ϟ

Nallasivam Palanisamy

Here are all the papers by Nallasivam Palanisamy that you can download and read on OA.mg.
Nallasivam Palanisamy’s last known institution is . Download Nallasivam Palanisamy PDFs here.

Claim this Profile →
DOI: 10.1038/nature11125
2012
Cited 2,172 times
The mutational landscape of lethal castration-resistant prostate cancer
Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.
DOI: 10.1126/science.1165395
2008
Cited 982 times
Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer
Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.
DOI: 10.1038/nbt.1914
2011
Cited 945 times
Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression
Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer-associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA(+) RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the Polycomb Repressive Complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.
DOI: 10.1038/nature07638
2009
Cited 828 times
Transcriptome sequencing to detect gene fusions in cancer
Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Using a combination of new-generation long- and short-read sequencing technologies, Chinnaiyan and colleagues analyse cancer samples for gene fusion transcripts. The approach uncovers transcripts arising from known gene fusions in leukaemia and prostate cancer, as well as novel ones in prostate cancer, including a recurrent transcript SCL45A3-ELK4 that would not have been found using conventional methods. Using a combination of new generation long- and short-read sequencing technologies, this study analyses cancer samples for gene fusion transcripts. The approach uncovers transcripts arising from known gene fusions in leukaemia and prostate cancer, as well as newly discovered ones in prostate cancer. Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours1, have recently been described in common solid tumours2,3,4,5,6,7,8,9. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully used integrative transcriptome sequencing to ‘re-discover’ the BCR–ABL1 (ref. 10) gene fusion in a chronic myelogenous leukaemia cell line and the TMPRSS2–ERG2,3 gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimaeric transcripts in cancer cell lines and tumours. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimaeras using high-throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.
DOI: 10.1038/ncomms6383
2014
Cited 530 times
The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer
Abstract The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERα) is expressed in prostate cancers, independent of AR status. However, the role of ERα remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERα-specific non-coding transcriptome signature. Among putatively ERα-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is associated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription.
DOI: 10.1038/nm.2166
2010
Cited 436 times
Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma
Using pair-end transcriptome sequencing, this study provides the identification of Raf pathway gene rearrangements in a small proportion of prostate and gastric cancers and in melanomas. The fusion proteins show tumorigenic potential and represent a unique activating alteration of this oncogenic pathway, which seems to be mutually exclusive from known cancer-associated Raf mutations. This suggests that therapeutic Raf inhibition can be expanded to this fusion-harboring subset of solid tumors. Although recurrent gene fusions involving erythroblastosis virus E26 transformation-specific (ETS) family transcription factors are common in prostate cancer, their products are considered 'undruggable' by conventional approaches. Recently, rare targetable gene fusions involving the anaplastic lymphoma receptor tyrosine kinase (ALK) gene, have been identified in 1–5% of lung cancers1, suggesting that similar rare gene fusions may occur in other common epithelial cancers, including prostate cancer. Here we used paired-end transcriptome sequencing to screen ETS rearrangement–negative prostate cancers for targetable gene fusions and identified the SLC45A3-BRAF (solute carrier family 45, member 3–v-raf murine sarcoma viral oncogene homolog B1) and ESRP1-RAF1 (epithelial splicing regulatory protein-1–v-raf-1 murine leukemia viral oncogene homolog-1) gene fusions. Expression of SLC45A3-BRAF or ESRP1-RAF1 in prostate cells induced a neoplastic phenotype that was sensitive to RAF and mitogen-activated protein kinase kinase (MAP2K1) inhibitors. Screening a large cohort of patients, we found that, although rare, recurrent rearrangements in the RAF pathway tend to occur in advanced prostate cancers, gastric cancers and melanoma. Taken together, our results emphasize the key role of RAF family gene rearrangements in cancer, suggest that RAF and MEK inhibitors may be useful in a subset of gene fusion–harboring solid tumors and demonstrate that sequencing of tumor transcriptomes and genomes may lead to the identification of rare targetable fusions across cancer types.
DOI: 10.1371/journal.pgen.0030087
2007
Cited 424 times
Whole-Genome Cartography of Estrogen Receptor α Binding Sites
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor α (ERα) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERα binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5′ and 3′ ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERα binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERα-positive from ERα-negative breast tumors. The expression dynamics of the genes adjacent to ERα binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERα appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERα target genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERα binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERα binding and gene regulation.
DOI: 10.1016/j.ccr.2011.04.010
2011
Cited 395 times
Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer
Recurrent fusions of ETS genes are considered driving mutations in a diverse array of cancers, including Ewing's sarcoma, acute myeloid leukemia, and prostate cancer. We investigate the mechanisms by which ETS fusions mediate their effects, and find that the product of the predominant ETS gene fusion, TMPRSS2:ERG, interacts in a DNA-independent manner with the enzyme poly (ADP-ribose) polymerase 1 (PARP1) and the catalytic subunit of DNA protein kinase (DNA-PKcs). ETS gene-mediated transcription and cell invasion require PARP1 and DNA-PKcs expression and activity. Importantly, pharmacological inhibition of PARP1 inhibits ETS-positive, but not ETS-negative, prostate cancer xenograft growth. Finally, overexpression of the TMPRSS2:ERG fusion induces DNA damage, which is potentiated by PARP1 inhibition in a manner similar to that of BRCA1/2 deficiency.
DOI: 10.1126/science.1178124
2009
Cited 362 times
Induced Chromosomal Proximity and Gene Fusions in Prostate Cancer
Gene fusions play a critical role in cancer progression. The mechanisms underlying their genesis and cell type specificity are not well understood. About 50% of human prostate cancers display a gene fusion involving the 5' untranslated region of TMPRSS2, an androgen-regulated gene, and the protein-coding sequences of ERG, which encodes an erythroblast transformation-specific (ETS) transcription factor. By studying human prostate cancer cells with fluorescence in situ hybridization, we show that androgen signaling induces proximity of the TMPRSS2 and ERG genomic loci, both located on chromosome 21q22.2. Subsequent exposure of the cells to gamma irradiation, which causes DNA double-strand breaks, facilitates the formation of the TMPRSS2-ERG gene fusion. These results may help explain why TMPRSS2-ERG fusions are restricted to the prostate, which is dependent on androgen signaling.
DOI: 10.1001/jama.2015.10080
2015
Cited 336 times
Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth
<h3>Importance</h3> Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. <h3>Objective</h3> To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. <h3>Design, Setting, and Participants</h3> Single-site, observational, consecutive case series (May 2012-October 2014) involving 102 children and young adults (mean age, 10.6 years; median age, 11.5 years, range, 0-22 years) with relapsed, refractory, or rare cancer. <h3>Exposures</h3> Participants underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing and genetic counseling. Results were discussed by a precision medicine tumor board, which made recommendations to families and their physicians. <h3>Main Outcomes and Measures</h3> Proportion of patients with potentially actionable findings, results of clinical actions based on integrative clinical sequencing, and estimated proportion of patients or their families at risk of future cancer. <h3>Results</h3> Of the 104 screened patients, 102 enrolled with 91 (89%) having adequate tumor tissue to complete sequencing. Only the 91 patients were included in all calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Forty-two patients (46%) had actionable findings that changed their cancer management: 15 of 28 (54%) with hematological malignancies and 27 of 63 (43%) with solid tumors. Individualized actions were taken in 23 of the 91 (25%) based on actionable integrative clinical sequencing findings, including change in treatment for 14 patients (15%) and genetic counseling for future risk for 9 patients (10%). Nine of 91 (10%) of the personalized clinical interventions resulted in ongoing partial clinical remission of 8 to 16 months or helped sustain complete clinical remission of 6 to 21 months. All 9 patients and families with actionable incidental genetic findings agreed to genetic counseling and screening. <h3>Conclusions and Relevance</h3> In this single-center case series involving young patients with relapsed or refractory cancer, incorporation of integrative clinical sequencing data into clinical management was feasible, revealed potentially actionable findings in 46% of patients, and was associated with change in treatment and family genetic counseling for a small proportion of patients. The lack of a control group limited assessing whether better clinical outcomes resulted from this approach than outcomes that would have occurred with standard care.
DOI: 10.1126/scitranslmed.3001970
2011
Cited 322 times
Urine <i>TMPRSS2:ERG</i> Fusion Transcript Stratifies Prostate Cancer Risk in Men with Elevated Serum PSA
Urine TMPRSS2:ERG gene fusion could be used for stratification of patients at higher risk for prostate cancer.
DOI: 10.1038/nm.2580
2011
Cited 316 times
Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer
This report identifies oncogenic fusions in individuals with breast cancer involving the genes encoding NOTCH and MAST, recurring in approximately 5–7% of studied cases. The fusions show growth-promoting properties that suggest that they may represent targetable events in a subset of people with breast cancer. Breast cancer is a heterogeneous disease that has a wide range of molecular aberrations and clinical outcomes. Here we used paired-end transcriptome sequencing to explore the landscape of gene fusions in a panel of breast cancer cell lines and tissues. We observed that individual breast cancers have a variety of expressed gene fusions. We identified two classes of recurrent gene rearrangements involving genes encoding microtubule-associated serine-threonine kinase (MAST) and members of the Notch family. Both MAST and Notch-family gene fusions have substantial phenotypic effects in breast epithelial cells. Breast cancer cell lines harboring Notch gene rearrangements are uniquely sensitive to inhibition of Notch signaling, and overexpression of MAST1 or MAST2 gene fusions has a proliferative effect both in vitro and in vivo. These findings show that recurrent gene rearrangements have key roles in subsets of carcinomas and suggest that transcriptome sequencing could identify individuals with rare, targetable gene fusions.
DOI: 10.1073/pnas.0904720106
2009
Cited 311 times
Chimeric transcript discovery by paired-end transcriptome sequencing
Recurrent gene fusions are a prevalent class of mutations arising from the juxtaposition of 2 distinct regions, which can generate novel functional transcripts that could serve as valuable therapeutic targets in cancer. Therefore, we aim to establish a sensitive, high-throughput methodology to comprehensively catalog functional gene fusions in cancer by evaluating a paired-end transcriptome sequencing strategy. Not only did a paired-end approach provide a greater dynamic range in comparison with single read based approaches, but it clearly distinguished the high-level “driving” gene fusions, such as BCR-ABL1 and TMPRSS2-ERG , from potential lower level “passenger” gene fusions. Also, the comprehensiveness of a paired-end approach enabled the discovery of 12 previously undescribed gene fusions in 4 commonly used cell lines that eluded previous approaches. Using the paired-end transcriptome sequencing approach, we observed read-through mRNA chimeras, tissue-type restricted chimeras, converging transcripts, diverging transcripts, and overlapping mRNA transcripts. Last, we successfully used paired-end transcriptome sequencing to detect previously undescribed ETS gene fusions in prostate tumors. Together, this study establishes a highly specific and sensitive approach for accurately and comprehensively cataloguing chimeras within a sample using paired-end transcriptome sequencing.
DOI: 10.1634/stemcells.2006-0420
2006
Cited 299 times
Derivation of Clinically Compliant MSCs from CD105+, CD24− Differentiated Human ESCs
Abstract Adult tissue-derived mesenchymal stem cells (MSCs) have demonstrated therapeutic efficacy in treating diseases or repairing damaged tissues through mechanisms thought to be mediated by either cell replacement or secretion of paracrine factors. Characterized, self-renewing human ESCs could potentially be an invariable source of consistently uniform MSCs for therapeutic applications. Here we describe a clinically relevant and reproducible manner of generating identical batches of hESC-derived MSC (hESC-MSC) cultures that circumvents exposure to virus, mouse cells, or serum. Trypsinization and propagation of HuES9 or H1 hESCs in feeder- and serum-free selection media generated three polyclonal, karyotypically stable, and phenotypically MSC-like cultures that do not express pluripotency-associated markers but displayed MSC-like surface antigens and gene expression profile. They differentiate into adipocytes, osteocytes, and chondrocytes in vitro. Gene expression and fluorescence-activated cell sorter analysis identified CD105 and CD24 as highly expressed antigens on hESC-MSCs and hESCs, respectively. CD105+, CD24− monoclonal isolates have a typical MSC gene expression profiles and were identical to each other with a highly correlated gene expression profile (r2 &amp;gt; .90). We have developed a protocol to reproducibly generate clinically compliant and identical hESC-MSC cultures.
DOI: 10.1158/0008-5472.can-15-0702
2015
Cited 270 times
The Distinctive Mutational Spectra of Polyomavirus-Negative Merkel Cell Carcinoma
Abstract Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine tumor. Merkel cell polyomavirus (MCPyV) may contribute to tumorigenesis in a subset of tumors via inhibition of tumor suppressors such as retinoblastoma (RB1) by mutated viral T antigens, but the molecular pathogenesis of MCPyV-negative MCC is largely unexplored. Through our MI-ONCOSEQ precision oncology study, we performed integrative sequencing on two cases of MCPyV-negative MCC, as well as a validation cohort of 14 additional MCC cases (n = 16). In addition to previously identified mutations in TP53, RB1, and PIK3CA, we discovered activating mutations of oncogenes, including HRAS and loss-of-function mutations in PRUNE2 and NOTCH family genes in MCPyV-negative MCC. MCPyV-negative tumors also displayed high overall mutation burden (10.09 ± 2.32 mutations/Mb) and were characterized by a prominent UV-signature pattern with C &amp;gt; T transitions comprising 85% of mutations. In contrast, mutation burden was low in MCPyV-positive tumors (0.40 ± 0.09 mutations/Mb) and lacked a UV signature. These findings suggest a potential ontologic dichotomy in MCC, characterized by either viral-dependent or UV-dependent tumorigenic pathways. Cancer Res; 75(18); 3720–7. ©2015 AACR.
DOI: 10.1016/j.cell.2012.04.041
2012
Cited 256 times
Expressed Pseudogenes in the Transcriptional Landscape of Human Cancers
Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.
DOI: 10.1158/0008-5472.can-12-3349
2013
Cited 217 times
HER2 Drives Luminal Breast Cancer Stem Cells in the Absence of HER2 Amplification: Implications for Efficacy of Adjuvant Trastuzumab
Although current breast cancer treatment guidelines limit the use of HER2-blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Using breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we show that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell (CSC) population in estrogen receptor-positive (ER(+)), HER2(-) luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth. HER2 expression is increased in luminal tumors grown in mouse bone xenografts, as well as in bone metastases from patients with breast cancer as compared with matched primary tumors. Furthermore, this increase in HER2 protein expression was not due to gene amplification but rather was mediated by receptor activator of NF-κB (RANK)-ligand in the bone microenvironment. These studies suggest that the clinical efficacy of adjuvant trastuzumab may relate to the ability of this agent to target the CSC population in a process that does not require HER2 gene amplification. Furthermore, these studies support a CSC model in which maximal clinical benefit is achieved when CSC targeting agents are administered in the adjuvant setting. Cancer Res; 73(5); 1635-46. ©2012 AACR.
DOI: 10.1016/j.ccr.2011.06.016
2011
Cited 197 times
Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer
<h2>Summary</h2> Polycomb Repressive Complexes (PRC1 and PRC2)-mediated epigenetic regulation is critical for maintaining cellular homeostasis. Members of Polycomb Group (PcG) proteins including EZH2, a PRC2 component, are upregulated in various cancer types, implicating their role in tumorigenesis. Here, we have identified several microRNAs (miRNAs) that are repressed by EZH2. These miRNAs, in turn, regulate the expression of PRC1 proteins BMI1 and RING2. We found that ectopic overexpression of EZH2-regulated miRNAs attenuated cancer cell growth and invasiveness, and abrogated cancer stem cell properties. Importantly, expression analysis revealed an inverse correlation between miRNA and PRC protein levels in cell culture and prostate cancer tissues. Taken together, our data have uncovered a coordinate regulation of PRC1 and PRC2 activities that is mediated by miRNAs.
DOI: 10.1309/ajcpn25njtounpnf
2015
Cited 170 times
Extensive Survey of STAT6 Expression in a Large Series of Mesenchymal Tumors
Expression of strong nuclear STAT6 is thought to be a specific marker for solitary fibrous tumors (SFTs). Little is known about subtle expression patterns in other mesenchymal lesions.We performed immunohistochemical studies against the C-terminus of STAT6 in tissue microarrays and whole sections, comprising 2366 mesenchymal lesions.Strong nuclear STAT6 was expressed in 285 of 2,021 tumors, including 206 of 240 SFTs, 49 of 408 well-differentiated/dedifferentiated liposarcomas, eight of 65 unclassified sarcomas, and 14 of 184 desmoid tumors, among others. Expression in SFTs was predominately limited to the nucleus. Other positive tumors typically expressed both nuclear and cytoplasmic STAT6. Complete absence of STAT6 was most common in pleomorphic liposarcoma and alveolar soft part sarcoma (60% and 72% cases negative, respectively).Strong nuclear STAT6 is largely specific for SFTs. Physiologic low-level cytoplasmic/nuclear expression is common in mesenchymal neoplasia and is of uncertain significance.
DOI: 10.1038/nm.3830
2015
Cited 167 times
Targeting the MLL complex in castration-resistant prostate cancer
Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion-positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin-MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin-MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.
DOI: 10.1182/blood.v88.11.4110.4110
1996
Cited 234 times
The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene
Abstract The t(9;14)(p13;q32) translocation is associated with approximately 50% of lymphoplasmacytoid lymphoma (LPL), a subtype of B-cell non-Hodgkin's lymphoma (NHL). We cloned the chromosomal breakpoint of der (14) from an LPL case (1052) and showed that it involved a junction between 9p13 and the switch micro region of the Ig heavy chain locus (IgH) on 14q32. Using a YAC contig spanning 1.5 megabase (Mb), we determined that the 9p13 breakpoint in one case (1052) mapped within a 270-kb restriction fragment containing two previously reported 9p breakpoints associated with a alpha-heavy chain disease case (MAL) and KI-1 positive diffuse large cell lymphoma (DLCL) cell line (KIS-1). The same fragment also contained the PAX-5 gene which encodes a B-cell specific transcription factor involved in the control of B-cell proliferation and differentiation. The breakpoints of KIS-1 and 1052 were mapped within the 5′ noncoding region of PAX-5, while the 9p13 breakpoint of MAL mapped 230 to 270 kb upstream to PAX-5. In all three cases, the translocation caused the juxtaposition of the PAX-5 gene to the IgH locus in the opposite direction of transcription. When compared with six other DLCL cell lines lacking t(9;14)(p13;q32), the KIS-1 cell line showed an 11-fold overexpression of PAX-5 mRNA and a significantly reduced expression of the p53 gene, which is normally regulated by PAX-5. Moreover, metaphase and interphase fluorescence in situ hybridization (FISH) analysis using a YAC clone spanning 1 Mb including the PAX-5 as a probe identified chromosomal translocations in 5 of 7 cases carrying 9p13 translocations. These findings suggest that the PAX- 5 gene is the target of the t(9;14) in LPL whereby its expression may be deregulated by juxtaposition to IgH regulatory elements, thus contributing to lymphomagenesis.
DOI: 10.1038/modpathol.2009.69
2009
Cited 212 times
Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression
The link between ERG rearrangement and PTEN (phosphatase and tensin homolog deleted on chromosome 10) deletion is unclear in prostate cancer progression. Using fluorescence in situ hybridization, we systematically validated the frequency and distribution of ERG and PTEN aberrations in a cohort of 73 benign prostate tissues, 59 high-grade prostatic intraepithelial neoplasia (HGPIN) foci, 281 localized prostate cancer and 47 androgen-independent metastatic prostate cancer patients. Overall, ERG rearrangement was present in 15% (5/33) of HGPIN, 45% (121/267) of localized cancers and 35% (15/43) of metastases. By contrast, PTEN deletion was identified in 9% (3/33) of HGPIN, 17% (42/251) of localized cancers and 54% (22/41) of metastases, of which 0%, 40% (17/42) and 45% (10/22) were homozygous, respectively. Concomitance of ERG rearrangement and PTEN deletion was observed in a subset of HGPIN. Significantly, association between PTEN deletion and ERG rearrangement was present both in localized cancers (P=0.0008) and metastases (P=0.02). Further, immunohistochemistry revealed significant correlation of decreased PTEN protein expression with PTEN genomic deletion both in localized and metastatic cancer. Of note, ERG aberration, but not PTEN deletion, was consistently identical both in localized cancer and adjacent HGPIN. Similarly, whereas all metastases (41/41, 100%) shared the same ERG status across multiple sites from the same patient, 5% (2/41) of cases showed discordance for PTEN deletion status across multiple sites. Collectively, our data support PTEN deletion as a late genetic event in human prostate cancer, presumably a ‘second hit’ after ERG rearrangement. PTEN deletion and ERG rearrangement may cooperate, but contribute at different stages, in prostate cancer progression.
DOI: 10.1158/1078-0432.ccr-10-3152
2011
Cited 179 times
Genomic Loss of <i>miR-486</i> Regulates Tumor Progression and the <i>OLFM4</i> Antiapoptotic Factor in Gastric Cancer
MicroRNAs (miRNA) play pivotal oncogenic and tumor-suppressor roles in several human cancers. We sought to discover novel tumor-suppressor miRNAs in gastric cancer (GC).Using Agilent miRNA microarrays, we compared miRNA expression profiles of 40 primary gastric tumors and 40 gastric normal tissues, identifying miRNAs significantly downregulated in gastric tumors.Among the top 80 miRNAs differentially expressed between gastric tumors and normals (false discovery rate < 0.01), we identified hsa-miR-486 (miR-486) as a significantly downregulated miRNA in primary GCs and GC cell lines. Restoration of miR-486 expression in GC cell lines (YCC3, SCH and AGS) caused suppression of several pro-oncogenic traits, whereas conversely inhibiting miR-486 expression in YCC6 GC cells enhanced cellular proliferation. Array-CGH analysis of 106 primary GCs revealed genomic loss of the miR-486 locus in approximately 25% to 30% of GCs, including two tumors with focal genomic losses specifically deleting miR-486, consistent with miR-486 playing a tumor-suppressive role. Bioinformatic analysis identified the secreted antiapoptotic glycoprotein OLFM4 as a potential miR-486 target. Restoring miR-486 expression in GC cells decreased endogenous OLFM4 transcript and protein levels, and also inhibited expression of luciferase reporters containing an OLFM4 3' untranslated region with predicted miR-486 binding sites. Supporting the biological relevance of OLFM4 as a miR-486 target, proliferation in GC cells was also significantly reduced by OLFM4 silencing.miR-486 may function as a novel tumor-suppressor miRNA in GC. Its antioncogenic activity may involve the direct targeting and inhibition of OLFM4.
DOI: 10.1016/s1074-7613(01)00109-1
2001
Cited 176 times
IRTA1 and IRTA2, Novel Immunoglobulin Superfamily Receptors Expressed in B Cells and Involved in Chromosome 1q21 Abnormalities in B Cell Malignancy
Abnormalities of chromosome 1q21 are common in B cell malignancies, but their target genes are largely unknown. By cloning the breakpoints of a (1;14) (q21;q32) chromosomal translocation in a myeloma cell line, we have identified two novel genes, IRTA1 and IRTA2, encoding cell surface receptors homologous to the Fc and inhibitory receptor families. Both genes are selectively expressed in mature B cells: IRTA1 in marginal zone B cells and IRTA2 in centrocytes, marginal zone B cells, and immunoblasts. As a result of the t(1;14), IRTA1 is fused to the immunoglobulin Cα domain to produce a chimeric IRTA1/Cα fusion protein. In tumor cell lines with 1q21 abnormalities, IRTA2 expression is deregulated. Thus, IRTA1 and IRTA2 are novel immunoreceptors implicated in B cell development and lymphomagenesis.
DOI: 10.1101/gr.119347.110
2011
Cited 171 times
Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
DOI: 10.1016/s0002-9440(10)62341-3
2005
Cited 162 times
Genomic Amplification of the Human Telomerase Gene (TERC) in Pap Smears Predicts the Development of Cervical Cancer
Invasive cervical carcinomas almost invariably carry extra copies of chromosome arm 3q, resulting in a gain of the human telomerase gene (<b>TERC</b>). This provided the rationale for the development of a multicolor fluorescence <b>in situ</b> hybridization (FISH) probe set as a diagnostic tool for the direct detection of <b>TERC</b> gains in Pap smears. We previously used this probe set to show that cervical intraepithelial neoplasia (CIN) 2 and CIN3 lesions could be distinguished from normal samples, atypical squamous cell of undetermined significance (ASCUS) and CIN1, with a sensitivity and specificity exceeding 90%, independent of the cytomorphological assessment. In the current study, we explored whether gain of 3q and amplification of <b>TERC</b> could predict progression from CIN1/CIN2 to CIN3 and invasive carcinoma. We applied our probe set to a series of 59 previously stained Pap smears for which repeat Pap smears and clinical follow-up were available. The samples included CIN1/CIN2 lesions that progressed to CIN3 (progressors), CIN1/CIN2 lesions that regressed spontaneously (regressors), and normal Pap smears from women who subsequently developed CIN3 or cervical cancer. Here, we show that progressors displayed a gain of 3q whereas none of the regressors showed this genetic aberration. These data suggest that 3q gain is required for the transition from CIN1/CIN2 to CIN3 and that it predicts progression. Of note, 3q gain was found in 33% of cytologically normal Pap smears from women who were diagnosed with CIN3 or invasive cervical carcinoma after a short latency. The sensitivity of our test for predicting progression from CIN1/CIN2 to CIN3 was 100% and the specificity, ie, the prediction of regression, was 70%. We conclude that the detection of 3q gain and amplification of <b>TERC</b> in routinely collected Pap smears can assist in identifying low-grade lesions with a high progression risk and in decreasing false-negative cytological screenings.
DOI: 10.1158/0008-5472.can-08-2014
2008
Cited 146 times
A Fluorescence <i>In situ</i> Hybridization Screen for E26 Transformation–Specific Aberrations: Identification of DDX5-ETV4 Fusion Protein in Prostate Cancer
Recurrent gene fusions involving E26 transformation-specific (ETS) transcription factors ERG, ETV1, ETV4, or ETV5 have been identified in 40% to 70% of prostate cancers. Here, we used a comprehensive fluorescence in situ hybridization (FISH) split probe strategy interrogating all 27 ETS family members and their five known 5' fusion partners in a cohort of 110 clinically localized prostate cancer patients. Gene rearrangements were only identified in ETS genes that were previously implicated in prostate cancer gene fusions including ERG, ETV1, and ETV4 (43%, 5%, and 5%, respectively), suggesting that a substantial fraction of prostate cancers (estimated at 30-60%) cannot be attributed to an ETS gene fusion. Among the known 5' gene fusion partners, TMPRSS2 was rearranged in 47% of cases followed by SLC45A3, HNRPA2B1, and C15ORF21 in 2%, 1%, and 1% of cases, respectively. Based on this comprehensive FISH screen, we have made four noteworthy observations. First, by screening the entire ETS transcription factor family for rearrangements, we found that a large fraction of prostate cancers (44%) cannot be ascribed to an ETS gene fusion, an observation which will stimulate research into identifying recurrent non-ETS aberrations in prostate cancers. Second, we identified SLC45A3 as a novel 5' fusion partner of ERG; previously, TMPRSS2 was the only described 5' partner of ERG. Third, we identified two prostate-specific, androgen-induced genes, FLJ35294 and CANT1, as 5' partners to ETV1 and ETV4. Fourth, we identified a ubiquitously expressed, androgen-insensitive gene, DDX5, fused in frame with ETV4, leading to the expression of a DDX5-ETV4 fusion protein.
DOI: 10.1158/0008-5472.can-16-2072
2017
Cited 133 times
Poor Prognosis Indicated by Venous Circulating Tumor Cell Clusters in Early-Stage Lung Cancers
Abstract Early detection of metastasis can be aided by circulating tumor cells (CTC), which also show potential to predict early relapse. Because of the limited CTC numbers in peripheral blood in early stages, we investigated CTCs in pulmonary vein blood accessed during surgical resection of tumors. Pulmonary vein (PV) and peripheral vein (Pe) blood specimens from patients with lung cancer were drawn during the perioperative period and assessed for CTC burden using a microfluidic device. From 108 blood samples analyzed from 36 patients, PV had significantly higher number of CTCs compared with preoperative Pe (P &amp;lt; 0.0001) and intraoperative Pe (P &amp;lt; 0.001) blood. CTC clusters with large number of CTCs were observed in 50% of patients, with PV often revealing larger clusters. Long-term surveillance indicated that presence of clusters in preoperative Pe blood predicted a trend toward poor prognosis. Gene expression analysis by RT-qPCR revealed enrichment of p53 signaling and extracellular matrix involvement in PV and Pe samples. Ki67 expression was detected in 62.5% of PV samples and 59.2% of Pe samples, with the majority (72.7%) of patients positive for Ki67 expression in PV having single CTCs as opposed to clusters. Gene ontology analysis revealed enrichment of cell migration and immune-related pathways in CTC clusters, suggesting survival advantage of clusters in circulation. Clusters display characteristics of therapeutic resistance, indicating the aggressive nature of these cells. Thus, CTCs isolated from early stages of lung cancer are predictive of poor prognosis and can be interrogated to determine biomarkers predictive of recurrence. Cancer Res; 77(18); 5194–206. ©2017 AACR.
DOI: 10.1016/j.molcel.2012.10.008
2013
Cited 131 times
Characterization of the EZH2-MMSET Histone Methyltransferase Regulatory Axis in Cancer
Histone methyltransferases (HMTases), as chromatin modifiers, regulate the transcriptomic landscape in normal development as well in diseases such as cancer. Here, we molecularly order two HMTases, EZH2 and MMSET, that have established genetic links to oncogenesis. EZH2, which mediates histone H3K27 trimethylation and is associated with gene silencing, was shown to be coordinately expressed and function upstream of MMSET, which mediates H3K36 dimethylation and is associated with active transcription. We found that the EZH2-MMSET HMTase axis is coordinated by a microRNA network and that the oncogenic functions of EZH2 require MMSET activity. Together, these results suggest that the EZH2-MMSET HMTase axis coordinately functions as a master regulator of transcriptional repression, activation, and oncogenesis and may represent an attractive therapeutic target in cancer.
DOI: 10.1002/adma.201600658
2016
Cited 130 times
Tunable Thermal‐Sensitive Polymer–Graphene Oxide Composite for Efficient Capture and Release of Viable Circulating Tumor Cells
A highly sensitive microfluidic system to capture circulating tumor cells from whole blood of cancer patients is presented. The device incorporates graphene oxide into a thermoresponsive polymer film to serve as the first step of an antibody functionalization chemistry. By decreasing the temperature, captured cells may be released for subsequent analysis.
DOI: 10.1158/0008-5472.can-16-1656
2017
Cited 129 times
HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone
Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74-85. ©2016 AACR.
DOI: 10.18632/oncotarget.622
2012
Cited 128 times
Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma
MicroRNAs (miRs) play a key role in cancer etiology by coordinately repressing numerous target genes involved in cell proliferation, migration and invasion. The genomic region in chromosome 9p21 that encompasses miR-31 is frequently deleted in solid cancers including melanoma; however the expression and functional role of miR-31 has not been previously studied in melanoma. Here, we queried the expression status and performed functional characterization of miR-31 in melanoma tissues and cell lines. We found that down-regulation of miR-31 was a common event in melanoma tumors and cell lines and was associated with genomic loss in a subset of samples. Down-regulation of miR-31 gene expression was also a result of epigenetic silencing by DNA methylation, and via EZH2-mediated histone methylation. Ectopic overexpression of miR-31 in various melanoma cell lines inhibited cell migration and invasion. miR-31 targets include oncogenic kinases such as SRC, MET, NIK (MAP3K14) and the melanoma specific oncogene RAB27a. Furthermore, miR-31 overexpression resulted in down-regulation of EZH2 and a de-repression of its target gene rap1GAP; increased expression of EZH2 was associated with melanoma progression and overall patient survival. Taken together, our study supports a tumor suppressor role for miR-31 in melanoma and identifies novel therapeutic targets.
DOI: 10.1038/ncomms6893
2014
Cited 121 times
Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes
Lung cancer is emerging as a paradigm for disease molecular subtyping, facilitating targeted therapy based on driving somatic alterations. Here we perform transcriptome analysis of 153 samples representing lung adenocarcinomas, squamous cell carcinomas, large cell lung cancer, adenoid cystic carcinomas and cell lines. By integrating our data with The Cancer Genome Atlas and published sources, we analyse 753 lung cancer samples for gene fusions and other transcriptomic alterations. We show that higher numbers of gene fusions is an independent prognostic factor for poor survival in lung cancer. Our analysis confirms the recently reported CD74-NRG1 fusion and suggests that NRG1, NF1 and Hippo pathway fusions may play important roles in tumours without known driver mutations. In addition, we observe exon-skipping events in c-MET, which are attributable to splice site mutations. These classes of genetic aberrations may play a significant role in the genesis of lung cancers lacking known driver mutations. Targeted cancer therapy requires knowledge of driver aberrations. Here the authors perform large-scale transcriptome analysis, and show that gene fusions in NRG1, NF1and Hippo pathway genes are recurrent mostly among lung cancers lacking known driver mutations.
DOI: 10.1093/carcin/bgr184
2011
Cited 116 times
Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase
MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression by inhibiting translation or promoting degradation of specific target messenger RNAs (mRNAs). Alteration of the levels of a number of miRNAs is common in solid and hematological tumors. We have shown previously that miR-214 regulates Ezh2 in skeletal muscle and embryonic stem cells. The current study was aimed at examining the role of miR-214 in breast cancer where miR-214 levels are reduced but whether this phenomenon bears a functional relevance is unknown. MiR-214 expression was inversely correlated with Ezh2 mRNA and protein levels in breast cancer cell lines and at least one copy of the miR-214 alleles was found to be deleted in 24% (6/25) of primary breast tumors. Experimental increase of miR-214 in breast cancer cell lines correlated with reduction of Ezh2 protein levels, a known marker of invasion and aggressive breast cancer behavior. Supporting a direct targeting mechanism, miR-214 decreased luciferase activity from a construct containing the Ezh2 3′ untranslated region. Expression of miR-214 specifically reduced cell proliferation of breast cancer cells and inhibited the invasive potential of a highly metastatic breast cancer cell line. These findings indicate that reduced miR-214 levels may contribute to breast tumorigenesis by allowing abnormally elevated Ezh2 accumulation and subsequent unchecked cell proliferation and invasion.
DOI: 10.1038/ncomms5527
2014
Cited 113 times
TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer
Squamous cell carcinoma of the head and neck (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate nonhomologous end joining (NHEJ), as TRIP13-binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
DOI: 10.1097/pas.0000000000000940
2017
Cited 113 times
Solitary Fibrous Tumors of the Head and Neck
Solitary fibrous tumors (SFTs) of the head and neck are uncommon. Lesions previously diagnosed in the head and neck as hemangiopericytomas (HPCs), giant cell angiofibromas (GCAs), and orbital fibrous histiocytomas (OFHs) are now recognized as within the expanded spectrum of SFTs. To better understand the clinicopathologic profile of head and neck SFTs, we performed a multi-institutional study of 88 examples. There was no sex predilection (F:M ratio 1.2), and the median patient age was 52 years (range: 15 to above 89 y). The sinonasal tract and orbit were the most common sites involved (30% and 25%), followed by the oral cavity and salivary glands (15% and 14%). Original diagnoses included HPC (25%), SFT (67%), and OFH (6%), with 1 SFT and 1 OFH noted as showing GCA-like morphology. On review, the predominant histologic pattern was classic SFT-like in 53% and cellular (former HPC-like) in 47%; lipomatous differentiation (8%) and GCA-like pattern (7%) were less prevalent. Subsets demonstrated nuclear atypia (23%), epithelioid morphology (15%), or coagulative necrosis (6%). Infiltrative growth (49%) and osseous invasion (82%) were prevalent among evaluable cases. Of the 48 SFTs with follow-up (median: 43 mo), 19 showed recurrence (40%). Of these, 4 patients were alive with disease and 4 dead of disease. Size and mitotic rate were negative prognosticators using a joint prognostic proportional hazards regression model. Three patients experienced metastasis, to lungs, parotid, bone, and skull base, including one case showing overtly sarcomatous "dedifferentiation." As a group, SFTs present in a wide anatomic and morphologic spectrum in the head and neck. Only rare examples metastasize or cause death from disease. However, the fairly high local recurrence rate underscores their aggressive potential and highlights the importance of prospective recognition.
DOI: 10.1158/2159-8290.cd-19-0189
2019
Cited 92 times
CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation
Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.
DOI: 10.1126/scitranslmed.3009332
2014
Cited 84 times
Prostate cancer cell–stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases
Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors.
DOI: 10.18632/oncotarget.2208
2014
Cited 81 times
The miR-124-Prolyl Hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression
Collagen prolyl hydroxylases (C-P4HAs) are a family of enzymes involved in collagen biogenesis.One of the isoforms of P4HA, Prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), catalyzes the formation of 4-hydroxyproline that is essential for the proper three-dimensional folding of newly synthesized procollagen chains.Here, we show the overexpression of P4HA1 in aggressive prostate cancer.Immunohistochemical analysis using tissue microarray demonstrated that P4HA1 expression was correlated with prostate cancer progression.Using in vitro studies, we showed that P4HA1 plays a critical role in prostate cancer cell growth and tumor progression.Expression profiling studies using P4HA1-modulated prostate cells suggested regulation of Matrix metalloprotease 1.The invasive properties of P4HA1 overexpressing cells were reversed by blocking MMP1.Our studies indicate P4HA1 copy number gain in a subset of metastatic prostate tumors and its expression is also regulated by microRNA-124.MiR-124 in turn is negatively regulated by transcriptional repressors EZH2 and CtBP1, both of which are overexpressed in aggressive prostate cancer.Chick chorioallantoic membrane (CAM) assay and mice xenograft investigations show that P4HA1 is required for tumor growth and metastasis in vivo.Our observations suggest that P4HA1 plays a critical role in prostate cancer progression and could serve as a viable therapeutic target.
DOI: 10.18632/oncotarget.4352
2015
Cited 78 times
Role and regulation of coordinately expressed<i>de novo</i>purine biosynthetic enzymes<i>PPAT</i>and<i>PAICS</i>in lung cancer
Cancer cells exhibit altered metabolism including aerobic glycolysis that channels several glycolytic intermediates into de novo purine biosynthetic pathway. We discovered increased expression of phosphoribosyl amidotransferase (PPAT) and phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) enzymes of de novo purine biosynthetic pathway in lung adenocarcinomas. Transcript analyses from next-generation RNA sequencing and gene expression profiling studies suggested that PPAT and PAICS can serve as prognostic biomarkers for aggressive lung adenocarcinoma. Immunohistochemical analysis of PAICS performed on tissue microarrays showed increased expression with disease progression and was significantly associated with poor prognosis. Through gene knockdown and over-expression studies we demonstrate that altering PPAT and PAICS expression modulates pyruvate kinase activity, cell proliferation and invasion. Furthermore we identified genomic amplification and aneuploidy of the divergently transcribed PPAT-PAICS genomic region in a subset of lung cancers. We also present evidence for regulation of both PPAT and PAICS and pyruvate kinase activity by L-glutamine, a co-substrate for PPAT. A glutamine antagonist, 6-Diazo-5-oxo-L-norleucine (DON) blocked glutamine mediated induction of PPAT and PAICS as well as reduced pyruvate kinase activity. In summary, this study reveals the regulatory mechanisms by which purine biosynthetic pathway enzymes PPAT and PAICS, and pyruvate kinase activity is increased and exposes an existing metabolic vulnerability in lung cancer cells that can be explored for pharmacological intervention.
DOI: 10.1038/s41467-019-14184-0
2020
Cited 59 times
Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer
Emergence of an aggressive androgen receptor (AR)-independent neuroendocrine prostate cancer (NEPC) after androgen-deprivation therapy (ADT) is well-known. Nevertheless, the majority of advanced-stage prostate cancer patients, including those with SPINK1-positive subtype, are treated with AR-antagonists. Here, we show AR and its corepressor, REST, function as transcriptional-repressors of SPINK1, and AR-antagonists alleviate this repression leading to SPINK1 upregulation. Increased SOX2 expression during NE-transdifferentiation transactivates SPINK1, a critical-player for maintenance of NE-phenotype. SPINK1 elicits epithelial-mesenchymal-transition, stemness and cellular-plasticity. Conversely, pharmacological Casein Kinase-1 inhibition stabilizes REST, which in cooperation with AR causes SPINK1 transcriptional-repression and impedes SPINK1-mediated oncogenesis. Elevated levels of SPINK1 and NEPC markers are observed in the tumors of AR-antagonists treated mice, and in a subset of NEPC patients, implicating a plausible role of SPINK1 in treatment-related NEPC. Collectively, our findings provide an explanation for the paradoxical clinical-outcomes after ADT, possibly due to SPINK1 upregulation, and offers a strategy for adjuvant therapies.
DOI: 10.3390/cancers12010127
2020
Cited 57 times
High-Throughput Label-Free Isolation of Heterogeneous Circulating Tumor Cells and CTC Clusters from Non-Small-Cell Lung Cancer Patients
(1) Background: Circulating tumor cell (CTC) clusters are emerging as clinically significant harbingers of metastases in solid organ cancers. Prior to engaging these CTC clusters in animal models of metastases, it is imperative for technology to identify them with high sensitivity. These clusters often present heterogeneous surface markers and current methods for isolation of clusters may fall short. (2) Methods: We applied an inertial microfluidic Labyrinth device for high-throughput, biomarker-independent, size-based isolation of CTCs/CTC clusters from patients with metastatic non-small-cell lung cancer (NSCLC). (3) Results: Using Labyrinth, CTCs (PanCK+/DAPI+/CD45−) were isolated from patients (n = 25). Heterogeneous CTC populations, including CTCs expressing epithelial (EpCAM), mesenchymal (Vimentin) or both markers were detected. CTCs were isolated from 100% of patients (417 ± 1023 CTCs/mL). EpCAM− CTCs were significantly greater than EpCAM+ CTCs. Cell clusters of ≥2 CTCs were observed in 96% of patients—of which, 75% were EpCAM−. CTCs revealed identical genetic aberrations as the primary tumor for RET, ROS1, and ALK genes using fluorescence in situ hybridization (FISH) analysis. (4) Conclusions: The Labyrinth device recovered heterogeneous CTCs in 100% and CTC clusters in 96% of patients with metastatic NSCLC. The majority of recovered CTCs/clusters were EpCAM−, suggesting that these would have been missed using traditional antibody-based capture methods.
DOI: 10.1158/1078-0432.ccr-20-0479
2020
Cited 55 times
The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-driven Therapy Development
Advances in prostate cancer lag behind other tumor types partly due to the paucity of models reflecting key milestones in prostate cancer progression. Therefore, we develop clinically relevant prostate cancer models.Since 1996, we have generated clinically annotated patient-derived xenografts (PDXs; the MDA PCa PDX series) linked to specific phenotypes reflecting all aspects of clinical prostate cancer.We studied two cell line-derived xenografts and the first 80 PDXs derived from 47 human prostate cancer donors. Of these, 47 PDXs derived from 22 donors are working models and can be expanded either as cell lines (MDA PCa 2a and 2b) or PDXs. The histopathologic, genomic, and molecular characteristics (androgen receptor, ERG, and PTEN loss) maintain fidelity with the human tumor and correlate with published findings. PDX growth response to mouse castration and targeted therapy illustrate their clinical utility. Comparative genomic hybridization and sequencing show significant differences in oncogenic pathways in pairs of PDXs derived from different areas of the same tumor. We also identified a recurrent focal deletion in an area that includes the speckle-type POZ protein-like (SPOPL) gene in PDXs derived from seven human donors of 28 studied (25%). SPOPL is a SPOP paralog, and SPOP mutations define a molecular subclass of prostate cancer. SPOPL deletions are found in 7% of The Cancer Genome Atlas prostate cancers, which suggests that our cohort is a reliable platform for targeted drug development.The MDA PCa PDX series is a dynamic resource that captures the molecular landscape of prostate cancers progressing under novel treatments and enables optimization of prostate cancer-specific, marker-driven therapy.
DOI: 10.1158/1078-0432.ccr-20-0864
2021
Cited 45 times
Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that can be divided into two classes: virus-positive (VP) MCC, associated with oncogenic Merkel cell polyomavirus (MCPyV); and virus-negative (VN) MCC, associated with photodamage.We classified 346 MCC tumors from 300 patients for MCPyV using a combination of IHC, ISH, and qPCR assays. In a subset of tumors, we profiled mutation status and expression of cancer-relevant genes. MCPyV and molecular profiling results were correlated with disease-specific outcomes. Potential prognostic biomarkers were further validated by IHC.A total of 177 tumors were classified as VP-MCC, 151 tumors were VN-MCC, and 17 tumors were indeterminate. MCPyV positivity in primary tumors was associated with longer disease-specific and recurrence-free survival in univariate analysis, and in multivariate analysis incorporating age, sex, immune status, and stage at presentation. Prioritized oncogene or tumor suppressor mutations were frequent in VN-MCC but rare in VP-MCC. TP53 mutation developed with recurrence in one VP-MCC case. Importantly, for the first time we find that VP-MCC and VN-MCC display distinct sets of prognostic molecular biomarkers. For VP-MCC, shorter survival was associated with decreased expression of immune markers including granzyme and IDO1. For VN-MCC, shorter survival correlated with high expression of several genes including UBE2C.MCPyV status is an independent prognostic factor for MCC. Features of the tumor genome, transcriptome, and microenvironment may modify prognosis in a manner specific to viral status. MCPyV status has clinicopathologic significance and allows for identification of additional prognostic subgroups.
DOI: 10.1634/stemcells.2006-0616
2007
Cited 93 times
Baculoviral Vector-Mediated Transient and Stable Transgene Expression in Human Embryonic Stem Cells
Abstract Human embryonic stem (hES) cells as a renewable cell source have great prospective applications in both developmental biology research and regenerative medicine. To realize these potentials, the development of effective and safe genetic manipulation methods in hES cells is an obvious demand. We report here that baculoviral vectors were able to transduce hES cells efficiently. In transient transduction experiments, a recombinant baculoviral vector equipped with a human elongation factor 1-α promoter and a woodchuck hepatitis post-transcriptional regulatory element transduced up to 80% of cells in hES cell clumps and embryoid bodies. For prolonged transgene expression, hybrid baculoviral vectors that have incorporated a rep gene and inverted terminal repeat sequences from adeno-associated virus were produced. These hybrid vectors yielded stable transgene expression during the prolonged undifferentiated proliferation of hES cells and after differentiation. Baculoviral transduction did not affect the normal growth, phenotype, and pluripotency of hES cells. Thus, baculoviral vectors suitable for both transient overexpression and long-term stable expression are an attractive option for genetic manipulation of hES cells. Disclosure of potential conflicts of interest is found at the end of this article.
DOI: 10.1038/modpathol.2009.79
2009
Cited 92 times
Characterization of ETS gene aberrations in select histologic variants of prostate carcinoma
Histologic variants of prostate carcinoma account for 5-10% of the disease and are typically seen in association with conventional acinar carcinoma. These variants often differ from the latter in clinical, immunophenotypic, and biologic potential. Recently, recurrent gene fusions between the androgen-regulated gene TMPRSS2 and the ETS transcription factors ERG, ETV1, ETV4, or ETV5 have been identified in a majority of conventional prostate carcinomas. However, the frequency and significance of this critical molecular event is unknown in the histologic variants of prostate carcinoma. Here, we used break-apart fluorescence in situ hybridization to assess TMPRSS2 and ETS aberrations in a series of select histologic variants: foamy gland carcinoma (N=17), ductal adenocarcinoma (N=18), mucinous carcinoma (N=18), and small cell carcinoma (N=7). A histologic variation of acinar adenocarcinoma, demonstrating glomeruloid morphology (N=9), was also investigated. Overall, 55% of histologic variant or variation morphologies demonstrated ETS aberrations (ERG in 54% and ETV1 in 1%). TMPRSS2:ERG fusion was identified in 83% (15/18), 71% (5/7), 50% (9/18), 33% (3/9), and 29% (5/17) of mucinous, small cell, ductal, glomeruloid, and foamy gland prostate carcinomas, respectively. Previously, we reported that 100% of androgen-independent metastatic prostate carcinomas harboring TMPRSS2:ERG gene fusion were associated with interstitial deletion (Edel). Interestingly, ERG rearrangement in small cell carcinomas occurred exclusively through Edel, supporting the notion that TMPRSS2:ERG with Edel is an aggressive molecular subtype. SPINK1, a biomarker expressed exclusively in a subset of ETS negative prostate carcinomas, was expressed in 6% of ETS negative histologic variants, specifically in ductal adenocarcinoma. Notably, 88% (43/49) variant morphologies in this cohort showed concordance of TMPRSS2:ERG fusion with associated conventional acinar type, suggesting that variant morphology is clonally related to the latter. Overall, our data provide insight into the origin, molecular mechanism, and phenotypic association of ETS fusions in histologic variants of prostate carcinoma.
DOI: 10.1038/onc.2011.141
2011
Cited 91 times
The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma
Rap1GAP is a critical tumor suppressor gene that is downregulated in multiple aggressive cancers, such as head and neck squamous cell carcinoma, melanoma and pancreatic cancer. However, the mechanistic basis of rap1GAP downregulation in cancers is poorly understood. By employing an integrative approach, we demonstrate polycomb-mediated repression of rap1GAP that involves Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase in head and neck cancers. We further demonstrate that the loss of miR-101 expression correlates with EZH2 upregulation, and the concomitant downregulation of rap1GAP in head and neck cancers. EZH2 represses rap1GAP by facilitating the trimethylation of histone 3 at lysine 27, a mark of gene repression, and also hypermethylation of rap1GAP promoter. These results provide a conceptual framework involving a microRNA-oncogene-tumor suppressor axis to understand head and neck cancer progression.
DOI: 10.1101/gr.6018607
2007
Cited 91 times
Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs)
Identification of unconventional functional features such as fusion transcripts is a challenging task in the effort to annotate all functional DNA elements in the human genome. Paired-End diTag (PET) analysis possesses a unique capability to accurately and efficiently characterize the two ends of DNA fragments, which may have either normal or unusual compositions. This unique nature of PET analysis makes it an ideal tool for uncovering unconventional features residing in the human genome. Using the PET approach for comprehensive transcriptome analysis, we were able to identify fusion transcripts derived from genome rearrangements and actively expressed retrotransposed pseudogenes, which would be difficult to capture by other means. Here, we demonstrate this unique capability through the analysis of 865,000 individual transcripts in two types of cancer cells. In addition to the characterization of a large number of differentially expressed alternative 5′ and 3′ transcript variants and novel transcriptional units, we identified 70 fusion transcript candidates in this study. One was validated as the product of a fusion gene between BCAS4 and BCAS3 resulting from an amplification followed by a translocation event between the two loci, chr20q13 and chr17q23. Through an examination of PETs that mapped to multiple genomic locations, we identified 4055 retrotransposed loci in the human genome, of which at least three were found to be transcriptionally active. The PET mapping strategy presented here promises to be a useful tool in annotating the human genome, especially aberrations in human cancer genomes.
DOI: 10.1097/pas.0b013e3181d6827b
2010
Cited 89 times
ETS Gene Aberrations in Atypical Cribriform Lesions of the Prostate
Atypical cribriform lesions (ACLs) of the prostate consist of cribriform glands lined with cytologically malignant cells with partial or complete basal cell lining. It may represent cribriform "high-grade prostatic intraepithelial neoplasia" (HGPIN) or "intraductal carcinoma of the prostate" (IDC-P), which is almost always associated with clinically aggressive prostate carcinoma (PCa). Distinction between these 2 lesions has profound clinical significance, especially on needle biopsies. However, there are lesions that do not fully satisfy the criteria for IDC-P yet are worse than typical HGPIN and are difficult to distinguish based on morphologic criteria alone.To better understand the biologic and molecular basis of distinction between cribriform HGPIN and IDC, we used break-apart fluorescence in-situ hybridization assay to assess ETS gene aberrations, a specific and commonest molecular alteration involving PCa, in a cohort of 16 isolated ACL, presumed to be an isolated cribriform HGPIN, and 45 carcinoma-associated ACL (ACL-PCa) on radical prostatectomy specimens, presumed to be spectrum of IDC-P. The latter was further divided into 2 groups: group A with marked nuclear atypia (nuclear size 6xnormal or larger) and/or comedonecrosis (n=21) and group B that did not fulfill these criteria (n=24).Overall, ERG rearrangement was absent (0 of 16) in isolated cribriform HGPIN, whereas present in 75% (36 of 48) of IDC-P, of which 65% (23 of 36) were through deletion and 35% (13 of 36) through insertion. Notably, 17% (6 of 36) of the IDC-P showed duplication of ERG rearrangement in combination with deletion of 5'-ERG. Hundred percent (34 of 34) of the IDC-P showed concordance of ERG rearrangement status with adjacent invasive carcinoma. There was no difference between the 2 groups of IDC-P lesions regarding prevalence of ERG rearrangement (group A 79% vs. group B 74%) and EDel2+ (20% vs. 15%). No case with ETV1, ETV4, or ETV5 rearrangement was identified.Our molecular data suggest that isolated cribriform HGPIN and IDC-P are biologically distinct lesions. Majority of ACL-PCa most likely represent intraductal spread of PCa. There is a significant overlap between IDC-P and HGPIN at the lower grade morphologic spectrum. ERG break-apart fluorescence in-situ hybridization assay provides insight into understanding the molecular basis of cribriform HGPIN and IDC-P and has potential clinical implications in their distinction on needle biopsies.
DOI: 10.1158/2159-8274.cd-10-0022
2011
Cited 87 times
Characterization of <i>KRAS</i> Rearrangements in Metastatic Prostate Cancer
Abstract Using an integrative genomics approach called amplification breakpoint ranking and assembly analysis, we nominated KRAS as a gene fusion with the ubiquitin-conjugating enzyme UBE2L3 in the DU145 cell line, originally derived from prostate cancer metastasis to the brain. Interestingly, analysis of tissues revealed that 2 of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 cells, UBE2L3-KRAS produces a fusion protein, a specific knockdown of which attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates MEK/ERK signaling, commonly engaged by oncogenic mutant KRAS, and instead signals via AKT and p38 mitogen-activated protein kinase (MAPK) pathways. This is the first report of a gene fusion involving the Ras family, suggesting that this aberration may drive metastatic progression in a rare subset of prostate cancers. Significance: This is the first description of an oncogenic gene fusion of KRAS, one of the most studied proto-oncogenes. KRAS rearrangement may represent the driving mutation in a rare subset of metastatic prostate cancers, emphasizing the importance of RAS-RAF-MAPK signaling in this disease. Cancer Discovery; 1(1); 35–43. © 2011 AACR. Read the Commentary on this article by Edgren et al., p. 12 This article is highlighted in the In This Issue feature, p. 4
DOI: 10.5858/arpa.2011-0424-oa
2012
Cited 85 times
Antibody-Based Detection of ERG Rearrangements in Prostate Core Biopsies, Including Diagnostically Challenging Cases: ERG Staining in Prostate Core Biopsies
Context.—Fusions of androgen-regulated genes and v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) occur in approximately 50% of prostate cancers, encoding a truncated ERG product. In prostatectomy specimens, ERG rearrangements are greater than 99% specific for prostate cancer or high-grade prostatic intraepithelial neoplasia adjacent to ERG-rearranged prostate cancer by fluorescence in situ hybridization and immunohistochemistry. Objective.—To evaluate ERG staining by immunohistochemistry on needle biopsies, including diagnostically challenging cases. Design.—Biopsies from a retrospective cohort (n = 111) enriched in cores requiring diagnostic immunohistochemistry and a prospective cohort from all cases during 3 months (n = 311) were stained with an anti-ERG antibody (clone EPR3864). Results.—Among evaluable cores (n = 418), ERG staining was confined to cancerous epithelium (71 of 160 cores; 44%), high-grade prostatic intraepithelial neoplasia (12 of 68 cores; 18%), and atypical foci (3 of 28 cores; 11%), with staining in only 2 of 162 cores (1%) diagnosed as benign. The ERG was expressed in about 5 morphologically benign glands across 418 cores and was uniformly expressed by all cancerous glands in 70 of 71 cores (99%). Conclusions.—ERG staining is more prostate cancer–specific than α-methylacyl-coenzyme A racemase, and staining in an atypical focus supports a diagnosis of cancer if high-grade prostatic intraepithelial neoplasia can be excluded. Thus, ERG staining shows utility in diagnostically challenging biopsies and may be useful in molecularly subtyping prostate cancer and in stratifying isolated high-grade prostatic intraepithelial neoplasia by risk of subsequent cancer.
DOI: 10.1172/jci37622
2009
Cited 84 times
RCP is a human breast cancer–promoting gene with Ras-activating function
Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.
DOI: 10.1038/onc.2010.269
2010
Cited 77 times
The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer
The neuronal repellent SLIT2 is repressed in a number of cancer types primarily through promoter hypermethylation. SLIT2, however, has not been studied in prostate cancer. Through genome-wide location analysis we identified SLIT2 as a target of polycomb group (PcG) protein EZH2. The EZH2-containing polycomb repressive complexes bound to the SLIT2 promoter inhibiting its expression. SLIT2 was downregulated in a majority of metastatic prostate tumors, showing a negative correlation with EZH2. This repressed expression could be restored by methylation inhibitors or EZH2-suppressing compounds. In addition, a low level of SLIT2 expression was associated with aggressive prostate, breast and lung cancers. Functional assays showed that SLIT2 inhibited prostate cancer cell proliferation and invasion. Thus, this study showed for the first time the epigenetic silencing of SLIT2 in prostate tumors, and supported SLIT2 as a potential biomarker for aggressive solid tumors. Importantly, PcG-mediated repression may serve as a precursor for the silencing of SLIT2 by DNA methylation in cancer.
DOI: 10.1158/0008-5472.can-10-2210
2011
Cited 75 times
Activation of NF-κB by TMPRSS2/ERG Fusion Isoforms through Toll-Like Receptor-4
The TMPRSS2/ERG (T/E) fusion gene is present and thought to be an oncogenic driver of approximately half of all prostate cancers. Fusion of the androgen-regulated TMPRSS2 promoter to the ERG oncogene results in constitutive high level expression of ERG which promotes prostate cancer invasion and proliferation. Here, we report the characterization of multiple alternatively spliced T/E fusion gene isoforms which have differential effects on invasion and proliferation. We found that T/E fusion gene isoforms differentially increase NF-κB-mediated transcription, which may explain in part the differences in biological activities of the T/E fusion isoforms. This increased activity is due to phosphorylation of NF-κB p65 on Ser536. Tissue microarray immunochemistry revealed that p65 phospho-Ser536 is present in the majority of prostate cancers where it is associated with ERG protein expression. The T/E fusion gene isoforms differentially increase expression of a number of NF-κB associated genes including PAR1, CCL2, FOS, TLR3, and TLR4 (Toll-like receptor). TLR4 activation is known to promote p65 Ser536 phosphorylation and knockdown of TLR4 with shRNA decreases Ser536 phosphorylation in T/E fusion gene expressing cells. TLR4 can be activated by proteins in the tumor microenvironment and lipopolysacharide from Gram (-) bacteria. Our findings suggest that bacterial infection of the prostate and/or endogenous microenvironment proteins may promote progression of high-grade prostatic intraepithelial neoplasia and/or prostate cancers that express the T/E fusion gene, where the NF-κB pathway might be targeted as a rational therapeutic approach.
DOI: 10.1309/ajcpu7ppwupyg8oh
2012
Cited 72 times
Correlation of Urine<i>TMPRSS2:ERG</i>and<i>PCA3</i>to ERG+ and Total Prostate Cancer Burden
ERG rearrangements (most commonly transmembrane protease, serine 2 [TMPRSS2]:ERG [T2:ERG] gene fusions) have been identified in approximately 50% of prostate cancers . Quantification of T2:ERG in postdigital rectal examination urine, in combination with PCA3, improves the performance of serum prostate-specific antigen for prostate cancer prediction on biopsy. Here we compared urine T2:ERG and PCA3 scores with ERG+ (determined with immunohistochemical analysis) and total prostate cancer burden in 41 mapped prostatectomies. Prostatectomies had a median of 3 tumor foci (range, 1-15) and 2.6 cm of summed linear tumor dimension (range, 0.6-7.1 cm). Urine T2:ERG score correlated most with summed linear ERG+ tumor dimension and number of ERG+ foci (r(s) = 0.68 and 0.67, respectively, both P < .001). Urine PCA3 score showed weaker correlation with both number of tumor foci (r(s) = 0.34, P = .03) and summed linear tumor dimension (r(s) = 0.26, P = .10). In summary, we demonstrate a strong correlation between urine T2:ERG score and total ERG+ prostate cancer burden at prostatectomy, consistent with high tumor specificity.
DOI: 10.1016/j.celrep.2016.11.019
2016
Cited 70 times
Inflammation-Induced Oxidative Stress Mediates Gene Fusion Formation in Prostate Cancer
Approximately 50% of prostate cancers are associated with gene fusions of the androgen-regulated gene TMPRSS2 to the oncogenic erythroblast transformation-specific (ETS) transcription factor ERG. The three-dimensional proximity of TMPRSS2 and ERG genes, in combination with DNA breaks, facilitates the formation of TMPRSS2-ERG gene fusions. However, the origins of DNA breaks that underlie gene fusion formation in prostate cancers are far from clear. We demonstrate a role for inflammation-induced oxidative stress in the formation of DNA breaks leading to recurrent TMPRSS2-ERG gene fusions. The transcriptional status and epigenetic features of the target genes influence this effect. Importantly, inflammation-induced de novo genomic rearrangements are blocked by homologous recombination (HR) and promoted by non-homologous end-joining (NHEJ) pathways. In conjunction with the association of proliferative inflammatory atrophy (PIA) with human prostate cancer, our results support a working model in which recurrent genomic rearrangements induced by inflammatory stimuli lead to the development of prostate cancer.
DOI: 10.1038/onc.2016.164
2016
Cited 64 times
MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer
MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes. Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1), C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus, our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate cancer.
DOI: 10.1097/pas.0000000000000776
2017
Cited 60 times
Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene
Amplification of chromosome 6p has been implicated in aggressive behavior in several cancers, but has not been characterized in renal cell carcinoma (RCC). We identified 9 renal tumors with amplification of chromosome 6p including the TFEB gene, 3 by fluorescence in situ hybridization, and 6 from the Cancer Genome Atlas (TCGA) databases. Patients’ ages were 28 to 78 years (median, 61 y). Most tumors were high stage (7/9 pT3a, 2/9 pN1). Using immunohistochemistry, 2/4 were positive for melanocytic markers and cathepsin K. Novel TFEB fusions were reported by TCGA in 2; however, due to a small composition of fusion transcripts compared with full-length transcripts (0.5/174 and 3.3/132 FPKM), we hypothesize that these represent secondary fusions due to amplification. Five specimens (4 TCGA, 1 fluorescence in situ hybridization) had concurrent chromosome 3p copy number loss or VHL deletion. However, these did not resemble clear cell RCC, had negative carbonic anhydrase IX labeling, lacked VHL mutation, and had papillary or unclassified histology (2/4 had gain of chromosome 7 or 17). One tumor each had somatic FH mutation and SMARCB1 mutation. Chromosome 6p amplification including TFEB is a previously unrecognized cytogenetic alteration in RCC, associated with heterogenous tubulopapillary eosinophilic and clear cell histology. The combined constellation of features does not fit cleanly into an existing tumor category (unclassified), most closely resembling papillary or translocation RCC. The tendency for high tumor stage, varied tubulopapillary morphology, and a subset with melanocytic marker positivity suggests the possibility of a unique tumor type, despite some variation in appearance and genetics.
DOI: 10.1371/journal.pgen.1006306
2016
Cited 59 times
RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC
RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells.
DOI: 10.1158/1078-0432.ccr-18-3230
2019
Cited 46 times
Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer
Serine peptidase inhibitor, Kazal type-1 (SPINK1) overexpression defines the second most recurrent and aggressive prostate cancer subtype. However, the underlying molecular mechanism and pathobiology of SPINK1 in prostate cancer remains largely unknown.miRNA prediction tools were employed to examine the SPINK1-3'UTR for miRNA binding. Luciferase reporter assays were performed to confirm the SPINK1-3'UTR binding of shortlisted miR-338-5p/miR-421. Furthermore, miR-338-5p/-421-overexpressing cancer cells (SPINK1-positive) were evaluated for oncogenic properties using cell-based functional assays and a mouse xenograft model. Global gene expression profiling was performed to unravel the biological pathways altered by miR-338-5p/-421. IHC and RNA in situ hybridization were carried out on prostate cancer patients' tissue microarray for SPINK1 and EZH2 expression, respectively. Chromatin immunoprecipitation assay was performed to examine EZH2 occupancy on the miR-338-5p/-421-regulatory regions. Bisulfite sequencing and methylated DNA immunoprecipitation were performed on prostate cancer cell lines and patients' specimens.We established a critical role of miRNA-338-5p/-421 in posttranscriptional regulation of SPINK1. Ectopic expression of miRNA-338-5p/-421 in SPINK1-positive cells abrogates oncogenic properties including cell-cycle progression, stemness, and drug resistance, and shows reduced tumor burden and distant metastases in a mouse model. Importantly, we show that patients with SPINK1-positive prostate cancer exhibit increased EZH2 expression, suggesting its role in epigenetic silencing of miRNA-338-5p/-421. Furthermore, presence of CpG dinucleotide DNA methylation marks on the regulatory regions of miR-338-5p/-421 in SPINK1-positive prostate cancer cells and patients' specimens confirms epigenetic silencing.Our findings revealed that miRNA-338-5p/-421 are epigenetically silenced in SPINK1-positive prostate cancer, although restoring the expression of these miRNAs using epigenetic drugs or synthetic mimics could abrogate SPINK1-mediated oncogenesis.See related commentary by Bjartell, p. 2679.
DOI: 10.1182/blood-2003-04-1359
2004
Cited 95 times
Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas
Abstract Although it has been suggested that REL is the critical target gene of 2p12-16 amplification in diffuse large B-cell lymphoma (DLBCL), little experimental evidence supports this notion. In the present study, we sought to evaluate the relationship between REL amplification and REL function in a panel of 46 newly diagnosed DLBCLs and to correlate with DLBCL subgroups as identified by gene expression profiles and clinical features. The results indicate that amplification of the REL locus is not associated with accumulation of the active form of REL, as evaluated by immunofluorescence analysis. Upon subgrouping of the DLBCL cases based on gene expression signatures, REL amplification was detected in all subgroups, while high levels of nuclear-located REL were more frequently detected in activated B-cell–like DLBCL. Correlative analyses of REL copy number and REL nuclear accumulation with clinical parameters did not reveal any significant associations. Together these results indicate that 2p12-16 amplification does not lead to abnormal REL activation, suggesting that REL may not be the functional target of the amplification event. Nonetheless, these data indicate that DLBCLs are heterogeneous with respect to REL and thus nuclear factor–κB (NF-κB) activity.
DOI: 10.1038/nbt.1584
2009
Cited 72 times
An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer
With a flood of cancer genome sequences expected soon, distinguishing 'driver' from 'passenger' mutations will be an important task. Wang et al. describe a bioinformatic method for identifying cancer-associated fusions and apply it to discover a recurrent rearrangement in lung cancer. Cancer genomes contain many aberrant gene fusions—a few that drive disease and many more that are nonspecific passengers. We developed an algorithm (the concept signature or 'ConSig' score) that nominates biologically important fusions from high-throughput data by assessing their association with 'molecular concepts' characteristic of cancer genes, including molecular interactions, pathways and functional annotations. Copy number data supported candidate fusions and suggested a breakpoint principle for intragenic copy number aberrations in fusion partners. By analyzing lung cancer transcriptome sequencing and genomic data, we identified a novel R3HDM2-NFE2 fusion in the H1792 cell line. Lung tissue microarrays revealed 2 of 76 lung cancer patients with genomic rearrangement at the NFE2 locus, suggesting recurrence. Knockdown of NFE2 decreased proliferation and invasion of H1792 cells. Together, these results present a systematic analysis of gene fusions in cancer and describe key characteristics that assist in new fusion discovery.
DOI: 10.1016/j.jhep.2008.02.022
2008
Cited 69 times
Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma
Hepatocellular carcinoma is a leading cause of global cancer mortality, with standard chemotherapy being minimally effective in prolonging survival. We investigated if combined targeting of vascular endothelial growth factor protein and expression might affect hepatocellular carcinoma growth and angiogenesis.We treated patient-derived hepatocellular carcinoma xenografts with (i) bevacizumab; (ii) rapamycin; and (iii) bevacizumab plus rapamycin. Western blotting was employed to determine changes in the proteins. Apoptosis, vascular endothelial growth factor expression, microvessel density, and cell proliferation were analyzed by immunohistochemistry.Hepatocellular carcinoma growth was inhibited by bevacizumab plus rapamycin treatment to a significantly greater degree than bevacizumab or rapamycin monotherapy. Reductions in tumor growth by bevacizumab plus rapamycin were associated with inhibition of downstream targets of the mammalian target-of-rapamycin pathway, reductions in vascular endothelial growth factor expression, and tumor microvessel density. Potentially additive effects of bevacizumab plus rapamycin included reductions in vascular endothelial growth factor expression, cyclin D1, and cyclin B1. In an intra-peritoneal model of hepatocellular carcinoma, bevacizumab plus rapamycin potently inhibited both intra-liver and intra-abdominal tumor growth, reduced ascites levels, and significantly prolonged mouse survival.Bevacizumab and rapamycin, which are both clinically approved drugs, may represent a novel molecularly-targeted combination treatment for hepatocellular carcinoma.
DOI: 10.1593/neo.12914
2012
Cited 62 times
Gene Fusions Associated with Recurrent Amplicons Represent a Class of Passenger Aberrations in Breast Cancer
Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, "passenger" aberrations has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the loci of chromosomal amplifications—a class of oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying loss of functional domains. As illustrative examples of the "amplicon-associated" gene fusions, we examined here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line. These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during prioritization of gene fusion candidates.
DOI: 10.1593/neo.121192
2012
Cited 61 times
Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression
Transcriptional repressors and corepressors play a critical role in cellular homeostasis and are frequently altered in cancer. C-terminal binding protein 1 (CtBP1), a transcriptional corepressor that regulates the expression of tumor suppressors and genes involved in cell death, is known to play a role in multiple cancers. In this study, we observed the overexpression and mislocalization of CtBP1 in metastatic prostate cancer and demonstrated the functional significance of CtBP1 in prostate cancer progression. Transient and stable knockdown of CtBP1 in prostate cancer cells inhibited their proliferation and invasion. Expression profiling studies of prostate cancer cell lines revealed that multiple tumor suppressor genes are repressed by CtBP1. Furthermore, our studies indicate a role for CtBP1 in conferring radiation resistance to prostate cancer cell lines. In vivo studies using chicken chorioallantoic membrane assay, xenograft studies, and murine metastasis models suggested a role for CtBP1 in prostate tumor growth and metastasis. Taken together, our studies demonstrated that dysregulated expression of CtBP1 plays an important role in prostate cancer progression and may serve as a viable therapeutic target.
DOI: 10.1126/scitranslmed.3001423
2011
Cited 55 times
<i>CD44-SLC1A2</i> Gene Fusions in Gastric Cancer
One partner of a fusion gene found in gastric cancer, CD44-SLC1A2 , may contribute to the tumor’s abnormal metabolism.
DOI: 10.1016/j.humpath.2016.07.029
2016
Cited 48 times
Loss of p16 expression and copy number changes of CDKN2A in a spectrum of spitzoid melanocytic lesions
Spitzoid melanocytic lesions, including Spitz nevi (benign), spitzoid melanoma (malignant), and borderline atypical Spitz tumors (ASTs), frequently present challenges for accurate diagnosis and prognosis. Evaluation for loss of the tumor suppressor p16, encoded by CDKN2A gene on chromosome 9p21.3, has been proposed to be useful for evaluation of spitzoid melanocytic lesions. However, reports on the utility of p16 immunohistochemistry for spitzoid lesions have been conflicting, and few studies have directly compared p16 immunohistochemistry with fluorescence in situ hybridization (FISH) for CDKN2A genomic status. We analyzed a spectrum of benign (n=24), borderline (n=27), and malignant (n=19) spitzoid lesions for p16 protein expression by immunohistochemistry and CDKN2A copy number by FISH. Immunohistochemistry was evaluated by 2 scoring methods: H score and 2-tiered score (positive or negative for p16 loss). By immunohistochemistry, loss of p16 expression was not observed in Spitz nevi (0/24) but was seen in ASTs (7/27; 26%) and spitzoid melanomas (3/19; 16%). By H score, p16 expression was significantly higher in Spitz nevi relative to ASTs or spitzoid melanomas. Similarly, copy number aberrations of CDKN2A by FISH were absent in Spitz nevi but were found in 2 (9.5%) of 21 ASTs and 4 (33%) of 12 spitzoid melanomas. Our findings from this large cohort suggest that p16 aberrations are highly specific for borderline and malignant spitzoid neoplasms relative to Spitz nevi. Similar to ASTs, p16 loss in spitzoid melanomas may occur in the presence or absence of genomic CDKN2A loss.
DOI: 10.1016/j.jtho.2016.07.027
2017
Cited 39 times
Expanded Circulating Tumor Cells from a Patient with ALK- Positive Lung Cancer Present with EML4-ALK Rearrangement Along with Resistance Mutation and Enable Drug Sensitivity Testing: A Case Study
The emergence of liquid biopsy using circulating tumor cells (CTCs) as a resource to identify genomic alterations in cancer presents new opportunities for diagnosis, therapy, and surveillance. We identified EML4-ALK gene rearrangement in expanded CTCs from a patient with ALK-positive lung adenocarcinoma. At the time of radiographic progression, CTCs obtained from the patient revealed a drug resistance mutation (i.e., L1196M on the ALK gene). CTCs were expanded ex vivo and drug sensitivity testing was performed using two ALK inhibitors, crizotinib and ceritinib. The half maximal inhibitory concentration of ceritinib was 1664 nM compared with crizotinib (2268 nM), showing that ceritinib was a more potent ALK inhibitor. We show that it is feasible to detect serial genetic alterations in expanded CTCs and perform in vitro drug screening. These findings support the clinical utility of CTCs not only for diagnosis, but also a potential tool for drug sensitivity testing in distinct subsets of lung cancer and for personalized precision medicine.
DOI: 10.1038/s41467-021-25623-2
2021
Cited 25 times
Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression
Distal-less homeobox-1 (DLX1) is a well-established non-invasive biomarker for prostate cancer (PCa) diagnosis, however, its mechanistic underpinnings in disease pathobiology are not known. Here, we reveal the oncogenic role of DLX1 and show that abrogating its function leads to reduced tumorigenesis and metastases. We observed that ~60% of advanced-stage and metastatic patients display higher DLX1 levels. Moreover, ~96% of TMPRSS2-ERG fusion-positive and ~70% of androgen receptor (AR)-positive patients show elevated DLX1, associated with aggressive disease and poor survival. Mechanistically, ERG coordinates with enhancer-bound AR and FOXA1 to drive transcriptional upregulation of DLX1 in ERG-positive background. However, in ERG-negative context, AR/AR-V7 and FOXA1 suffice to upregulate DLX1. Notably, inhibiting ERG/AR-mediated DLX1 transcription using BET inhibitor (BETi) or/and anti-androgen drugs reduce its expression and downstream oncogenic effects. Conclusively, this study establishes DLX1 as a direct-target of ERG/AR with an oncogenic role and demonstrates the clinical significance of BETi and anti-androgens for DLX1-positive patients.
DOI: 10.1046/j.1365-2265.2003.01814.x
2003
Cited 80 times
Mutational analyses of <i>RB</i> and <i>BRCA2</i> as candidate tumour suppressor genes in parathyroid carcinoma
Summary objective Strong evidence indicates that at least one key tumour suppressor gene important for the development of malignant parathyroid tumours is located on chromosome 13, but the critical target gene remains unknown. Importantly, the region of acquired DNA loss includes two established tumour suppressor genes, the retinoblastoma gene, RB ( RB1 ) and BRCA2 . Resolution of whether RB or BRCA2 is the critical 13q tumour suppressor gene in parathyroid cancer requires analysis of these genes’ sequences for intragenic inactivating mutations. Therefore, RB and BRCA2 were analysed in a group of parathyroid carcinomas in which mutations of these genes should be most readily detectable. patients and design Six parathyroid carcinomas from four patients which showed loss of heterozygosity (LOH) at the RB locus and/or 13q loss by comparative genomic hybridazation (CGH) were selected from a CGH/LOH‐screened panel of 16 carcinoma specimens from 10 patients. These tumours were examined for mutations by direct sequencing of the complete 27‐exon coding region, intron–exon boundaries and promoter of RB . The 26 coding exons and intron–exon boundaries of BRCA2 were also directly sequenced in seven parathyroid carcinomas with loss in the BRCA2 region. results No microdeletions, insertions, or point mutations were detected in either RB or BRCA2 in any of the carcinomas. conclusion The absence of tumour‐specific somatic mutations in RB and BRCA2 suggests that they are unlikely to act as classic tumour suppressor genes in the pathogenesis of parathyroid carcinomas. While decreased expression of these genes might contribute to parathyroid carcinomatosis in a secondary fashion and 13q loss warrants further study as a diagnostic marker for parathyroid carcinoma, the putative 13q tumour suppressor awaits identification.
DOI: 10.1210/jc.83.5.1766
1998
Cited 76 times
Novel Chromosomal Abnormalities Identified by Comparative Genomic Hybridization in Parathyroid Adenomas
DOI: 10.1038/modpathol.2012.234
2013
Cited 46 times
Novel dual-color immunohistochemical methods for detecting ERG–PTEN and ERG–SPINK1 status in prostate carcinoma
Identification of new molecular markers has led to the molecular classification of prostate cancer based on driving genetic lesions. The translation of these discoveries for clinical use necessitates the development of simple, reliable and rapid detection systems to screen patients for specific molecular aberrations. We developed two dual-color immunohistochemistry-based assays for the simultaneous assessment of ERG-PTEN and ERG-SPINK1 in prostate cancer. A total of 232 cases from 184 localized and 48 metastatic prostate cancers were evaluated for ERG-PTEN and 284 cases from 228 localized and 56 metastatic prostate cancers were evaluated for ERG-SPINK1. Of the 232 cases evaluated for ERG-PTEN, 81 (35%) ERG-positive and 77 (33%) PTEN-deleted cases were identified. Of the 81 ERG-positive cases, PTEN loss was confirmed in 35 (15%) cases by fluorescence in situ hybridization (FISH). PTEN status was concordant in 203 cases (sensitivity 90% and specificity 87%; P<0.0001) by both immunohistochemisty and FISH; however, immunohistochemisty could not distinguish between heterozygous and homozygous deletion status of PTEN. Of the 284 cases evaluated for ERG-SPINK1, 111 (39%) cases were positive for ERG. In the remaining 173 ERG-negative cases, SPINK1 was positive in 26 (9%) cases. SPINK1 expression was found to be mutually exclusive with ERG expression; however, we identified two cases, of which one showed concomitant expression of ERG and SPINK1 in the same tumor foci, and in the second case ERG and SPINK1 were seen in two independent foci of the same tumor nodule. Unlike the homogenous ERG staining in cancer tissues, heterogeneous SPINK1 staining was observed in the majority of the cases. Further studies are required to understand the molecular heterogeneity of cases with concomitant ERG-SPINK1 expression. Automated dual ERG-PTEN and ERG-SPINK1 immunohistochemisty assays are simple, reliable and portable across study sites for the simultaneous assessment of these proteins in prostate cancer.
DOI: 10.1038/modpathol.2013.169
2014
Cited 41 times
Evaluation of tissue PCA3 expression in prostate cancer by RNA in situ hybridization—a correlative study with urine PCA3 and TMPRSS2-ERG
PCA3 is a prostate-specific non-coding RNA, with utility as a urine-based early detection biomarker. Here, we report the evaluation of tissue PCA3 expression by RNA in situ hybridization in a cohort of 41 mapped prostatectomy specimens. We compared tissue PCA3 expression with tissue level ERG expression and matched pre-prostatectomy urine PCA3 and TMPRSS2-ERG levels. Across 136 slides containing 138 foci of prostate cancer, PCA3 was expressed in 55% of cancer foci and 71% of high-grade prostatic intraepithelial neoplasia foci. Overall, the specificity of tissue PCA3 was >90% for prostate cancer and high-grade prostatic intraepithelial neoplasia combined. Tissue PCA3 cancer expression was not significantly associated with urine PCA3 expression. PCA3 and ERG positivity in cancer foci was positively associated (P<0.01). We report the first comprehensive assessment of PCA3 expression in prostatectomy specimens, and find limited correlation between tissue PCA3 and matched urine in prostate cancer.
DOI: 10.1097/pas.0000000000000090
2014
Cited 38 times
HOXB13 G84E–related Familial Prostate Cancers
Recent genetic epidemiologic studies identified a germline mutation in the homeobox transcription factor, HOXB13 G84E, which is associated with markedly increased risk for prostate cancer, particularly early-onset hereditary prostate cancer. The histomorphologic and molecular features of cancers arising in such carriers have not been studied. Here, we reviewed prostatectomy specimens from 23 HOXB13 G84E mutation carriers, mapping the total cancer burden by anatomically distinct cancer focus and evaluating morphologic features. We also assessed basic molecular subtypes for all cancer foci (ERG/SPINK1 status) by dual immunohistochemistry staining on full sections. The cohort showed a median age of 58 years, a median serum PSA level of 5.7 ng/mL, and a median of 6 cancer foci (range, 1 to 14) per case. Of evaluable cases, dominant foci were Gleason score 6 in 23%, 3+4=7 in 41%, 4+3=7 in 23%, and ≥8 in 14%; biochemical recurrence was observed in 1 case over a median of 36 months follow-up. Histologic review found a high prevalence of cases showing cancers with a spectrum of features previously described with pseudohyperplastic carcinomas, with 45% of cases showing a dominant focus with such features. Molecular subtyping revealed a strikingly low prevalence of ERG cancer with increased prevalence of SPINK1 cancer (dominant focus ERG 17%, SPINK1 26%, ERG/SPINK1 52%, single ERG/SPINK1 focus 4%). One ERG/SPINK1 dominant focus showed aberrant p63 immunophenotype. In summary, HOXB13 G84E variant-related prostate cancers show frequent pseudohyperplastic-type features and markedly low prevalence of ERG cancers relative to unselected cases and, especially, to early-onset cohorts. These findings suggest that novel molecular pathways may drive disease in HOXB13 G84E carriers.
DOI: 10.1073/pnas.1214326110
2013
Cited 38 times
Recurrent reciprocal RNA chimera involving <i>YPEL5</i> and <i>PPP1CB</i> in chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults in the Western hemisphere. Tumor-specific chromosomal translocations, characteristic findings in several human malignancies that directly lead to malignant transformation, have not been identified in CLL. Using paired-end transcriptome sequencing, we identified recurrent and reciprocal RNA chimeras involving yippee like 5 (YPEL5) and serine/threonine-protein phosphatase PP1-beta-catalytic subunit (PPP1CB) in CLL. Two of seven index cases (28%) harbored the reciprocal RNA chimeras in our initial screening. Using quantitative real-time PCR (q real-time PCR), YPEL5/PPP1CB and PPP1CB/YPEL5 fusion transcripts were detected in 97 of 103 CLL samples (95%) but not in paired normal samples, benign lymphocytes, or various unrelated cancers. Whole-genome sequencing and Southern blotting demonstrated no evidence for a genomic fusion between YPEL5 and PPP1CB. YPEL5/PPP1CB chimera, when introduced into mammalian cells, expressed a truncated PPP1CB protein that demonstrated diminished phosphatase activity. PPP1CB silencing resulted in enhanced proliferation and colony formation of MEC1 and JVM3 cells, implying a role in the pathogenesis of mature B-cell leukemia. These studies uncover a potential role for recurrent RNA chimeras involving phosphatases in the pathogenesis of a common form of leukemia.
DOI: 10.1002/pros.23243
2016
Cited 37 times
Expression and Role of PAICS, a De Novo Purine Biosynthetic Gene in Prostate Cancer
Our goal was to investigate de novo purine biosynthetic gene PAICS expression and evaluate its role in prostate cancer progression.Next-generation sequencing, qRTPCR and immunoblot analysis revealed an elevated expression of a de novo purine biosynthetic gene, Phosphoribosylaminoimidazole Carboxylase, Phosphoribosylaminoimidazole Succinocarboxamide Synthetase (PAICS) in a progressive manner in prostate cancer. Functional analyses were performed using prostate cancer cell lines- DU145, PC3, LnCaP, and VCaP. The oncogenic properties of PAICS were studied both by transient and stable knockdown strategies, in vivo chicken chorioallantoic membrane (CAM) and murine xenograft models. Effect of BET bromodomain inhibitor JQ1 on the expression level of PAICS was also studied.Molecular staging of prostate cancer is important factor in effective diagnosis, prognosis and therapy. In this study, we identified a de novo purine biosynthetic gene; PAICS is overexpressed in PCa and its expression correlated with disease aggressiveness. Through several in vitro and in vivo functional studies, we show that PAICS is necessary for proliferation and invasion in prostate cancer cells. We identified JQ1, a BET bromodomain inhibitor previously implicated in regulating MYC expression and demonstrated role in prostate cancer, abrogates PAICS expression in several prostate cancer cells. Furthermore, we observe loss of MYC occupancy on PAICS promoter in presence of JQ1.Here, we report that evaluation of PAICS in prostate cancer progression and its role in prostate cancer cell proliferation and invasion and suggest it as a valid therapeutic target. We suggest JQ1, a BET-domain inhibitor, as possible therapeutic option in targeting PAICS in prostate cancer. Prostate 77:10-21, 2017. © 2016 Wiley Periodicals, Inc.
DOI: 10.1002/pros.23533
2018
Cited 35 times
Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer
The authors regret that the printed version of the above article contained an inadvertent error where a wrong tumor xenograft study was represented due to a mistaken labeling of PC3 prostate lines in another file. We have now repeated the in vivo experiments with PAICS knockdown cells and with a non-targeting shRNA as a control, and added the correct Figures 3E and F.
DOI: 10.1016/j.ajur.2016.08.005
2016
Cited 34 times
Cultured circulating tumor cells and their derived xenografts for personalized oncology
Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.
DOI: 10.1002/hed.24292
2016
Cited 32 times
Fibroblast growth factor family aberrations as a putative driver of head and neck squamous cell carcinoma in an epidemiologically low‐risk patient as defined by targeted sequencing
Abstract Background Targeted sequencing of patients with epidemiologically low‐risk (ELR) head and neck squamous cell carcinoma (HNSCC) could help identify novel drivers or lost suppressors leading to precision medicine protocols and improved survival rates. Methods A patient with ELR‐HNSCC was selected for targeted sequencing. We then assessed next generation sequencing cohorts from the Oncomine Powertool Database, which contains pan‐cancer data from The Cancer Genome Atlas (TCGA). Results Targeted sequencing revealed fibroblast growth factor receptor‐1 ( FGFR1 ) amplifications as a putative driver of the patient's tumor. Patients with HNSCC from TCGA data demonstrated fibroblast growth factor ( FGF ) family mutations, rearrangements, or amplifications in over 35% of HNSCC cases, with a statistically significant higher frequency in African American populations. FGF alterations were unique from activating phosphatidylinositol 3‐kinase ( PIK3CA ) mutations. Conclusion Together, these data suggest that FGF signaling may be critical for a subset of patients with HNSCC independent of other known pathways and provides rationale for leveraging patients with ELR‐HNSCC to define molecular subsets of high‐risk HNSCC. © 2016 Wiley Periodicals, Inc. Head Neck 38 : E1646–E1652, 2016
DOI: 10.1111/his.13112
2016
Cited 32 times
The utility of <i><scp>ETV</scp>1, <scp>ETV</scp>4</i> and <i><scp>ETV</scp>5 </i><scp>RNA </scp><i>in‐situ</i> hybridization in the diagnosis of <i><scp>CIC</scp>–<scp>DUX</scp></i> sarcomas
Aims A recently characterized group of undifferentiated small round cell sarcomas harbours fusions of the genes CIC and DUX 4 . Studies report a distinctive gene expression profile for these sarcomas, including expression of E26 transformation‐specific ( ETS ) family proto‐oncogenic transcription factors ETV 1, ETV 4 and ETV 5 . To test the utility of an ancillary diagnostic technique for these tumours, we evaluated chromogenic RNA in‐situ hybridization assays for ETV 1 , ETV 4 and ETV 5 as diagnostic adjuncts for this emerging group of highly malignant sarcomas. Methods and results We tested six confirmed CIC – DUX 4 sarcomas and 105 lesions in the differential, including 48 Ewing sarcomas for expression of ETV 1 , ETV 4 and ETV 5 , scoring expression utilizing a previously validated scale. ETV 1 and ETV 4 were positive in five of six cases, while ETV 5 was positive in six of six. No Ewing sarcoma or other sarcoma tested showed coexpression of these transcripts, while one ETV1/ETV4/ETV5 triple positive previously unclassified round cell sarcoma was identified as harbouring a CIC rearrangement by break‐apart fluorescence in‐situ hybridization ( FISH ). Conclusion We identified overexpression of ETV 1 , ETV 4 and ETV 5 transcripts in situ in CIC – DUX 4 sarcomas using a robust assay in routine archival sections. One previously unclassified round cell sarcoma showed ETV 1/4/5 positivity, and was proved to harbour a CIC rearrangement by break‐apart FISH . The sensitivity and specificity observed with our in‐situ hybridization assay implies potential utility as an ancillary diagnostic technique, particularly when faced with limited biopsy samples.
DOI: 10.1182/blood.v95.8.2666
2000
Cited 70 times
MUC1 is activated in a B-cell lymphoma by the t(1;14)(q21;q32) translocation and is rearranged and amplified in B-cell lymphoma subsets
Abstract The band 1q21 is among the most common sites affected by chromosomal translocations in lymphoid, myeloid, epithelial, and sarcomatous lesions. In non-Hodgkin's lymphoma (NHL), translocations and duplications affecting this chromosomal site are frequently, but not exclusively, seen in association with primary abnormalities such as the t(14;18)(q32;q21) and t(8;14)(q24;q32) translocations, suggesting a role for 1q21 rearrangements in tumor progression. We report here the characterization and cloning of breakpoints in a case of extranodal ascitic B-cell lymphoma with a t(1;14)(q21;q32) translocation. The breakpoints on the der(1) and der(14) chromosomes were mapped by fluorescence in situ hybridization and Southern blot analysis and cloned using an IGHG (Cγ) probe. The translocation linked theIGHG4 switch (Sγ4) sequences of the productively rearranged allele to chromosome 1 sequences downstream of MUC1, leaving the MUC1 transcriptional unit intact. MUC1 was markedly overexpressed in the tumor at the mRNA and protein levels relative to lymphoma cell lines lacking a 1q21 rearrangement. Presumably,MUC1 transcription is aberrantly regulated by the IGHA(C) 3′ enhancer element retained on the same chromosome. Screening of a panel of B-cell lymphomas by Southern blot analysis identified a subset with a 3′ MUC1 breakpoint and another with low-level amplification of MUC1. MUC-1 mucin has previously been shown to be frequently overexpressed in human epithelial cancers and to be associated with tumor progression and poor clinical outcome. Thus, MUC1 activation by chromosomal translocation, rearrangement, and amplification, identified here for the first time in NHL, is consistent with its suggested role in tumorigenesis.
DOI: 10.1002/gcc.10016
2001
Cited 68 times
Similar patterns of genomic alterations characterize primary mediastinal large‐B‐cell lymphoma and diffuse large‐B‐cell lymphoma
To address the possible genetic relationship between primary mediastinal large-B-cell lymphoma (PMLBCL) and diffuse large-B-cell lymphoma (DLBCL), we compared DNA copy number changes identified by comparative genomic hybridization (CGH) analysis of 40 PMLBCL and 91 DLBCL tumors. We assessed their karyotypes by G-banding; amplification of MYC, BCL2, and REL genes by Southern blotting; and incidence of nonpolymorphic BCL6 mutations by single-strand conformation polymorphism analysis (SSCP). Overall, CGH identified overlapping and nonoverlapping patterns of DNA copy number changes in the two groups. Among the latter changes, gains of chromosomes 8, 11, 15, and 16 and losses of chromosomes 5, 10, 15, 16, 17, and 20 were seen only in DLBCL, and gains of chromosomes 10, 21, and 22 and losses of chromosomes 11, 13, and 18 were seen only in PMLBCL. Several overlapping changes were identified in both groups, with variation in incidence. Statistical analysis of these changes showed significant gains of chromosomes 3 (P <or= 0.05) and 7q (P <or= 0.05) in DLBCL and gains of chromosomes 9 (P <or= 0.05) and 19 (P <or= 0.05) and the X chromosome (P <or= 0.05) and loss of chromosome 4 (P <or= 0.05) in PMLBCL. Frequent recurring DNA amplification at 2p13-15 and less frequent amplification at 6p21, 12q13, and 18q21 were noted in both groups. Recurring amplification at 1q21 was seen only in DLBCL, whereas nonrecurring amplification at 10p11.2 and 15q22-24 was seen only in PMLBCL. G-banded karyotype analysis identified t(3;14)(q27;q32) in one and t(14;18)(q32;q21) in two cases of PMLBCL. Seven of 13 cases exhibited SSCP variants in the 5' noncoding region of BCL6. In addition, 19 of 24 PMLBCLs assayed for BCL6 protein expression by immunohistochemistry showed positive results, indicating an origin from a germinal center (GC)-derived B cell. Based on these data, we conclude that PMLBCL is a distinct entity among GC-derived high-grade DLBCLs.
DOI: 10.1111/j.1399-0039.1997.tb02803.x
1997
Cited 61 times
Genomic organization and allelic polymorphism of the human killer cell inhibitory receptor gene KIR 103
Killer cell inhibitory receptors (KIR) belong to the immunoglobulin super‐family of molecules and are expressed on natural killer (NK) cells. The KIRs of the p58/p50 family have two immunoglobulin domains and are ligands for HLA‐Cw antigens, whereas the p70/p70Δ family has three immunoglobulin domains and comprises ligands for HLA‐B antigens and possibly some HLA‐A antigens. Members of a third KIR family, KIR103, have two immunoglobulin domains but have highest nucleotide sequence homology to the p70 family. The ligands for KIR 103 on target cells are currently unknown. We here report the complete genomic organization of KIR103. It spans about 12 kb of DNA and consists of eight exons of which exon 1 and exon 2 encode the leader sequence. Exon 3 encodes the first immunoglobulin domain (γ1), and exon 4 encodes the main part of the second immunoglobulin domain (γ3), which also contains sequences contributed by exon 5 and exon 6. Exon 6 encodes the transmembrane domain, whereas exons 7 and 8 encode most of the cytoplasmic domain. KIR 103 is polymorphic, and two alleles, 103AS and 103LR, are defined in this study. Additional full‐length cDNA clones for KIR 103 have been isolated and are shown to be formed by alternative mRNA splicing with exon skipping. Some of these truncated KIR 103 cDNA could encode shorter transmembrane molecules, whereas others lack the transmembrane domain and are candidate genes for secreted KIR products. KIR 103 is localized to the KIR genetic region on chromosome 19q13.4.
DOI: 10.1016/j.patrec.2007.09.017
2008
Cited 49 times
Chromosome classification using dynamic time warping
A classifier based on dynamic time warping (DTW) has been developed to perform the classification of human chromosomes. DTW is used in speech recognition applications to compare two time-sequences. This paper describes a method to adapt the DTW technique in order to deal with the length and the density profile, which are common features used in classifying chromosomes. The DTW classifier is able to compare chromosomes with different elongations. Since chromosomes are non-rigid objects, the proposed classifier has the main advantage of requiring only a small training set in comparison with the conventional methods based on Bayesian classifiers or neural networks. For the same classification accuracy of 81.0%, we achieve a reduction of 88% of the size of the training set in comparison with a Bayesian classifier.
DOI: 10.1371/journal.pone.0005241
2009
Cited 43 times
Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries
The growth of sequencing-based Chromatin Immuno-Precipitation studies call for a more in-depth understanding of the nature of the technology and of the resultant data to reduce false positives and false negatives. Control libraries are typically constructed to complement such studies in order to mitigate the effect of systematic biases that might be present in the data. In this study, we explored multiple control libraries to obtain better understanding of what they truly represent.First, we analyzed the genome-wide profiles of various sequencing-based libraries at a low resolution of 1 Mbp, and compared them with each other as well as against aCGH data. We found that copy number plays a major influence in both ChIP-enriched as well as control libraries. Following that, we inspected the repeat regions to assess the extent of mapping bias. Next, significantly tag-rich 5 kbp regions were identified and they were associated with various genomic landmarks. For instance, we discovered that gene boundaries were surprisingly enriched with sequenced tags. Further, profiles between different cell types were noticeably distinct although the cell types were somewhat related and similar.We found that control libraries bear traces of systematic biases. The biases can be attributed to genomic copy number, inherent sequencing bias, plausible mapping ambiguity, and cell-type specific chromatin structure. Our results suggest careful analysis of control libraries can reveal promising biological insights.
DOI: 10.1309/ajcpn4l1bmrqpeit
2013
Cited 35 times
Usefulness of a Monoclonal ERG/FLI1 Antibody for Immunohistochemical Discrimination of Ewing Family Tumors
Ewing family tumors (EFTs) and prostate carcinomas are characterized by rearrangement of ETS genes, most commonly FLI1 (EFTs) and ERG (prostate carcinomas). Previously, we characterized an antibody against ERG (EPR3864) for detecting ERG-rearranged prostate carcinoma. Because EPR3864 also cross-reacts with FLI1, we evaluated the usefulness of EPR3864 for discriminating EFTs from other small round blue cell tumors (SRBCTs) with immunohistochemistry. Of 57 evaluable EFTs, 47 (82%) demonstrated at least moderate, diffuse, nuclear ERG/FLI1 staining (including 89% and 100% of cases with confirmed EWSR1:FLI1 and EWSR1:ERG fusions, respectively), of which 1, 3, and 43 showed negative, cytoplasmic, or membranous CD99 staining, respectively. Among other SRBCTs (61 cases, 7 types), at least moderate, diffuse, nuclear EPR3864 staining was seen in all precursor B-lymphoblastic lymphomas/leukemias and subsets of Burkitt lymphomas (10%) and synovial sarcomas (45%). In summary, EPR3864 may be useful in detecting EWSR1:FLI1 and EWSR1:ERG rearranged EFTs in addition to prostate carcinomas.
DOI: 10.1111/cup.12387
2014
Cited 34 times
Expression of the p40 isoform of p63 has high specificity for cutaneous sarcomatoid squamous cell carcinoma
Cutaneous spindle cell malignancies such as sarcomatoid squamous cell carcinoma (SCC), leiomyosarcoma, desmoplastic melanoma (DM) and atypical fibroxanthoma (AFX) may be morphologically indistinguishable, yet accurate diagnosis is important for appropriate clinical management. The distinction among these entities relies on immunohistochemical evaluation for epidermal, muscle or melanocytic differentiation. Epidermal differentiation markers include cytokeratins and p63. p63 is expressed as two distinct isoforms, ΔNp63 (p40) and TAp63. p40 positivity is highly specific for pulmonary SCC and head and neck sarcomatoid SCC. We examined the utility of p40 vs. p63 immunostaining in the differentiation of a variety of cutaneous spindle cell malignancies, including sarcomatoid SCC (n = 27), AFX (n = 34) and DM (n = 10). p40 was less sensitive than p63 for detecting sarcomatoid SCC (56% and 81%, respectively). p63 and p40 were comparably specific for sarcomatoid SCC relative to AFX, with only rare weak staining of tumor cells for p63 and/or p40 in a minority of AFX cases, including one case with approximately 10% of cells staining weakly for p40. All cases of DM were negative for p40 and p63. Our results support continued use of p63 for diagnosis of cutaneous sarcomatoid SCC because of greater sensitivity relative to p40.
DOI: 10.1038/modpathol.2017.72
2017
Cited 31 times
Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: a histological review of tumors from the Cancer Genome Atlas database
Clear cell renal cell carcinoma is by far the most common form of kidney cancer; however, a number of histologically similar tumors are now recognized and considered distinct entities. The Cancer Genome Atlas published data set was queried (http://cbioportal.org) for clear cell renal cell carcinoma tumors lacking VHL gene mutation and chromosome 3p loss, for which whole-slide images were reviewed. Of the 418 tumors in the published Cancer Genome Atlas clear cell renal cell carcinoma database, 387 had VHL mutation, copy number loss for chromosome 3p, or both (93%). Of the remaining, 27/31 had whole-slide images for review. One had 3p loss based on karyotype but not sequencing, and three demonstrated VHL promoter hypermethylation. Nine could be reclassified as distinct or emerging entities: translocation renal cell carcinoma (n=3), TCEB1 mutant renal cell carcinoma (n=3), papillary renal cell carcinoma (n=2), and clear cell papillary renal cell carcinoma (n=1). Of the remaining, 6 had other clear cell renal cell carcinoma-associated gene alterations (PBRM1, SMARCA4, BAP1, SETD2), leaving 11 specimens, including 2 high-grade or sarcomatoid renal cell carcinomas and 2 with prominent fibromuscular stroma (not TCEB1 mutant). One of the remaining tumors exhibited gain of chromosome 7 but lacked histological features of papillary renal cell carcinoma. Two tumors previously reported to harbor TFE3 gene fusions also exhibited VHL mutation, chromosome 3p loss, and morphology indistinguishable from clear cell renal cell carcinoma, the significance of which is uncertain. In summary, almost all clear cell renal cell carcinomas harbor VHL mutation, 3p copy number loss, or both. Of tumors with clear cell histology that lack these alterations, a subset can now be reclassified as other entities. Further study will determine whether additional entities exist, based on distinct genetic pathways that may have implications for treatment.
DOI: 10.18632/oncotarget.3786
2015
Cited 30 times
Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics
Breast cancer brain metastases remain a significant clinical problem.Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes.Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens.Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH).Results were compared to a list of cancer genes verified by others to influence cancer.Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1.For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens.The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer.This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.
DOI: 10.1158/1078-0432.ccr-17-0299
2017
Cited 30 times
Age and Gender Associations of Virus Positivity in Merkel Cell Carcinoma Characterized Using a Novel RNA <i>In Situ</i> Hybridization Assay
Abstract Purpose: Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine tumor of the skin. Merkel cell polyomavirus (MCPyV) plays an oncogenic role in the majority of MCCs. Detection of MCPyV in MCCs has diagnostic utility and prognostic potential. We investigated whether RNAscope, an RNA in situ hybridization (ISH) assay for detection of RNA transcripts in tissues, is useful for MCPyV detection. Experimental Design: We applied an RNAscope probe targeting MCPyV T antigen transcripts on tissue microarrays (TMA) and whole-tissue sections encompassing 87 MCCs from 75 patients, 14 carcinomas of other types, and benign tissues. For comparison, qPCR was performed on 57 cases of MCC from 52 patients. Results: RNA-ISH demonstrated the presence of MCPyV in 37 of 75 cases (49.3%). Notably, tumors from younger patients (&amp;lt;73 years) had a significantly higher virus positivity than those from elderly patients (≥73 years; 64.9% vs. 34.2%, P = 0.011). Female patients had a higher positive rate of MCPyV than male patients (66.7% vs. 39.6%, P = 0.032). Data from both RNA-ISH and qPCR were available for 57 samples. Considering MCPyV qPCR as the gold standard for determining MCPyV status, RNAscope had 100% sensitivity and 100% specificity. There was a strong correlation between qPCR copy number and RNA-ISH product score (Spearman correlation coefficient R2 = 0.932, P &amp;lt; 0.0001). Conclusions: RNA-ISH is comparably sensitive to qPCR for detection of MCPyV and allows for correlation with tissue morphology. This study also reveals a significant association between age, gender, and MCPyV positivity. Clin Cancer Res; 23(18); 5622–30. ©2017 AACR.
DOI: 10.1038/modpathol.2015.148
2016
Cited 29 times
Clonal evaluation of prostate cancer foci in biopsies with discontinuous tumor involvement by dual ERG/SPINK1 immunohistochemistry
The presence of two or more prostate cancer foci separated by intervening benign tissue in a single core is a well-recognized finding on prostate biopsy. Cancer involvement can be measured by including intervening benign tissue or only including the actual cancer involved area. Importantly, this parameter is a common enrollment criterion for active surveillance protocols. We hypothesized that spatially distinct prostate cancer foci in biopsies may arise from separate clones, impacting cancer involvement assessment. Hence, we used dual ERG/SPINK1 immunohistochemistry to determine the frequency of separate clones-when separate tumor foci showed discordant ERG and/or SPINK1 status-in discontinuously involved prostate biopsy cores from two academic institutions. In our cohort of 97 prostate biopsy cores with spatially discrete tumor foci (from 80 patients), discontinuous cancer involvement including intervening tissue ranged from 20 to 100% and Gleason scores ranged from 6 to 9. Twenty-four (25%) of 97 discontinuously involved cores harbored clonally distinct cancer foci by discordant ERG and/or SPINK1 expression status: 58% (14/24) had one ERG(+) focus, and one ERG(-)/SPINK1(-) focus; 29% (7/24) had one SPINK1(+) focus and one ERG(-)/SPINK1(-) focus; and 13% (3/24) had one ERG(+) focus and one SPINK1(+) focus. ERG and SPINK1 overexpression were mutually exclusive in all tumor foci. In summary, our results show that ~25% of discontinuously involved prostate biopsy cores showed tumor foci with discordant ERG/SPINK1 status, consistent with multiclonal disease. The relatively frequent presence of multiclonality in discontinuously involved prostate biopsy cores warrants studies on the potential clinical impact of clonality assessment, particularly in cases where tumor volume in a discontinuous core may impact active surveillance eligibility.
DOI: 10.1016/j.humpath.2017.07.009
2017
Cited 28 times
Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that affects tumorigenesis by epigenetic gene silencing. Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma that has a high risk of disease progression with nodal and distant metastases. Here, we evaluated EZH2 expression by immunohistochemistry in a cohort of 85 MCC tumors (29 primary tumors, 41 lymph node metastases, 13 in-transit metastases, and 2 distant metastases) with clinical follow-up. We show strong/moderate EZH2 expression in 54% of tumors. Importantly, weak expression of EZH2 in the primary tumor, but not nodal metastases, correlated with improved prognosis compared to moderate/strong EZH2 expression (5-year MCC-specific survival of 68% versus 22%, respectively, P = .024). In addition, EZH2 was expressed at higher levels in nodal metastases compared to primary tumors (P = .005). Our data demonstrate that EZH2 has prognostic value and may play an oncogenic role in MCC.
DOI: 10.1111/his.13758
2018
Cited 26 times
Neurofilament is superior to cytokeratin 20 in supporting cutaneous origin for neuroendocrine carcinoma
Aim Primary cutaneous neuroendocrine carcinoma, or Merkel cell carcinoma ( MCC ), cannot be distinguished morphologically from small‐cell neuroendocrine carcinomas (Sm CC ) from other sites. Immunohistochemistry is required to confirm cutaneous origin, and is also used for detection of sentinel lymph node ( SLN ) metastases of MCC . Cytokeratin 20 ( CK 20) expression is commonly used for these purposes, but is negative in some MCC cases, and has unclear specificity. We evaluated immunohistochemistry for neurofilament and CK 20 in MCC compared with Sm CC from other sites. Methods and results We evaluated neurofilament expression in 55 MCC specimens from 39 unique patients, including nine CK 20‐negative MCC tumours. Neurofilament expression was observed in 42 of 55 (76.4%) MCC cases, including seven of nine (77.8%) CK 20‐negative MCC cases. Neurofilament was expressed in nine of 12 (75%) Merkel cell polyomavirus‐positive tumours and five of 10 (50%) virus‐negative tumours. Compared to a standard immunohistochemical panel (cytokeratin cocktail and CK 20), neurofilament was 87.5% sensitive for detecting SLN metastases. Neurofilament and CK 20 expression was also assessed in 61 extracutaneous Sm CC from 60 unique patients, with primary sites including lung (27), bladder (18), cervix (3), gastrointestinal tract (3), sinonasal tract (2) and other sites (7). The specificity of neurofilament and CK 20 for MCC versus non‐cutaneous Sm CC was 96.7% and 59.0%, respectively. Conclusions Neurofilament has superior specificity to CK 20 in distinguishing MCC from non‐cutaneous Sm CC . Neurofilament is frequently expressed in CK 20‐ and virus‐negative MCC tumours. Limitations of neurofilament immunohistochemistry include lower sensitivity than CK 20 and subtle staining in some tumours. However, our findings indicate that neurofilament is useful for excluding non‐cutaneous Sm CC .
DOI: 10.3390/diagnostics9040219
2019
Cited 25 times
A Hierarchical Machine Learning Model to Discover Gleason Grade-Specific Biomarkers in Prostate Cancer
(1) Background:One of the most common cancers that affect North American men and men worldwide is prostate cancer. The Gleason score is a pathological grading system to examine the potential aggressiveness of the disease in the prostate tissue. Advancements in computing and next-generation sequencing technology now allow us to study the genomic profiles of patients in association with their different Gleason scores more accurately and effectively. (2) Methods: In this study, we used a novel machine learning method to analyse gene expression of prostate tumours with different Gleason scores, and identify potential genetic biomarkers for each Gleason group. We obtained a publicly-available RNA-Seq dataset of a cohort of 104 prostate cancer patients from the National Center for Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) repository, and categorised patients based on their Gleason scores to create a hierarchy of disease progression. A hierarchical model with standard classifiers in different Gleason groups, also known as nodes, was developed to identify and predict nodes based on their mRNA or gene expression. In each node, patient samples were analysed via class imbalance and hybrid feature selection techniques to build the prediction model. The outcome from analysis of each node was a set of genes that could differentiate each Gleason group from the remaining groups. To validate the proposed method, the set of identified genes were used to classify a second dataset of 499 prostate cancer patients collected from cBioportal. (3) Results: The overall accuracy of applying this novel method to the first dataset was 93.3%; the method was further validated to have 87% accuracy using the second dataset. This method also identified genes that were not previously reported as potential biomarkers for specific Gleason groups. In particular, PIAS3 was identified as a potential biomarker for Gleason score 4 + 3 = 7, and UBE2V2 for Gleason score 6. (4) Insight: Previous reports show that the genes predicted by this newly proposed method strongly correlate with prostate cancer development and progression. Furthermore, pathway analysis shows that both PIAS3 and UBE2V2 share similar protein interaction pathways, the JAK/STAT signaling process.
DOI: 10.1038/s41388-020-1275-7
2020
Cited 21 times
Therapeutically actionable PAK4 is amplified, overexpressed, and involved in bladder cancer progression
Muscle-invasive bladder carcinomas (MIBCs) are aggressive genitourinary malignancies. Metastatic urothelial carcinoma of the bladder is generally incurable by current chemotherapy and leads to early mortality. Recent studies have identified molecular subtypes of MIBCs with different sensitivities to frontline therapy, suggesting tumor heterogeneity. We have performed multi-omic profiling of the kinome in bladder cancer patients with the goal of identify therapeutic targets. Our analyses revealed amplification, overexpression, and elevated kinase activity of P21 (RAC1) activated kinase 4 (PAK4) in a subset of Bladder cancer (BLCA). Using bladder cancer cells, we confirmed the role of PAK4 in BLCA cell proliferation and invasion. Furthermore, we observed that a PAK4 inhibitor was effective in curtailing growth of BLCA cells. Transcriptomic analyses identified elevated expression of another kinase, protein tyrosine kinase 6 (PTK6), upon treatment with a PAK4 inhibitor and RNA interference of PAK4. Treatment with a combination of kinase inhibitors (vandetanib and dasatinib) showed enhanced sensitivity compared with either drug alone. Thus, PAK4 may be therapeutically actionable for a subset of MIBC patients with amplified and/or overexpressed PAK4 in their tumors. Our results also indicate that combined inhibition of PAK4 and PTK6 may overcome resistance to PAK4. These observations warrant clinical investigations with selected BLCA patients.
DOI: 10.1210/jcem.83.5.4806
1998
Cited 54 times
Novel Chromosomal Abnormalities Identified by Comparative Genomic Hybridization in Parathyroid Adenomas1
The molecular basis of parathyroid adenomatosis includes defects in the cyclin D1/PRAD1 and MEN1 genes but is, in large part, unknown. To identify new locations of parathyroid oncogenes or tumor suppressor genes, and to further establish the importance of DNA losses described by molecular allelotyping, we performed comparative genomic hybridization (CGH) on a panel of 53 typical sporadic (nonfamilial) parathyroid adenomas. CGH is a new molecular cytogenetic technique in which the entire tumor genome is screened for chromosomal gains and/or losses. Two abnormalities, not previously described, were found recurrently: gain of chromosome 16p (6 of 53 tumors, or 11%) and gain of chromosome 19p (5 of 53, or 9%). Losses were found frequently on 11p (14 of 53, or 26%), as well as 11q (18 of 53, or 34%). Recurrent losses were also seen on chromosomes 1p, 1q, 6q, 9p, 9q, 13q, and 15q, with frequencies ranging from 8–19%. Twenty-four of the 53 adenomas were also extensively analyzed with polymorphic microsatellite markers for allelic losses, either in this study (11 cases) or previously (13 cases). Molecular allelotyping results were highly concordant with CGH results in these tumors (concordance level of 97.5% for all informative markers/chromosome arms examined). In conclusion, CGH has identified the first two known chromosomal gain defects in parathyroid adenomas, suggesting the existence of direct-acting parathyroid oncogenes on chromosomes 16 and 19. CGH has confirmed the locations of putative parathyroid tumor suppressor genes, also defined by molecular allelotyping, on chromosomes 1p, 6q, 9p, 11q, 13q, and 15q. Finally, CGH has provided new evidence favoring the possibility that distinct parathyroid tumor suppressors exist on 1p and 1q, and has raised the possibility of a parathyroid tumor suppressor gene on 11p, distinct from the MEN1 gene on 11q. CGH can identify recurrent genetic abnormalities in hyperparathyroidism, especially chromosomal gains, that other methods do not detect.
DOI: 10.1002/gcc.20608
2008
Cited 40 times
Telomere‐mediated genomic instability and the clinico‐pathological parameters in breast cancer
A study was undertaken to correlate telomere dysfunction and genomic instability with the histopathological grades and the estrogen and progesterone receptor status in breast cancer. Sixty-one archived breast tissues (38 cancer tissues and 23 paired normal tissues) were used in the study. The breast tumor tissues showed significantly shorter telomeres (7.7 kb) compared with the paired adjacent tissues (9.0 kb) by Southern blot analysis. Moreover, telomere shortening was more significant in Grade III tumors than in the Grade II tumors (P = 0.05). Quantitative fluorescence in situ hybridization on paraffin tissue sections revealed a similar trend in telomere shortening. Telomere attrition was associated with telomere dysfunction as revealed by the presence of significantly higher anaphase bridges in tumor cells which was tumor grade dependent. Furthermore, estrogen receptive negative tumors displayed higher anaphase and internuclear bridges. Selected samples from each grade showed greater genomic imbalances in the higher grades than the lower grade tumors as detected by array-comparative genomic hybridization. Telomerase activity was found to be higher in the higher grades (Grade II and III) compared with the lower grade (Grade I). The average mRNA expression of TRF1 and POT1 was lower in the tumor tissues than in the normal tissues. Tankyrase 1 mRNA expression showed a grade-dependent increase in tumor tissues and its expression was also high in estrogen and progesterone negative tumors. The data support the notion that telomere dysfunction might be of value as a marker of aggressiveness of the tumors in breast cancer patients.
DOI: 10.1007/s12020-013-9903-4
2013
Cited 31 times
Allelic imbalance in sporadic parathyroid carcinoma and evidence for its de novo origins
Parathyroid cancer is a rare, clinically aggressive cause of primary hyperparathyroidism, and whether these malignancies generally evolve from pre-existing benign adenomas or arise de novo is unclear. Furthermore, while inactivation of the CDC73 (HRPT2) tumor suppressor gene, encoding parafibromin, is a major contributor, other genes essential to parathyroid carcinogenesis remain unknown. We sought to identify genomic regions potentially harboring such oncogenes or tumor suppressor genes, and to gain insight into the origins and molecular relationship of malignant versus benign parathyroid tumors. We performed genome-wide copy-number and loss of heterozygosity analysis using Affymetrix 50K SNP mapping arrays and/or comparative genomic hybridization on 16 primary parathyroid carcinomas, local recurrences or distant metastases, and matched normal controls, from 10 individuals. Recurrent regions of allelic loss were observed on chromosomes 1p, 3, and 13q suggesting that key parathyroid tumor suppressor genes are located in these chromosomal locations. Recurrent allelic gains were seen on chromosomes 1q and 16, suggesting the presence of parathyroid oncogenes on these chromosomes. Importantly, the most common alteration in benign parathyroid adenomas, loss of 11q, was not found as a recurrent change in the malignant parathyroid tissues. Molecular allelotyping using highly polymorphic microsatellite markers provided further confirmation that the prevalence of 11q loss is markedly and significantly lower in carcinomas as compared with adenomas. Our observations provide molecular support for the concept that sporadic parathyroid cancer usually arises de novo, rather than evolving from a pre-existing typical benign adenoma. Furthermore, these results help direct future investigation to ultimately determine which of the candidate genes in these chromosomal locations make significant contributions to the molecular pathogenesis of parathyroid cancer.
DOI: 10.1111/his.12354
2014
Cited 28 times
At the intersection of primary pulmonary myxoid sarcoma and pulmonary angiomatoid fibrous histiocytoma: observations from three new cases
HistopathologyVolume 65, Issue 1 p. 144-146 Correspondence At the intersection of primary pulmonary myxoid sarcoma and pulmonary angiomatoid fibrous histiocytoma: observations from three new cases Steven C Smith, Steven C Smith orcid.org/0000-0003-0982-4607 Department of Pathology, University of Michigan, Ann Arbor, MI, USAThese authors contributed equally to this study.Search for more papers by this authorNallasivam Palanisamy, Nallasivam Palanisamy Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USAThese authors contributed equally to this study.Search for more papers by this authorBryan L Betz, Bryan L Betz Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorScott A Tomlins, Scott A Tomlins Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA Departments of Urology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorRohit Mehra, Rohit Mehra Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorLindsay A Schmidt, Lindsay A Schmidt Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorDavid R Lucas, David R Lucas Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorJeffrey L Myers, Jeffrey L Myers Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this author Steven C Smith, Steven C Smith orcid.org/0000-0003-0982-4607 Department of Pathology, University of Michigan, Ann Arbor, MI, USAThese authors contributed equally to this study.Search for more papers by this authorNallasivam Palanisamy, Nallasivam Palanisamy Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USAThese authors contributed equally to this study.Search for more papers by this authorBryan L Betz, Bryan L Betz Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorScott A Tomlins, Scott A Tomlins Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA Departments of Urology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorRohit Mehra, Rohit Mehra Department of Pathology, University of Michigan, Ann Arbor, MI, USA Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorLindsay A Schmidt, Lindsay A Schmidt Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorDavid R Lucas, David R Lucas Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this authorJeffrey L Myers, Jeffrey L Myers Department of Pathology, University of Michigan, Ann Arbor, MI, USASearch for more papers by this author First published: 28 December 2013 https://doi.org/10.1111/his.12354Citations: 20 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat No abstract is available for this article.Citing Literature Volume65, Issue1July 2014Pages 144-146 RelatedInformation
DOI: 10.1016/j.humpath.2015.01.006
2015
Cited 27 times
Cutaneous basal cell carcinosarcomas: evidence of clonality and recurrent chromosomal losses
Cutaneous carcinosarcomas are heterogeneous group of tumors composed of malignant epithelial and mesenchymal components. Although mutation analyses have identified clonal changes between these morphologically disparate components in some subtypes of cutaneous carcinosarcoma, few cases have been analyzed thus far. To our knowledge, copy number variations (CNVs) and copy-neutral loss of heterozygosity (CN-LOH) have not been investigated in cutaneous carcinosarcomas. We analyzed 4 carcinosarcomas with basal cell carcinoma and osteosarcomatous components for CNVs/CN-LOH by comparative genomic hybridization/single-nucleotide polymorphism array, TP53 hot spot mutations by polymerase chain reaction and Sanger sequencing, and TP53 genomic rearrangements by fluorescence in situ hybridization. All tumors displayed multiple CNV/CN-LOH events (median, 7.5 per tumor). Three of 4 tumors displayed similar CNV/CN-LOH patterns between the epithelial and mesenchymal components within each tumor, supporting a common clonal origin. Recurrent changes included allelic loss at 9p21 (CDKN2A), 9q (PTCH1), and 17p (TP53). Allelic losses of chromosome 16 including CDH1 (E-cadherin) were present in 2 tumors and were restricted to the sarcomatous component. TP53 mutation analysis revealed an R248L mutation in both epithelial and mesenchymal components of 1 tumor. No TP53 rearrangements were identified. Our findings indicate that basal cell carcinosarcomas harbor CNV/CN-LOH changes similar to conventional basal cell carcinoma, with additional changes including recurrent 9p21 losses and a relatively high burden of copy number changes. In addition, most cutaneous carcinosarcomas show evidence of clonality between epithelial and mesenchymal components.