection is usually not significant. However, infection occurring in neonates or other individuals with defective cellular immunity (such as recipients of organ allografts or persons with AIDS) may be life threatening. An effective vaccine to prevent toxoplasmosis, or immunotherapy for persons already infected with Tg would be important additions to the therapeutic armamentarium. We cloned toxoplasma-specific CTL from the PBMC of an asymptomatic individual with serologic evidence for prior Tg infection by stimulation with Ag produced from the RH strain of Tg. These CTL were exclusively of the CD3+, CD4+, CD8- surface phenotype, and lysed autologous target cells that had been either pulsed with Toxoplasma Ag, or infected with live tachyzoites. Lysis of target cells was inhibited by incubation of CTL with anti-T cell antibody, or by incubation of target cells with anti-DR antibody or chloroquine. These CTL also lysed target cells either pulsed with Ag derived from C strain Tg or infected with live C strain tachyzoites, indicating cross-reactivity of recognition. Unlike recently reported murine or human CD8+ Tg-specific CTL, which lysed tachyzoites in an extracellular, and hence HLA-unrestricted environment, these CD4+ CTL had no effect on the infectivity of extracellular tachyzoites. CD8+ Tg-specific CTL were not derived from this donor despite several different approaches to their generation. These data confirm previous reports of human Tg-specific CTL, and extend these observations to include CD4+ CTL. These findings suggest that specific immunotherapy directed against Tg, as well as the development of a preventive vaccine, may be possible.
DOI: 10.1128/jvi.00475-17
2017
Cited 10 times
Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response
ABSTRACT Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses ( P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus ( P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection. IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection.
DOI: 10.1016/s0165-2478(97)00109-0
1997
Cited 22 times
Erratum to “Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design” [Immunol. Lett. 57 (1997) 105–112]
The publisher regrets that the authors of this paper were inadvertently printed in the incorrect order. The complete article is reproduced on the following pages. Understanding the antibody response in HIV-1 infection is important to vaccine design. We have studied the antibody response to HIV-1 envelope at the molecular level and determined the characteristics of neutralizing and non-neutralizing antibodies. These antibodies were isolated from phage display libraries prepared from long-term seropositive asymptomatic individuals. The HIV-1 envelope is presented to the immune system in several antigenically distinct configurations: unprocessed gp160, gp120 and gp41 subunits and native envelope, each of which may be important in eliciting an antibody response in HIV-1 infection. The antibodies tested characteristically had poor affinities for native envelope as expressed on the surface of virions or infected cells, but had high affinities against non-native forms of HIV-1 envelope (viral debris). An exceptionally potent neutralizing antibody in contrast, bound native envelope with equivalent or somewhat higher affinity than this. This indicates that the antibody response in HIV-1 infection is principally elicited by viral debris rather than virions, and that these antibodies bind and neutralize viruses sub-optimally. Potential vaccines should be designed to elicit responses against native envelope.
DOI: 10.1128/jvi.76.14.6987-6999.2002
2002
Cited 17 times
Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Gag- and Gag Peptide-Specific CD4<sup>+</sup>T-Cell Clones from an HIV-1-Seronegative Donor following In Vitro Immunization
ABSTRACT Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4 + T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4 + T-cell response. Therefore, understanding and characterizing HIV-specific CD4 + T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4 + T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4 + T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4 + T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4 + T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4 + T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.
DOI: 10.1097/qai.0000000000000854
2016
Cited 7 times
V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1
Highly potent broadly neutralizing monoclonal antibodies (bNAbs) have been obtained from individuals infected by HIV-1 group M variants. We analyzed the cross-group neutralization potency of these bNAbs toward non-M primary isolates (PI).The sensitivity to neutralization was analyzed in a neutralization assay using TZM-bl cells. Twenty-three bNAbs were used, including reagents targeting the CD4-binding site, the N160 glycan-V1/V2 site, the N332 glycan-V3 site, the membrane proximal external region of gp41, and complex epitopes spanning both env subunits. Two bispecific antibodies that combine the inhibitory activity of an anti-CD4 with that of PG9 or PG16 bNAbs were included in the study (PG9-iMab and PG16-iMab).Cross-group neutralization was observed only with the bNAbs targeting the N160 glycan-V1/V2 site. Four group O PIs, 1 group N PI, and the group P PI were neutralized by PG9 and/or PG16 or PGT145 at low concentrations (0.04-9.39 μg/mL). None of the non-M PIs was neutralized by the bNAbs targeting other regions at the highest concentration tested, except 10E8 that neutralized weakly 2 group N PIs and 35O22 that neutralized 1 group O PI. The bispecific bNAbs neutralized very efficiently all the non-M PIs with IC50 below 1 μg/mL, except 2 group O strains.The N160 glycan-V1/V2 site is the most conserved neutralizing site within the 4 groups of HIV-1. This makes it an interesting target for the development of HIV vaccine immunogens. The corresponding bNAbs may be useful for immunotherapeutic strategies in patients infected by non-M variants.
DOI: 10.3389/fimmu.2022.889813
2022
Cited 3 times
Fine Analysis of Lymphocyte Subpopulations in SARS-CoV-2 Infected Patients: Differential Profiling of Patients With Severe Outcome
COVID-19 is caused by the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in widespread morbidity and mortality. CD4+ T cells, CD8+ T cells and neutralizing antibodies all contribute to control SARS-CoV-2 infection. However, heterogeneity is a major factor in disease severity and in immune innate and adaptive responses to SARS-CoV-2. We performed a deep analysis by flow cytometry of lymphocyte populations of 125 hospitalized SARS-CoV-2 infected patients on the day of hospital admission. Five clusters of patients were identified using hierarchical classification on the basis of their immunophenotypic profile, with different mortality outcomes. Some characteristics were observed in all the clusters of patients, such as lymphopenia and an elevated level of effector CD8+CCR7- T cells. However, low levels of T cell activation are associated to a better disease outcome; on the other hand, profound CD8+ T-cell lymphopenia, a high level of CD4+ and CD8+ T-cell activation and a high level of CD8+ T-cell senescence are associated with a higher mortality outcome. Furthermore, a cluster of patient was characterized by high B-cell responses with an extremely high level of plasmablasts. Our study points out the prognostic value of lymphocyte parameters such as T-cell activation and senescence and strengthen the interest in treating the patients early in course of the disease with targeted immunomodulatory therapies based on the type of adaptive response of each patient.
DOI: 10.1101/2020.11.04.20225862
2020
Cited 5 times
Clinical and microbiological assessments of COVID-19 in healthcare workers: a prospective longitudinal study
Background A comprehensive assessment of COVID-19 in healthcare workers (HCWs) including the investigation of viral shedding duration is critical. Methods A longitudinal study including 319 HCWs was conducted. After SARS-CoV-2 screening with RT-PCR assay, other respiratory pathogens were tested with a multiplex molecular panel. For SARS-CoV-2 positive HCWs, the normalized viral load was determined weekly; viral culture and virus neutralization assays were also performed. For 190 HCWs tested negative, SARS-CoV-2 serological testing was performed one month after the inclusion. Findings Of the 319 HCWs included, 67 (21.0%) were tested positive for SARS-CoV-2; two of them developed severe COVID-19. The proportion of smell and taste dysfunction was significantly higher in SARS-CoV-2 positive HCWs than in negative ones (38.8% vs 9.5% and 37.3% vs 10.7%, respectively, p&lt;0.001). Of the 67 positive patients, 9.1% were tested positive for at least another respiratory pathogen ( vs 19.5%, p=0.07). The proportion of HCWs with a viral load &gt; 5.0 log 10 cp/ml (Ct value &lt;25) was less than 15% at 8 days after symptom onset; 12% of them were still positive after 40 days (Ct &gt;37). More than 90% of culturable virus had a viral load &gt; 4.5 log 10 cp/ml (Ct &lt; 26) and were collected within 10 days after symptom onset. From HCWs tested negative, 6/190 (3.2%) exhibited seroconversion for IgG antibodies. Interpretation Our data suggest that the determination of normalized viral load (or its estimation through Ct values) can be useful for discontinuing isolation of HCWs and facilitating their safe return to work. HCWs presenting mild COVID-19 are unlikely infectious 10 days after symptom onset. Funding Fondation des Hospices Civils de Lyon. bioMérieux provided diagnostic kits.
DOI: 10.1385/ir:21:2-3:265
2000
Cited 11 times
Antibodies in human infectious disease
Investigation of human antibody responses to viral pathogens at the molecular level is revealing novel aspects of the interplay of viruses with the humoral immune system. In viral infection, at least two types of human antibody responses exist: a response to mature envelope on virions that is neutralizing and a response to immature forms of envelope (viral debris) that is not. Many pathogens have, to varying degrees, evolved envelopes to minimize antibody responses against epitopes exposed on the viron. In this article, we review recent studies on human immunodeficiency virus type 1, Ebola virus, and respiratory syncytial virus. Prion diseases are diseases of protein conformation. We have generated a large panel of antibodies recognizing the cellular prion protein (PrPc), some of which also react with the abnormally folded infectious prion protein (PrPSc). These antibodies are being used to gain insight into both the molecular events leading to the formation of infectious PrP and the physiologic role played by PrP in normal and prion-infected cells.
DOI: 10.1038/458584a
2009
Cited 6 times
Immune memory downloaded
An impressive system for retrieving large numbers of antibodies from memory B cells has been developed. It has been put into practice in an investigation of immune responses to the human immunodeficiency virus. Serologic memory is an important factor in long-term vaccine efficacy, but there is little understanding of the antibodies produced by memory B cells in individuals infected with important human pathogens such as HIV. To examine the memory antibody response to HIV, Scheid et al. cloned more than 500 antibodies from HIV-specific memory B cells from six HIV-infected patients with high serum titres of broadly neutralizing antibodies. The B-cell memory response to HIV in these patients was composed of up to 50 independent expanded B clones expressing a heterogeneous collection of antibodies to different viral epitopes, several of which may be important for broad HIV neutralization and effective vaccination.
DOI: 10.1097/00007890-199811270-00020
1998
Cited 10 times
LONG-TERM NONPROGRESSIVE HUMAN IMMUNODEFICIENCY VIRUS-1 INFECTION IN A KIDNEY ALLOGRAFT RECIPIENT
We report a unique case of a renal transplant patient with a long-term nonprogressive human immunodeficiency virus type-1 (HIV-1) infection and who is asymptomatic despite sustained immunosuppression. Renal function is normal, and HIV infection was probably acquired through blood transfusion before the transplant. Nonprogression may be due either to an effective immune control of HIV replication or to particular genetic aspects of the virus. Several virological investigations were carried out to verify if she is infected with an attenuated virus strain. Results show an unusual combination of high and stable CD4 count, ongoing viral replication and elevated viral loads. Attempts to isolate the virus from plasma were unsuccessful, but isolation was possible from peripheral blood mononuclear cells, and the virus was shown to be non-syncytium-inducing. Sequence analysis of the nef gene revealed no mutation. This exceptional lack of progression of HIV infection under immunosuppressive therapy requires further investigation.
DOI: 10.1002/eji.200425767
2005
Cited 6 times
Identification of peptides from human pathogens able to cross‐activate an HIV‐1‐gag‐specific CD4<sup>+</sup> T cell clone
Abstract Antigen recognition by T cells is degenerate both at the MHC and the TCR level. In this study, we analyzed the cross‐reactivity of a human HIV‐1 gag p24‐specific CD4 + T cell clone obtained from an HIV‐1‐seronegative donor using a positional scanning synthetic combinatorial peptide library (PS‐SCL)‐based biometrical analysis. A number of decapeptides able to activate the HIV‐1 gag‐specific clone were identified and shown to correspond to sequences found in other human pathogens. Two of these peptides activated the T cell clone with the same stimulatory potency as the original HIV‐1 gag p24 peptide. These findings show that an HIV‐1‐specific human T helper clone can react efficiently with peptides from other pathogens and suggest that cellular immune responses identified as being specific for one human pathogen (HIV‐1) could arise from exposure to other pathogens.
DOI: 10.1084/jem.2017063307262017c
2017
Cited 3 times
Correction: Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies
DOI: 10.1101/2023.11.03.565335
2023
Target-agnostic identification of human antibodies to<i>Plasmodium falciparum</i>sexual forms reveals cross stage recognition of glutamate-rich repeats
Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies (Abs) can efficiently block parasite transmission. In search for naturally acquired Ab targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gamete and gametocyte extract. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for PfCSP, extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf .A naturally acquired human monoclonal antibody recognizes proteins expressed at different stages of the Plasmodium falciparum lifecycle through affinity-matured homotypic interactions with glutamate-rich repeats.
DOI: 10.1128/jvi.00593-15
2015
Correction for Doores et al., Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope
Volume 89, no. 2, p. [1105–1118][1], 2015. Page 1116, Acknowledgments: The following sentence should appear at the end of the second paragraph. A portion of this work was supported by an American Foundation for AIDS Research Mathilde Krim Fellowship in Basic Biomedical Research (L.K.). [1]: /
DOI: 10.1101/2021.09.13.460076
2021
Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization using a versatile adenovirus-inspired multimerization platform
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has shown that vaccine preparedness is critical to anticipate a fast response to emergent pathogens with high infectivity. To rapidly reach herd immunity, an affordable, easy to store and versatile vaccine platform is thus desirable. We previously designed a non-infectious adenovirus-inspired nanoparticle (ADDomer), and in the present work, we efficiently decorated this original vaccine platform with glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryo-Electron Microscopy structure revealed that up to 60 copies of this antigenic domain were bound on a single ADDomer particle with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated particles showed as early as the first immunization a significant anti-coronavirus humoral response, which was boosted after a second immunization. Neutralization assays with spike pseudo-typed-virus demonstrated the elicitation of strong neutralization titers. Remarkably, the existence of pre-existing immunity against adenoviral-derived particles enhanced the humoral response against SARS-CoV-2. This plug and play vaccine platform revisits the way of using adenovirus to combat emergent pathogens while potentially taking advantage of the adenovirus pre-immunity.
DOI: 10.1038/s41598-021-99051-z
2021
Publisher Correction: Clinical and laboratory characteristics of symptomatic healthcare workers with suspected COVID-19: a prospective cohort study
DOI: 10.1371/journal.ppat.1005110.g002
2015
Deviation from standard dose-response curve by bnMAbs in a U87 target cell assay.
2014
Profiling human antibody responses by integrated single-cell analysis
Comprehensive characterization of the antigen-specific B cells induced during infections or following vaccination would facilitate the discovery of novel antibodies and inform how interventions shape protective humoral responses. The analysis of human B cells and their antibodies has been performed using flow cytometry to evaluate memory B cells and expanded plasmablasts, while microtechnologies have also provided a useful tool to examine plasmablasts/plasma cells after vaccination. Here we present an integrated analytical platform, using arrays of subnanoliter wells (nanowells), for constructing detailed profiles for human B cells comprising the immunophenotypes of these cells, the distribution of isotypes of the secreted antibodies, the specificity and relative affinity for defined antigens, and for a subset of cells, the genes encoding the heavy and light chains. The approach combines on-chip image cytometry, microengraving, and single-cell RT-PCR. Using clinical samples from HIV-infected subjects, we demonstrate that the method can identify antigen-specific neutralizing antibodies, is compatible with both plasmablasts/plasma cells and activated memory B cells, and is well-suited for characterizing the limited numbers of B cells isolated from tissue biopsies (e.g., colon biopsies). The technology should facilitate detailed analyses of human humoral responses for evaluating vaccines and their ability to raise protective antibody responses across multiple anatomical compartments.
DOI: 10.1089/aid.2014.5048.abstract
2014
African Early Infection Cohort as a Platform for Vaccine Discovery: The IAVI Protocol C Experience
AIDS Research and Human RetrovirusesVol. 30, No. S1 Vaccine Development: Emerging InsightsAfrican Early Infection Cohort as a Platform for Vaccine Discovery: The IAVI Protocol C ExperienceJill Gilmour, Anatoli Kamali, Etienne Karita, William Kilembe, Eduard J. Sanders, Omu Anzala, Susan Allen, Vinodh Edward, Fran Priddy, Matt A. Price, Gladys Macharia, Joshua Baalwa, Shane Crotty, Thomas Denny, Elise Landais, Persephone Borrow, Jianming Tang, Michael Busch, Jessica Prince, Dan Claiborne, Pascal Poignard, Pat Fast, and Eric HunterJill GilmourIAVI Human Immunology Lab, London, United KingdomSearch for more papers by this author, Anatoli KamaliMRC/UVRI, Uganda Research Unit on AIDS, Entebbe, UgandaSearch for more papers by this author, Etienne KaritaProject San Francisco, Kigali, RwandaSearch for more papers by this author, William KilembeZEHRP, Lusaka, ZambiaSearch for more papers by this author, Eduard J. SandersCGMRC-KEMRI, Kilifi, KenyaSearch for more papers by this author, Omu AnzalaKAVI-Institute of Clinical Research, University of Nairobi, Nairobi, KenyaSearch for more papers by this author, Susan AllenEmory University, Atlanta, GA, United StatesSearch for more papers by this author, Vinodh EdwardAurum Institute, Rustenburg, South AfricaSearch for more papers by this author, Fran PriddyIAVI, New York, NY, United StatesSearch for more papers by this author, Matt A. PriceIAVI, New York, NY, United StatesSearch for more papers by this author, Gladys MachariaCGMRC-KEMRI, Kilifi, KenyaSearch for more papers by this author, Joshua BaalwaUAB, Birmingham, AL, United StatesSearch for more papers by this author, Shane CrottyLa Jolla Institute for Allergy and Immunology, La Jolla, CA, United StatesSearch for more papers by this author, Thomas DennyDuke Human Vaccine Institute, Durham, NC, United StatesSearch for more papers by this author, Elise LandaisLa Jolla Institute for Allergy and Immunology, La Jolla, CA, United StatesSearch for more papers by this author, Persephone BorrowUniversity of Oxford, Oxford, United KingdomSearch for more papers by this author, Jianming TangUAB, Birmingham, AL, United StatesSearch for more papers by this author, Michael BuschBlood Systems Research Institute, San Francisco, CA, United StatesSearch for more papers by this author, Jessica PrinceEmory University, Atlanta, GA, United StatesSearch for more papers by this author, Dan ClaiborneEmory University, Atlanta, GA, United StatesSearch for more papers by this author, Pascal PoignardLa Jolla Institute for Allergy and Immunology, La Jolla, CA, United StatesSearch for more papers by this author, Pat FastIAVI, New York, NY, United StatesSearch for more papers by this author, and Eric HunterEmory University, Atlanta, GA, United StatesSearch for more papers by this authorPublished Online:30 Oct 2014https://doi.org/10.1089/aid.2014.5048.abstractAboutSectionsView articleView Full TextPDF/EPUB ToolsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail View article"African Early Infection Cohort as a Platform for Vaccine Discovery: The IAVI Protocol C Experience." AIDS Research and Human Retroviruses, 30(S1), p. A31FiguresReferencesRelatedDetails Volume 30Issue S1Oct 2014 InformationCopyright 2014, Mary Ann Liebert, Inc.To cite this article:Jill Gilmour, Anatoli Kamali, Etienne Karita, William Kilembe, Eduard J. Sanders, Omu Anzala, Susan Allen, Vinodh Edward, Fran Priddy, Matt A. Price, Gladys Macharia, Joshua Baalwa, Shane Crotty, Thomas Denny, Elise Landais, Persephone Borrow, Jianming Tang, Michael Busch, Jessica Prince, Dan Claiborne, Pascal Poignard, Pat Fast, and Eric Hunter.African Early Infection Cohort as a Platform for Vaccine Discovery: The IAVI Protocol C Experience.AIDS Research and Human Retroviruses.Oct 2014.A31-A31.http://doi.org/10.1089/aid.2014.5048.abstractPublished in Volume: 30 Issue S1: October 30, 2014PDF download
DOI: 10.1089/aid.2014.5054.abstract
2014
Development of a V1/V2-targeting Quaternary-specific Broadly Neutralizing Lineage
AIDS Research and Human RetrovirusesVol. 30, No. S1 Towards Broadly Neutralizing Antibody InductionFree AccessDevelopment of a V1/V2-targeting Quaternary-specific Broadly Neutralizing LineageElise Landais, Bryan S. Briney, Sergei L. Kosakovsky-Pond, Daniel T. MacLeod, Yolanda Lie, Paul Algate, Dennis R. Burton, Terri Wrin, Po-Ying Chan-Hui, Pascal Poignard, and The IAVI Protocol C Investigators & The IAVI African HIV Research NetworkElise LandaisThe International AIDS Vaccine Initiative, Neutralizing Antibody Center, La Jolla, CA, United StatesSearch for more papers by this author, Bryan S. BrineyThe Scripps Research Institute, Department of Immunology and Microbial Sciences, La Jolla, CA, United StatesSearch for more papers by this author, Sergei L. Kosakovsky-PondUniversity of California San Diego, Department of Medicine, La Jolla, CA, United StatesSearch for more papers by this author, Daniel T. MacLeodThe International AIDS Vaccine Initiative, Neutralizing Antibody Center, La Jolla, CA, United StatesSearch for more papers by this author, Yolanda LieMonogram Biosciences Inc, San Francisco, CA, United StatesSearch for more papers by this author, Paul AlgateTheraclone Sciences Inc., Seattle, WA, United StatesSearch for more papers by this author, Dennis R. BurtonThe Scripps Research Institute, Department of Immunology and Microbial Sciences, La Jolla, CA, United StatesSearch for more papers by this author, Terri WrinMonogram Biosciences Inc, San Francisco, CA, United StatesSearch for more papers by this author, Po-Ying Chan-HuiTheraclone Sciences Inc., Seattle, WA, United StatesSearch for more papers by this author, Pascal PoignardThe International AIDS Vaccine Initiative, Neutralizing Antibody Center, La Jolla, CA, United StatesThe Scripps Research Institute, Department of Immunology and Microbial Sciences, La Jolla, CA, United StatesSearch for more papers by this author, and The IAVI Protocol C Investigators & The IAVI African HIV Research NetworkSearch for more papers by this authorPublished Online:30 Oct 2014https://doi.org/10.1089/aid.2014.5054.abstractAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookXLinked InRedditEmail OA12.02Background: Designing a vaccine capable of eliciting broadly neutralizing antibodies (bNAbs) to HIV requires a better understanding of these Ab maturation pathways as they occur by interplay with HIV envelope glycoprotein evolution. IAVI Protocol C is a large longitudinal cohort of primary HIV-1 infection in sub-Saharan Africa. The development of bNAb responses was evaluated in 385 Protocol C donors and individuals with bNAb specificities targeting diverse highly conserved epitopes were selected for mAb isolation and maturation studies.Methods: Donor PC64 serum neutralizing activity was mapped to a N160-glycan-dependent, kifunensine-sensitive V1V2 quarternary epitope. The PG9-like neutralizing activity was detectable as early as 18 months post infection (mpi), peaked at 36 mpi and waned slightly during 2 years of additional follow-up. Envelope glycoprotein genes from PC64 were cloned at 10 different time points between 1 and 48 mpi. High throughput B-cell activation and functional screening were used to isolate mAbs with PG9-like neutralizing activity at 6 time points post infection. Deep sequencing of memory B-cells from longitudinal PBMCs samples was performed using the MiSeq (Illumina) platform.Results: Ten related mAbs with PG9-like neutralizing activity were isolated from the month-36 sample. The Abs use the VH3-15*01 and VK3-20*01 genes and possess long CDRH3s (25 amino acids) that contain tyrosine residues. Deep sequencing of 12 longitudinal samples spanning 4 years of infection suggested the emergence of the lineage around 9 mpi, identifying a sequence with 99.66% nucleotide identity to germline. Analysis of Env sequences showed evidence of escape mutations and an increase in diversity after 12 mpi, likely a consequence of selection pressure from the PG9-like lineage.Conclusions: Additional Ab isolated from different time points are currently being characterized. The study will provide important insight regarding the maturation pathways of bNAbs and critical information for vaccine design.FiguresReferencesRelatedDetails Volume 30Issue S1Oct 2014 InformationCopyright 2014, Mary Ann Liebert, Inc.To cite this article:Elise Landais, Bryan S. Briney, Sergei L. Kosakovsky-Pond, Daniel T. MacLeod, Yolanda Lie, Paul Algate, Dennis R. Burton, Terri Wrin, Po-Ying Chan-Hui, Pascal Poignard, and The IAVI Protocol C Investigators & The IAVI African HIV Research Network.Development of a V1/V2-targeting Quaternary-specific Broadly Neutralizing Lineage.AIDS Research and Human Retroviruses.Oct 2014.A34-A35.http://doi.org/10.1089/aid.2014.5054.abstractPublished in Volume: 30 Issue S1: October 30, 2014 PDF download