ϟ

Prolay Mal

Here are all the papers by Prolay Mal that you can download and read on OA.mg.
Prolay Mal’s last known institution is . Download Prolay Mal PDFs here.

Claim this Profile →
2013
Cited 32 times
Physics at a High-Luminosity LHC with ATLAS
The physics accessible at the high-luminosity phase of the LHC extends well beyond that of the earlier LHC program. This white paper, submitted as input to the Snowmass Community Planning Study 2013, contains preliminary studies of selected topics, spanning from Higgs boson studies to new particle searches and rare top quark decays. They illustrate the substantially enhanced physics reach with an increased integrated luminosity of 3000 fb-1, and motivate the planned upgrades of the LHC machine and ATLAS detector.
DOI: 10.1088/1748-0221/9/10/c10036
2014
Cited 18 times
Upgrade of the CMS muon system with triple-GEM detectors
The CMS collaboration considers upgrading the muon forward region which is particularly affected by the high-luminosity conditions at the LHC. The proposal involves Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs and its impact on the CMS performance.
DOI: 10.1088/1748-0221/11/01/c01023
2016
Cited 12 times
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown.
DOI: 10.1016/j.nima.2016.05.067
2017
Cited 9 times
R&D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector
This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern (FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described in detail and the results of the characterization study performed with an X-ray gun will be presented, together with the first results on time resolution based on data collected with muon/pion test beams.
DOI: 10.1088/1748-0221/10/03/c03039
2015
Cited 7 times
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised.
DOI: 10.1016/j.nima.2016.05.127
2017
Cited 4 times
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6<|η|<2.2, while continuing R&D is ongoing for additional regions.
DOI: 10.1109/nssmic.2014.7431249
2014
Cited 3 times
Performance of a large-area GEM detector prototype for the upgrade of the CMS muon endcap system
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5 <| η |< 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 µrad pitch arranged in eight η-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20–120 GeV hadron beams at Fermilab using Ar/CO2 70∶30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 µrad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ± 0.2 (stat)]%. The azimuthal resolution is found to be [123.5 ± 1.6 (stat)] µrad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by ∼ 10 µrad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ± 2.5 stat] µrad is measured, consistent with the expected resolution of strip-pitch/equation µrad. Other η-sectors of the detector show similar response and performance.
DOI: 10.1016/j.nima.2016.01.059
2016
Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
DOI: 10.1109/nssmic.2015.7581797
2015
Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC
The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≥ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = −ln(tan(θ/2)), where θ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 < |η| < 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> (70/30) and Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> /CF <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution.
DOI: 10.1088/1748-0221/12/02/p02003
2017
The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade
The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.
DOI: 10.1051/epjconf/201817403002
2018
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m 2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
DOI: 10.1016/j.nima.2015.11.125
2016
Status report of the upgrade of the CMS muon system with Triple-GEM detectors
For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5<|η|<2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.
2014
Impact of the Radiation Background on the CMS muon high-eta upgrade for the LHC high luminosity scenario
The Compact Muon Solenoid (CMS) experiment at the LHC is planning an upgrade of its muon detection system aiming to extend the muon detection capabilities in the forward region with the installation of new muon stations based on Gas Electron Multiplier (GEM) and Resistive Plate Chambers (RPC) technologies during the so-called Phase-2 upgrade scenario. With the imminent increase on luminosity to 5 × 1034cm-2s-1 and center of mass collision energy of 14 TeV an unprecedented and hostile radiation environment will be created, the most affected detectors will be the ones located in the forward region where the intense flux of neutrons and photons could potentially degrade the detector performance. Using FLUKA simulation the expected radiation environment is estimated for the regions of interest, possible shielding scenarios are proposed and the effect on the detector performance is discussed.
DOI: 10.48550/arxiv.1412.0228
2014
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < \mid\eta\mid < 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $\mu$rad pitch arranged in eight $\eta$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $\mu$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\pm$ 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 $\pm$ 1.6 (stat)] $\mu$rad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by $\sim$ 10 $\mu$rad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 $\pm$ 2.5 stat] $\mu$rad is measured, consistent with the expected resolution of strip-pitch/$\sqrt{12}$ = 131.3 $\mu$rad. Other $\eta$-sectors of the detector show similar response and performance.
DOI: 10.1051/epjconf/201817403003
2018
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&amp;D and moving to production. An unprecedented large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.
DOI: 10.1007/s00601-018-1460-1
2018
Highlights from the CMS Experiment
DOI: 10.1393/ncc/i2016-16260-7
2015
Impact of the GE1/1 upgrade on CMS muon system performance
During the future LHC upgrade planned in 2018, the forward endcap region of the CMS muon spectrometer will be upgraded with GEM chambers. GEM technology is able to withstand the radiation environment expected in the forward region. The GE1/1 station will be included in the muon L1 trigger, allowing to keep low p(T) threshold even at high luminosity. Moreover, it will bring detection redundancy in the most critical part of the CMS muon system, along with benefits to muon reconstruction performance.
DOI: 10.1393/ncc/i2016-16269-x
2016
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on cham design features and will discuss the performance of the upgraded detector.
DOI: 10.1007/978-3-319-25619-1_95
2015
Search for Higgs $$\mathbf {\rightarrow }$$ → Invisible Decays at the LHC
The recent discovery of the Standard Model (SM) Higgs boson at the LHC experiments (ATLAS and CMS) has finally culminated the long-standing puzzle of electroweak symmetry breaking (at least within the context of the SM), while broadening the scope of beyond the Standard Model (BSM) physics involving the Higgs boson itself. In particular, the characteristic decay of the SM Higgs boson into some particles which can escape detection by the modern High Energy Physics detectors (and thus becomes invisible) can be one of the interesting searches for the BSM physics. In various new physics models, plausible dark matter candidates e.g., Majorana neutrinosMajorana neutrinos , SUSY neutralinosSUSY neutralinos , etc. can couple to the SM Higgs boson and thus can enhance the Higgs $$\rightarrow $$ invisible yield with respect to the SM predictions. In addition, the measurement of Higgs $$\rightarrow $$ invisible branching ratio (BR) for the Higgs mass of 125.5 GeV would provide a crucial scrutiny to the tiny SM predictions ( $$\approx $$ 10 $$^{-3}$$ ). In this article ATLAS and CMS searches for anomalous Higgs $$\rightarrow $$ invisible decays are summarized.
DOI: 10.1109/nssmic.2015.7581803
2015
CMS muon system phase 2 upgrade with triple-GEM detectors
The Compact Muon Solenoid (CMS) detector installed at the CERN Large Hadron Collider (LHC) has an extensive muon system which provides information simultaneously for identification, track reconstruction and triggering of muons. As a consequence of the extreme particle rate and high integrated charge, the essentiality to upgrade the LHC has given rise to the High Luminosity phase of the LHC (HL-LHC) project so that the CMS muon system will be upgraded with superior technological challenges. The CMS GEM collaboration offers a solution to equip the high-eta region of the muon system for Phase 2 (after the year 2017) with large-area triple-layer Gas Electron Multiplier (GEM) detectors, since GEMs have the ability to provide robust and redundant tracking and triggering functions with an excellent spatial resolution of order 100 micron and a high particle rate capability, with a close to 100% detection efficiency. In this contribution, the present status of the triple-GEM project will be reviewed, and the significant achievements from the start of the R&D in 2009 will be emphasized.
DOI: 10.1109/nssmic.2014.7431236
2014
Status report on the CMS forward muon upgrade with large-size triple-GEM detectors
For the High-Luminosity LHC (HL-LHC) phase the CMS GEM Collaboration is planning to install new large-size (990×220–455mm2) triple-GEM detectors, equipped with a new readout system, in the forward region of the muon system (1.5< |η| <2.2) of the CMS detector. Combining triggering and tracking functionalities the new triple-foil Gas Electron Multiplier (GEM) chambers will improve both the performance of the CMS muon trigger and the muon reconstruction/identification in CMS experiment. The addition of triple-GEM chambers to the forward region of the CMS muon system will add a necessary layer of redundancy. Starting from 2009 the CMS GEM Collaboration has built several small and full-size prototypes with different geometries, keeping improving the assembly techniques. All these prototypes have been tested in laboratories as well as with beam tests at the CERN Super Proton Synchrotron (SPS) and at Fermi National Accelerator Laboratory. In this contribution we will report on the status of the CMS upgrade project with triple-GEM chambers and its impact on the CMS performance as well as the hardware architectures and expected capability of the CMS GEM readout system.
DOI: 10.22323/1.213.0065
2015
The Triple-GEM Project for the Phase 2 Upgrade of the CMS Muon System
In view of the high-luminosity phase of the LHC, the CMS Collaboration is considering the use of Gas Electron Multiplier (GEM) detector technology for the upgrade of its muon system in the forward region. With their ability to handle the extreme particle rates expected in that area, such micro-pattern gas detectors can sustain a high performance and redundant muon trigger system. At the same time, with their excellent spatial resolution, they can improve the muon track reconstruction and identification capabilities of the forward detector, effectively combining tracking and triggering functions in one single device. The present status of the CMS GEM project will be reviewed, highlighting importants steps and achievements since the start of the R&D activities in 2009. The baseline design of the triple-GEM detectors proposed for installation in different stations of the CMS muon endcap system will be described, along with the associated frontend electronics and data-acquisition system. The expected impact on the performance of the CMS muon system will be discussed, and results from detector tests, both in the lab and in test beams will be presented.
DOI: 10.48550/arxiv.1512.08529
2015
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
2016
Top quark properties
DOI: 10.48550/arxiv.1206.1174
2012
Search for the Standard Model Higgs Boson in ATLAS
The latest search for the Standard Model (SM) Higgs boson based on 4.7-4.9 fb-1 of pp collision data at sqrt(s)=7 TeV recorded with the ATLAS detector is presented here.
DOI: 10.1063/1.3327592
2010
Searches for Beyond the Standard Model Higgs Bosons in ppā collisions at s = 1.96 TeV
The recent results on various Beyond the Standard Model (BSM) Higgs boson searches performed by the DO/ experiment at the Tevatron are presented here. In particular, the Higgs bosons in supersymmetric models and fermiophobic scenario have been investigated. No significant excess over the Standard Model (SM) expectations have been observed and accordingly limits have been established on the corresponding model parameters.
2017
arXiv : Top Quark Decay Properties
DOI: 10.48550/arxiv.1710.04277
2017
Top Quark Decay Properties
Due to the large production cross-section, many of the top quark properties can be measured very precisely at the LHC. A very few recent results, probed only through the top quark decay vertices are presented here. These results are based on proton-proton collision datasets recorded by the ATLAS and CMS experiments at sqrt(s)=7, 8 and 13 TeV. All the measurements and observed limits are consistent with the Standard Model (SM) predictions, while strong bounds on anomalous Wtb couplings are established.
2009
Search for Neutral Supersymmetric Higgs Bosons in bbb(b) Final States in pp Collisions at √s=1.96 TeV
DOI: 10.1007/978-981-19-2354-8_4
2022
Measurement of Cross Section of $$pp \rightarrow t\bar{t}+\gamma $$ Process in Lepton+Jets Events at $$\sqrt{s}=13$$ TeV in LHC Run 2
Top quark is the heaviest known elementary particle and plays a special role in the dynamics of fundamental interactions. At the LHC the top quarks are predominantly produced through strong interactions. Here, photons can originate in the final state considering initial state and final state radiations and thus involve an additional electroweak vertex [1]. Therefore, studying the top-antitop pair ( $$t\bar{t}$$ ) production in association with a photon can lead to a thorough scrutiny of the Standard Model (SM) predictions. Any deviation in the measured cross section of this process can lead to beyond standard model (BSM) physics. The results presented here are performed in events containing an well isolated, high $$p_{T}$$ lepton (electron and muon), at least four jets from the hadronization of quarks and an isolated photon. The analysis makes use of simultaneous likelihood fits in several control regions to distinguish $$t\bar{t}+ \gamma $$ signal from background.
DOI: 10.1063/1.2735143
2007
SUSY Higgs Searches at DO, Tevatron
During Run II of the Tevatron collider, DØ collaboration has made extensive searches for the neutral MSSM Higgs bosons (φ), produced in pp̄ collisions at s = 1.96 TeV. Two such analyses, addressing inclusive φ production with φ → τ+τ−, and associated φb(b̄) production with φ → bb̄ are reported here. No excess of events above the background expectation has been observed in any of these analyses. The results are combined to set constraints on the MSSM parameter space.
2007
Measurement of the branching fraction Br($B^0(s) \to D_s^{(*)} D_s^{(*)}$)
2018
arXiv : Highlight of top quark properties
DOI: 10.48550/arxiv.1811.10733
2018
Highlight of top quark properties
The top quark is the heaviest known elementary particle and plays a special role in the dynamics of fundamental interactions. Since its discovery at the Tevatron, several of its properties have been measured by the Tevatron experiments (CDF and DZERO). However, thanks to its unprecedentedly large production rate at the LHC a new level of precision in these measurements has been achieved by the LHC experiments (ATLAS and CMS). The latest LHC measurements of the top quark mass, total decay width, top-antitop spin correlations, and charge asymmetry are presented in this contribution. In addition, the results from the W-boson helicity measurement are presented.
2004
Measurement of the top pair production cross section in the tbart arrow bbarb e μ ν ν cross-section channel at the DØexperiment.
2006
SUSY Higgs Searches at D0, Tevatron
DOI: 10.2172/879132
2005
Measurement of top anti-top cross section in proton - anti-proton collider at √s = 1.96-TeV
Discovery of the top quark in 1995 at the Fermilab Tevatron collider concluded a long search following the 1977 discovery of bottom (b) quark [1] and represents another triumph of the Standard Model (SM) of elementary particles. Top quark is one of the fundamental fermions in the Standard Model of electroweak interactions and is the weak-isospin partner of the bottom quark. A precise measurement of top pair production cross-section would be a test of Quantum Chromodynamics (QCD) prediction. Presently, Tevatron is the world's highest energy collider where protons (p) and anti-protons ($\bar{p}$) collide at a centre of mass energy √s of 1.96 TeV. At Tevatron top (t) and anti-top ($\bar{t}$) quarks are predominantly pair produced through strong interactions--quark annihilation (≅ 85%) and gluon fusion (≅ 15%). Due to the large mass of top quark, t or $\bar{t}$ decays (~ 10-25 sec) before hadronization and in SM framework, it decays to a W boson and a b quark with ~ 100% branching ratio (BR). The subsequent decay of W boson determines the major signatures of t$\bar{t}$ decay. If both W bosons (coming from t and $\bar{t}$ decays) decay into leptons (viz., eve, μvμ or τcτ) the corresponding t$\bar{t}$ decay is called dileptonic decay. Of all dileptonic decay modes of t$\bar{t}$, the t$\bar{t}$ → WWb$\bar{b}$ → eveμvμb$\bar{b}$ (eμ channel) decay mode has the smallest background contamination from Z0 production or Drell-Yan process; simultaneously, it has the highest BR (~ 3.16%) [2] amongst all dileptonic decay modes of t$\bar{t}$. During Run I (1992-1996) of Tevatron, three eμ candidate events were detected by D0 experiment, out of 80 candidate events (inclusive of all decay modes of t$\bar{t}$). Due to the rarity of the t$\bar{t}$ events, the measured cross-section has large uncertainty in its value (viz., 5.69 ± 1.21(stat) ± 1.04(sys) pb {at} √s = 1.8 TeV measured by D0 [3]). This analysis presents a cross section measurement in eμ channel utilizing ~ 228 pb-1 of data collected by D0 experiment during Tevatron Run II (between June 2002 and April 2004).
DOI: 10.1103/physrevd.71.072004,
2005
First measurement of $\sigma$ ($p \bar{p} \to Z^{)}$ . Br ($Z \to \tau \tau^{)}$ at $\sqrt{s}$ = 1.96- TeV
We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.