ϟ

P. Iaydjiev

Here are all the papers by P. Iaydjiev that you can download and read on OA.mg.
P. Iaydjiev’s last known institution is . Download P. Iaydjiev PDFs here.

Claim this Profile →
DOI: 10.1103/physrevlett.97.131801
2006
Cited 1,180 times
Improved Experimental Limit on the Electric Dipole Moment of the Neutron
An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. The results may be interpreted as an upper limit on the neutron EDM of $|{d}_{n}|<2.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}26}e\text{ }\text{ }\mathrm{cm}$ (90% C.L.).
DOI: 10.1103/physrevlett.82.904
1999
Cited 386 times
New Experimental Limit on the Electric Dipole Moment of the Neutron
The latest neutron electric dipole moment (EDM) experiment has been collecting data at the Institut Laue-Langevin (ILL), Grenoble, since 1996. It uses an atomic-mercury magnetometer to compensate for the magnetic field fluctuations that were the principal source of systematic errors in previous experiments. The first results, in combination with the previous ILL measurement, yield a possible range of values of $(\ensuremath{-}7.0<{d}_{n}<5.0)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}26}e\mathrm{cm}$ ( $90%$ C.L.). This may be interpreted as an upper limit on the absolute value of the neutron EDM of $|{d}_{n}|<6.3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}26}e\mathrm{cm}$ ( $90%$ C.L.).
DOI: 10.1103/physrevd.92.092003
2015
Cited 360 times
Revised experimental upper limit on the electric dipole moment of the neutron
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\mathrm{n} = -0.21 \pm 1.82 \times10^{-26}$ $e$cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of $3.0 \times10^{-26}$ $e$cm (90% CL) or $ 3.6 \times10^{-26}$ $e$cm (95% CL). This paper is dedicated by the remaining authors to the memory of Prof. J. Michael Pendlebury.
DOI: 10.1103/physrevlett.124.081803
2020
Cited 336 times
Measurement of the Permanent Electric Dipole Moment of the Neutron
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{n}=(0.0±1.1_{stat}±0.2_{sys})×10^{-26} e.cm.
DOI: 10.1103/physrevx.7.041034
2017
Cited 153 times
Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24≤ma≤10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.Received 29 August 2017DOI:https://doi.org/10.1103/PhysRevX.7.041034Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasDark matterPhysical SystemsAxionsNeutronsTechniquesNuclear spin resonanceGravitation, Cosmology & AstrophysicsNuclear PhysicsAtomic, Molecular & Optical
DOI: 10.1103/physreva.70.032102
2004
Cited 123 times
Geometric-phase-induced false electric dipole moment signals for particles in traps
Theories are developed to evaluate Larmor frequency shifts, derived from geometric phases, in experiments to measure electric dipole moments (EDM's) of trapped, atoms, molecules, and neutrons. A part of these shifts is proportional to the applied electric field and can be interpreted falsely as an electric dipole moment. A comparison is made between our theoretical predictions for these shifts and some results from our recent experiments, which shows agreement to within the experimental errors of 15%. The comparison also demonstrates that some trapped particle EDM experiments have reached a sensitivity where stringent precautions are needed to minimize and control such false EDM's. Computer simulations of these processes are also described. They give good agreement with the analytical results and they extend the study by investigating the influence of varying surface reflection laws in the hard-walled traps considered. They also explore the possibility to suppress such false EDM's by introducing collisions with buffer gas particles. Some analytic results for frequency shifts proportional to the square of the $\mathbf{E}$ field are also given and there are results for the averaging of the $\mathbf{B}$ field in the absence of an $\mathbf{E}$ field.
DOI: 10.1103/physrevlett.103.081602
2009
Cited 66 times
Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and 199Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b perpendicular < 2 x 10(-20) eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |gn| < 0.3 eV/c2 m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |gn| < 3 x 10(-4) eV/c2 m.
DOI: 10.1016/j.phpro.2011.06.032
2011
Cited 58 times
The search for the neutron electric dipole moment at the Paul Scherrer Institute
The measurement of the neutron electric dipole moment (nEDM) constrains the contribution of CP-violating terms within both the Standard Model and its extensions. The experiment uses ultracold neutrons (UCN) stored in vacuum at room temperature. This technique provided the last (and best) limit by the RAL/Sussex/ILL collaboration in 2006: dn < 2:9 × 10-26 e cm (90% C.L.). We aim to improve the experimental sensitivity by a factor of 5 within 2-3 years, using an upgrade of the same apparatus. We will take advantage of the increased ultracold neutron density at the Paul Scherrer Institute (PSI) and of a new concept including both, external magnetometers and a cohabiting magnetometer. In parallel, a next generation apparatus with two UCN storage chambers and an elaborate magnetic field control is being designed aiming to achieve another order of magnitude increase in sensitivity, allowing us to put a limit as tight as dn < 5 × 10-28 e cm (95% C.L.), if not establishing a finite value.
DOI: 10.1016/j.nima.2013.10.005
2014
Cited 50 times
Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer
A description is presented of apparatus used to carry out an experimental search for an electric dipole moment of the neutron, at the Institut Laue-Langevin (ILL), Grenoble. The experiment incorporated a cohabiting atomic-mercury magnetometer in order to reduce spurious signals from magnetic field fluctuations. The result has been published in an earlier letter; here, the methods and equipment used are discussed in detail.
DOI: 10.1016/s0375-9601(02)01773-5
2003
Cited 71 times
Experimental measurement of ultracold neutron production in superfluid 4He
The absolute production rate of ultracold neutrons (UCN) produced by the interaction of a cold neutron beam with superfluid helium has been measured over an incident energy range of 0.7 to 4 meV. The neutrons are reduced in energy to become UCN by creating phonon(s) in the superfluid. The separate roles played by single and multi-phonon emission processes have been identified. Detection and identification of UCN, those neutrons with energies less than ∼250 neV and which can be stored in material bottles, were carried out using solid-state silicon detectors set within the superfluid helium. With a cold neutron flux of 2.62×107 neutrons cm−2s−1Å−1 at 8.9 Å in the superfluid, the single-phonon production rate of UCN was measured to be (0.91±0.13) cm−3s−1, a value close to theoretical prediction. Multi-phonon emission processes for UCN production by higher energy neutrons were also observed and, in the beam used for this work at ILL, they contributed (24±2)% to the overall UCN production rate.
DOI: 10.1103/physrevd.80.032003
2009
Cited 56 times
Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields
We performed ultracold neutron storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n 0 ) oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B 0 , ultracold neutron losses would be maximal for B % B 0 .We did not observe any indication for nn 0 oscillations and placed a lower limit on the oscillation time of nn 0 > 12:0 s at 95% C.L. for any B 0 between 0 and 12:5 T.
DOI: 10.1016/s0168-9002(97)01121-2
1998
Cited 62 times
Performance of an atomic mercury magnetometer in the neutron EDM experiment
Previous measurements of the electric dipole moment (EDM) of the neutron have been limited by the systematic effect of changes in the magnetic environment. In this paper we report the performance of a newly-developed “cohabiting” magnetometer based upon measurements of the nuclear precession frequency of free mercury atoms that occupy the same volume as the neutrons. We find that we are able to observe changes as small as 10−9 G in the volume-averaged magnetic field, allowing us to reduce the systematic errors in the EDM experiment by more than an order of magnitude in comparison with previous measurements.
DOI: 10.1016/j.physletb.2014.10.046
2014
Cited 34 times
A measurement of the neutron to 199 Hg magnetic moment ratio
The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).
DOI: 10.1103/physreva.99.042112
2019
Cited 27 times
Magnetic-field uniformity in neutron electric-dipole-moment experiments
Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron.A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation.We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms.The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electricdipole-moment apparatus installed at the Paul Scherrer Institute.
DOI: 10.1016/j.nima.2022.166716
2022
Cited 10 times
Quality control of mass-produced GEM detectors for the CMS GE1/1 muon upgrade
The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton collisions is expected to exceed $2-3\times10^{34}$~cm$^{-2}$s$^{-1}$ for Run 3 (starting in 2022), and it will be at least $5\times10^{34}$~cm$^{-2}$s$^{-1}$ when the High Luminosity Large Hadron Collider is completed for Run 4. These conditions will affect muon triggering, identification, and measurement, which are critical capabilities of the experiment. To address these challenges, additional muon detectors are being installed in the CMS endcaps, based on Gas Electron Multiplier technology. For this purpose, 161 large triple-Gas Electron Multiplier detectors have been constructed and tested. Installation of these devices began in 2019 with the GE1/1 station and will be followed by two additional stations, GE2/1 and ME0, to be installed in 2023 and 2026, respectively. The assembly and quality control of the GE1/1 detectors were distributed across several production sites around the world. We motivate and discuss the quality control procedures that were developed to standardize the performance of the detectors, and we present the final results of the production. Out of 161 detectors produced, 156 detectors passed all tests, and 144 detectors are now installed in the CMS experiment. The various visual inspections, gas tightness tests, intrinsic noise rate characterizations, and effective gas gain and response uniformity tests allowed the project to achieve this high success rate.
DOI: 10.1016/j.nima.2005.06.074
2005
Cited 45 times
Cosmic ray tests of double-gap resistive plate chambers for the CMS experiment
The CMS Barrel resistive plate chambers quality tests are performed at three different sites (Bari, Pavia and Sofia), where equivalent software and hardware tools are used. Data from the first 210 detectors are available for a comprehensive analysis. The paper describes the general experimental set-up, the test procedure and the cosmic muon test results. The muon trajectory reconstruction algorithm, used for precise studies, is presented. The criteria to accept or reject a detector are also given. The CMS final-design chambers show an average efficiency greater than 95%.
DOI: 10.1140/epjd/e2015-60207-4
2015
Cited 21 times
Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field
We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.
DOI: 10.1103/physrevd.92.052008
2015
Cited 20 times
Gravitational depolarization of ultracold neutrons: Comparison with data
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.
DOI: 10.1016/j.nima.2018.11.061
2019
Cited 16 times
Layout and assembly technique of the GEM chambers for the upgrade of the CMS first muon endcap station
Triple-GEM detector technology was recently selected by CMS for a part of the upgrade of its forward muon detector system as GEM detectors provide a stable operation in the high radiation environment expected during the future High-Luminosity phase of the Large Hadron Collider (HL-LHC). In a first step, GEM chambers (detectors) will be installed in the innermost muon endcap station in the $1.6<\left|\eta\right|<2.2$ pseudo-rapidity region, mainly to control level-1 muon trigger rates after the second LHC Long Shutdown. These new chambers will add redundancy to the muon system in the $\eta$-region where the background rates are high, and the bending of the muon trajectories due to the CMS magnetic field is small. A novel construction technique for such chambers has been developed in such a way where foils are mounted onto a single stack and then uniformly stretched mechanically, avoiding the use of spacers and glue inside the active gas volume. We describe the layout, the stretching mechanism and the overall assembly technique of such GEM chambers.
DOI: 10.1016/j.nima.2024.169075
2024
Improved resistive plate chambers for HL-LHC upgrade of CMS
In view of the High Luminosity LHC, the CMS Muon system will be upgraded to sustain its efficient muon triggering and reconstruction performance. Resistive Plate Chambers (RPC) are dedicated detectors for muon triggering due to their excellent timing resolution. The RPC system will be extended up to 2.4 in pseudorapidity. Before the LHC Long Shutdown 3, new RE3/1 and RE4/1 stations of the forward Muon system will be equipped with improved Resistive Plate Chambers (iRPC) having, compared to the present RPC system, a different design and geometry and 2D strip readout. This advanced iRPC geometry configuration allows the rate capability to improve and hence survive the harsh background conditions during the HL-LHC phase. Several iRPC demonstrator chambers were installed in CMS during the recently completed 2nd Long Shutdown to study the detector behaviour under real LHC conditions. This paper summarizes the iRPC project and its schedule, including the status of the iRPC production sites, details of the chamber quality control procedures and results of the commissioning of the demonstrator chambers.
DOI: 10.1016/j.nima.2024.169400
2024
CMS iRPC FEB development and validation
In view of the High Luminosity upgrade of the CERN LHC, the forward CMS Muon spectrometer will be extended with two new stations of improved Resistive Plate Chambers (iRPC) covering the pseudorapidity range from 1.8 to 2.4. Compared to the present RPC system, the gap thickness is reduced to lower the avalanche charge, and an innovative 2D strip readout geometry is proposed. These improvements will allow iRPC detector to cope with higher background rates. A new Front-End-Board (FEB) is designed to readout iRPC signals with a threshold as low as 30 fC and an integrated Time Digital Converter with a resolution of 30 ps. In addition, the communication bandwidth is significantly increased by using optical fibers. The history, final design, certification, and calibration of this FEB are presented.
2000
Cited 35 times
CMS : the TriDAS Project Technical Design Report; v.1, the Trigger Systems
DOI: 10.1016/s0168-9002(98)01338-2
1999
Cited 34 times
Characterization and development of diamond-like carbon coatings for storing ultracold neutrons
In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now succesfully being used in an experiment to measure the EDM of the neutron.
DOI: 10.1016/s0168-9002(02)00391-1
2002
Cited 33 times
Development of solid-state silicon devices as ultra cold neutron detectors
We present a study aimed at developing and optimising methods for ultra-cold neutron (UCN) detection using solid-state silicon detectors. For this we investigated the characteristics of neutron to charged particle converters (6Li, 10B) and compared different deposition techniques. We find that a deposition of 600 μg/cm2 of 6LiF is required to ensure maximum UCN detection efficiency using 6Li as converter. The UCN detectors that we have developed are now fully operational as a flux monitor and as a UCN spectrum analyser in the neutron electric dipole moment experiment at the Institut Laue Langevin in Grenoble.
DOI: 10.1103/physrevlett.98.149102
2007
Cited 26 times
Baker<i>et al.</i>Reply:
A Reply to the Comment by S. K. Lamoreaux and R. Golub.Received 9 January 2007DOI:https://doi.org/10.1103/PhysRevLett.98.149102©2007 American Physical Society
DOI: 10.1209/0295-5075/92/51001
2010
Cited 22 times
New constraints on Lorentz invariance violation from the neutron electric dipole moment
We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high-sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of an nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to d12 < 10×10−25e cm and d24 < 14×10−25e cm at 95% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of εLV > 1010 GeV.
DOI: 10.1088/1742-6596/251/1/012055
2010
Cited 19 times
CryoEDM: a cryogenic experiment to measure the neutron Electric Dipole Moment
We have constructed an instrument, CryoEDM, to measure the neutron electric dipole moment to a precision of 10−28 e cm at the Institut Laue-Langevin. The main characteristic is that it is operating entirely in a cryogenic environment, at temperatures of 0.7 K within superfluid helium. Ultracold neutrons are produced in a superthermal source and stored within the superfluid in a storage cell which is held in a magnetic and electric field. NMR measurements are carried out to look for any shifts in the neutron Larmor precession frequency associated with the electric field and the neutrons are detected in-situ in the superfluid. Low temperature SQUID magnetometry is used to monitor the magnetic field. We report on the current status of the project that is now being commissioned and give an outlook on the future exploitation of the instrument.
DOI: 10.1088/1748-0221/11/01/c01023
2016
Cited 12 times
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown.
DOI: 10.1051/epjap:1999165
1999
Cited 23 times
Investigation of storage of ultra-cold neutrons in traps
It is known that losses of ultra-cold neutrons (UCN) from traps are due to the β-decay, up scattering and absorption on a surface but we have identified for the first time a complementary mechanism. We suppose that this arises from an increase in energy of the neutrons resulting in an upper energy spectral cut-off which is about twice higher than that for initial stored neutrons. The total probability for such a process equals ~10−5 per collision with a trap wall made of stainless steel without or with a Fomblin oil and grease coating.
DOI: 10.1016/0168-9002(91)90069-3
1991
Cited 22 times
Measurement of the energy dependence of the neutron loss per bounce function on reflection from oil and grease surfaces using monochromatic ultracold neutrons
We report a technique for determining directly the energy dependent UCN loss per bounce function μ(E) for material surfaces using monochromatic UCN. Results of such measurements on Fomblin oil and grease surfaces are presented for neutrons with energies in the range 5 to 106 neV, in the temperature range 283–308 K. The results show that these materials exhibit a loss per bounce function in good agreement with that predicted by the theory of UCN scattering from an abrupt one dimensional complex potential step. Some evidence for very small energy changes at reflection was found for neutrons with energies close to the critical energy of the step. Values of the loss parameter (2f) = 4.7(0.2) and 3.7(0.2) × 10−5 (at 294 K) were deduced for the oil and grease surfaces respectively. The (2f;) parameter of the oil was found to be strongly temperature dependent.
DOI: 10.1016/j.nuclphysbps.2007.11.133
2008
Cited 14 times
The gas monitoring system for the Resistive Plate Chamber detector of the CMS experiment at LHC
Due to its large volume (18 m3)the Resistive Plate Chamber (RPC) detector of the Compact Muon Solenoid (CMS) experiment at the LHC proton collider (CERN, Switzerland) will employ a gas re-circulation system. Since the mixture composition and quality are crucial issues for the detector operation, CMS-RPC will use an online gas analysis and monitoring system. An overview of both the CMS-RPC gas system and gas monitoring system is given and the project parameters are described.
DOI: 10.1088/1748-0221/8/04/p04005
2013
Cited 10 times
CMS Resistive Plate Chamber overview, from the present system to the upgrade phase I
Resistive Plate Chambers have been chosen as dedicated trigger muon detector for the Compact Muon Solenoid experiment [1] at the Large Hadron Collider [2] at CERN. The system consists of about 3000 m2 of double gap RPC chambers placed in both the barrel and endcap muon regions.
DOI: 10.1016/j.nima.2020.164104
2020
Cited 8 times
Performance of prototype GE1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1083" altimg="si14.svg"><mml:mo>∕</mml:mo></mml:math>1 chambers for the CMS muon spectrometer upgrade
The high-luminosity phase of the Large Hadron Collider (HL-LHC) will result in ten times higher particle background than measured during the first phase of LHC operation. In order to fully exploit the highly-demanding operating conditions during HL-LHC, the Compact Muon Solenoid (CMS) Collaboration will use Gas Electron Multiplier (GEM) detector technology. The technology will be integrated into the innermost region of the forward muon spectrometer of CMS as an additional muon station called GE1∕1. The primary purpose of this auxiliary station is to help in muon reconstruction and to control level-1 muon trigger rates in the pseudo-rapidity region 1.6≤|η|≤2.2. The new station will contain trapezoidal-shaped GEM detectors called GE1∕1 chambers. The design of these chambers is finalized, and the installation is in progress during the Long Shutdown phase two (LS-2) that started in 2019. Several full-size prototypes were built and operated successfully in various test beams at CERN. We describe performance measurements such as gain, efficiency, and time resolution of these prototype chambers, developed after years of R&D, and summarize their behavior in different gas compositions as a function of the applied voltage.
DOI: 10.1016/j.nima.2010.02.110
2010
Cited 11 times
An optical device for ultra-cold neutrons—Investigation of systematic effects and applications
We developed an optical device for ultra-cold neutrons and investigated the influence of a tilt of its guiding components. A measurement of the time-of-flight of the neutrons through the device by means of a dedicated chopper system was performed and a light-optical method for the alignment of the guiding components is demonstrated. A comparative analysis of former experiments with our results shows the potential of such a device to test the electrical neutrality of the free neutron on the 10−22qe level and to investigate the interaction of neutrons with gravity.
DOI: 10.1016/j.nima.2016.05.067
2017
Cited 9 times
R&amp;D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector
This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern (FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described in detail and the results of the characterization study performed with an X-ray gun will be presented, together with the first results on time resolution based on data collected with muon/pion test beams.
DOI: 10.1088/1748-0221/8/03/p03017
2013
Cited 9 times
Uniformity and stability of the CMS RPC detector at the LHC
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking period, and preliminary results obtained with 2012 data. The detector uniformity has been ensured with a dedicated High Voltage scan with LHC collisions, in order to determine the optimal operating working voltage of each individual RPC chamber installed in CMS. Emphasis is given on the procedures and results of the High Voltage calibration. Moreover, an increased detector stability has been obtained by automatically taking into account temperature and atmospheric pressure variations in the CMS cavern.
DOI: 10.1016/j.nima.2009.07.099
2009
Cited 10 times
First measurements of the performance of the Barrel RPC system in CMS
During the summer 2006, a first integrated test of a part of the CMS experiment was performed at CERN collecting a data sample of several millions of cosmic rays events. A fraction of the Resistive Plate Chambers system was successfully operated. Results on the RPC performance are reported.
DOI: 10.3938/jkps.73.1080
2018
Cited 8 times
Study of Thin Double-Gap RPCs for the CMS Muon System
DOI: 10.1088/1748-0221/8/02/t02002
2013
Cited 7 times
The upgrade of the CMS RPC system during the first LHC long shutdown
The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in avalanche mode, with a similar design as the existing CMS endcap chambers. Here, we present the upgrade plans for the CMS RPC system for the fist long shutdown, including trigger simulation studies for the extended system, and details on the new HPL production, the chamber assembly and the quality control procedures.
DOI: 10.1088/1748-0221/14/11/c11012
2019
Cited 7 times
The CMS RPC detector performance and stability during LHC RUN-2
The CMS experiment, located at the Large Hadron Collider (LHC) in CERN, has a redundant muon system composed by three different gaseous detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness and redundancy to the muon trigger. The RPC system operation in the challenging background and pileup conditions of the LHC environment is presented. The RPC system provides information to all muon track finders and thus contributing to both muon trigger and reconstruction. The summary of the detector performance results obtained with proton-proton collision at √s = 13 TeV during 2016 and 2017 data taking have been presented. The stability of the system is presented in terms of efficiency and cluster size vs time and increasing instantaneous luminosity. Data-driven predictions about the expected performance during High Luminosity LHC (HL-LHC) stage have been reported.
DOI: 10.1088/1748-0221/16/05/c05002
2021
Cited 6 times
Front-end electronics for CMS iRPC detectors
Abstract A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm -2 ) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6 mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work.
DOI: 10.1016/s0168-9002(03)00384-x
2003
Cited 12 times
Development of low temperature solid state detectors for ultra-cold neutrons within superfluid 4He
As part of an R&D programme for the development of a next-generation experiment to measure the neutron electric dipole moment, in which ultra-cold neutrons (UCN) are produced and stored in superfluid 4He (superthermal source), we have developed cryogenic detectors of UCN that can operate in situ within the superfluid. Surface barrier detectors and PIN diode detectors have been tested and proven to work well at temperatures as low as 80 mK. When combined with a layer of 6LiF which converts neutrons to charged particles, these detectors form a reliable UCN detection system which has been tested in liquid helium down to 430 mK. The detectors have operated within superfluid helium for periods of up to 30 days with no signs of degradation. The development of this detection system has enabled us to measure the flux of UCN from a superthermal UCN source with no intervening transmission windows which can attenuate the flux. The addition of thin films of magnetically aligned iron also enables these detectors to be used in situ for neutron spin-polarisation analysis.
DOI: 10.1088/1748-0221/9/10/c10033
2014
Cited 6 times
Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC
During 2013 and 2014 (Long Shutdown LS1) the CMS experiment is upgrading the forward region installing a fourth layer of RPC detectors in order to complete and improve the muon system performances in the view of the foreseen high luminosity run of LHC. The new two endcap disks consists of 144 double-gap RPC chambers assembled at three different production sites: CERN, Ghent (Belgium) and BARC (India). The chamber components as well as the final detectors are subjected to full series of tests established in parallel at all the production sites.
DOI: 10.1088/1748-0221/10/05/c05031
2015
Cited 6 times
Radiation background with the CMS RPCs at the LHC
The Resistive Plate Chambers (RPCs) are employed in the CMS Experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This article presents results of the radiation background measurements performed with the 2011 and 2012 proton-proton collision data collected by CMS. Emphasis is given to the measurements of the background distribution inside the RPCs. The expected background rates during the future running of the LHC are estimated both from extrapolated measurements and from simulation.
DOI: 10.1088/1748-0221/15/11/c11012
2020
Cited 6 times
Improved-RPC for the CMS muon system upgrade for the HL-LHC
During Phase-2 of the LHC, known as the High Luminosity LHC (HL-LHC), the accelerator will increase its instantaneous luminosity to 5 × 1034 cm−2 s−1, delivering an integrated luminosity of 3000 fb−1 over 10 years of operation starting from 2027. In view of the HL-LHC, the CMS muon system will be upgraded to sustain efficient muon triggering and reconstruction performance. Resistive Plate Chambers (RPCs) serve as dedicated detectors for muon triggering due to their excellent timing resolution, and will extend the acceptance up to pseudorapidity values of |η|=2.4. Before Long Shutdown 3 (LS3), the RE3/1 and RE4/1 stations of the endcap will be equipped with new improved Resistive Plate Chambers (iRPCs) having different design and geometry than the present RPC system. The iRPC geometry configuration improves the detector's rate capability and its ability to survive the harsh background conditions of the HL-LHC . Also, new electronics with excellent timing performances (time resolution of less than 150 ps) are developed to read out the RPC detectors from both sides of the strips to allow for good spatial resolution along them. The performance of the iRPC has been studied with gamma radiation at the Gamma Irradiation Facility (GIF++) at CERN. Ongoing longevity studies will help to certify the iRPCs for the HL-LHC running period. The main detector parameters such as the current, rate and resistivity are regularly monitored as a function of the integrated charge. Preliminary results of the detector performance will be presented.
DOI: 10.1088/1748-0221/7/12/p12004
2012
Cited 6 times
Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning
The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.
DOI: 10.1088/1748-0221/11/09/c09006
2016
Cited 5 times
High rate, fast timing Glass RPC for the high η CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm−2s−1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.
DOI: 10.1088/1748-0221/11/08/c08008
2016
Cited 5 times
Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System
We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm−2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).
DOI: 10.1016/j.nima.2016.05.127
2017
Cited 4 times
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6<|η|<2.2, while continuing R&D is ongoing for additional regions.
DOI: 10.1088/1748-0221/13/08/p08024
2018
Cited 4 times
Long-term performance and longevity studies of the CMS Resistive Plate Chambers
Four double-gap CMS resistive plate chambers are being tested at the CERN Gamma Irradiation Facility to determine the performance and aging effects at the expected conditions of the High Luminosity-Large Hadron Collider. Results up to an integrated charge of 290 millicoulomb/cm2 are reported.
DOI: 10.1088/1748-0221/15/05/p05023
2020
Cited 4 times
Detector Control System for the GE1/1 slice test
Gas Electron Multiplier (GEM) technology, in particular triple-GEM, was selected for the upgrade of the CMS endcap muon system following several years of intense effort on R&D. The triple-GEM chambers (GE1/1) are being installed at station 1 during the second long shutdown with the goal of reducing the Level-1 muon trigger rate and improving the tracking performance in the harsh radiation environment foreseen in the future LHC operation [1]. A first installation of a demonstrator system started at the beginning of 2017: 10 triple-GEM detectors were installed in the CMS muon system with the aim of gaining operational experience and demonstrating the integration of the GE1/1 system into the trigger. In this context, a dedicated Detector Control System (DCS) has been developed, to control and monitor the detectors installed and integrating them into the CMS operation. This paper presents the slice test DCS, describing in detail the different parts of the system and their implementation.
DOI: 10.1088/1748-0221/15/10/p10013
2020
Cited 4 times
Triple-GEM discharge probability studies at CHARM: simulations and experimental results
The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2 and an integrated charge of 8 C/cm2 over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups.
DOI: 10.1088/1748-0221/11/09/c09017
2016
Cited 3 times
R&amp;D towards the CMS RPC Phase-2 upgrade
The high pseudo-rapidity region of the CMS muon system is covered by Cathode Strip Chambers (CSC) only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. In order to maintain good efficiency for the muon trigger in this region additional RPCs are planned to be installed in the two outermost stations at low angle named RE3/1 and RE4/1. These stations will use RPCs with finer granularity and good timing resolution to mitigate background effects and to increase the redundancy of the system.
DOI: 10.1088/1748-0221/17/01/c01011
2022
Upgrade of the CMS resistive plate chambers for the high luminosity LHC
Abstract During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb −1 . The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented.
DOI: 10.1016/s0168-9002(99)01044-x
2000
Cited 9 times
The neutron EDM experiment at the ILL
Abstract The latest-generation neutron electric dipole moment (EDM) experiment has been collecting data at the ILL since 1996. It uses a “cohabiting” atomic-mercury magnetometer to measure and compensate for the magnetic field fluctuations that were the principal source of systematic errors in previous experiments. The first results, which are soon to be published, essentially verify the existing limit on the dipole moment d n ; however, this new measurement is clearly limited by statistical rather than systematic uncertainties.
DOI: 10.1016/j.nima.2008.12.092
2009
Cited 4 times
Resistive plate chamber commissioning and performance in CMS
The CMS muon system is conceived for trigger and muon track reconstruction. The redundancy and robustness of the system are guaranteed by three complementary subsystems: drift tube in the barrel, cathode strip chamber in the end-cap and resistive plate chamber in barrel and end-cap. The installation of muon stations and read-out trigger electronic has been completed in middle 2007. Since than, a remarkable effort has been addressed to the detector commissioning in order to ensure the readiness of the hardware/software chain for the LHC start up operation. At the end of 2007, a test of an entire CMS slice has been performed, involving about 5% of muon stations. Several thousand cosmic muons events have been collected. Performance of the barrel chambers are reported.
DOI: 10.1016/j.nima.2008.12.226
2009
Cited 4 times
A configurable tracking algorithm to detect cosmic muon tracks for the CMS-RPC based technical trigger
In the CERN CMS experiment at LHC Collider special trigger signals called Technical Triggers will be used for the purpose of test and calibration. The Resistive Plate Chambers (RPC) based Technical Trigger system is a part of the CMS muon trigger system and is designed to detect cosmic muon tracks. It is based on two boards, namely RBC (RPC Balcony Collector) and TTU (Technical Trigger Unit). The proposed tracking algorithm (TA) written in VHDL and implemented in the TTU board detects single or multiple cosmic muon tracks at every bunch crossing along with their track lengths and corresponding chamber coordinates. The TA implementation in VHDL and its preliminary simulation results are presented.
DOI: 10.1088/1748-0221/7/11/p11013
2012
Cited 3 times
CMS endcap RPC gas gap production for upgrade
The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation.
DOI: 10.1088/1748-0221/7/10/p10009
2012
Cited 3 times
Tests of multigap RPCs for high-η triggers in CMS
In this paper, we report a systematic study of multigap Resistive Plate Chambers (RPCs) for high-η triggers in CMS. Prototype RPC modules with four- and six-gap structures have been constructed with phenolic high-pressure-laminated (HPL) plates and tested with cosmic muons and gamma rays irradiated from a 200-mCi 137Cs source. The detector characteristics of the prototype multigap RPCs were compared with those of the double-gap RPCs currently used in the CMS experiment at LHC. The mean values for detector charges of cosmic-muon signals drawn in the four- and six-gap RPCs for the efficiency values in the middle of the plateau were about 1.5 and 0.9 pC, respectively, when digitized with charge thresholds of 150 and 100 fC, respectively. They were respectively about one third and one fifth of that drawn in the current CMS double-gap RPC with a charge threshold of 200 fC. We concluded from the current R&D that use of the current phenolic-HPL multigap RPCs is advantageous to the high-η triggers in CMS in virtue of the smaller detector pulses.
DOI: 10.1016/j.nima.2008.12.234
2009
Cited 3 times
The compact muon solenoid RPC barrel detector
Resistive Plate Chambers (RPC) have been chosen as dedicated trigger muon detectors for the Compact Muon Solenoid [CMS collaboration, Technical Design Report, CERN/LHCC 94-38, 1994. [1]] experiment at the Large Hadron Collider [The LHC project at CERN, LHC-project-report-36, 1996. [2]] at CERN. Four Italian groups from Bari, Frascati, Napoli and Pavia and two Bulgarian groups from Sofia have participated in designing and constructing the RPC barrel system. A sophisticated and complex production line has been organized by the collaboration to build the 480 RPC chambers, with a quality assurance (QA) test, made by 3 consecutive steps, in order to assure full functionality of the chambers. A final certification of the chambers has been made at ISR (CERN) with a month-long test. After that the RPCs have been coupled to the Drift Tube chamber and installed in the iron return yoke of the CMS solenoid. The first chamber was produced in 2002 and last was installed in October 2007. The system is now completely installed and commissioning has been going on since the second half of 2005 to complete the Large Hadron Collider (LHC) startup in the summer of 2008. The chamber construction, the test made, the main results achieved and a short description of all the services needed to run the RPC barrel system will be described in this paper.
DOI: 10.1109/tns.2018.2871428
2018
Cited 3 times
Operational Experience With the GEM Detector Assembly Lines for the CMS Forward Muon Upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement.
DOI: 10.1088/1748-0221/13/09/c09001
2018
Cited 3 times
Fast timing measurement for CMS RPC Phase-II upgrade
With the increase of the LHC luminosity foreseen in the coming years, many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced or upgraded. The new ones should be capable to provide time information to reduce the data ambiguity due to the expected high pileup. We propose to equip CMS high |η| muon chambers with pairs of single gap RPC detectors read out by long pickup strips PCB. The precise time measurement (0<15 ps) of the signal induced by particles crossing the detector on both ends of each strip will give an accurate measurement of the position of the incoming particle along the strip. The absolute time measurement, determined by RPC signal (around 1.5 ns) will also reduce the data ambiguity due to the highly expected pileup and help to identify Heavy Stable Charged Particles (HSCP). The development of a specific electronic chain (analog front-end ASIC, time-to-digital converter stage and printed circuit board design) and the corresponding first results on prototype chambers are presented.
DOI: 10.1088/1748-0221/14/09/c09045
2019
Cited 3 times
RPC radiation background simulations for the high luminosity phase in the CMS experiment
The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the detector material could cause significant damage and result in a progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study the radiation environment and the impact on detector performance. Results are presented for CMS RPC stations considering the operating conditions expected at the HL-LHC.
DOI: 10.1088/1748-0221/15/10/c10027
2020
Cited 3 times
Experiences from the RPC data taking during the CMS RUN-2
The CMS experiment recorded 177.75 /fb of proton-proton collision data during the RUN-1 and RUN-2 data taking period. Successful data taking at increasing instantaneous luminosities with the evolving detector configuration was a big achievement of the collaboration. The CMS RPC system provided redundant information for the robust muon triggering, reconstruction, and identification. To ensure stable data taking, the CMS RPC collaboration has performed detector operation, calibration, and performance studies. Various software and related tools are developed and maintained accordingly. In this paper, the overall performance of the CMS RPC system and experiences of the data taking during the RUN-2 period are summarised.
DOI: 10.1016/j.nima.2016.01.059
2016
Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
DOI: 10.1109/nssmic.2015.7581797
2015
Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC
The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≥ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = −ln(tan(θ/2)), where θ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 < |η| < 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> (70/30) and Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> /CF <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution.
2007
Cited 3 times
Reply to Comment on An Improved Experimental Limit on the Electric Dipole Moment of the Neutron
The Authors reply to the Comment of Golub and Lamoreaux. The experimental limit on the neutron electric dipole moment remains unchanged from that previously announced.
DOI: 10.1088/1748-0221/9/12/c12016
2014
CMS RPC muon detector performance with 2010-2012 LHC data
The muon spectrometer of the CMS (Compact Muon Solenoid) experiment at the Large Hadron Collider (LHC) is equipped with a redundant system made of Resistive Plate Chambers and Drift Tube in barrel and RPC and Cathode Strip Chamber in endcap region. In this paper, the operations and performance of the RPC system during the first three years of LHC activity will be reported. The stability of RPC performance, such as efficiency, cluster size and noise, will be reported. Finally, the radiation background levels on the RPC system have been measured as a function of the LHC luminosity. Extrapolations to the LHC and High Luminosity LHC conditions are also discussed.
DOI: 10.1016/j.nima.2023.168272
2023
The CMS RPC system readiness for LHC Run-3 data taking
During Run-3, the LHC is preparing to deliver instantaneous luminosity in the range from 5 × 1034 cm−2 s−1 to 7.5 × 1034 cm−2 s−1. To ensure stable data taking, providing redundant information for robust muon triggering, reconstruction and identification, the CMS RPC collaboration has used the opportunity given by the LHC long shutdown 2 (LS2), to perform a series of maintenance and preparation activities for the new data taking period. The overall performance of the RPC system after the LS2 commissioning period and the activities in preparation for future data taking will be presented.
DOI: 10.1016/j.nima.2023.168266
2023
RPC background studies at CMS experiment
During Run2 the high instantaneous luminosity, up to 2.21034cm−2s−1, lead to a substantial hit rate in the Compact Muon Solenoid experiment’s muon chambers due to multiple background sources to physics processes sought for at LHC. In this article we will describe the analysis method devised to measure and identify the contributions to such background in the Resistive Plate Chambers. Thorough understanding of the background rates provides the base for the upgrade of the muon detectors for the High-Luminosity LHC.
DOI: 10.1016/j.nima.2023.168452
2023
Latest results of Longevity studies on the present CMS RPC system for HL-LHC phase
The present Compact Muon Solenoid Resistive Plate Chambers system has been worked efficiently during Run I and Run II of data taking period (Shah et al., 2020) [1]. In the coming years of operation with the High Luminosity LHC (HL-LHC), the expected rate and integrated charge are expected to be about 600 Hz/cm2 and 840 mC/cm2, respectively (including a safety factor of three). Therefore, the HL-LHC phase will be a challenge for the RPC system since the expected operating conditions are much harsher than those for which the detectors have been designed, and could introduce non-recoverable aging effects which can alter the detector properties. A longevity test has been started at the CERN Gamma Irradiation Facility to estimate the impact of HL-LHC conditions on the RPC detector performance in order to determine whether the RPC system will survive the harsher background conditions expected at HL-LHC. The latest results of the irradiation test will be presented.
DOI: 10.1016/j.nima.2023.168451
2023
Aging studies for the CMS improved Resistive Plate Chambers
For the High Luminosity (HL-LHC) upgrade an upgrade of the CMS detector is foreseen. One of the main projects is the development of the improved Resistive Plate Chamber (iRPC) detectors that will be installed in the forward region of CMS. To validate the performance of the new detector gaps with HL-LHC radiation levels, experimental tests have been conducted at the CERN Gamma Irradiation Facility (GIF++). One chamber equipped with electronics is studied and its parameters are monitored as a function of the accumulated charge.
DOI: 10.1016/j.nima.2023.168723
2023
Production and validation of industrially produced large-sized GEM foils for the Phase-2 upgrade of the CMS muon spectrometer
The upgrade of the CMS detector for the high luminosity LHC (HL-LHC) will include gas electron multiplier (GEM) detectors in the end-cap muon spectrometer. Due to the limited supply of large area GEM detectors, the Korean CMS (KCMS) collaboration had formed a consortium with Mecaro Co., Ltd. to serve as a supplier of GEM foils with area of approximately 0.6 m2. The consortium has developed a double-mask etching technique for production of these large-sized GEM foils. This article describes the production, quality control, and quality assessment (QA/QC) procedures and the mass production status for the GEM foils. Validation procedures indicate that the structure of the Korean foils are in the designed range. Detectors employing the Korean foils satisfy the requirements of the HL-LHC in terms of the effective gain, response uniformity, rate capability, discharge probability, and hardness against discharges. No aging phenomena were observed with a charge collection of 82 mC cm−2. Mass production of KCMS GEM foils is currently in progress.
DOI: 10.1088/1748-0221/18/11/p11029
2023
Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation
Abstract The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7 th of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, p short HV OFF = 0.42 -0.35 +0.94 % with detector HV OFF and p short HV OFF &lt; 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure.
DOI: 10.1016/j.nima.2009.06.092
2010
Resistive Plate Chambers performance with Cosmic Rays in the CMS experiment
The Resistive Plate Chambers [M. Abbrescia, et al., Nucl. Instr. and Meth. A 550 (2005) 116] are used in the CMS experiment [CMS Collaboration, The CMS experiment at the CERN LHC 2008, J. Inst. 3 (2008) S08004] as a dedicated muon trigger both in barrel and endcap system. About 4000m2 of double gap RPCs have been produced and have been installed in the experiment since more than one and half Years. The full barrel system and a fraction of the endcaps have been monitored to study dark current behaviour and system stability, and have been extensively commissioned with Cosmic Rays collected by the full CMS experiment.
DOI: 10.1088/1748-0221/12/02/p02003
2017
The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade
The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.
DOI: 10.1051/epjconf/201817403002
2018
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m 2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
DOI: 10.1088/1748-0221/14/10/c10042
2019
R&D of a real-size mosaic MRPC within the framework of the CMS muon upgrade
Based on previous experience and attempt, a real-size mosaic Multi-gap Resistive Plate Chamber (MRPC) has been developed within the framework of the CMS muon upgrade efforts. The chamber is a 5-gap with plates made each of 6 pieces of low resistive glass. Cosmic ray test at CERN 904 shows that its efficiency can reach above 95% with a gas mixture of 90% C2H2F4, 5% i-C4H10 and 5% SF6. The chamber was also tested with CMS dry gas(95.2% C2H2F4, 4.5% i-C4H10, 0.3% SF6) at the CERN Gamma Irradiation Facility (GIF++). Efficiency results calculated by a simple tracking method show that the good performance is maintained at rates up to 10 kHz/cm2.
DOI: 10.1088/1748-0221/16/04/c04005
2021
CMS RPC background — studies and measurements
Abstract The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity 1.9 &lt; |η| &lt; 2.4. Present results will be updated with the final geometry description, once it is available. The radiation background has been studied in terms of expected particle rates, absorbed dose and fluence. Two High Luminosity LHC (HL-LHC) scenarios have been investigated — after collecting 3000 and 4000 fb -1 . Estimations with safety factor of 3 have been considered, as well.
DOI: 10.1088/1748-0221/15/10/c10007
2020
RPC system in the CMS Level-1 Muon Trigger
The CMS experiment implements a two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High Level Trigger. To cope with the more challenging luminosity conditions, a new Level-1 architecture has been deployed during run II. This new architecture exploits in a better way the redundancy and complementarity of the three muon subsystems: Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC). The role of each subsystem in the Level-1 Muon Trigger is described here, highlighting the contribution from the RPC system. Challenges brought by the HL-LHC environment and new possibilities coming from detector and trigger upgrades are also discussed.
DOI: 10.1088/1748-0221/14/10/c10027
2019
RE3/1 &amp; RE4/1 RPC chambers integration in the inner region of the forward muon spectrometer in the CMS experiment
The high pseudorapidity ($\eta$) region of the Compact Muon Solenoid (CMS) muon system is covered by Cathode Strip Chambers only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. During the annual Year-End Technical Stops 2022 & 2023, two new layers of improved Resistive Plate Chambers (iRPC) will be added, RE3/1 & RE4/1, which will completely cover the region of $1.8 < |\eta| < 2.4$ in the endcap. Thus, the additional new chambers will lead to increase efficiency for both trigger and offline reconstruction in the difficult region where the background is the highest and the magnetic field is the lowest within the muon system. The extended RPC system will improve the performance and the robustness of the muon trigger. The final design of iRPC chambers and the concept to integrate and install them in the CMS muon system have been finalized. In this report, the main results demonstrating the implementation and installation of the new iRPC detectors in the CMS muon system at high $|\eta|$ region will be presented.
DOI: 10.1088/1748-0221/16/05/c05003
2021
CMS phase-II upgrade of the RPC Link System
Abstract The present RPC Link System has been servicing as one of the CMS subsystems since installation in 2008. Although the current Link System has been functioning well for the past 13 years, the aging of its electronic components and lack of radiation hard ASICs could present problems for future operations. Additionally, the needs to have a more robust control interface against electromagnetic interference, to improve the trigger performance with finer time granularity and to incorporate a higher bandwidth transmission lines led the idea of upgrading the Link System for the HL-LHC. This paper reviews the features of the recently developed prototype of the new Link System.
DOI: 10.1016/j.nima.2015.11.125
2016
Status report of the upgrade of the CMS muon system with Triple-GEM detectors
For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5<|η|<2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.
DOI: 10.1134/s1547477116050174
2016
Radiation monitoring of the GEM muon detectors at CMS
DOI: 10.1007/s41605-022-00340-6
2022
R &amp;D of back-end electronics for improved resistive plate chambers for the phase 2 upgrade of the CMS end-cap muon system
The Large Hadron Collider (LHC) at European Organization for Nuclear Research is planned to be upgraded to the high luminosity LHC. Increasing the luminosity makes muon triggering reliable and offline reconstruction very challenging. To enhance the redundancy of the Compact Muon Solenoid (CMS) Muon system and resolve the ambiguity of track reconstruction in the forward region, an improved Resistive Plate Chamber (iRPC) with excellent time resolution will be installed in the Phase-2 CMS upgrade. The iRPC will be equipped with Front-End Electronics (FEE), which can perform high-precision time measurements of signals from both ends of the strip. New Back-End Electronics (BEE) need to be researched and developed to provide sophisticated functionalities such as interacting with FEE with shared links for fast, slow control (SC) and data, in addition to trigger primitives (TPs) generation and data acquisition (DAQ). The BEE prototype uses a homemade hardware board compatible with the MTCA standard, the back-end board (BEB). BEE interacts with FEE via a bidirectional 4.8 Gbps optical paired-link that integrates clock, data, and control information. The clock and fast/slow control commands are distributed from BEB to the FEE via the downlink. The uplink is used for BEB to receive the time information of the iRPC’s fired strips and the responses to the fast/slow control commands. To have a pipelined detector data for cluster finding operation, recover (DeMux) the time relationship of which is changed due to the transmission protocol for the continuous incoming MUXed data from FEE. Then at each bunch crossing (BX), clustering fired strips that satisfy time and spatial constraints to generate TPs. Both incoming raw MUXed detector data and TPs in a time window and latency based on the trigger signal are read out to the DAQ system. Gigabit Ethernet (GbE) of SiTCP and commercial 10-GbE are used as link standards for SC and DAQ, respectively, for the BEB to interact with the server. The joint test results of the BEB with iRPC and Front-End Board (FEB) show a Bit Error Rate of the transmission links less than $$1\times {10^{-16}}$$ , a time resolution of the FEB Time-to-Digital Converter of 16 ps, and the resolution of the time difference between both ends of 160 ps which corresponding a spatial resolution of the iRPC of approximately 1.5 cm. Test results showed the correctness and stable running of the BEB prototype, of which the functionalities fulfill the iRPC requirements.
DOI: 10.1088/1748-0221/9/10/c10027
2014
CMS RPC tracker muon reconstruction
A new muon reconstruction algorithm is introduced at the CMS experiment. This algorithm reconstructs muons using only the central tracker and the Resistive Plate Chamber (RPC). The aim of this work is to study how a muon reconstructed only with tracker and RPC information would perform compared to the standard muon reconstruction of the CMS detector. The efficiencies to reconstruct and identify a RPC muon with a transverse momentum greater than 20 GeV/c are measured. The probabilities to misidentify hadrons as muons at low transverse momentum are also reported. These probabilities are compared to the standard muon identification used at CMS.
DOI: 10.22323/1.084.0376
2010
Measuring the electric dipole moment of the neutron: The cryoEDM experiment
The cryoEDM experiment at the Institut Laue-Langevin in Grenoble will measure the electric dipole moment (EDM) of the neutron with unparalleled precision.A neutron EDM arises due to CP violation.The cryoEDM experiment is sensitive to levels of CP violation predicted by many "beyond the standard model" theories and the result will therefore constrain or support these theories.The current limit to the neutron EDM stands at |d n | < 2.9×10 -26 e cm as measured with a room temperature experiment.By operating in superfluid helium below 0.9 K and collecting high densities of ultra cold neutrons, the cryoEDM experiment will improve on the existing limit or measure an EDM.High precision magnetometry is essential to reduce the systematic errors in the cryoEDM experiment originating from changes in the magnetic environment.We present the cryoEDM apparatus and technologies.
DOI: 10.1063/1.3322484
2010
THE CMS RPC SYSTEM OVERVIEW
The Muon System of the CMS experiment at CERN employees three different detector technologies—Drift Tube Chambers (DT) in the barrel part, Cathode Strip Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) both in the barrel and the endcaps. TDs and CSCs serve as precise muon trajectory measurement devices. The RPCs are responsible for the bunch crossing identification and for a fast muon transverse momentum measurement. The total number of RPCs is 480 in the barrel and 756 in the endcaps, covering an area of about 3500 square meters. A brief overview of the system will be presented as well as some recent results about the system stability and performance.
DOI: 10.1051/epjconf/201817403003
2018
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&amp;D and moving to production. An unprecedented large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.
DOI: 10.1088/1748-0221/14/05/c05012
2019
Longevity studies on the CMS-RPC system
In the next decades, the Large Hadron Collider (LHC) will run at very high luminosity (HL-LHC) 5×1034 cm−2s−1, factor five more than the nominal LHC luminosity. During this period the CMS RPC system will be subjected to high background rates which could affect the performance by inducing aging effects. A dedicated longevity program to qualify the present RPC system for the HL-LHC running period is ongoing. At the CERN Gamma Irradiation Facility (GIF++) four RPC detectors, from the spare production, are exposed to an intense gamma radiation for a dose equivalent to the one expected at the HL-LHC . The main detector parameters are under monitoring as a function of the integrated charge and the performance is studied with a muon beam. Preliminary results of the study after having collected ≈ 34% of the expected integrated charge will be presented.
DOI: 10.1088/1748-0221/14/09/c09046
2019
High voltage calibration method for the CMS RPC detector
The Resistive Plate Chambers (RPC) are used for muon triggers in the CMS experiment. To calibrate the high voltage working-points (WP) and identify degraded detectors due to radiation or chemical damage, a high voltage scan has been performed using 2017 data from pp collisions at a center-of-mass energy of 13 TeV. In this paper, we present the calibration method and the latest results obtained for the 2017 data. A comparison with all scans taken since 2011 is considered to investigate the stability of the detector performance in time.
DOI: 10.1088/1748-0221/15/10/c10025
2020
CMS RPC activities during LHC LS-2
The second LHC long shutdown period (LS2) is an important opportunity for the CMS Resistive Plate Chambers (RPC) to complete their consolidation and upgrade projects. The consolidation includes detector maintenance for gas tightness, HV (high voltage), LV (low voltage) and slow control operation. All services for the RPC Phase-2 upgrade: improved RPC in stations RE3/1 and RE4/1, were anticipated for installation to LS2. This paper summarises the RPC system maintenance and upgrade activities.
DOI: 10.1088/1742-6596/1561/1/012006
2020
Two years’ test of a temperature sensing system based on fibre Bragg grating technology for the CMS GE1/1 detectors
Abstract A temperature monitoring system based on fibre Bragg grating (FBG) fibre optic sensors has been developed for the gas electron multiplier (GEM) chambers of the Compact Muon Solenoid (CMS) detector. The monitoring system was tested in prototype chambers undergoing a general test of the various technological solutions adopted for their construction. The test lasted about two years and was conducted with the chambers being installed in the CMS detector and operated during regular experimental running. In this paper, we present test results that address the choice of materials and procedures for the production and installation of the FBG temperature monitoring system in the final GEM chambers.
DOI: 10.1088/1748-0221/15/10/c10009
2020
A new approach for CMS RPC current monitoring using Machine Learning techniques
The CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current is essential for the correct interpretation of its instabilities as they can be caused either by changes in external conditions or by malfunctioning of the detector in the ideal case. We propose a Machine Learning(ML) based approach to be used for monitoring the CMS RPC currents. The approach is crucial for the development of an automated monitoring system capable of warning for possible hardware problems at a very early stage, which will contribute further to the stable operation of the CMS RPC detector.
DOI: 10.1088/1748-0221/15/05/c05072
2020
RPC upgrade project for CMS Phase II
The Muon Upgrade Phase II of the Compact Muon Solenoid (CMS) aims to guarantee the optimal conditions of the present system and extend the η coverage to ensure a reliable system for the High Luminosity Large Hadron Collider (HL-LHC) period. The Resistive Plate Chambers (RPCs) system will upgrade the off-detector electronics (called link system) of the chambers currently installed chambers and place improved RPCs (iRPCs) to cover the high pseudo−rapidity region, a challenging region for muon reconstruction in terms of background and momentum resolution. In order to find the best option for the iRPCs, an R&D program for new detectors was performed and real size prototypes have been tested in the Gamma Irradiation Facility (GIF++) at CERN. The results indicated that the technology suitable for the high background conditions is based on High Pressure Laminate (HPL) double-gap RPC. The RPC Upgrade Phase II program is planned to be ready after the Long Shutdown 3 (LS3).
DOI: 10.1088/1748-0221/15/12/p12019
2020
Interstrip capacitances of the readout board used in large triple-GEM detectors for the CMS Muon Upgrade
We present analytical calculations, Finite Element Analysis modelling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequently maximize the signal-to-noise ratio for the detector. We find agreement at the 1.5–4.8% level between the two methods of calculations and on the average at the 17% level between calculations and measurements. A configuration with halved strip lengths and doubled strip widths results in a measured 27–29% reduction over the original configuration while leaving the total number of strips unchanged. We have now adopted this design modification for all eight module types of the GE2/1 detector and will produce the final detector with this new strip design.
DOI: 10.1088/1748-0221/16/04/c04001
2021
Towards a two-dimensional readout of the improved CMS Resistive Plate Chamber with a new front-end electronics
Abstract As part of the Compact Muon Solenoid experiment Phase-II upgrade program, new resistive plate chambers will be installed in the region at low angle with respect to the beam collision axis, in order to improve the detection of muons with a low transverse momentum. High background conditions are expected in this region during the high-luminosity phase of the Large Hadron Collider, therefore an improved-RPC design has been proposed with a new front-end electronics to sustain a higher particle rate capability and better time resolution. A new technology is used in the front-end electronics resulting in low achievable signal detection of 1–20 fC. Crucial in the design of the improved-RPC is the capability of a two-dimensional readout in order to improve the spatial resolution, mainly motivated by trigger requirements. In this work, the first performance results towards this two-dimensional readout are presented, based on data taken on a real-size prototype chamber with two embedded readout planes with orthogonal strips.
DOI: 10.1007/s41605-020-00229-2
2021
Research and development of the back-end electronics for the two-dimensional improved resistive plate chambers in CMS upgrade
1999
Observation of a new mechanism of ultracold-neutron losses in traps
DOI: 10.1088/1748-0221/9/10/c10031
2014
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.