ϟ

Narendra Tuteja

Here are all the papers by Narendra Tuteja that you can download and read on OA.mg.
Narendra Tuteja’s last known institution is . Download Narendra Tuteja PDFs here.

Claim this Profile →
DOI: 10.1016/j.plaphy.2010.08.016
2010
Cited 8,535 times
Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
DOI: 10.1016/j.abb.2005.10.018
2005
Cited 2,428 times
Cold, salinity and drought stresses: An overview
World population is increasing at an alarming rate and is expected to reach about six billion by the end of year 2050. On the other hand food productivity is decreasing due to the effect of various abiotic stresses; therefore minimizing these losses is a major area of concern for all nations to cope with the increasing food requirements. Cold, salinity and drought are among the major stresses, which adversely affect plants growth and productivity; hence it is important to develop stress tolerant crops. In general, low temperature mainly results in mechanical constraint, whereas salinity and drought exerts its malicious effect mainly by disrupting the ionic and osmotic equilibrium of the cell. It is now well known that the stress signal is first perceived at the membrane level by the receptors and then transduced in the cell to switch on the stress responsive genes for mediating stress tolerance. Understanding the mechanism of stress tolerance along with a plethora of genes involved in stress signaling network is important for crop improvement. Recently, some genes of calcium-signaling and nucleic acid pathways have been reported to be up-regulated in response to both cold and salinity stresses indicating the presence of cross talk between these pathways. In this review we have emphasized on various aspects of cold, salinity and drought stresses. Various factors pertaining to cold acclimation, promoter elements, and role of transcription factors in stress signaling pathway have been described. The role of calcium as an important signaling molecule in response to various stress signals has also been covered. In each of these stresses we have tried to address the issues, which significantly affect the gene expression in relation to plant physiology.
DOI: 10.1186/1475-2859-13-66
2014
Cited 762 times
Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity
Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.
DOI: 10.4161/psb.2.3.4156
2007
Cited 693 times
Abscisic Acid and Abiotic Stress Signaling
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.
DOI: 10.1016/s0076-6879(07)28024-3
2007
Cited 624 times
Mechanisms of High Salinity Tolerance in Plants
Among abiotic stresses, high salinity stress is the most severe environmental stress, which impairs crop production on at least 20% of irrigated land worldwide. In response to high salinity stress, various genes get upregulated, the products of which are involved either directly or indirectly in plant protection. Some of the genes encoding osmolytes, ion channels, receptors, components of calcium signaling, and some other regulatory signaling factors or enzymes are able to confer salinity‐tolerant phenotypes when transferred to sensitive plants. Overall, the susceptibility or tolerance to high salinity stress in plants is a coordinated action of multiple stress responsive genes, which also cross talk with other components of stress signal transduction pathways. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death; therefore, mechanisms of salinity tolerance involve sequestration of Na+ and Cl‐ in vacuoles of the cells, blocking of Na+ entry into the cell, Na+ exclusion from the transpiration stream, and some other mechanisms that help in salinity tolerance. Understanding these mechanisms of stress tolerance, along with a plethora of genes involved in the stress signaling network, is important to improve high salinity stress tolerance in crops plants. This chapter first describes the adverse effect of salinity stress and general pathway for the plant stress response, followed by roles of various ion pumps, calcium, SOS pathways, ABA, transcription factors, mitogen‐activated protein kinases, glycine betaine, proline, reactive oxygen species, and DEAD‐box helicases in salinity stress tolerance. The cross‐tolerance between stresses is also mentioned.
DOI: 10.4161/psb.5.1.10291
2010
Cited 609 times
Polyamines and abiotic stress tolerance in plants
Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.
DOI: 10.4161/psb.6.2.14701
2011
Cited 417 times
Mitogen-activated protein kinase signaling in plants under abiotic stress
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.
DOI: 10.1016/j.plaphy.2013.05.032
2013
Cited 414 times
Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations
Abiotic stresses such as salinity, drought, clilling, heavy metal are the major limiting factors for crop productivity. These stresses induce the overproduction of reactive oxygen species (ROS) which are highly reactive and toxic, which must be minimized to protect the cell from oxidative damage. The cell organelles, particularly chloroplast and mitochondria are the major sites of ROS production in plants where excessive rate of electron flow takes place. Plant cells are well equipped to efficiently scavenge ROS and its reaction products by the coordinated and concerted action of antioxidant machinery constituted by vital enzymatic and non-enzymatic antioxidant components. Glutathione reductase (GR, EC 1.6.4.2) and tripeptide glutathione (GSH, γ-Glutamyl-Cysteinyl-Glycine) are two major components of ascorbate-glutathione (AsA-GSH) pathway which play significant role in protecting cells against ROS and its reaction products-accrued potential anomalies. Both GR and GSH are physiologically linked together where, GR is a NAD(P)H-dependent enzymatic antioxidant and efficiently maintains the reduced pool of GSH - a cellular thiol. The differential modulation of both GR and GSH in plants has been widely implicated for the significance of these two enigmatic antioxidants as major components of plant defense operations. Considering recent informations gained through molecular-genetic studies, the current paper presents an overview of the structure, localization, biosynthesis (for GSH only), discusses GSH and GR significance in abiotic stress (such as salinity, drought, clilling, heavy metal)-exposed crop plants and also points out unexplored aspects in the current context for future studies.
DOI: 10.4161/psb.6.2.14146
2011
Cited 368 times
Unraveling the role of fungal symbionts in plant abiotic stress tolerance
Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.
DOI: 10.4161/psb.2.2.4176
2007
Cited 331 times
Calcium Signaling Network in Plants
Calcium ion (Ca(2+)) is one of the very important ubiquitous intracellular second messenger molecules involved in many signal transduction pathways in plants. The cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) have been found to increased in response to many physiological stimuli such as light, touch, pathogenic elicitor, plant hormones and abiotic stresses including high salinity, cold and drought. This Ca(2+) spikes normally result from two opposing reactions, Ca(2+) influx through channels or Ca(2+) efflux through pumps. The removal of Ca(2+) from the cytosol against its electrochemical gradient to either the apoplast or to intracellular organelles requires energized 'active' transport. Ca(2+)-ATPases and H(+)/Ca(2+) antiporters are the key proteins catalyzing this movement. The increased level of Ca(2+) is recognised by some Ca(2+)-sensors or calcium-binding proteins, which can activate many calcium dependent protein kinases. These kinases regulate the function of many genes including stress responsive genes, resulted in the phenotypic response of stress tolerance. Calcium signaling is also involved in the regulation of cell cycle progression in response to abiotic stress. The regulation of gene expression by cellular calcium is also crucial for plant defense against various stresses. However, the number of genes known to respond to specific transient calcium signals is limited. This review article describes several aspects of calcium signaling such as Ca(2+) requiremant and its role in plants, Ca(2+) transporters, Ca(2+)-ATPases, H(+)/ Ca(2+)-antiporter, Ca(2+)-signature, Ca(2+)-memory and various Ca(2+)-binding proteins (with and without EF hand).
DOI: 10.4161/psb.6.2.14880
2011
Cited 324 times
Cadmium stress tolerance in crop plants
Plants can’t move away and are therefore continuously confronted with unfavorable environmental conditions (such as soil salinity, drought, heat, cold, flooding and heavy metal contamination). Among heavy metals, cadmium (Cd) is a non-essential and toxic metal, rapidly taken up by roots and accumulated in various plant tissues which hamper the crop growth and productivity worldwide. Plants employ various strategies to counteract the inhibitory effect of Cd, among which nutrient management is one of a possible way to overcome Cd toxicity. Sulfur (S) uptake and assimilation are crucial for determining crop yield and resistance to Cd stress. Cd affects S assimilation pathway which leads to the activation of pathway responsible for the synthesis of cysteine (Cys), a precursor of glutathione (GSH) biosynthesis. GSH, a non-protein thiol acts as an important antioxidant in mitigating Cd-induced oxidative stress. It also plays an important role in phytochelatins (PCs) synthesis, which has a proven role in Cd detoxification. Therefore, S assimilation is considered a crucial step for plant survival under Cd stress. The aim of this review is to discuss the regulatory mechanism of S uptake and assimilation, GSH and PC synthesis for Cd stress tolerance in crop plants.
DOI: 10.1016/j.abb.2006.05.001
2006
Cited 316 times
Signaling through MAP kinase networks in plants
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.
DOI: 10.1016/j.abb.2008.01.010
2008
Cited 311 times
Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway
As salt stress imposes a major environmental threat to agriculture, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any transgenic strategy. Salt Overly Sensitive (SOS) genes (SOS1-SOS3) were isolated through positional cloning. Since sos mutants are hypersensitive to salt, their characterization resulted in the discovery of a novel pathway, which has helped in our understanding the mechanism of salt-stress tolerance in plants. Genetic analysis confirmed that SOS1-SOS3 function in a common pathway of salt tolerance. This pathway also emphasizes the significance of Ca2+ signal in reinstating cellular ion homeostasis. SOS3, a Ca2+ sensor, transduces the signal downstream after activating and interacting with SOS2 protein kinase. This SOS3-SOS2 complex activates the Na+/H+ antiporter activity of SOS1 thereby reestablish cellular ion homeostasis. Recently, SOS4 and SOS5 have also been characterized. SOS4 encodes a pyridoxal (PL) kinase that is involved in the biosynthesis of pyridoxal-5-phosphate (PLP), an active form of vitamin B6. SOS5 has been shown to be a putative cell surface adhesion protein that is required for normal cell expansion. Under salt stress, the normal growth and expansion of a plant cell becomes even more important and SOS5 helps in the maintenance of cell wall integrity and architecture. In this review we focus on the recent advances in salt stress and SOS signaling pathway. A broad coverage of the discovery of SOS mutants, structural aspect of these genes and the latest developments in the field of SOS1-SOS5 has been described.
DOI: 10.1016/j.plantsci.2011.04.018
2012
Cited 300 times
Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.)
Metal contamination of soils has become a worldwide problem and great environmental threat, as these metals accumulate in soils and plants in excess, and enter the food chain. Increased cadmium (Cd) uptake from contaminated soils leads to altered plant metabolism and limits the crop productivity. The experimental crop, Lepidium sativum L. (Garden Cress, Family: Brassicaceae) is a medicinally and economically important plant. An experiment was conducted to examine the effect of different concentrations of Cd (0, 25, 50 or 100 mg kg(-1) soil) on the performance of L. sativum. Cd accumulation in roots and leaves (roots>leaves) increased with the increaseing Cd concentration in soil. High Cd concentration (100mg Cd kg(-1) soil) inhibited the leaf area and plant dry mass and significant decline in net photosynthetic rate (P(N)), stomatal conductance (gs), intercellular CO(2) (Ci), chlorophyll (Chl a, Chl b, total Chl) content, carbonic anhydrase (CA; E.C. 4.2.1.1) activity, nitrate reductase (NR; E.C. 1.6.6.1) activity and nitrogen (N) content was also observed. However, ATP-sulfurylase (ATP-S; EC. 2.7.7.4) activity, sulfur (S) content and activities of antioxidant enzymes such as superoxide dismutase (SOD; E.C. 1.15.1.1); catalase (CAT; E.C. 1.11.1.6); ascorbate peroxidase (APX; E.C. 1.11.1.11) and glutathione reductase (GR; E.C. 1.6.4.2) and glutathione (GSH) content were increased. Specifically, the decrease in NR activity and N content showed that Cd affects N metabolism negatively; whereas, the increase in ATP-S activity and S content suggests the up-regulation of S assimilation pathway for possible Cd tolerance in coordination with enhanced activities of antioxidant enzymes and GSH. High Cd concentration (100mg Cd kg(-1) soil) perturbs the L. sativum growth by interfering with the photosynthetic machinery and disrupting the coordination between carbon, N and S metabolism. On the other hand, at low Cd concentration (25mg Cd kg(-1) soil) co-ordination of S and N metabolism complemented to the antioxidant machinery to protect the growth and photosynthesis of L. sativum plants.
DOI: 10.1074/jbc.m110.111021
2010
Cited 283 times
A Phosphate Transporter from the Root Endophytic Fungus Piriformospora indica Plays a Role in Phosphate Transport to the Host Plant
Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (<i>PiPT</i>) from the root endophytic fungus <i>Piriformospora indica</i>, which can be grown axenically. The <i>PiPT</i> polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that <i>PiPT</i> exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by <i>PiPT</i> was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of <i>PiPT</i> (<i>K<sub>m</sub></i> 25 μm) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of <i>PiPT</i> was localized to the external hyphae of <i>P. indica</i> colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of <i>PiPT</i>, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type <i>P. indica</i>. Higher amounts of phosphate were found in plants colonized with wild-type <i>P. indica</i> than that of non-colonized and plants colonized with knockdown <i>PiPT P. indica</i>. These observations suggest that <i>PiPT</i> is actively involved in the phosphate transportation and, in turn, <i>P. indica</i> helps improve the nutritional status of the host plant.
DOI: 10.1007/s11356-015-4532-5
2015
Cited 263 times
Superoxide dismutase—mentor of abiotic stress tolerance in crop plants
DOI: 10.3389/fmicb.2016.00332
2016
Cited 243 times
Piriformospora indica: Potential and Significance in Plant Stress Tolerance
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus and exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating mainly plant hormone-signaling during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
DOI: 10.1007/s11356-016-7309-6
2016
Cited 239 times
Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.
DOI: 10.1016/j.plaphy.2012.12.001
2013
Cited 214 times
Importance of nitric oxide in cadmium stress tolerance in crop plants
Cadmium (Cd(2+)) is a widespread heavy metal pollutant in the environment with a long biological half-life, originating mainly from industrial processes and phosphate fertilizers. It is easily taken up by plants, resulting in toxicity symptoms, such as chlorosis, wilting, growth reduction, and cell death. This cellular toxicity might result from interactions with vital metabolic pathways, carboxyl or thiol groups of proteins and reactive oxygen species (ROS) burst in plants. Plant exposure even to low concentrations of Cd may lead to cell death but the mechanism of its toxicity is still debatable. Therefore, exploring various ways to improve crop productivity and/or alleviate Cd stress effects is one of the major areas of concern. Nitric oxide (NO) is a hydrophobic gaseous molecule involved in various physiological processes such as germination, root growth, stomatal closure, control of the flowering timing etc. NO also functions as cell signaling molecule in plants and play important roles in the regulation of plant responses to both abiotic and biotic stress conditions. At the molecular level, NO signaling includes protein modification by binding to critical cysteine residues, heme or iron-sulfur centers and tyrosine residue nitration via peroxynitrite formation (ONOO(-)), mobilization of secondary messengers (Ca(2+), cyclic GMP and cyclic ADP-Rib) and modulation of protein kinase activities. Significant research had been done to understand the NO biosynthesis and signaling in plants under stress, but several questions still need to be answered. The present review is focused specifically on the importance of NO as Cd stress modulator in crop plants.
DOI: 10.4161/cib.4.3.14884
2011
Cited 208 times
Nucleolin
Nucleolin is a multifunctional phosphoprotein ubiquitously distributed in the nucleolus, nucleus and cytoplasm of the cell. Nucleolin has a bipartite nuclear localization signal sequence and is conserved in animals, plants and yeast. Its levels are correlated with the rate of functional activity of the nucleolus in exponentially growing cells. Nucleolin contains intrinsic DNA and RNA helicase, nucleic-acid-dependent ATPase and self-cleaving activities. It binds RNA through its RNA recognition motifs. It regulates various aspects of DNA and RNA metabolism, chromatin structure, rDNA transcription, rRNA maturation, cytokinesis, nucleogenesis, cell proliferation and growth, the folding, maturation and ribosome assembly and nucleocytoplasmic transport of newly synthesized pre-RNAs. In this review we present an overview on nucleolin, its localization, structure and various functions. We also describe the discovery and important studies of nucleolin in plants.
DOI: 10.3389/fpls.2016.00506
2016
Cited 201 times
The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.
DOI: 10.1007/s00425-016-2482-x
2016
Cited 140 times
Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes
DOI: 10.1002/jobm.201600188
2016
Cited 139 times
PGPR‐mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside
Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria‐plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)‐a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR‐plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC‐MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription–polymerase chain reaction (qRT–PCR) for gene expression. GC‐MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4‐nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS‐RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non‐treated root exudates (S‐RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up‐regulated in T6 treatment seedlings, whereas, high affinity K + transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline‐5‐carboxylate synthase (P5CS) genes were down‐regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.
DOI: 10.1080/20014091074219
2001
Cited 246 times
Molecular Mechanisms of DNA Damage and Repair: Progress in Plants
Despite stable genomes of all living organisms, they are subject to damage by chemical and physical agents in the environment (e.g., UV and ionizing. radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. The DNA lesions produced by these damaging agents could be altered base, missing base, mismatch base, deletion or insertion, linked pyrimidines, strand breaks, intra- and inter-strand cross-links. These DNA lesions could be genotoxic or cytotoxic to the cell. Plants are most affected by the UV-B radiation of sunlight, which penetrates and damages their genome by inducing oxidative damage (pyrimidine hydrates) and cross-links (both DNA protein and DNA-DNA) that are responsible for retarding the growth and development. The DNA lesions can be removed by repair, replaced by recombination, or retained, leading to genome instability or mutations or carcinogenesis or cell death. Mostly organisms respond to genome damage by activating a DNA damage response pathway that regulates cell-cycle arrest, apoptosis, and DNA repair pathways. To prevent the harmful effect of DNA damage and maintain the genome integrity, all organisms have developed various strategies to either reverse, excise, or tolerate the persistence of DNA damage products by generating a network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. The direct reversal and photoreactivation require single protein, all the rest of the repair mechanisms utilize multiple proteins to remove or repair the lesions. The base excision repair pathway eliminates single damaged base, while nucleotide excision repair excises a patch of 25- to 32-nucleotide-long oligomer, including the damage. The double-strand break repair utilizes either homologous recombination or nonhomologous endjoining. In plant the latter pathway is more error prone than in other eukaryotes, which could be an important driving force in plant genome evolution. The Arabidopsis genome data indicated that the DNA repair is highly conserved between plants and mammals than within the animal kingdom, perhaps reflecting common factors such as DNA methylation. This review describes all the possible mechanisms of DNA damage and repair in general and an up to date progress in plants. In addition, various types of DNA damage products, free radical production, lipid peroxidation, role of ozone, dessication damage of plant seed, DNA integrity in pollen, and the role of DNA helicases in damage and repair and the repair genes in Arabidopsis genome are also covered in this review.
DOI: 10.1099/mic.0.019869-0
2009
Cited 219 times
Antioxidant enzyme activities in maize plants colonized with Piriformospora indica
The bioprotection performance of Piriformospora indica against the root parasite Fusarium verticillioides was studied. We found that maize plants first grown with F. verticillioides and at day 10 inoculated with P. indica showed improvements in biomass, and root length and number as compared with plants grown with F. verticillioides alone. To validate our finding that inoculation with P. indica suppresses colonization by F. verticillioides , we performed PCR analyses using P. indica - and F. verticillioides -specific primers. Our results showed that inoculation with P. indica suppresses further colonization by F. verticillioides . We hypothesized that as the colonization by P. indica increases, the presence of/colonization by F. verticillioides decreases. In roots, catalase (CAT), glutathione reductase (GR), glutathione S -transferase (GST) and superoxide dismutase (SOD) activities were found to be higher in F. verticillioides -colonized plants than in non-colonized plants. Increased activity of antioxidant enzymes minimizes the chances of oxidative burst (excessive production of reactive oxygen species), and therefore F. verticillioides might be protected from the oxidative defence system during colonization. We also observed decreased antioxidant enzyme activities in plants first inoculated with F. verticillioides and at day 10 inoculated with P. indica as compared with plants inoculated with F. verticillioides alone. These decreased antioxidant enzyme activities due to the presence of P. indica help the plant to overcome the disease load of F. verticillioides . We propose that P. indica can be used as a bioprotection agent against the root parasite F. verticillioides.
DOI: 10.4161/psb.3.8.6186
2008
Cited 218 times
Chemical signaling under abiotic stress environment in plants
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca(2+)), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca(2+) is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca(2+) sensors detect the Ca(2+) signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.
DOI: 10.1002/j.1460-2075.1994.tb06826.x
1994
Cited 217 times
Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen.
Research Article17 October 1994free access Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. N. Tuteja N. Tuteja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author R. Tuteja R. Tuteja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author A. Ochem A. Ochem International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author P. Taneja P. Taneja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author N.W. Huang N.W. Huang International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author A. Simoncsits A. Simoncsits International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author S. Susic S. Susic International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author K. Rahman K. Rahman International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author L. Marusic L. Marusic International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author J. Chen J. Chen International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author N. Tuteja N. Tuteja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author R. Tuteja R. Tuteja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author A. Ochem A. Ochem International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author P. Taneja P. Taneja International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author N.W. Huang N.W. Huang International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author A. Simoncsits A. Simoncsits International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author S. Susic S. Susic International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author K. Rahman K. Rahman International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author L. Marusic L. Marusic International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author J. Chen J. Chen International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. Search for more papers by this author Author Information N. Tuteja1, R. Tuteja1, A. Ochem1, P. Taneja1, N.W. Huang1, A. Simoncsits1, S. Susic1, K. Rahman1, L. Marusic1 and J. Chen1 1International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. The EMBO Journal (1994)13:4991-5001https://doi.org/10.1002/j.1460-2075.1994.tb06826.x PDFDownload PDF of article text and main figures. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Human DNA helicase II (HDH II) is a novel ATP-dependent DNA unwinding enzyme, purified to apparent homogeneity from HeLa cells, which (i) unwinds exclusively DNA duplexes, (ii) prefers partially unwound substrates and (iii) proceeds in the 3′ to 5′ direction on the bound strand. HDH II is a heterodimer of 72 and 87 kDa polypeptides. It shows single-stranded DNA-dependent ATPase activity, as well as double-stranded DNA binding capacity. All these activities comigrate in gel filtration and glycerol gradients, giving a sedimentation coefficient of 7.4S and a Stokes radius of approximately 46 A, corresponding to a native molecular weight of 158 kDa. The antibodies raised in rabbit against either polypeptide can remove from the solution all the activities of HDH II. Photoaffinity labelling with [alpha-32P]ATP labelled both polypeptides. Microsequencing of the separate polypeptides of HDH II and cross-reaction with specific antibodies showed that this enzyme is identical to Ku, an autoantigen recognized by the sera of scleroderma and lupus erythematosus patients, which binds specifically to duplex DNA ends and is regulator of a DNA-dependent protein kinase. Recombinant HDH II/Ku protein expressed in and purified from Escherichia coli cells showed DNA binding and helicase activities indistinguishable from those of the isolated protein. The exclusively nuclear location of HDH II/Ku antigen, its highly specific affinity for double-stranded DNA, its abundance and its newly demonstrated ability to unwind exclusively DNA duplexes, point to an additional, if still unclear, role for this molecule in DNA metabolism. Previous ArticleNext Article Volume 13Issue 201 October 1994In this issue RelatedDetailsLoading ...
DOI: 10.1073/pnas.0406485102
2005
Cited 205 times
Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield
Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus- 35 S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T 0 transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T 0 transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T 1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na + ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T 1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.
DOI: 10.1016/j.mrrev.2008.06.004
2009
Cited 202 times
Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.
DOI: 10.1155/s1110724304402034
2004
Cited 199 times
Nitric Oxide as a Unique Bioactive Signaling Messenger in Physiology and Pathophysiology
Nitric oxide (NO) is an intra- and extracellular messenger that mediates diverse signaling pathways in target cells and is known to play an important role in many physiological processes including neuronal signaling, immune response, inflammatory response, modulation of ion channels, phagocytic defense mechanism, penile erection, and cardiovascular homeostasis and its decompensation in atherogenesis. Recent studies have also revealed a role for NO as signaling molecule in plant, as it activates various defense genes and acts as developmental regulator. In plants, NO can also be produced by nitrate reductase. NO can operate through posttranslational modification of proteins (nitrosylation). NO is also a causative agent in various pathophysiological abnormalities. One of the very important systems, the cardiovascular system, is affected by NO production, as this bioactive molecule is involved in the regulation of cardiovascular motor tone, modulation of myocardial contractivity, control of cell proliferation, and inhibition of platelet activation, aggregation, and adhesion. The prime source of NO in the cardiovascular system is endothelial NO synthase, which is tightly regulated with respect to activity and localization. The inhibition of chronic NO synthesis leads to neurogenic and arterial hypertensions, which later contribute to development of myocardial fibrosis. Overall, the modulation of NO synthesis is associated with hypertension. This review briefly describes the physiology of NO, its synthesis, catabolism, and targeting, the mechanism of NO action, and the pharmacological role of NO with special reference to its essential role in hypertension.
DOI: 10.4161/psb.4.10.9530
2009
Cited 190 times
Signaling through G protein coupled receptors
Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.
DOI: 10.1080/10409230091169177
2000
Cited 178 times
Ku Autoantigen: A Multifunctional DNA-Binding Protein
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
DOI: 10.1080/10409239891204260
1998
Cited 178 times
Nucleolin: A Multifunctional Major Nucleolar Phosphoprotein
Nucleolin is a major protein of exponentially growing eukaryotic cells where it is present in abundance at the heart of the nucleolus. It is highly conserved during evolution. Nucleolin contains a specific bipartite nuclear localization signal sequence and possesses a number of unusual structural features. It has unique tripartite structure and each domain performs a specific function by interacting with DNA or RNA or proteins. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. Nucleolin also acts as a sequence-specific RNA binding protein, an autoantigen, and as the component of a B cell specific transcription factor. Its phosphorylation by cdc2, CK2, and PKC-zeta modulate some of its activities. This multifunctional protein has been implicated to be involved directly or indirectly in many metabolic processes such as ribosome biogenesis (which includes rDNA transcription, pre-rRNA synthesis, rRNA processing, ribosomal assembly and maturation), cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation and many more (see text). In plants it is developmentally, cell-cycle, and light regulated. The regulation of all these functions of a single protein seems to be a challenging puzzle.
DOI: 10.1111/j.1432-1033.2004.04094.x
2004
Cited 172 times
Unraveling DNA helicases
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.
2009
Cited 162 times
Oxidative stress and ischemic myocardial syndromes.
Oxidative stress is a condition in which reactive oxygen species (ROS) or free radicals, namely O2*(-), H2O2, and *OH, are generated extra- or intracellularly and exert toxic effects on cells. The heart is one of the major organs affected by ROS. Recent evidence suggests that oxidative stress is a common denominator in many aspects of cardiovascular diseases. During myocardial oxidative stress, the generation of ROS is enhanced and the defense mechanisms of myocytes are altered. The sources of ROS in cardiac myocytes could be mitochondrial electron transport chain, nitric oxide synthase (NOS), NADPH oxidase, xanthine oxidase, and lipoxygenase/cyclooxygenase and the auto-oxidation of various substances, particularly catecholamines. In acute myocardial infarction (AMI), two distinct types of damage occur to the heart: ischemic injury and reperfusion injury, which lead to mitochondrial dysfunction in heart cells. During ischemia and reperfusion, ROS can be produced by both endothelial cells and circulating phagocytes. Ischemia also causes alterations in the defense mechanisms against ROS. Some proteins, including heat-shock proteins, are overexpressed in conditions of ischemia/reperfusion and can protect from cardiac injury. This article outlines the current understanding of oxidative stress and ROS generation and their role in cardiovascular diseases, including ischemic myocardial syndromes. The following aspects are covered: oxidative stress, mitochondrial dysfunction and pathophysiological mechanisms of atherosclerosis, precipitation of MI, sources of ROS in cardiac myocytes, effects of ROS in the heart, and ischemia and reperfusion injuries and their mechanisms.
DOI: 10.4161/psb.6.2.15049
2011
Cited 140 times
Differential cadmium stress tolerance in five Indian mustard (<i>Brassica juncea</i>L.) cultivars
The presence of Cadmium (Cd) in the agricultural soils affects horticultural cultivars and constrains the crop productivity. A pot experiment was performed using five cultivars of mustard (Brassica juncea L.) to evaluate the difference in their response to Cd toxicity under greenhouse conditions. The pots containing reconstituted soil were supplied with different concentration of CdCl2 (0, 25, 50, 100 or 150 mg Cd kg-1 soil). Increasing concentration of Cd in the soil resulted in decreased growth, photosynthesis and yield. Maximum significant reduction in growth, photosynthesis and yield were observed with 150 mg Cd kg-1 soil in all the cultivars. Our results indicate that the cultivar Alankar is found to be more tolerant to Cd stress, recording higher plant dry mass, net photosynthesis rate, associated with high antioxidant activity and low Cd content in the plant leaves and thus less oxidative damage. Cultivar RH30 experienced maximum damage in terms of reduction in growth, photosynthesis, yield characteristics and oxidative damage and emerged as sensitive cultivar. The data of tolerance index of Alankar were found to be higher among all tested mustard cultivars which indicate its higher tolerance to Cd. Better coordination of antioxidants protected Alankar from Cd toxicity, whereas lesser antioxidant activity in RH30 resulted in maximum damage. Cultivars of mustard were ranked with respect to their tolerance to Cd: Alankar>Varuna>Pusa Bold>Sakha>RH30, respectively.
DOI: 10.4161/psb.26891
2013
Cited 137 times
<i>Piriformospora indica</i> rescues growth diminution of rice seedlings during high salt stress
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.
DOI: 10.1007/s12038-012-9187-5
2012
Cited 132 times
Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern
DOI: 10.1007/978-1-4614-5001-6
2013
Cited 130 times
Plant Acclimation to Environmental Stress
DOI: 10.1007/978-3-319-55426-6
2017
Cited 128 times
Enhancing Cleanup of Environmental Pollutants
DOI: 10.1007/s00709-014-0636-x
2014
Cited 127 times
Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes
DOI: 10.4161/psb.7.1.18472
2012
Cited 126 times
The root endophyte fungus<i>Piriformospora indica</i>leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant,<i>Coleus forskohlii</i>
This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production.
DOI: 10.1093/mp/sst033
2013
Cited 123 times
Knights in Action: Lectin Receptor-Like Kinases in Plant Development and Stress Responses
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in <i>Arabidopsis</i> and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus making the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement. <h3>SUMMARY</h3> The Lectin Receptor-Like Kinase (LecRLK) family is known for its role in plant stress and developmental pathways. The review captures information on the historical, evolutionary, structural, and functional aspect of the LecRLK family with special emphasis on the future directions of study.
DOI: 10.3389/fpls.2016.01574
2016
Cited 123 times
Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition
A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.
DOI: 10.1007/s00299-014-1704-6
2014
Cited 121 times
Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid)
DOI: 10.3389/fpls.2015.00210
2015
Cited 118 times
ATP-sulfurylase, sulfur-compounds, and plant stress tolerance
Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO4 (2-)), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO4 (2-)-activation and yields activated high-energy compound adenosine-5(')-phosphosulfate that is reduced to sulfide (S(2-)) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes.
DOI: 10.1007/s11103-012-9952-8
2012
Cited 115 times
Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice
DOI: 10.1007/978-981-10-2854-0
2016
Cited 115 times
Plant-Microbe Interaction: An Approach to Sustainable Agriculture
DOI: 10.1111/tpj.12277
2013
Cited 110 times
<scp>O</scp>s<scp>SUV</scp>3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (<i><scp>O</scp>ryza sativa</i> L. cv. <scp>IR</scp>64)
To overcome the salinity-induced loss of crop yield, a salinity-tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein exhibits DNA and RNA helicase, and ATPase activities. Furthermore, we report that SUV3 is induced in rice seedlings in response to high levels of salt. Its expression, driven by a constitutive cauliflower mosaic virus 35S promoter in IR64 transgenic rice plants, confers salinity tolerance. The T1 and T2 sense transgenic lines showed tolerance to high salinity and fully matured without any loss in yields. The T2 transgenic lines also showed tolerance to drought stress. These results suggest that the introduced trait is functional and stable in transgenic rice plants. The rice SUV3 sense transgenic lines showed lesser lipid peroxidation, electrolyte leakage and H2 O2 production, along with higher activities of antioxidant enzymes under salinity stress, as compared with wild type, vector control and antisense transgenic lines. These results suggest the existence of an efficient antioxidant defence system to cope with salinity-induced oxidative damage. Overall, this study reports that plant SUV3 exhibits DNA and RNA helicase and ATPase activities, and provides direct evidence of its function in imparting salinity stress tolerance without yield loss. The possible mechanism could be that OsSUV3 helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in transgenic rice.
DOI: 10.1155/2015/250158
2015
Cited 107 times
DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, &lt;280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH • ) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
DOI: 10.1111/tpj.12352
2013
Cited 98 times
<i>Os<scp>ACA</scp>6</i>, a P‐type <scp>IIB</scp> Ca<sup>2+</sup><scp>ATP</scp>ase promotes salinity and drought stress tolerance in tobacco by <scp>ROS</scp> scavenging and enhancing the expression of stress‐responsive genes
Calcium (Ca²⁺) regulates several signalling pathways involved in growth, development and stress tolerance. Cellular Ca²⁺ homeostasis is achieved by the combined action of channels, pumps and antiporters, but direct evidence for a role of Ca²⁺ATPase pumps in stress tolerance is lacking. Here we report the characterization of a Ca²⁺ ATPase gene (OsACA6) from Oryza sativa, and elucidate its functions in stress tolerance. OsACA6 transcript levels are enhanced in response to salt, drought, abscisic acid and heat. In vivo localization identified plasma membranes as an integration site for the OsACA6-GFP fusion protein. Using transgenic tobacco lines, we demonstrate that over-expression of OsACA6 is triggered during salinity and drought stresses. The enhanced tolerance to these stresses was confirmed by changes in several physiological indices, including water loss rate, photosynthetic efficiency, cell membrane stability, germination, survival rate, malondialdehyde content, electrolyte leakage and increased proline accumulation. Furthermore, over-expressing lines also showed higher leaf chlorophyll and reduced accumulation of H₂O₂ and Na⁺ ions compared to the wild-type. Reduced accumulation of reactive oxygen species (ROS) was observed in transgenic lines. The increased proline accumulation and ROS scavenging enzyme activities in transgenic plants over-expressing OsACA6 efficiently modulate the ROS machinery and proline biosynthesis through an integrative mechanism. Transcriptional profiling of these plants revealed altered expression of genes encoding many transcription factors, stress- and disease-related proteins, as well as signalling components. These results suggest that Ca²⁺ ATPases have diverse roles as regulators of many stress signalling pathways, leading to plant growth, development and stress tolerance.
DOI: 10.1016/j.plaphy.2013.06.005
2013
Cited 94 times
A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops
The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.
DOI: 10.3389/fmicb.2015.00984
2015
Cited 90 times
Fungal association and utilization of phosphate by plants: success, limitations, and future prospects
Phosphorus (P) is a major macronutrient for plant health and development. The available form of P is generally low in the rhizosphere even in fertile soils. A major proportion of applied phosphate (Pi) fertilizers in the soil become fixed into insoluble, unavailable forms, which restricts crop production throughout the world. Roots possess two distinct modes of P uptake from the soil, direct and indirect uptake. The direct uptake of P is facilitated by the plant’s own Pi transporters while indirect uptake occurs via mycorrhizal symbiosis, where the host plant obtains P primarily from the fungal partner, while the fungus benefits from plant-derived reduced carbon. So far, only one Pi transporter has been characterized from the mycorrhizal fungus Glomus versiforme (GvPT). As arbuscular mycorrhizal fungi cannot be cultured axenically, their Pi transporter network is difficult to exploite for large scale sustainable agriculture. Alternatively, the root-colonizing endophytic fungus Piriformospora indica can grow axenically and provides strong growth-promoting activity during its symbiosis with a broad spectrum of plants. P. indica contains a high affinity Pi transporter (PiPT) involved in improving Pi nutrition levels in the host plant under P limiting conditions. As P. indica can be manipulated genetically, it opens new vistas to be used in P deficient fields.
DOI: 10.5194/hess-20-3947-2016
2016
Cited 90 times
How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations
Abstract. Streamflow variability and trends in Australia were investigated for 222 high-quality stream gauging stations having 30 years or more continuous unregulated streamflow records. Trend analysis identified seasonal, inter-annual and decadal variability, long-term monotonic trends and step changes in streamflow. Trends were determined for annual total flow, baseflow, seasonal flows, daily maximum flow and three quantiles of daily flow. A distinct pattern of spatial and temporal variation in streamflow was evident across different hydroclimatic regions in Australia. Most of the stations in southeastern Australia spread across New South Wales and Victoria showed a significant decreasing trend in annual streamflow, while increasing trends were retained within the northern part of the continent. No strong evidence of significant trend was observed for stations in the central region of Australia and northern Queensland. The findings from step change analysis demonstrated evidence of changes in hydrologic responses consistent with observed changes in climate over the past decades. For example, in the Murray–Darling Basin, 51 out of 75 stations were identified with step changes of significant reduction in annual streamflow during the middle to late 1990s, when relatively dry years were recorded across the area. Overall, the hydrologic reference stations (HRSs) serve as critically important gauges for streamflow monitoring and changes in long-term water availability inferred from observed datasets. A wealth of freely downloadable hydrologic data is provided at the HRS web portal including annual, seasonal, monthly and daily streamflow data, as well as trend analysis products and relevant site information.
DOI: 10.1016/j.jbiotec.2020.10.018
2020
Cited 69 times
Potassium: A key modulator for cell homeostasis
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K’s role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
DOI: 10.1111/j.1432-1033.2004.04093.x
2004
Cited 151 times
Prokaryotic and eukaryotic DNA helicases
DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA-dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3' to 5' or 5' to 3' direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA-unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.
DOI: 10.1016/j.jphotobiol.2006.02.010
2006
Cited 135 times
Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance
Abiotic stresses including various environmental factors adversely affect plant growth and limit agricultural production worldwide. Minimizing these losses is a major area of concern for all countries. Therefore, it is desirable to develop multi-stress tolerant varieties. Salinity, drought, and cold are among the major environmental stresses that greatly influence the growth, development, survival, and yield of plants. UV-B radiation of sunlight, which damages the cellular genomes, is another growth-retarding factor. Several genes are induced under the influence of various abiotic stresses. Among these are DNA repair genes, which are induced in response to the DNA damage. Since the stresses affect the cellular gene expression machinery, it is possible that molecules involved in nucleic acid metabolism including helicases are likely to be affected. The light-driven shifts in redox-potential can also initiate the helicase gene expression. Helicases are ubiquitous enzymes that catalyse the unwinding of energetically stable duplex DNA (DNA helicases) or duplex RNA secondary structures (RNA helicases). Most helicases are members of DEAD-box protein superfamily and play essential roles in basic cellular processes such as DNA replication, repair, recombination, transcription, ribosome biogenesis and translation initiation. Therefore, helicases might be playing an important role in regulating plant growth and development under stress conditions by regulating some stress-induced pathways. There are now few reports on the up-regulation of DEAD-box helicases in response to abiotic stresses. Recently, salinity-stress tolerant tobacco plants have already been raised by overexpressing a helicase gene, which suggests a new pathway to engineer plant stress tolerance [N. Sanan-Mishra, X.H. Pham, S.K. Sopory, N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102 (2005) 509-514]. Presently the exact mechanism of helicase-mediated stress tolerance is not understood. In this review we have described all the reported stress-induced helicases and also discussed the possible mechanisms by which they can provide stress tolerance.
DOI: 10.1111/j.1365-313x.2007.03169.x
2007
Cited 128 times
Heterotrimeric G‐protein complex and G‐protein‐coupled receptor from a legume (<i>Pisum sativum</i>): role in salinity and heat stress and cross‐talk with phospholipase C
Summary Heterotrimeric G‐proteins transduce signals from activated G‐protein‐coupled receptors (GPCR) to appropriate downstream effectors and thereby play an important role in signaling. A role of G‐proteins in salinity and heat stress tolerance has not heretofore been described. We report isolation of cDNAs of two isoforms of Gα (Gα1, 1152 bp; Gα2, 1152 bp), one Gβ (1134 bp), two isoforms of Gγ (Gγ1, 345 bp; Gγ2, 303 bp) and a GPCR (1008 bp) from Pisum sativum , and purification of all the encoded recombinant proteins (Gα, 44 kDa; Gβ, 41 kDa; Gγ, 14 kDa; GPCR, 35 kDa). The transcript levels of Gα and Gβ were upregulated following NaCl, heat and H 2 O 2 treatments. Protein–protein interaction studies using an in vitro yeast two‐hybrid system and in planta co‐immunoprecipitation showed that the Gα subunit interacted with the pea Gβ subunit and pea phospholipase C (PLCδ) at the calcium‐binding domain (fn1). The GTPase activity of the Gα subunit increased after interaction with PLCδ. The GPCR protein interacted with all the subunits of G‐proteins and with itself. Transgenic tobacco plants (T 0 and T 1 ) constitutively over‐expressing Gα showed tolerance to salinity and heat, while Gβ‐over‐expressing plants showed only heat tolerance, as tested by leaf disk senescence assay and germination/growth of T 1 seeds/seedlings. These findings provide direct evidence for a novel role of Gα and Gβ subunits in abiotic stress tolerance and possible cross‐talk between PLC‐ and G‐protein‐mediated signaling pathways.
DOI: 10.1111/j.1742-4658.2006.05111.x
2006
Cited 106 times
Cloning and characterization of CBL‐CIPK signalling components from a legume (<i>Pisum sativum</i>)
The studies on calcium sensor calcineurin B‐like protein (CBL) and CBL interacting protein kinases (CIPK) are limited to Arabidopsis and rice and their functional role is only beginning to emerge. Here, we present cloning and characterization of a protein kinase (PsCIPK) from a legume, pea, with novel properties. The PsCIPK gene is intronless and encodes a protein that showed partial homology to the members of CIPK family. The recombinant PsCIPK protein was autophosphorylated at Thr residue(s). Immunoprecipitation and yeast two‐hybrid analysis showed direct interaction of PsCIPK with PsCBL, whose cDNA and genomic DNA were also cloned in this study. PsCBL showed homology to AtCBL3 and contained calcium‐binding activity. We demonstrate for the first time that PsCBL is phosphorylated at its Thr residue(s) by PsCIPK. Immunofluorescence/confocal microscopy showed that PsCBL is exclusively localized in the cytosol, whereas PsCIPK is localized in the cytosol and the outer membrane. The exposure of plants to NaCl, cold and wounding co‐ordinately upregulated the expression of PsCBL and PsCIPK genes. The transcript levels of both genes were also coordinately stimulated in response to calcium and salicylic acid. However, drought and abscisic acid had no effect on the expression of these genes. These studies show the ubiquitous presence of CBL/CIPK in higher plants and enhance our understanding of their role in abiotic and biotic stress signalling.
DOI: 10.4161/psb.2.6.4991
2007
Cited 101 times
Integrated Signaling in Flower Senescence
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant therefore it provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the up-regulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins, and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the followings: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence, and finally the senescence associated genes (SAGs) have also been described.
DOI: 10.1186/1471-2229-12-183
2012
Cited 92 times
microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.)
Rice (Oryza sativa L.), one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes.In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase) gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein), OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase) and OsDBH (DEAD-Box Helicase) genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5'RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control) in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in miRNA expression were limited.Osa-MIR414, osa-MIR164e and osa-MIR408 were experimentally validated for the first time in plants as targeting the OsABP, OsDBH and OsDSHCT genes. Our data showed that that the genes were up-regulated and the miRNAs were down-regulated in relation to salt stress. The negative correlation between the miRNAs and their targets was proven.
DOI: 10.4161/psb.18957
2012
Cited 91 times
Gene expression profiling through microarray analysis in<i>Arabidopsis thaliana</i>colonized by<i>Pseudomonas putida</i>MTCC5279, a plant growth promoting rhizobacterium
Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca⁺² dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.
DOI: 10.4161/psb.3.2.5303
2008
Cited 91 times
Plant signaling in stress
Plant growth and development are coordinalely controlled by several internal factors and environmental signals. To sense these environmental signals, the higher plants have evolved a complex signaling network, which may also cross talk with each other. Plants can respond to the signals as individual cells and as whole organisms. Various receptors including phytochromes, G-proteins coupled receptors (GPCR), kinase and hormone receptors play important role in signal transduction but very few have been characterized in plant system. The heterotrimeric G-proteins mediate the coupling of signal transduction from activated GPCR to appropriate downstream effectors and thereby play an important role in signaling. In this review we have focused on some of the recent work on G-proteins and two of the effectors, PLC and PLD, which have been shown to interact with Galpha subunit and also discussed their role in abiotic stress tolerance.
DOI: 10.1007/978-1-4614-4633-0
2013
Cited 87 times
Crop Improvement Under Adverse Conditions
DOI: 10.1007/s11103-010-9632-5
2010
Cited 85 times
Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human
DOI: 10.1007/s00709-013-0547-2
2013
Cited 85 times
Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement
DOI: 10.1093/jxb/ert182
2013
Cited 85 times
Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling
Food security is in danger under the continuous growing threat of various stresses including climate change and global warming, which ultimately leads to a reduction in crop yields. Calcium plays a very important role in many signal transduction pathways including stress signalling. Different extracellular stimuli trigger increases in cytosolic calcium, which is detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mechanisms to maintain ionic homeostasis. The Ca2+-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively transporting ions across cellular membranes. In recent years, many studies have revealed that, as well as efflux mechanisms, Ca2+-ATPases also play critical roles in sensing calcium fluctuations and relaying downstream signals by activating definitive targets, thus modulating corresponding metabolic pathways. As calcium-activated calmodulin (CaM) is reported to play vital roles in stress tolerance, the presence of a unique CaM-binding site in type IIB Ca2+-ATPases indicates their potential role in biotic as well as abiotic stress tolerance. The key roles of Ca2+-ATPases in transport systems and stress signalling in cellular homeostasis are addressed in this review. A complete understanding of plant defence mechanisms under stress will allow bioengineering of improved crop plants, which will be crucial for food security currently observed worldwide in the context of global climate changes. Overall, this article covers classification, evolution, structural aspects of Ca2+-ATPases, and their emerging roles in plant stress signalling.
DOI: 10.4161/psb.6.2.15490
2011
Cited 82 times
Chaperones and foldases in endoplasmic reticulum stress signaling in plants
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of the ER chaperones and foldases under stress conditions to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI), immunophilins, calnexin and calreticulin.
DOI: 10.4161/cib.13844
2011
Cited 82 times
Genome-wide comprehensive analysis of human helicases
Helicases are motor proteins which catalyze the unwinding of duplex nucleic acids in an ATP-dependent manner. They are involved in almost all the nucleic acid transactions. In the present study, we report a comprehensive analysis of helicase gene family in human and its comparison with homologs in model organisms. Human genome encodes for 95 non-redundant helicase proteins of which 64 are RNA helicases and 31 are DNA helicases. 57 RNA helicases are validated based on annotations and occurrence of conserved helicase signature motifs. These include 14 DExH and 37 DExD subfamily members, six other members such as, U5.snRNP, ATR-X, Suv3, FANCJ, and two of superkiller viralicidic activity 2-like helicases. 31 DNA helicases are also identified, which include RecQ, MCM, and RuvB-like helicases. Finding set of helicases in human and almost similar sequences in model organisms suggests that the "core" members of helicase gene family are highly conserved throughout evolution. The present study gives an overview of members of RNA and DNA helicases encoded by the human genome along with their conserved motifs, phylogeny, and homologs in model organisms. The study on comparing these homologs will spread light on the organization and complexity of helicase gene family in model organisms. The comprehensive analysis of human helicases presented in this study will further provide an invaluable resource for elaborate biological research on these helicases. Dedicated to the memory of Professor Arturo Falaschi
DOI: 10.4161/psb.21343
2012
Cited 76 times
A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress
The DEAD-box RNA helicase family comprise enzymes that participate in every aspect of RNA metabolism, associated with a diverse range of cellular functions including response to abiotic stress. In the present study, we report on the identification of a new DEAD-box helicase ATP-binding protein (OsABP) from rice which is upregulated in response e to multiple abiotic stress treatments including NaCl, dehydration, ABA, blue and red light. It possesses an ORF of 2772 nt, encoding a protein of 923 aa, which contains the DEAD and helicase C-terminal domains, along with the nine conserved motifs specific to DEAD-box helicases. The in silico putative interaction with other proteins showed that OsABP interacts with proteins involved in RNA metabolism, signal transduction or stress response. These results imply that OsABP might perform important functions in the cellular response to specific abiotic stress.
DOI: 10.1007/s11103-013-0031-6
2013
Cited 75 times
A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1)
DOI: 10.4161/psb.6.5.15106
2011
Cited 74 times
<i>Piriformospora indica</i> enhances plant growth by transferring phosphate
Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.
DOI: 10.1016/j.plantsci.2011.10.001
2012
Cited 74 times
Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species
Rapid production of doubled haploids (DHs) through androgenesis is an important and promising method for genetic improvement of crop plants. Through androgenesis complete homozygous plants can be produced within a year compared to long inbreeding methods that may take several years and costly. Significant advantage of androgenesis is that it not only speeds up the process to achieve homozygosity, but also increases the selection efficiency. Though success in androgenesis has been achieved in many crop plants, yet there are certain limitations especially, low frequency of embryogenesis and regeneration in few species. In fact in many cereals, induction of embryos and regeneration of green plants is still a hurdle that one needs to overcome to improve the efficiency of androgenesis. Efficient androgenesis is usually induced by the successful application of different stress pretreatment. Since so many stress factors can trigger the reprogramming of microspores and that have been co-related to change the ultrastuctural changes of cells to embryos and finally haploid plants. It has been shown that certain pretreatment such as (i) physical stresses as cold, heat shock, starvation, drought stress, osmotic pressure, gamma irradiation, oxidative stress, reduced atmospheric pressure, and (ii) chemical treatments such as colchicine, heavy metal, ABA, CGA, AEC, Azetidine, 2-NHA, either individual or combined effect of more than one stress factors may positively influence androgenetic efficiency. This review highlights the recent and past work on uses of various abiotic stresses and pretreatments and their impact on enhancing the efficiency of androgenesis on some major crop species for the development of doubled haploid plants.
DOI: 10.1007/s11103-011-9836-3
2011
Cited 71 times
Plant MCM proteins: role in DNA replication and beyond
DOI: 10.1038/s41598-017-02589-0
2017
Cited 70 times
Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.)
Abstract Imparting tolerance to abiotic stresses is of global importance as they inflict significant yield losses in field as well as in vegetable crops. Transcriptional activators, including helicases are identified to play a pivotal role in stress mitigation. Helicases, also known as molecular motors, are involved in myriad cellular processes that impart intrinsic tolerance to abiotic stresses in plants. Our study demonstrates the potential of a Pea DNA Helicase 45 ( PDH45 ), in combating multiple abiotic stresses in chili. We harnessed Agrobacterium -mediated in planta transformation strategy for the generation of stable, single copy transgenic events. Precise molecular detection of the transgenes by sqRT-PCR coupled with genomic Southern analysis revealed variation in the integration of PDH45 at distinct loci in independent transgenic events. Characterization of five promising transgenic events showed both improved response to an array of simulated abiotic stresses and enhanced expression of several stress-responsive genes. While survival and recovery of transgenic events were significantly higher under gradual moisture stress conditions, under imposition of moderate stress, the transgenic events exhibited invigorated growth and productivity with concomitant improvement in water use efficiency (WUE). Thus, our study, unequivocally demonstrated the cardinal role of PDH45 in alleviating multiple abiotic stresses in chili.
DOI: 10.1007/s00709-013-0607-7
2014
Cited 69 times
Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity
DOI: 10.1007/978-3-319-68867-1
2017
Cited 66 times
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration
DOI: 10.1007/s11103-015-0319-9
2015
Cited 65 times
Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes
DOI: 10.1371/journal.pone.0098287
2014
Cited 64 times
Pea p68, a DEAD-Box Helicase, Provides Salinity Stress Tolerance in Transgenic Tobacco by Reducing Oxidative Stress and Improving Photosynthesis Machinery
Background The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. Results The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. Conclusions To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.
DOI: 10.1016/j.jhydrol.2014.08.010
2014
Cited 60 times
A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days
This study describes a System for Continuous Hydrological Ensemble Forecasting (SCHEF) designed to forecast streamflows to lead times of 9 days. SCHEF is intended to support optimal management of water resources for consumptive and environmental purposes and ultimately to support the management of impending floods. Deterministic rainfall forecasts from the ACCESS-G numerical weather prediction (NWP) model are post-processed using a Bayesian joint probability model to correct biases and quantify uncertainty. Realistic temporal and spatial characteristics are instilled in the rainfall forecast ensemble with the Schaake shuffle. The ensemble rainfall forecasts are then used as inputs to the GR4H hydrological model to produce streamflow forecasts. A hydrological error correction is applied to ensure forecasts transit smoothly from recent streamflow observations. SCHEF forecasts streamflows skilfully for a range of hydrological and climate conditions. Skill is particularly evident in forecasts of streamflows at lead times of 1–6 days. Forecasts perform best in temperate perennially flowing rivers, while forecasts are poorest in intermittently flowing rivers. The poor streamflow forecasts in intermittent rivers are primarily the result of poor rainfall forecasts, rather than an inadequate representation of hydrological processes. Forecast uncertainty becomes more reliably quantified at longer lead times; however there is considerable scope for improving the reliability of streamflow forecasts at all lead times. Additionally, we show that the choice of forecast time-step can influence forecast accuracy: forecasts generated at a 1-h time-step tend to be more accurate than at longer time-steps (e.g. 1-day). This is largely because at shorter time-steps the hydrological error correction is able to correct streamflow forecasts with more recent information, rather than the ability of GR4H to simulate hydrological processes better at shorter time-steps. SCHEF will form the basis of a streamflow forecast service for Australia to be operated by the Bureau of Meteorology.
DOI: 10.1016/j.abb.2016.10.012
2016
Cited 59 times
An insight into fusion technology aiding efficient recombinant protein production for functional proteomics
Advancements in peptide fusion technologies to maximize the protein production has taken a big leap to fulfill the demands of post-genomics era targeting elucidation of structure/function of the proteome and its therapeutic applications, by over-expression in heterologous expression systems. Despite being most preferred protein expression system armed with variety of cardinal fusion tags, expression of the functionally active recombinant protein in E. coli remains plagued. The present review critically analyses the aptness of well-characterized fusion tags utilized for over-expression of recombinant proteins with improved solubility and their compatibility with downstream purification procedures. The combinatorial tandem affinity strategies have shown to provide more versatile options. Solubility decreasing fusion tags have proved to facilitate the overproduction of antimicrobial peptides. Efficient removal of fusion tags prior to final usage is of utmost importance and has been summarized discussing the efficiency of various enzymatic and chemical methods of tag removal. Unfortunately, no single fusion tag works as a magic bullet to completely fulfill the requirements of protein expression and purification in active form. The information provided might help in selection and development of a successful protocol for efficient recombinant protein production for functional proteomics.
DOI: 10.1007/s00709-015-0845-y
2015
Cited 58 times
NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress
DOI: 10.1080/10643389.2013.828271
2014
Cited 57 times
Salt Marsh Halophyte Services to Metal–Metalloid Remediation: Assessment of the Processes and Underlying Mechanisms
AbstractSalt marshes are widely distributed and most productive ecosystems in the temperate zones on the globe. These areas perform vital ecological functions and are populated mainly by halophytes—plants that are able to survive and reproduce in environments with exceptionally high salt concentrations. In salt marshes, in addition to tolerating high salt concentrations, salt marsh halophytes have to cope with damages caused by multiple anthropgenic pressures including metal and metalloid pollution. Extensive studies have been performed aiming at exploring naturally occurring endemic salt marsh halophytes with extraordinary potential for metals and metalloids remediation. However, a knowledge gap is perceptible on the basics of salt marsh halophyte adaptation/tolerance to the joint action of damaging factors such as high concentration of salt and presence of metals–metalloids. In light of available literature, the current paper is critical in: (i) highlighting ecological significance of salt marsh halophytes and their use as bioindicators or biomonitors of metal–metalloid pollution; (ii) analyzing salt marsh halophyte significant contributions for metal- and metalloid-remediation processes; (iii) overviewing salt marsh halophytes–microbes interaction influence on metal-phytoremediation processes; and (iv) cross-talking important physiological/biochemical strategies adopted by salt marsh halophytes for salinity-, metal-, and metalloid-tolerance. Conclusively, the paper highlights important aspects so far less explored in the context of salt marsh halophyte services to metal–metalloid remediation and underlying mechanisms. The discussion will enable researchers and environmentalists to set further exhaustive studies aiming at efficient and sustainable management of rapidly mounting salt marshes metal–metalloid contamination issues.KEY WORDS: metal–metalloid pollutionphysiologyphytoremediationsalinitysalt marsh halophytestolerance
DOI: 10.1007/978-3-319-53064-2
2017
Cited 57 times
Mycorrhiza - Function, Diversity, State of the Art
This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts i
DOI: 10.1007/s00425-016-2614-3
2016
Cited 53 times
Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS
DOI: 10.5194/hess-27-229-2023
2023
Cited 9 times
Regional significance of historical trends and step changes in Australian streamflow
Abstract. The Hydrologic Reference Stations is a network of 467 high-quality streamflow gauging stations across Australia that is developed and maintained by the Bureau of Meteorology as part of an ongoing responsibility under the Water Act 2007. The main objectives of the service are to observe and detect climate-driven changes in observed streamflow and to provide a quality-controlled dataset for research. We investigate trends and step changes in streamflow across Australia in data from all 467 streamflow gauging stations. Data from 30 to 69 years in duration ending in February 2019 were examined. We analysed data in terms of water-year totals and for the four seasons. The commencement of the water year varies across the country – mainly from February–March in the south to September–October in the north. We summarized our findings for each of the 12 drainage divisions defined by Australian Hydrological Geospatial Fabric (Geofabric) and for continental Australia as a whole. We used statistical tests to detect and analyse linear and step changes in seasonal and annual streamflow. Monotonic trends were detected using modified Mann–Kendall (MK) tests, including a variance correction approach (MK3), a block bootstrap approach (MK3bs) and a long-term persistence approach (MK4). A nonparametric Pettitt test was used for step-change detection and identification. The regional significance of these changes at the drainage division scale was analysed and synthesized using a Walker test. The Murray–Darling Basin, home to Australia's largest river system, showed statistically significant decreasing trends for the region with respect to the annual total and all four seasons. Drainage divisions in New South Wales, Victoria and Tasmania showed significant annual and seasonal decreasing trends. Similar results were found in south-western Western Australia, South Australia and north-eastern Queensland. There was no significant spatial pattern observed in central nor mid-west Western Australia, with one possible explanation for this being the sparse density of streamflow stations and/or the length of the datasets available. Only the Tanami–Timor Sea Coast drainage division in northern Australia showed increasing trends and step changes in annual and seasonal streamflow that were regionally significant. Most of the step changes occurred during 1970–1999. In the south-eastern part of Australia, the majority of the step changes occurred in the 1990s, before the onset of the “Millennium Drought”. Long-term monotonic trends in observed streamflow and its regional significance are consistent with observed changes in climate experienced across Australia. The findings of this study will assist water managers with long-term infrastructure planning and management of water resources under climate variability and change across Australia.
DOI: 10.1016/j.plantsci.2023.111736
2023
Cited 8 times
Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
DOI: 10.1111/j.1365-313x.2005.02511.x
2005
Cited 94 times
Cold‐ and salinity stress‐induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C
Summary Helicases are involved in the metabolism of nucleic acid; this is very sensitive to the abiotic stresses that reduce plant growth and productivity. However, the molecular targets responsible for this sensitivity have not been well studied. Here we report on the isolation and characterization of cold‐ and salinity stress‐induced pea DNA helicase 47 (PDH47). The transcript of PDH47 was induced in both shoots and roots under cold (4°C) and salinity (300 m m NaCl) stress, but there was no change in response to drought stress. Tissue‐specific differential regulation was observed under heat (37°C) stress. ABA treatment did not alter expression of PDH47 in shoots but induced its mRNA in roots, indicating a role for PDH47 in both the ABA‐independent and ABA‐dependent pathways in abiotic stress. The purified recombinant protein (47 kDa) contains ATP‐dependent DNA and RNA helicase and DNA‐dependent ATPase activities. With the help of photoaffinity labeling, PDH47 was labeled by [ α ‐ 32 P]‐ATP. PDH47 is a unique bipolar helicase that contains both 3′ to 5′ and 5′ to 3′ directional helicase activities. Anti‐PDH47 antibodies immunodeplete the activities of PDH47 and inhibit in vitro translation of protein. Furthermore, the PDH47 protein showed upregulation of protein synthesis. The activities of PDH47 are stimulated after phosphorylation by protein kinase C at Ser and Thr residues. Western blot analysis and in vivo immunostaining, followed by confocal microscopy, showed PDH47 to be localized in both the nucleus and cytosol. The discovery of cold‐ and salinity stress‐induced DNA helicase should make an important contribution to a better understanding of DNA metabolism and stress signaling in plants. Its bipolar helicase activities may also be involved in distinct cellular processes in stressed conditions.
DOI: 10.1016/0378-1119(95)00207-m
1995
Cited 89 times
Human DNA helicase IV is nucleolin, an RNA helicase modulated by phosphorylation
The cDNA encoding human DNA helicase IV (HDH IV), a 100-kDa protein which unwinds DNA in the 5′ to 3′ direction with respect to the bound strand, was cloned and sequenced. It was found to be identical to the human cDNA encoding nucleolin, a ubiquitous eukaryotic protein essential for pre-ribosome assembly. HDH IV/nucleolin can unwind RNA-RNA duplexes, as well as DNA-DNA and DNA-RNA duplexes. Phosphorylation of HDH IV/nucleolin by cdc2 kinase and casein kinase II enhanced its unwinding activity in an additive way. The Gly-rich C-terminal domain possesses a limited ATP-dependent duplex-unwinding activity which contributes to the helicase activity of HDH IV/nucleolin.
DOI: 10.1007/s11103-011-9758-0
2011
Cited 63 times
A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield
DOI: 10.4161/cib.4.1.13844
2011
Cited 59 times
Genome-wide comprehensive analysis of human helicases.
Helicases are motor proteins that catalyze the unwinding of duplex nucleic acids in an ATP-dependent manner. They are involved in almost all the nucleic acid transactions. In the present study, we report a comprehensive analysis of helicase gene family in human and its comparison with homologs in model organisms. The human genome encodes for 95 non-redundant helicase proteins, of which 64 are RNA helicases and 31 are DNA helicases. 57 RNA helicases are validated based on annotations and occurrence of conserved helicase signature motifs. These include 14 DExH and 37 DExD subfamily members, six other members such as U5.snRNP, ATR-X, Suv3, FANCJ, and two of superkiller viralicidic activity 2-like helicases. 31 DNA helicases are also identified, which include RecQ, MCM and RuvB-like helicases. Finding a set of helicases in human and almost similar sequences in model organisms suggests that the "core" members of helicase gene family are highly conserved throughout evolution. The present study gives an overview of members of RNA and DNA helicases encoded by the human genome along with their conserved motifs, phylogeny and homologs in model organisms. The study on comparing these homologs will spread light on the organization and complexity of helicase gene family in model organisms. The comprehensive analysis of human helicases presented in this study will further provide an invaluable resource for elaborate biological research on these helicases.
DOI: 10.1371/journal.pone.0076392
2013
Cited 59 times
CDPK1 from Ginger Promotes Salinity and Drought Stress Tolerance without Yield Penalty by Improving Growth and Photosynthesis in Nicotiana tabacum
In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) – PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the response to salinity and drought stress in ginger and it is likely operating in a DRE/CRT independent manner.
DOI: 10.4161/psb.23021
2013
Cited 58 times
Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis
Plant cells and tissues remain always on risk under abiotic and biotic stresses due to increased production of reactive oxygen species (ROS). Plants protect themselves against ROS induced oxidative damage by the upregulation of antioxidant machinery. Out of many components of antioxidant machinery, glutathione reductase (GR, EC 1.6.4.2) and glutathione (GSH, γ-Glu-Cys-Gly) play important role in the protection of cell against oxidative damage. In stress condition, the GR helps in maintaining the reduced glutathione pool for strengthening the antioxidative processes in plants. Present study investigates genome wide analysis of GR from rice and Arabidopsis. We were able to identify 3 rice GR genes (LOC_Os02 g56850, LOC_Os03 g06740, LOC_Os10 g28000) and 2 Arabidopsis GR genes (AT3G54660, AT3G24170) from their respective genomes on the basis of their annotation as well as the presence of pyridine nucleotide-disulphide oxidoreductases class-I active site. The evolutionary relationship of the GR genes from rice and Arabidopsis genomes was analyzed using the multiple sequence alignment and phylogenetic tree. This revealed evolutionary conserved pyridine nucleotide-disulphide oxidoreductases class-I active site among the GR protein in rice and Arabidopsis. This study should make an important contribution to our better understanding of the GR under normal and stress condition in plants.
DOI: 10.1155/2014/676934
2014
Cited 55 times
Synergistic Exposure of Rice Seeds to Different Doses of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">γ</mml:mi></mml:mrow></mml:math>-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway
Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ -rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ -rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ -irradiation and salinity stress. Altogether, the synergistic exposure to γ -rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival.
DOI: 10.1007/s11032-011-9625-3
2011
Cited 54 times
Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.)
DOI: 10.4161/psb.20356
2012
Cited 53 times
Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress
Heterotrimeric G-proteins (α, β and γ subunits) are primarily involved in diverse signaling processes by transducing signals from an activated transmembrane G-protein coupled receptor (GPCR) to appropriate downstream effectors within cells. The role of α and β G-protein subunits in salinity and heat stress has been reported but the regulation of γ subunit of plant G-proteins in response to abiotic stress has not heretofore been described. In the present study we report the isolation of full-length cDNAs of two isoforms of Gγ [RGG1(I), 282 bp and RGG2(I), 453 bp] from rice (Oryza sativa cv Indica group Swarna) and described their transcript regulation in response to abiotic stresses. Protein sequence alignment and pairwise comparison of γ subunits of Indica rice [RGG(I)] with other known plant G-protein γ subunits demonstrated high homology to barley (HvGs) while soybean (GmG2) and Arabidopsis (AGG1) were least related. The numbers of the exons and introns were found to be similar between RGG1(I) and RGG2(I), but their sizes were different. Analyses of promoter sequences of RGG(I) confirmed the presence of stress-related cis-regulatory signature motifs suggesting their active and possible independent roles in abiotic stress signaling. The transcript levels of RGG1(I) and RGG2(I) were upregulated following NaCl, cold, heat and ABA treatments. However, in drought stress only RGG1(I) was upregulated. Strong support by transcript profiling suggests that γ subunits play a critical role via cross talk in signaling pathways. These findings provide first direct evidence for roles of Gγ subunits of rice G-proteins in regulation of abiotic stresses. These findings suggest the possible exploitation of γ subunits of G-protein machinery for promoting stress tolerance in plants.
DOI: 10.4161/psb.24354
2013
Cited 51 times
High frequency regeneration via direct somatic embryogenesis and efficient<i>Agrobacterium</i>- mediated genetic transformation of tobacco
A direct somatic embryogenesis protocol was developed for four cultivars of Nicotiana species, by using leaf disc as an explant. Direct somatic embryogenesis of Nicotiana by using BAP and IAA has not been investigated so far. This method does not require formation of callus tissues which leads to somaclonal variations. The frequency of somatic embryogenesis was strongly influenced by the plant growth hormones. The somatic embryos developing directly from explant tissue were noticed after 6 d of culture. Somatic embryogenesis of a high frequency (87-96%) was observed in cultures of the all four genotypes (Nicotiana tabacum, N. benthamiyana, N. xanthi, N. t cv petihavana). The results showed that the best medium for direct somatic embryogenesis was MS supplemented with 2.5 mg/l, 0.2 mg/l IAA and 2% sucrose. Subculture of somatic embryos onto hormone free MS medium resulted in their conversion into plants for all genotypes. About 95% of the regenerated somatic embryos germinated into complete plantlets. The plants showed morphological and growth characteristics similar to those of seed-derived plants. Explants were transformed using Agrobacterium tumifacious LBA4404 plasmid pCAMBIA1301 harboring the GUS gene. The regenerated transgenic plants were confirmed by PCR analysis and histochemical GUS assay. The transformation efficiency obtained by using the Agrobacterium- mediated transformation was more than 95%. This method takes 6 wk to accomplish complete transgenic plants through direct somatic embryogenesis. The transgenic plantlets were acclimatized successfully with 98% survival in greenhouse and they showed normal morphological characteristics and were fertile. The regeneration and transformation method described herein is very simple, highly efficient and fast for the introduction of any foreign gene directly in tobacco through direct somatic embryogenesis.
DOI: 10.1016/j.plaphy.2013.01.002
2013
Cited 50 times
Genome-wide analysis of plant-type II Ca2+ATPases gene family from rice and Arabidopsis: Potential role in abiotic stresses
The Plant Ca2+ATPases are members of the P-type ATPase superfamily and play essential roles in pollen tube growth, vegetative development, inflorescence architecture, stomatal opening or closing as well as transport of Ca2+, Mn2+ and Zn2+. Their role in abiotic stress adaptation by activation of different signaling pathways is emerging. In Arabidopsis, the P-type Ca2+ATPases can be classified in two distinct groups: type IIA (ECA) and type IIB (ACA). The availability of rice genome sequence allowed performing a genome-wide search for P-type Ca2+ATPases proteins, and the comparison of the identified proteins with their homologs in Arabidopsis model plant. In the present study, we identified the P-type II Ca2+ATPases from rice by analyzing their phylogenetic relationship, multiple alignment, cis-regulatory elements, protein domains, motifs and homology percentage. The phylogenetic analysis revealed that rice type IIA Ca2+ATPases clustered with Arabidopsis type IIA Ca2+ATPases and showed high sequence similarity within the group, whereas rice type IIB Ca2+ATPases presented variable sequence similarities with Arabidopsis type IIB members. The protein homology modeling, identification of putative transmembrane domains and conserved motifs of rice P-type II Ca2+ATPases provided information on their functions and structural architecture. The analysis of P-type II Ca2+ATPases promoter regions in rice showed multiple stress-induced cis-acting elements. The expression profile analysis indicated vital roles of P-type II Ca2+ATPases in stress signaling, plant development and abiotic stress responses. The comprehensive analysis and expression profiling provided a critical platform for functional characterization of P-type II Ca2+ATPase genes that could be applied in engineering crop plants with modified calcium signaling and homeostatic pathways.
DOI: 10.1007/978-3-319-57849-1
2017
Cited 50 times
Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials
DOI: 10.4161/psb.24564
2013
Cited 47 times
Comparative physiological response of wheat genotypes under terminal heat stress
Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.