ϟ

Mohammad Bahram

Here are all the papers by Mohammad Bahram that you can download and read on OA.mg.
Mohammad Bahram’s last known institution is . Download Mohammad Bahram PDFs here.

Claim this Profile →
DOI: 10.1111/mec.12481
2013
Cited 2,875 times
Towards a unified paradigm for sequence‐based identification of fungi
Abstract The nuclear ribosomal internal transcribed spacer ( ITS ) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database ( http://unite.ut.ee ) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. H ymenoscyphus pseudoalbidus | GU 586904| SH 133781.05 FU ), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third‐party annotation effort. We introduce the term ‘species hypothesis’ ( SH ) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released ( http://unite.ut.ee/repository.php ) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web‐based sequence management system in UNITE .
DOI: 10.1126/science.1256688
2014
Cited 2,568 times
Global diversity and geography of soil fungi
Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.
DOI: 10.1038/s41586-018-0386-6
2018
Cited 1,412 times
Structure and function of the global topsoil microbiome
Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
DOI: 10.1038/s41579-018-0116-y
2018
Cited 587 times
Mycobiome diversity: high-throughput sequencing and identification of fungi
DOI: 10.1111/j.1469-8137.2010.03373.x
2010
Cited 511 times
454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases
• Compared with Sanger sequencing-based methods, pyrosequencing provides orders of magnitude more data on the diversity of organisms in their natural habitat, but its technological biases and relative accuracy remain poorly understood. • This study compares the performance of pyrosequencing and traditional sequencing for species' recovery of ectomycorrhizal fungi on root tips in a Cameroonian rain forest and addresses biases related to multi-template PCR and pyrosequencing analyses. • Pyrosequencing and the traditional method yielded qualitatively similar results, but there were slight, but significant, differences that affected the taxonomic view of the fungal community. We found that most pyrosequencing singletons were artifactual and contained a strongly elevated proportion of insertions compared with natural intra- and interspecific variation. The alternative primers, DNA extraction methods and PCR replicates strongly influenced the richness and community composition as recovered by pyrosequencing. • Pyrosequencing offers a powerful alternative for the identification of ectomycorrhizal fungi in pooled root samples, but requires careful selection of molecular tools. A well-populated backbone database facilitates the detection of biological and technical artifacts. The pyrosequencing pipeline is available at http://unite.ut.ee/454pipeline.tgz.
DOI: 10.1126/science.aba1223
2020
Cited 500 times
How mycorrhizal associations drive plant population and community biology
The pervasive power of mycorrhizas Associations between plants and symbiotic fungi—mycorrhizas—are ubiquitous in plant communities. Tedersoo et al. review recent developments in mycorrhizal research, revealing the complex and pervasive nature of this largely invisible interaction. Complex networks of mycorrhizal hyphae connect the root systems of individual plants, regulating nutrient flow and competitive interactions between and within plant species, controlling seedling establishment, and ultimately influencing all aspects of plant community ecology and coexistence. Science , this issue p. eaba1223
DOI: 10.1007/s13225-018-0401-0
2018
Cited 466 times
High-level classification of the Fungi and a tool for evolutionary ecological analyses
High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum- and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.
DOI: 10.1186/s13073-017-0428-y
2017
Cited 426 times
Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients
Parkinson’s disease (PD) presently is conceptualized as a protein aggregation disease in which pathology involves both the enteric and the central nervous system, possibly spreading from one to another via the vagus nerves. As gastrointestinal dysfunction often precedes or parallels motor symptoms, the enteric system with its vast diversity of microorganisms may be involved in PD pathogenesis. Alterations in the enteric microbial taxonomic level of L-DOPA-naïve PD patients might also serve as a biomarker. We performed metagenomic shotgun analyses and compared the fecal microbiomes of 31 early stage, L-DOPA-naïve PD patients to 28 age-matched controls. We found increased Verrucomicrobiaceae (Akkermansia muciniphila) and unclassified Firmicutes, whereas Prevotellaceae (Prevotella copri) and Erysipelotrichaceae (Eubacterium biforme) were markedly lowered in PD samples. The observed differences could reliably separate PD from control with a ROC-AUC of 0.84. Functional analyses of the metagenomes revealed differences in microbiota metabolism in PD involving the ẞ-glucuronate and tryptophan metabolism. While the abundances of prophages and plasmids did not differ between PD and controls, total virus abundance was decreased in PD participants. Based on our analyses, the intake of either a MAO inhibitor, amantadine, or a dopamine agonist (which in summary relates to 90% of PD patients) had no overall influence on taxa abundance or microbial functions. Our data revealed differences of colonic microbiota and of microbiota metabolism between PD patients and controls at an unprecedented detail not achievable through 16S sequencing. The findings point to a yet unappreciated aspect of PD, possibly involving the intestinal barrier function and immune function in PD patients. The influence of the parkinsonian medication should be further investigated in the future in larger cohorts.
DOI: 10.1007/s13225-020-00466-2
2020
Cited 409 times
FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles
The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and FunFun together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.
DOI: 10.3897/mycokeys.10.4852
2015
Cited 402 times
Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi
Rapid development of high-throughput (HTS) molecular identification methods has revolutionized our knowledge about taxonomic diversity and ecology of fungi. However, PCR-based methods exhibit multiple technical shortcomings that may bias our understanding of the fungal kingdom. This study was initiated to quantify potential biases in fungal community ecology by comparing the relative performance of amplicon-free shotgun metagenomics and amplicons of nine primer pairs over seven nuclear ribosomal DNA (rDNA) regions often used in metabarcoding analyses. The internal transcribed spacer (ITS) barcodes ITS1 and ITS2 provided greater taxonomic and functional resolution and richness of operational taxonomic units (OTUs) at the 97% similarity threshold compared to barcodes located within the ribosomal small subunit (SSU) and large subunit (LSU) genes. All barcode-primer pair combinations provided consistent results in ranking taxonomic richness and recovering the importance of floristic variables in driving fungal community composition in soils of Papua New Guinea. The choice of forward primer explained up to 2.0% of the variation in OTU-level analysis of the ITS1 and ITS2 barcode data sets. Across the whole data set, barcode-primer pair combination explained 37.6–38.1% of the variation, which surpassed any environmental signal. Overall, the metagenomics data set recovered a similar taxonomic overview, but resulted in much lower fungal rDNA sequencing depth, inability to infer OTUs, and high uncertainty in identification. We recommend the use of ITS2 or the whole ITS region for metabarcoding and we advocate careful choice of primer pairs in consideration of the relative proportion of fungal DNA and expected dominant groups.
DOI: 10.1111/geb.13487
2022
Cited 365 times
Global soil microbiomes: A new frontline of biome‐ecology research
Abstract Aim Organisms on our planet form spatially congruent and functionally distinct communities, which at large geographical scales are called “biomes”. Understanding their pattern and function is vital for sustainable use and protection of biodiversity. Current global terrestrial biome classifications are based primarily on climate characteristics and functional aspects of plant community assembly. These and other existing biome schemes do not take account of soil organisms, including highly diverse and functionally important microbial groups. We aimed to define large‐scale structure in the diversity of soil microbes (soil microbiomes), pinpoint the environmental drivers shaping it and identify resemblance and mismatch with existing terrestrial biome schemes. Location Global. Time period Current. Major taxa studied Soil eukaryotes and prokaryotes. Methods We collected soil samples from natural environments world‐wide, incorporating most known terrestrial biomes. We used high‐throughput sequencing to characterize soil biotic communities and k ‐means clustering to define soil microbiomes describing the diversity of microbial eukaryotic and prokaryotic groups. We used climatic data and soil variables measured in the field to identify the environmental variables shaping soil microbiome structure. Results We recorded strong correlations among fungal, bacterial, archaeal, plant and animal communities, defined a system of global soil microbiomes (producing seven biome types for microbial eukaryotes and six biome types for prokaryotes) and showed that these are typically structured by pH alongside temperature. None of the soil microbiomes are directly paralleled by any current terrestrial biome scheme, with mismatch most substantial for prokaryotes and for microbial eukaryotes in cold climates; nor do they consistently distinguish grassland and forest ecosystems. Main conclusions Existing terrestrial biome classifications represent a limited surrogate for the large‐scale diversity patterns of microbial soil organisms. We show that empirically defined soil microbiomes are attainable using metabarcoding and statistical clustering approaches and suggest that they can have wide application in theoretical and applied biodiversity research.
DOI: 10.1111/j.1365-294x.2012.05602.x
2012
Cited 360 times
Towards global patterns in the diversity and community structure of ectomycorrhizal fungi
Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata.
DOI: 10.1038/ismej.2015.116
2015
Cited 326 times
Tree diversity and species identity effects on soil fungi, protists and animals are context dependent
Abstract Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.
DOI: 10.1038/ismej.2015.164
2015
Cited 274 times
Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment
Abstract A central challenge in ecology is to understand the relative importance of processes that shape diversity patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate the underlying stochastic and deterministic processes in the absence of environmental gradients at a local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances ranging from 0.01 to 64 m from three boreal forest sites and used 454 pyrosequencing analysis of Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups with significant spatial structure, autocorrelation occurred at a very fine scale (<2 m). Both dispersal limitation and environmental selection had a weak effect on communities as reflected in negative or null deviation of communities, which was also supported by multivariate analysis, that is, environment, spatial processes and their shared effects explained on average <10% of variance. Taken together, these results indicate a random distribution of soil eukaryotes with respect to space and environment in the absence of environmental gradients at the local scale, reflecting the dominant role of drift and homogenizing dispersal.
DOI: 10.1111/j.1469-8137.2011.03927.x
2011
Cited 272 times
Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran
Summary Altitudinal gradients strongly affect the diversity of plants and animals, yet little is known about the altitudinal effects on the distribution of microorganisms, including ectomycorrhizal fungi. By combining morphological and molecular identification methods, we addressed the relative effects of altitude, temperature, precipitation, host community and soil nutrient concentrations on species richness and community composition of ectomycorrhizal fungi in one of the last remaining temperate old‐growth forests in Eurasia. Molecular analyses revealed 367 species of ectomycorrhizal fungi along three altitudinal transects. Species richness declined monotonically with increasing altitude. Host species and altitude were the main drivers of the ectomycorrhizal fungal community composition at both the local and regional scales. The mean annual temperature and precipitation were strongly correlated with altitude and accounted for the observed patterns of richness and community. The decline of ectomycorrhizal fungal richness with increasing altitude is consistent with the general altitudinal richness patterns of macroorganisms. Low environmental energy reduces the competitive ability of rare species and thus has a negative effect on the richness of ectomycorrhizal fungi. Because of multicollinearity with altitude, the direct effects of climatic variables and their seasonality warrant further investigation at the regional and continental scales.
DOI: 10.1111/nph.13206
2014
Cited 189 times
Local‐scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi
Summary Knowledge of spatiotemporal patterns in species distribution is fundamental to understanding the ecological and evolutionary processes shaping communities. The emergence of DNA ‐based tools has expanded the geographic and taxonomic scope of studies examining spatial and temporal distribution of mycorrhizal fungi. However, the nature of spatiotemporal patterns documented and subsequent interpretation of ecological processes can vary significantly from study to study. In order to look for general patterns we synthesize the available data across different sampling scales and mycorrhizal types. The results of this analysis shed light on the relative importance of space, time and vertical soil structure on community variability across different mycorrhizal types. Although we found no significant trend in spatiotemporal variation among mycorrhizal types, the vertical community variation was distinctly greater than the spatial and temporal variability in mycorrhizal fungal communities. Both spatial and temporal variability of communities was greater in topsoil compared with lower horizons, suggesting that greater environmental heterogeneity drives community variation on a fine scale. This further emphasizes the importance of both niche differentiation and environmental filtering in maintaining diverse fungal communities.
DOI: 10.1111/brv.12538
2019
Cited 187 times
Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes
ABSTRACT Mycorrhizal fungi benefit plants by improved mineral nutrition and protection against stress, yet information about fundamental differences among mycorrhizal types in fungi and trees and their relative importance in biogeochemical processes is only beginning to accumulate. We critically review and synthesize the ecophysiological differences in ectomycorrhizal, ericoid mycorrhizal and arbuscular mycorrhizal symbioses and the effect of these mycorrhizal types on soil processes from local to global scales. We demonstrate that guilds of mycorrhizal fungi display substantial differences in genome‐encoded capacity for mineral nutrition, particularly acquisition of nitrogen and phosphorus from organic material. Mycorrhizal associations alter the trade‐off between allocation to roots or mycelium, ecophysiological traits such as root exudation, weathering, enzyme production, plant protection, and community assembly as well as response to climate change. Mycorrhizal types exhibit differential effects on ecosystem carbon and nutrient cycling that affect global elemental fluxes and may mediate biome shifts in response to global change. We also note that most studies performed to date have not been properly replicated and collectively suffer from strong geographical sampling bias towards temperate biomes. We advocate that combining carefully replicated field experiments and controlled laboratory experiments with isotope labelling and ‐omics techniques offers great promise towards understanding differences in ecophysiology and ecosystem services among mycorrhizal types.
DOI: 10.1111/nph.12170
2013
Cited 183 times
Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> spp.) in relation to biotic and abiotic variables at the global scale
Summary Much of the macroecological information about microorganisms is confounded by the lack of standardized methodology, paucity of metadata and sampling effect of a particular substrate or interacting host taxa. This study aims to disentangle the relative effects of biological, geographical and edaphic variables on the distribution of A lnus ‐associated ectomycorrhizal ( ECM ) fungi at the global scale by using comparable sampling and analysis methods. Ribosomal DNA sequence analysis revealed 146 taxa of ECM fungi from 22 A lnus species across 96 sites worldwide. Use of spatial and phylogenetic eigenvectors along with environmental variables in model selection indicated that phylogenetic relations among host plants and geographical links explained 43 and 10%, respectively,in ECM fungal community composition, whereas soil calcium concentration positively influenced taxonomic richness. Intrageneric phylogenetic relations among host plants and regional processes largely account for the global biogeographic distribution of A lnus ‐associated ECM fungi. The biogeography of ECM fungi is consistent with ancient host migration patterns from E urasia to N orth A merica and from southern E urope to northern E urope after the last glacial maximum, indicating codispersal of hosts and their mycobionts.
DOI: 10.1093/femsre/fuw017
2016
Cited 170 times
Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes
With high-throughput sequencing (HTS), we are able to explore the hidden world of microscopic organisms to an unpre-cedented level. The fast development of molecular technology and statistical methods means that microbial ecologists must keep their toolkits updated. Here, we review and evaluate some of the more widely adopted and emerging techniques for analysis of diversity and community composition, and the inference of species interactions from co-occurrence data generated by HTS of marker genes. We emphasize the importance of observational biases and statistical properties of the data and methods. The aim of the review is to critically discuss the advantages and disadvantages of established and emerging statistical methods, and to contribute to the integration of HTS-based marker gene data into community ecology.
DOI: 10.3767/persoonia.2018.41.12
2018
Cited 170 times
Fungal Planet description sheets: 785– 867
Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporiumeucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora.Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderheniacoussapoae on Coussapoa floccosa.Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis.Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis.Chile, Colletotrichum arboricola on Fuchsia magellanica.Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomycesnerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander.Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora.Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp.Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana,Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis.South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyceschromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
DOI: 10.1186/s40168-017-0259-5
2017
Cited 138 times
Novel soil-inhabiting clades fill gaps in the fungal tree of life
Fungi are a diverse eukaryotic group of degraders, pathogens, and symbionts, with many lineages known only from DNA sequences in soil, sediments, air, and water.We provide rough phylogenetic placement and principal niche analysis for >40 previously unrecognized fungal groups at the order and class level from global soil samples based on combined 18S (nSSU) and 28S (nLSU) rRNA gene sequences. Especially, Rozellomycota (Cryptomycota), Zygomycota s.lat, Ascomycota, and Basidiomycota are rich in novel fungal lineages, most of which exhibit distinct preferences for climate and soil pH.This study uncovers the great phylogenetic richness of previously unrecognized order- to phylum-level fungal lineages. Most of these rare groups are distributed in different ecosystems of the world but exhibit distinct ecological preferences for climate or soil pH. Across the fungal kingdom, tropical and non-tropical habitats are equally likely to harbor novel groups. We advocate that a combination of traditional and high-throughput sequencing methods enable efficient recovery and phylogenetic placement of such unknown taxonomic groups.
DOI: 10.3389/fmicb.2020.01953
2020
Cited 134 times
Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
DOI: 10.1111/nph.17240
2021
Cited 132 times
Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi
Summary The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected &gt; 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species‐level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
DOI: 10.1111/nph.16598
2020
Cited 103 times
Plant nutrient‐acquisition strategies drive topsoil microbiome structure and function
Plant nutrient-acquisition strategies drive soil processes and vegetation performance, but their effect on the soil microbiome remains poorly understood. This knowledge is important to predict the shifts in microbial diversity and functions due to increasing changes in vegetation traits under global change. Here we documented the topsoil microbiomes of 145 boreal and temperate terrestrial sites in the Baltic region that broadly differed in vegetation type and nutritional traits, such as mycorrhizal types and symbiotic nitrogen-fixation. We found that sites dominated by arbuscular mycorrhizal (AM) vegetation harbor relatively more AM fungi, bacteria, fungal saprotrophs, and pathogens in the topsoil compared with sites dominated by ectomycorrhizal (EM) plants. These differences in microbiome composition reflect the rapid nutrient cycling and negative plant-soil feedback in AM soils. Lower fungal diversity and bacteria : fungi ratios in EM-dominated habitats are driven by monodominance of woody vegetation as well as soil acidification by EM fungi, which are associated with greater diversity and relative abundance of carbohydrate-active enzymes. Our study suggests that shifts in vegetation related to global change and land use may strongly alter the topsoil microbiome structure and function.
DOI: 10.1111/mec.16460
2022
Cited 102 times
Best practices in metabarcoding of fungi: From experimental design to results
Abstract The development of high‐throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full‐length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
DOI: 10.1016/j.envpol.2021.116569
2021
Cited 94 times
Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment
Water pollution is one of the main challenges and water crises, which has caused the existing water resources to be unusable due to contamination. To understand the determinants of the distribution and abundance of antibiotic resistance genes (ARGs), we examined the distribution of 22 ARGs in relation to habitat type, heavy metal pollution and antibiotics concentration across six lakes and wetlands of Iran. The concentration of 13 heavy metals was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) by Thermo Electron Corporation, and five antibiotics by online enrichment and triple-quadrupole LC-MS/MS were investigated. We further performed a global meta-analysis to evaluate the distribution of ARGs across global lakes compared with our studied lakes. While habitat type effect was negligible, we found a strong correlation between waste discharge into the lakes and the abundance of ARGs. The ARGs abundance showed stronger correlation with the concentration of heavy metals, such as Vanadium, than with that of antibiotics. Our meta-analysis also confirmed that overuse of antibiotics and discharge of heavy metals in the studied lakes. These data point to an increase in the distribution of ARGs among bacteria and their increasing resistance to various antibiotics, implying the susceptibility of aquatic environment to industrial pollution.
DOI: 10.1038/s41467-022-29161-3
2022
Cited 76 times
Structure and function of the soil microbiome underlying N2O emissions from global wetlands
Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.
DOI: 10.1111/gcb.16398
2022
Cited 45 times
Global patterns in endemicity and vulnerability of soil fungi
Abstract Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high‐resolution, long‐read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West‐Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land‐cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early‐diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
DOI: 10.1038/s41467-023-37937-4
2023
Cited 30 times
Patterns in soil microbial diversity across Europe
Abstract Factors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands). Highly-disturbed environments contain significantly more bacterial chemoheterotrophs, harbour a higher proportion of fungal plant pathogens and saprotrophs, and have less beneficial fungal plant symbionts compared to woodlands and extensively-managed grasslands. Spatial patterns of microbial communities and predicted functions are best explained when interactions among the major determinants (vegetation cover, climate, soil properties) are considered. We propose guidelines for environmental policy actions and argue that taxonomical and functional diversity should be considered simultaneously for monitoring purposes.
DOI: 10.1073/pnas.2207832120
2023
Cited 19 times
Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil
Microorganisms play essential roles in soil ecosystem functioning and maintenance, but methods are currently lacking for quantitative assessments of the mechanisms underlying microbial diversity patterns observed across disparate systems and scales. Here we established a quantitative model to incorporate pH into metabolic theory to capture and explain some of the unexplained variation in the relationship between temperature and soil bacterial diversity. We then tested and validated our newly developed models across multiple scales of ecological organization. At the species level, we modeled the diversification rate of the model bacterium Pseudomonas fluorescens evolving under laboratory media gradients varying in temperature and pH. At the community level, we modeled patterns of bacterial communities in paddy soils across a continental scale, which included natural gradients of pH and temperature. Last, we further extended our model at a global scale by integrating a meta-analysis comprising 870 soils collected worldwide from a wide range of ecosystems. Our results were robust in consistently predicting the distributional patterns of bacterial diversity across soil temperature and pH gradients—with model variation explaining from 7 to 66% of the variation in bacterial diversity, depending on the scale and system complexity. Together, our study represents a nexus point for the integration of soil bacterial diversity and quantitative models with the potential to be used at distinct spatiotemporal scales. By mechanistically representing pH into metabolic theory, our study enhances our capacity to explain and predict the patterns of bacterial diversity and functioning under current or future climate change scenarios.
DOI: 10.1038/s41467-023-44172-4
2024
Cited 4 times
Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe
Abstract Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.
DOI: 10.1111/j.1365-2486.2011.02501.x
2011
Cited 165 times
Fine root foraging strategies in <scp>N</scp>orway spruce forests across a <scp>E</scp>uropean climate gradient
Abstract Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass ( FRB ), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal ( EcM ) fungi in 12 N orway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in E urope (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass ( EcMB , g m −2 ) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density ( RTD ), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area ( BA ) increased exponentially with latitude: by about 12.7 kg m −2 with an increase of 10° latitude from southern G ermany to E stonia and southern F inland and by about 44.7 kg m −2 with next latitudinal 10° from southern to northern F inland. Boreal N orway spruce forests had 4.5 to 11 times more EcM root tips per stand BA , and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.
DOI: 10.1038/ismej.2009.131
2009
Cited 162 times
Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot
Abstract Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5±1.0-m distance—roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.
DOI: 10.1111/nph.12328
2013
Cited 149 times
Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis
Geographic and taxonomic host ranges determine the distribution of biotrophic organisms. Host phylogenetic distance strongly affects the community composition of pathogens and parasites, but little is known about the host phylogeny effect on communities of mutualists, such as plant-pollinator and plant-mycorrhizal fungi systems. By incorporating phylogenetic eigenvectors into univariate and multivariate models, we aimed to determine the relative contribution of host phylogeny and environmental variables to mycorrhizal traits and community composition of ectomycorrhizal (EcM) fungi in Salicaceae at the local scale. Host phylogeny explained 75% of the variation in fungal species richness and 20% of the variation in community composition. We also re-analyzed a system involving eight hosts from Japan, in which host phylogeny explained 26% and 9% of the variation in fungal richness and community composition, respectively. [Correction added after online publication 21 May 2013: in the preceding sentence the values 9% and 26% have been transposed.] Phylogenetic eigenvectors that differentially account for clades and terminal taxa across the phylogeny revealed stronger host effects than did the treatment of host species as categorical or dummy variables in multiregression models, and in comparison with methods such as Mantel test and its analogs. Our results indicate the usefulness of the eigenvector method for the quantification of the host phylogeny effect, which represents an integrated complex function of taxonomic sampling effect and phylogenetic distance per se.
DOI: 10.1111/1755-0998.12692
2017
Cited 136 times
PipeCraft: Flexible open‐source toolkit for bioinformatics analysis of custom high‐throughput amplicon sequencing data
Abstract High‐throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user‐friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable.
DOI: 10.1111/j.1469-8137.2012.04217.x
2012
Cited 126 times
Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest
See also the Commentary by Kuyper
DOI: 10.1111/j.1574-6941.2010.01000.x
2010
Cited 121 times
A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi
Ectomycorrhizal fungi (EcMF) form diverse communities and link different host plants into mycorrhizal networks, yet little is known about the magnitude of mycobiont diversity of a single tree individual. This study addresses species richness and spatial structure of EcMF in the root system of a single European aspen (Populus tremula) individual in an old-growth boreal mixed forest ecosystem in Estonia. Combining morphological and molecular identification methods for both plant and fungi, 122 species of EcMF were recovered from 103 root samples of the single tree. Richness estimators predicted the total EcMF richness to range from 182 to 207 species, reflecting the observation of 62.3% singletons and doubletons within the community. Fine-scale genetic diversity in Cenococcum geophilum indicates the presence of 23 internal transcribed spacer genotypes. EcMF community was significantly spatially autocorrelated only at the lineage level up to 3 m distance, but not at the species level. Proximity of other hosts had a significant effect on the spatial distribution of EcMF lineages. This study demonstrates that a single tree may host as many EcMF species and individuals as recovered on multiple hosts in diverse communities over larger areas.
DOI: 10.1111/1365-2745.12120
2013
Cited 121 times
The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales
Summary Despite recent advances in understanding community ecology of ectomycorrhizal fungi, little is known about their spatial patterning and the underlying mechanisms driving these patterns across different ecosystems. This meta‐study aimed to elucidate the scale, rate and causes of spatial structure of ectomycorrhizal fungal communities in different ecosystems by analysing 16 and 55 sites at the local and global scales, respectively. We examined the distance decay of similarity relationship in species‐ and phylogenetic lineage‐based communities in relation to sampling and environmental variables. Tropical ectomycorrhizal fungal communities exhibited stronger distance‐decay patterns compared to non‐tropical communities. Distance from the equator and sampling area were the main determinants of the extent of distance decay in fungal communities. The rate of distance decay was negatively related to host density at the local scale. At the global scale, lineage‐level community similarity decayed faster with latitude than with longitude. Synthesis . Spatial processes play a stronger role and over a greater scale in structuring local communities of ectomycorrhizal fungi than previously anticipated, particularly in ecosystems with greater vegetation age and closer to the equator. Greater rate of distance decay occurs in ecosystems with lower host density that may stem from increasing dispersal and establishment limitation. The relatively strong latitude effect on distance decay of lineage‐level community similarity suggests that climate affects large‐scale spatial processes and may cause phylogenetic clustering of ectomycorrhizal fungi at the global scale.
DOI: 10.1007/s13225-014-0291-8
2014
Cited 120 times
Improving ITS sequence data for identification of plant pathogenic fungi
Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi ( http://unite.ut.ee ), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.
DOI: 10.1111/nph.14895
2017
Cited 111 times
Host preference and network properties in biotrophic plant–fungal associations
Summary Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant‐associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant–fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant‐associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.
DOI: 10.1111/j.1365-294x.2011.05145.x
2011
Cited 107 times
Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar
Mycorrhizal fungi play a key role in mineral nutrition of terrestrial plants, but the factors affecting natural distribution, diversity and community composition of particularly tropical fungi remain poorly understood. This study addresses shifts in community structure and species frequency of ectomycorrhizal (EcM) fungi in relation to host taxa, soil depth and spatial structure in four contrasting African ecosystems. We used the rDNA and plastid trnL intron sequence analysis for identification of fungi and host plants, respectively. By partitioning out spatial autocorrelation in plant and fungal distribution, we suggest that African EcM fungal communities are little structured by soil horizon and host at the plant species and family levels. These findings contrast with patterns of vegetation in these forests and EcM fungal communities in other tropical and temperate ecosystems. The low level of host preference indirectly supports an earlier hypothesis that pioneer Phyllanthaceae may facilitate the establishment of late successional Fabaceae and potentially other EcM host trees by providing compatible fungal inoculum in deforested and naturally disturbed ecosystems of tropical Africa.
DOI: 10.1111/cobi.13311
2019
Cited 104 times
Global mismatches in aboveground and belowground biodiversity
Abstract Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well‐being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.
DOI: 10.1038/s41396-020-00837-2
2020
Cited 93 times
Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen
Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen. Differential colonization of forages (the incubated lignocellulosic materials) by rumen microbiota suggests that taxonomic and metabolic diversification is an evolutionary adaptation to diverse lignocellulosic substrates constituting a major component of the cattle's diet. Our data also provide novel insights into the key role of unique microbial diversity and associated gene functions in the degradation of recalcitrant lignocellulosic materials in the rumen.
DOI: 10.1111/1758-2229.12684
2018
Cited 90 times
Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment
High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming commonly used primers. Based on comparing the resulting long 16S rRNA gene fragments with public databases from all habitats, we found several novel family- to phylum-level archaeal taxa from topsoil and surface water. Our results suggest that archaeal diversity has been largely overlooked due to the limitations of available primers, and that improved primer pairs enable to estimate archaeal diversity more accurately.
DOI: 10.1111/mec.14246
2017
Cited 79 times
Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats
Abstract Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape‐scale moisture, organic matter and productivity gradients. Using high‐throughput sequencing, we identified soil fungi from 54 low‐productivity Pinus sylvestris ‐dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low‐productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.
DOI: 10.3897/mycokeys.12.7553
2016
Cited 78 times
Top 50 most wanted fungi
Environmental sequencing regularly recovers fungi that cannot be classified to any meaningful taxonomic level beyond "Fungi".There are several examples where evidence of such lineages has been sitting in public sequence databases for up to ten years before receiving scientific attention and formal recognition.In order to highlight these unidentified lineages for taxonomic scrutiny, a search function is presented that produces updated lists of approximately genus-level clusters of fungal ITS sequences that remain unidentified at the phylum, class, and order levels, respectively.The search function (https://unite.ut.ee/top50.php) is implemented in the UNITE database for molecular identification of fungi, such that the underlying sequences and fungal lineages are open to third-party annotation.We invite researchers to examine these enigmatic fungal lineages in the hope that their taxonomic resolution will not have to wait another ten years or more.
DOI: 10.1136/gutjnl-2018-317715
2019
Cited 77 times
Antibiotics-induced monodominance of a novel gut bacterial order
Objective The composition of the healthy human adult gut microbiome is relatively stable over prolonged periods, and representatives of the most highly abundant and prevalent species have been cultured and described. However, microbial abundances can change on perturbations, such as antibiotics intake, enabling the identification and characterisation of otherwise low abundant species. Design Analysing gut microbial time-series data, we used shotgun metagenomics to create strain level taxonomic and functional profiles. Community dynamics were modelled postintervention with a focus on conditionally rare taxa and previously unknown bacteria. Results In response to a commonly prescribed cephalosporin (ceftriaxone), we observe a strong compositional shift in one subject, in which a previously unknown species, U Borkfalki ceftriaxensis , was identified, blooming to 92% relative abundance. The genome assembly reveals that this species (1) belongs to a so far undescribed order of Firmicutes, (2) is ubiquitously present at low abundances in at least one third of adults, (3) is opportunistically growing, being ecologically similar to typical probiotic species and (4) is stably associated to healthy hosts as determined by single nucleotide variation analysis. It was the first coloniser after the antibiotic intervention that led to a long-lasting microbial community shift and likely permanent loss of nine commensals. Conclusion The bloom of U B. ceftriaxensis and a subsequent one of Parabacteroides distasonis demonstrate the existence of monodominance community states in the gut. Our study points to an undiscovered wealth of low abundant but common taxa in the human gut and calls for more highly resolved longitudinal studies, in particular on ecosystem perturbations.
DOI: 10.1128/aem.01368-19
2019
Cited 75 times
Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens
Culture-based molecular identification methods have revolutionized detection of pathogens, yet these methods are slow and may yield inconclusive results from environmental materials. The second-generation sequencing tools have much-improved precision and sensitivity of detection, but these analyses are costly and may take several days to months. Of the third-generation sequencing techniques, the portable MinION device (Oxford Nanopore Technologies) has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performances of two third-generation sequencing instruments, MinION and Sequel (Pacific Biosciences), in identification and diagnostics of fungal and oomycete pathogens from conifer (Pinaceae) needles and potato (Solanum tuberosum) leaves and tubers. We demonstrate that the Sequel instrument is efficient for metabarcoding of complex samples, whereas MinION is not suited for this purpose due to a high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms and other associated organisms from plant tissues following both amplicon-based and PCR-free metagenomics approaches. Using the metagenomics approach with shortened DNA extraction and incubation times, we performed the entire MinION workflow, from sample preparation through DNA extraction, sequencing, bioinformatics, and interpretation, in 2.5 h. We advocate the use of MinION for rapid diagnostics of pathogens and potentially other organisms, but care needs to be taken to control or account for multiple potential technical biases.IMPORTANCE Microbial pathogens cause enormous losses to agriculture and forestry, but current combined culturing- and molecular identification-based detection methods are too slow for rapid identification and application of countermeasures. Here, we develop new and rapid protocols for Oxford Nanopore MinION-based third-generation diagnostics of plant pathogens that greatly improve the speed of diagnostics. However, due to high error rate and technical biases in MinION, the Pacific BioSciences Sequel platform is more useful for in-depth amplicon-based biodiversity monitoring (metabarcoding) from complex environmental samples.
DOI: 10.1016/j.chom.2021.05.008
2021
Cited 68 times
Dispersal strategies shape persistence and evolution of human gut bacteria
Human gut bacterial strains can co-exist with their hosts for decades, but little is known about how these microbes persist and disperse, and evolve thereby. Here, we examined these processes in 5,278 adult and infant fecal metagenomes, longitudinally sampled in individuals and families. Our analyses revealed that a subset of gut species is extremely persistent in individuals, families, and geographic regions, represented often by locally successful strains of the phylum Bacteroidota. These "tenacious" bacteria show high levels of genetic adaptation to the human host but a high probability of loss upon antibiotic interventions. By contrast, heredipersistent bacteria, notably Firmicutes, often rely on dispersal strategies with weak phylogeographic patterns but strong family transmissions, likely related to sporulation. These analyses describe how different dispersal strategies can lead to the long-term persistence of human gut microbes with implications for gut flora modulations.
DOI: 10.1093/femsre/fuab058
2021
Cited 55 times
Fungi as mediators linking organisms and ecosystems
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
DOI: 10.1016/j.envint.2021.106438
2021
Cited 53 times
A global overview of the trophic structure within microbiomes across ecosystems
The colossal project of mapping the microbiome on Earth is rapidly advancing, with a focus on individual microbial groups. However, a global assessment of the associations between predatory protists and their bacterial prey is still missing at a cross-ecosystem level. This knowledge is critical to better understand the importance of top-down links in structuring microbiomes. Here, we examined 38 sequence-based datasets of paired bacterial and protistan taxa, covering 3,178 samples from diverse habitats including freshwater, marine and soils. We show that community profiles of protists and bacteria strongly correlated across and within habitats, with trophic microbiome structures fundamentally differing across habitats. Soils hosted the most heterogenous and diverse microbiomes. Protist communities were dominated by predators in soils and phototrophs in aquatic environments. This led to changes in the ratio of total protists to bacteria richness, which was highest in marine, while that of predatory protists to bacteria was highest in soils. Taxon richness and relative abundance of predatory protists positively correlated with bacterial richness in marine habitats. These links differed between soils, predatory protist richness and the relative abundance of predatory protists positively correlated with bacterial richness in forest and grassland soils, but not in agricultural soils. Our results suggested that anthropogenic pressure affects higher trophic levels more than lower ones leading to a decoupled trophic structure in microbiomes. Together, our cumulative overview of microbiome patterns of bacteria and protists at the global scale revealed major patterns and differences of the trophic structure of microbiomes across Earth’s habitats, and show that anthropogenic factors might have negative effects on the trophic structure within microbiomes. Furthermore, the increased impact of anthropogenic factors on especially higher trophic levels suggests that often-observed reduced ecosystem functions in anthropogenic systems might be partly attributed to a reduction of trophic complexity.
DOI: 10.1111/ele.13904
2021
Cited 49 times
Towards revealing the global diversity and community assembly of soil eukaryotes
Soil fungi, protists, and animals (i.e., the eukaryome) play a critical role in key ecosystem functions in terrestrial ecosystems. Yet, we lack a holistic understanding of the processes shaping the global distribution of the eukaryome. We conducted a molecular analysis of 193 composite soil samples spanning the world's major biomes. Our analysis showed that the importance of selection processes was higher in the community assemblage of smaller-bodied and wider niche breadth organisms. Soil pH and mean annual precipitation were the primary determinants of the community structure of eukaryotic microbes and animals, respectively. We further found contrasting latitudinal diversity patterns and strengths for soil eukaryotic microbes and animals. Our results point to a potential link between body size and niche breadth of soil eukaryotes and the relative effect of ecological processes and environmental factors in driving their biogeographic patterns.
DOI: 10.1007/s13225-021-00493-7
2021
Cited 46 times
The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
DOI: 10.1186/s40168-022-01365-1
2022
Cited 30 times
LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis
Amplicon sequencing is an established and cost-efficient method for profiling microbiomes. However, many available tools to process this data require both bioinformatics skills and high computational power to process big datasets. Furthermore, there are only few tools that allow for long read amplicon data analysis. To bridge this gap, we developed the LotuS2 (less OTU scripts 2) pipeline, enabling user-friendly, resource friendly, and versatile analysis of raw amplicon sequences.In LotuS2, six different sequence clustering algorithms as well as extensive pre- and post-processing options allow for flexible data analysis by both experts, where parameters can be fully adjusted, and novices, where defaults are provided for different scenarios. We benchmarked three independent gut and soil datasets, where LotuS2 was on average 29 times faster compared to other pipelines, yet could better reproduce the alpha- and beta-diversity of technical replicate samples. Further benchmarking a mock community with known taxon composition showed that, compared to the other pipelines, LotuS2 recovered a higher fraction of correctly identified taxa and a higher fraction of reads assigned to true taxa (48% and 57% at species; 83% and 98% at genus level, respectively). At ASV/OTU level, precision and F-score were highest for LotuS2, as was the fraction of correctly reported 16S sequences.LotuS2 is a lightweight and user-friendly pipeline that is fast, precise, and streamlined, using extensive pre- and post-ASV/OTU clustering steps to further increase data quality. High data usage rates and reliability enable high-throughput microbiome analysis in minutes.LotuS2 is available from GitHub, conda, or via a Galaxy web interface, documented at http://lotus2.earlham.ac.uk/ . Video Abstract.
DOI: 10.3389/fpls.2023.1100235
2023
Cited 12 times
Global diversity and distribution of nitrogen-fixing bacteria in the soil
Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.
DOI: 10.1016/j.tim.2023.06.006
2024
Cited 3 times
Microbial regulation of feedbacks to ecosystem change
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment. Microbial functioning is intrinsically linked to the resistance and resilience of ecosystems. Microbes drive and regulate disturbance feedbacks that impact ecosystem stability. Functional traits from delineated genotypes to community-wide traits mediate the intensity and direction of feedbacks. Feedbacks can be positive (amplifying) or negative (dampening) and emerge from altered biogeochemical cycling related to microbial disturbance responses. Generalizable frameworks for how microbes adapt to disturbances in time and space are needed to increase the understanding and predictability of feedbacks and the temporal stability of ecosystems.
DOI: 10.1007/s13659-023-00426-8
2024
Precision enzyme discovery through targeted mining of metagenomic data
Abstract Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
DOI: 10.1016/j.funeco.2013.03.004
2013
Cited 80 times
Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences
Fungi from the Ceratobasidiaceae family have important ecological roles as pathogens, saprotrophs, non-mycorrhizal endophytes, orchid mycorrhizal and ectomycorrhizal symbionts, but little is known about the distribution and evolution of these nutritional modes. All public ITS sequences of Ceratobasidiaceae were downloaded from databases, annotated with ecological and taxonomic metadata, and tested for the non-random phylogenetic distribution of nutritional modes. Phylogenetic analysis revealed six main clades within Ceratobasidiaceae and a poor correlation between molecular phylogeny and morphological–cytological characters traditionally used for taxonomy. Sequences derived from soil (representing putative saprotrophs) and orchid mycorrhiza clustered together, but remained distinct from pathogens. All nutritional modes were phylogenetically conserved in the Ceratobasidiaceae based on at least one index. Our analyses suggest that in general, autotrophic orchids form root symbiosis with available Ceratobasidiaceae isolates in soil. Ectomycorrhiza-forming capability has evolved twice within the Ceratobasidiaceae and it had a strong influence on the evolution of mycoheterotrophy and host specificity in certain orchid taxa.
DOI: 10.1007/s00572-010-0350-2
2010
Cited 77 times
Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment
DOI: 10.1016/j.funeco.2013.10.003
2014
Cited 76 times
Network perspectives of ectomycorrhizal associations
Network analysis has successfully been applied to investigate ecological interactions. Most information about the structure of ecological networks is derived from aboveground interactions of plants with pollinators and seed dispersers. Here we examine ectomycorrhizal interactions between plants and fungi in a network perspective that has received little attention so far. For network analyses, we examined the main network properties-nestedness and modularity. Certain ectomycorrhizal fungal communities displayed modularity, which is directly attributable to partner selectivity and, thus, context dependent. Our data also showed that ectomycorrhizal networks exhibit non-nested or anti-nested patterns, which is in contrast to other mutualistic interactions. The low level of nestedness may indicate that specific ectomycorrhizal plant species do not favour generalist ectomycorrhizal fungi over specialists and vice versa. This can stem from a strong selection pressure of host in choosing its mycobionts as suggested from the substantial host phylogeny effect on ectomycorrhizal fungal richness and community. Whether the low level of nestedness in ectomycorrhizal associations is due to methodological or ecological factors requires further investigation.
DOI: 10.1007/s00572-012-0445-z
2012
Cited 66 times
Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa
DOI: 10.3389/fmicb.2017.00836
2017
Cited 63 times
Bacterial Communities in Boreal Forest Mushrooms Are Shaped Both by Soil Parameters and Host Identity
Despite recent advances in understanding the microbiome of eukaryotes, little is known about microbial communities in fungi. Here we investigate the structure of bacterial communities in mushrooms, including common edible ones, with respect to biotic and abiotic factors in the boreal forest. Using a combination of culture-based and Illumina high-throughput sequencing, we characterized the bacterial communities in fruitbodies of fungi from eight genera spanning four orders of the class Agaricomycetes (Basidiomycota). Our results revealed that soil pH followed by fungal identity are the main determinants of the structure of bacterial communities in mushrooms. While almost half of fruitbody bacteria were also detected from soil, the abundance of several bacterial taxa differed considerably between the two environments. The effect of host identity was significant at the fungal genus and order level and could to considerable extent be ascribed to the distinct bacterial community of the chanterelle, representing Cantharellales – the earliest diverged group of mushroom-forming basidiomycetes. These data suggest that besides the substantial contribution of soil as a major taxa source and environmental determinant of bacterial communities in mushrooms, the structure of these communities is to a great degree affected by the identity of the host. Thus, bacteria inhabiting fungal fruitbodies may be non-randomly selected from environment based on their symbiotic functions and/or habitat requirements.
DOI: 10.1111/mec.12849
2014
Cited 61 times
Global biogeography of the ectomycorrhizal /sebacina lineage (<scp>F</scp>ungi, <scp>S</scp>ebacinales) as revealed from comparative phylogenetic analyses
Abstract Compared with plants and animals, large‐scale biogeographic patterns of microbes including fungi are poorly understood. By the use of a comparative phylogenetic approach and ancestral state reconstructions, we addressed the global biogeography, rate of evolution and evolutionary origin of the widely distributed ectomycorrhizal (EcM) /sebacina lineage that forms a large proportion of the Sebacinales order. We downloaded all publicly available internal transcribed spacer ( ITS ) sequences and metadata and supplemented sequence information from three genes to construct dated phylogenies and test biogeographic hypotheses. The /sebacina lineage evolved 45–57 Myr ago that groups it with relatively young EcM taxa in other studies. The most parsimonious origin for /sebacina is inferred to be North American temperate coniferous forests. Among biogeographic traits, region and biome exhibited stronger phylogenetic signal than host family. Consistent with the resource availability (environmental energy) hypothesis, the ITS region is evolving at a faster rate in tropical than nontropical regions. Most biogeographic regions exhibited substantial phylogenetic clustering suggesting a strong impact of dispersal limitation over a large geographic scale. In northern Holarctic regions, however, phylogenetic distances and phylogenetic grouping of isolates indicate multiple recent dispersal events.
DOI: 10.3897/mycokeys.39.28109
2018
Cited 57 times
Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding
Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.
DOI: 10.1007/s13225-020-00456-4
2020
Cited 51 times
Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach
DOI: 10.1111/1462-2920.15314
2020
Cited 45 times
Metagenomic assessment of the global diversity and distribution of bacteria and fungi
Bacteria and fungi are of uttermost importance in determining environmental and host functioning. Despite close interactions between animals, plants, their associated microbiomes, and the environment they inhabit, the distribution and role of bacteria and especially fungi across host and environments as well as the cross-habitat determinants of their community compositions remain little investigated. Using a uniquely broad global dataset of 13 483 metagenomes, we analysed the microbiome structure and function of 25 host-associated and environmental habitats, focusing on potential interactions between bacteria and fungi. We found that the metagenomic relative abundance ratio of bacteria-to-fungi is a distinctive microbial feature of habitats. Compared with fungi, the cross-habitat distribution pattern of bacteria was more strongly driven by habitat type. Fungal diversity was depleted in host-associated communities compared with those in the environment, particularly terrestrial habitats, whereas this diversity pattern was less pronounced for bacteria. The relative gene functional potential of bacteria or fungi reflected their diversity patterns and appeared to depend on a balance between substrate availability and biotic interactions. Alongside helping to identify hotspots and sources of microbial diversity, our study provides support for differences in assembly patterns and processes between bacterial and fungal communities across different habitats.
DOI: 10.1016/j.agee.2021.107521
2021
Cited 37 times
Cropping systems with higher organic carbon promote soil microbial diversity
Food systems need to become more sustainable. There is a need to investigate the agricultural management components that address the sustainability better. Long crop rotations are suggested to be environmentally friendly, yet, little is known how soil microbial communities may be affected by long-term rotation under organic cropping with cover crops and manure and conventional cropping with different nitrogen rates. We examined the composition and diversity of soil bacterial and fungal communities in a five-field crop rotation at the beginning and end, respectively in 2013 and 2018. Our analysis revealed that bacterial and to a lesser extent fungal diversity increased by the end of the rotation in all organic treatments and in conventional treatments with low to medium nitrogen rate (20‐100 kg of nitrogen per hectare). Conventional treatment with no added nitrogen decreased bacterial and fungal diversity. Nitrogen rate of 150 kg/ha decreased only bacterial diversity, while the impact on fungal diversity was neutral. Crop rotation significantly increased the relative abundance of bacterial taxa involved in nitrification and denitrification. Of fungal functional groups, the relative abundance of pathogenic functional groups decreased and mycorrhizal groups increased during crop rotation and especially with added cover crops. Our results suggest that crop rotation may outperform cropping systems in structuring soil microbial communities.
DOI: 10.1111/nph.18897
2023
Cited 7 times
Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics
Nitrogen (N) deposition and soil acidification are environmental challenges affecting ecosystem functioning, health, and biodiversity, but their effects on functional genes are poorly understood. Here, we utilized metabarcoding and metagenomics to investigate the responses of soil functional genes to N deposition along a natural soil pH gradient. Soil N content was uncorrelated with pH, enabling us to investigate their effects separately. Soil acidity strongly and negatively affected the relative abundances of most cluster of orthologous gene categories of the metabolism supercategory. Similarly, soil acidity negatively affected the diversity of functional genes related to carbon and N but not phosphorus cycling. Multivariate analyses showed that soil pH was the most important factor affecting microbial and functional gene composition, while the effects of N deposition were less important. Relative abundance of KEGG functional modules related to different parts of the studied cycles showed variable responses to soil acidity and N deposition. Furthermore, our results suggested that the diversity-function relationship reported for other organisms also applies to soil microbiomes. Since N deposition and soil pH affected microbial taxonomic and functional composition to a different extent, we conclude that N deposition effects might be primarily mediated through soil acidification in forest ecosystems.
DOI: 10.1038/s41564-023-01465-0
2023
Cited 7 times
Life history strategies of soil bacterial communities across global terrestrial biomes
The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities. The emerging patterns show a triangle of life history strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and expanded metabolic capacities. As metabolic capacities expand, bacterial communities increasingly differentiate along a second dimension that reflects a trade-off between increasing capacities for environmental responsiveness or for nutrient recycling. Random forest analyses show that soil pH, C:N ratio and precipitation patterns together drive the dominant life history strategy of soil bacterial communities and their biogeographic distribution. Our findings provide a trait-based framework to compare life history strategies of soil bacteria.
DOI: 10.1038/s43016-023-00869-9
2023
Cited 7 times
Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100
DOI: 10.1111/mec.13458
2015
Cited 47 times
Temporal variation of <i>Bistorta vivipara</i>‐associated ectomycorrhizal fungal communities in the High Arctic
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.
DOI: 10.1007/s00572-017-0806-8
2017
Cited 46 times
Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem
DOI: 10.3389/fevo.2017.00137
2017
Cited 45 times
Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change
The global biogeography of microorganisms remains poorly resolved, which limits the current understanding of microbial resilience towards environmental changes. Using high-throughput 16S rRNA gene amplicon sequencing, we characterized the microbial diversity of terrestrial and lacustrine biofilms from the Arctic, Antarctic and temperate regions. Our analyses suggest that bacterial community compositions at the poles are more similar to each other than they are to geographically closer temperate habitats, with 32 % of all operational taxonomic units (OTUs) co-occurring in both polar regions. While specific microbial taxa were confined to distinct regions, representing potentially endemic populations, the percentage of cosmopolitan taxa was higher in Arctic (43 %) than in Antarctic samples (36 %). The overlap in polar microbial OTUs may be explained by natural or anthropogenically-mediated dispersal in combination with environmental filtering. Current and future changing environmental conditions may enhance microbial invasion, establishment of cosmopolitan genotypes and loss of endemic taxa.
DOI: 10.1111/ele.12377
2014
Cited 44 times
Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms
Abstract Ectomycorrhizal (EcM)‐mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ 15 N relative to a standard) increasingly serve as integrative proxies for mycorrhiza‐mediated N acquisition due to biological fractionation processes that alter 15 N: 14 N ratios. Current understanding of these processes is based on studies from high‐latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ 15 N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co‐occurring soil, mycorrhizal plants and fungal N pools measured from 40 high‐ and 9 low‐latitude ecosystems. At low latitudes 15 N‐enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ 15 N patterns suggested reduced N‐dependency and unique sources of EcM 15 N‐enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high‐latitude perspectives on fractionation sources that structure ecosystem δ 15 N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate‐nutrient cycling relationships.
DOI: 10.1016/j.soilbio.2016.02.006
2016
Cited 43 times
Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing
Due to high abundance and feeding habits, invertebrates are of great importance for shaping microbial communities at the fine scale. Springtails (Collembola) that feed on fungal spores and mycelia may contribute to dispersal through carrying fungal propagules in their guts or on their appendages. The Collembola–fungal associations are mainly investigated by microscopy or culturing techniques, which allow identify only fungi that have distinctive morphological characteristics or that can be cultured in vitro. Here we identified the Collembola-associated fungi on the body surface and in the gut content using both culturing and high-throughput sequencing (HTS) methods. We studied three epigeic Collembola species found on the Norway spruce dominated forest stands throughout the vegetation period – Entomobrya nivalis, Orchesella flavescens and Pogonognathellus longicornis. We discovered over 1200 fungal operational taxonomic units (OTUs), i.e. the proxies for species, based on 97% sequence similarity of the ITS2 subregion of ribosomal DNA. Most of the fungi were saprotrophs, but we detected also mycorrhizal, parasitic and lichenized fungi. Season was the most important factor affecting fungal richness and composition, especially on body surface. Although the data matrix revealed significant effect of substrate, we were unable to detect the significant fungal community differences between body surface and gut samples of conspecifics. There were no significant differences among studied epigeic Collembola species in the preference for fungal diet. Our study demonstrates that collembolans associate with a broader range of fungi than previously observed and thus potentially play an important role in enhancing fungal colonization through dispersal activities.
DOI: 10.1126/science.aaa5594
2015
Cited 42 times
Response to Comment on “Global diversity and geography of soil fungi”
Schadt and Rosling (Technical Comment, 26 June 2015, p. 1438) argue that primer-template mismatches neglected the fungal class Archaeorhizomycetes in a global soil survey. Amplicon-based metabarcoding of nine barcode-primer pair combinations and polymerase chain reaction (PCR)–free shotgun metagenomics revealed that barcode and primer choice and PCR bias drive the diversity and composition of microorganisms in general, but the Archaeorhizomycetes were little affected in the global study. We urge that careful choice of DNA markers and primers is essential for ecological studies using high-throughput sequencing for identification.
DOI: 10.1016/j.soilbio.2017.10.021
2018
Cited 39 times
Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests
Soil fauna mediate nutrient cycling through engineering physical properties and altering microbial communities in soil. Collembola is one of the most abundant groups of soil fauna, which regulates microbial communities by consumption and dispersal. The spatial structure of associations between Collembola and soil microbes have been described in several studies, but temporal variation of these associations remains unclear. Using high-throughput sequencing, we studied the fungal communities on Collembola (Entomobrya nivalis, Orchesella flavescens, Pogonognathellus longicornis) body surface, gut and their immediate habitat (topsoil samples) in four seasons across three years. The soil samples were characterized by fairly uniform relative abundance of saprotrophic and mycorrhizal fungi, whereas collembolans were associated mostly with saprotrophs. The structure of fungal communities from all substrate types exhibited comparable patterns of temporal distance decay of similarity. Unlike in soil, fungal richness and composition in Collembola body and gut samples exhibited seasonal and annual variation, with a significant interaction term, indicating low predictability. These results reflect spatial and temporal plasticity of the fungal communities associated with epigeic Collembola, indicating the high adaptability of collembolans to available conditions. We found that the Collembola associations with fungi (including diet) did not vary among the studied epigeic Collembola species. The detected high diversity of fungi associated with Collembola suggests that dispersal by arthropod vectors may represent a powerful alternative to aerial dispersal of fungal propagules.
DOI: 10.1111/1758-2229.13045
2022
Cited 14 times
Global diversity and distribution of mushroom‐inhabiting bacteria
Mushroom-forming fungi are important sources of food and medicine in many regions of the world, and their development and health are known to depend on various microbes. Recent studies have examined the structure of mushroom-inhabiting bacterial (MIB) communities and their association with local environmental variables, but global-scale diversity and determinants of these communities remain poorly understood. Here we examined the MIB global diversity and community composition in relation to climate, soil and host factors. We found a core global mushroom microbiome, accounting for 30% of sequence reads, while comprising a few bacterial genera such as Halomonas, Serratia, Bacillus, Cutibacterium, Bradyrhizobium and Burkholderia. Our analysis further revealed an important role of host phylogeny in shaping the communities of MIB, whereas the effects of climate and soil factors remained negligible. The results suggest that the communities of MIB and free-living bacteria are structured by contrasting community assembly processes and that fungal-bacterial interactions are an important determinant of MIB community structure.
DOI: 10.1111/1758-2229.13253
2024
The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi
Abstract Partner specificity is a well‐documented phenomenon in biotic interactions, yet the factors that determine specificity in plant‐fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi‐host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner‐generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
DOI: 10.1111/mec.12660
2014
Cited 43 times
Does host plant richness explain diversity of ectomycorrhizal fungi? Re‐evaluation of Gao <i>et al</i>. (2013) data sets reveals sampling effects
The generally positive relationship between biodiversity of groups of directly or indirectly interacting organisms is one of the most important ecological concepts (Gaston, 2000 Nature, 405, 220-227; Scherber C, Eisenhauer N, Weisser WW et al., 2010 Nature, 468, 553-556). In a recent issue of Molecular Ecology, Gao C, Shi N-N, Liu Y-X et al. (2013: 22, 3403-3414) reported that the richness of plants and ectomycorrhizal fungi is positively correlated both at local and at global scales. Here, we challenge these findings by re-analysis of data and ascribe the reported results to sampling effect and poor data compilation.
DOI: 10.1111/nph.12962
2014
Cited 42 times
Global biogeography of <i>Alnus</i>‐associated <i>Frankia</i> actinobacteria
Macroecological patterns of microbes have received relatively little attention until recently. This study aimed to disentangle the determinants of the global biogeographic community of Alnus-associated actinobacteria belonging to the Frankia alni complex. By determining a global sequence similarity threshold for the nitrogenase reductase (nifH) gene, we separated Frankia into operational taxonomic units (OTUs) and tested the relative effects of Alnus phylogeny, geographic relatedness, and climatic and edaphic variables on community composition at the global scale. Based on the optimal nifH gene sequence similarity threshold of 99.3%, we distinguished 43 Frankia OTUs from root systems of 22 Alnus species on four continents. Host phylogeny was the main determinant of Frankia OTU-based community composition, but there was no effect on the phylogenetic structure of Frankia. Biogeographic analyses revealed the strongest cross-continental links over the Beringian land bridge. Despite the facultative symbiotic nature of Frankia, phylogenetic relations among Alnus species play a prominent role in structuring root-associated Frankia communities and their biogeographic patterns. Our results suggest that Alnus species exert strong phylogenetically determined selection pressure on compatible Actinobacteria.
DOI: 10.1002/mbo3.375
2016
Cited 34 times
Ectomycorrhizal and saprotrophic fungi respond differently to long‐term experimentally increased snow depth in the High Arctic
Abstract Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the variation in species richness and community structure of ectomycorrhizal ( ECM ) and saprotrophic fungi. Soil samples were collected weekly from mid‐July to mid‐September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO 3 ‐N, NH 4 ‐N, and K; and saprotrophic fungi to NO 3 ‐N and pH . Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results suggest that some fungal species are favored, while others are disfavored resulting in their local extinction due to long‐term changes in snow amount. Shifts in species composition of fungal functional groups are likely to affect nutrient cycling, ecosystem respiration, and stored permafrost carbon.
DOI: 10.1007/s11104-019-04127-5
2019
Cited 31 times
The role of arbuscular mycorrhizal fungi in plant invasion trajectory
Invasive plant species pose a global threat because they alter ecosystem functioning and biodiversity. The majority of plants form mutualistic mycorrhizal associations with mycorrhizal fungi, which contribute to the nutrient and water supply as well as diversity, competitive ability, and ecosystem productivity. In addition, the role of mycorrhizal interactions in plant invasiveness and the susceptibility or resistance of a habitat to invasion is increasingly recognized. However, the mechanisms by which mycorrhizae contribute to invasion remain unresolved. Here, we provide an overview of the empirical evidence and discuss the prospects for mycorrhizaemediated plant invasion. Overall, mycorrhizal fungi appear to have impacts on plant invasion that depend on the similarities between the mycorrhizal associations of the alien and native plants. We introduce plant mycorrhizal niche space (PMNS) as a plant's ability to exploit and shape the mycorrhizal fungi pool of a habitat based on its dependency on mycorrhizal fungi, traits and priority effects. Collectively, the available evidence supports the idea that PMNS is independent of place of origin (invasive status). Understanding the drivers of the PMNS of both native and alien plant species may help to predict the potential invasiveness of plants and the invasibility of a habitat, to elucidate the role of the mycorrhizal fungal community in plant invasion and the impact of plant invasion on the structure of the mycorrhizal fungal community in new habitats (i.e., neighbour effect) and to improve restoration planning. In this regard, we highlight a number of knowledge gaps and discuss future research directions.
DOI: 10.1016/j.baae.2020.10.002
2021
Cited 21 times
Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions
Plant nutrient acquisition strategies involving ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations, are key plant functional traits leading to distinct carbon (C) and nutrient dynamics in forests. Yet, little is known about how these strategies influence the structure and functioning of soil communities, and if such mycorrhizal effects may be more or less pronounced depending on the type of forest and various abiotic factors. Here we explore the potential interactions occurring between plant-EcM and plant-AM systems with the diverse soil organisms occurring in forest soils, and in the process draw attention to major issues that are worthy for future research directions. Based on these potential interactions, we suggest that EcM systems, especially those involving gymnosperms in colder climates, may select for a soil community with a narrow set of functions. These EcM systems may exhibit low functional redundancy, dominated by symbiotic interactions, where EcM fungi maintain low pH and high C/N conditions in order to tightly control nutrient cycling and maintain the dominance of EcM trees. By contrast, AM systems, particularly those involving deciduous angiosperm trees in mild and warmer climates, may facilitate a functionally more diverse and redundant soil community tending towards the dominance of competitive and antagonistic interactions, but also with a range of symbiotic interactions that together maintain diverse plant communities. We propose that the contrasting belowground interactions in AM and EcM systems act as extended nutrient acquisition traits that contribute greatly to the prevailing nutrient and C dynamics occurring in these systems.
DOI: 10.1016/j.micres.2021.126788
2021
Cited 20 times
Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia)
The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.
DOI: 10.1002/sae2.12031
2022
Cited 13 times
Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022
Abstract Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding.
DOI: 10.3389/fpls.2023.1106617
2023
Cited 4 times
Metabarcoding of soil environmental DNA to estimate plant diversity globally
Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods.We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data.Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region.eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.
DOI: 10.1111/mec.13147
2015
Cited 31 times
Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats
Abstract Arbuscular mycorrhizal fungi ( AMF ) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of K nautia arvensis ( D ipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454‐sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units ( MOTU s) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTU s richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTU s richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTU s richness. Although spatial distance between the sampled sites ( c . 0.3–3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils.
DOI: 10.1007/s11104-019-04218-3
2019
Cited 25 times
Carbon content and pH as important drivers of fungal community structure in three Amazon forests
DOI: 10.1038/s41396-020-0674-7
2020
Cited 22 times
Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups
Eukaryote-associated microbiomes vary across host taxa and environments but the key factors underlying their diversity and structure in fungi are still poorly understood. Here we determined the structure of bacterial communities in fungal fruitbodies in relation to the main chemical characteristics in ectomycorrhizal (EcM) and saprotrophic (SAP) mushrooms as well as in the surrounding soil. Our analyses revealed significant differences in the structure of endofungal bacterial communities across fungal phylogenetic groups and to a lesser extent across fungal guilds. These variations could be partly ascribed to differences in fruitbody chemistry, particularly the carbon-to-nitrogen ratio and pH. Fungal fruitbodies appear to represent nutrient-rich islands that derive their microbiome largely from the underlying continuous soil environment, with a larger overlap of operational taxonomic units observed between SAP fruitbodies and the surrounding soil, compared with EcM fungi. In addition, bacterial taxa involved in the decomposition of organic material were relatively more abundant in SAP fruitbodies, whereas those involved in release of minerals were relatively more enriched in EcM fruitbodies. Such contrasts in patterns and underlying processes of the microbiome structure between SAP and EcM fungi provide further evidence that bacteria can support the functional roles of these fungi in terrestrial ecosystems.
DOI: 10.3390/jof7090703
2021
Cited 17 times
Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa
Culture techniques are vital in both traditional and modern fungal taxonomy. Establishing sexual–asexual links and synanamorphs, extracting DNA and secondary metabolites are mainly based on cultures. However, it is widely accepted that a large number of species are not sporulating in nature while others cannot be cultured. Recent ecological studies based on culture-independent methods revealed these unculturable taxa, i.e., dark taxa. Recent fungal diversity estimation studies suggested that environmental sequencing plays a vital role in discovering missing species. However, Sanger sequencing is still the main approach in determining DNA sequences in culturable species. In this paper, we summarize culture-based and culture-independent methods in the study of ascomycetous taxa. High-throughput sequencing of leaf endophytes, leaf litter fungi and fungi in aquatic environments is important to determine dark taxa. Nevertheless, currently, naming dark taxa is not recognized by the ICN, thus provisional naming of them is essential as suggested by several studies.
DOI: 10.1111/1755-0998.13387
2021
Cited 16 times
Long‐ and short‐read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities
Abstract Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet there are methodological challenges in taxonomic and phylogenetic placement of fungi from environmental sequences. To address such challenges, we investigated spatiotemporal structure of a fungal community using soil metabarcoding with four different sequencing strategies: short‐amplicon sequencing of the ITS2 region (300–400 bp) with Illumina MiSeq, Ion Torrent Ion S5 and PacBio RS II, all from the same PCR library, as well as long‐amplicon sequencing of the full ITS and partial LSU regions (1200–1600 bp) with PacBio RS II. Resulting community structure and diversity depended more on statistical method than sequencing technology. The use of long‐amplicon sequencing enables construction of a phylogenetic tree from metabarcoding reads, which facilitates taxonomic identification of sequences. However, long reads present issues for denoising algorithms in diverse communities. We present a solution that splits the reads into shorter homologous regions prior to denoising, and then reconstructs the full denoised reads. In the choice between short and long amplicons, we suggest a hybrid approach using short amplicons for sampling breadth and depth, and long amplicons to characterize the local species pool for improved identification and phylogenetic analyses.
DOI: 10.1093/femsec/fiz199
2019
Cited 22 times
Host tree organ is the primary driver of endophytic fungal community structure in a hemiboreal forest
Despite numerous studies on plant endophytes, little is known about fungal communities associated with different aboveground tissues of living trees. We used high-throughput sequencing to compare the diversity and community structure of fungi inhabiting leaves, branches and trunks of Alnus incana and Corylus avellana growing at three hemiboreal forest sites. Our analysis revealed that tree organs are the main determinants of the structure of fungal communities, whereas the effects of host species and locality remained secondary and negligible, respectively. The structure of fungal communities in trunks was the most distinct compared to that in leaves and branches. The foliar fungal communities were more similar within than between individual trees, implying that certain fungi may grow through parts of the tree crown. The weak effect of locality compared to host organs and species identity suggests that the structural variation of fungal communities in the aboveground parts of trees depends mainly on deterministic factors rather than dispersal limitation.
DOI: 10.1093/femsec/fiaa175
2020
Cited 18 times
Bacterial community dynamics across developmental stages of fungal fruiting bodies
ABSTRACT Increasing evidence suggest that bacteria form diverse communities in various eukaryotic hosts, including fungi. However, little is known about their succession and the functional potential at different host development stages. Here we examined the effect of fruiting body parts and developmental stages on the structure and potential function of fungus-associated bacterial communities. Using high-throughput sequencing, we characterized bacterial communities and their associated potential functions in fruiting bodies from ten genera belonging to four major mushroom-forming orders and three different developmental stages of a model host species Cantharellus cibarius. Our results demonstrate that bacterial community structure differs between internal and external parts of the fruiting body but not between inner tissues. The structure of the bacterial communities showed significant variation across fruiting body developmental stages. We provide evidence that certain functional groups, such as those related to nitrogen fixation, persist in fruiting bodies during the maturation, but are replaced by putative parasites/pathogens afterwards. These data suggest that bacterial communities inhabiting fungal fruiting bodies may play important roles in their growth and development.
DOI: 10.3897/mycokeys.13.8140
2016
Cited 20 times
Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens
High-throughput sequencing (HTS) has become a standard technique for genomics, metagenomics and taxonomy, but these analyses typically require large amounts of high-quality DNA that is difficult to obtain from uncultivable organisms including fungi with no living culture or fruit-body representatives.By using 1 ng DNA and low coverage Illumina HiSeq HTS, we evaluated the usefulness of genomics and metagenomics tools to recover fungal barcoding genes from old and problematic specimens of fruit-bodies and ectomycorrhizal (EcM) root tips.Ribosomal DNA and single-copy genes were successfully recovered from both fruit-body and EcM specimens typically <10 years old (maximum, 17 years).Samples with maximum obtained DNA concentration <0.2 ng µl-1 were sequenced poorly.Fungal rDNA molecules assembled from complex mock community and soil revealed a large proportion of chimeras and artefactual consensus sequences of closely related taxa.Genomics and metagenomics tools enable recovery of fungal genomes from very low initial amounts of DNA from fruit-bodies and ectomycorrhizas, but these genomes include a large proportion of prokaryote and other eukaryote DNA.Nonetheless, the recovered scaffolds provide an important source for phylogenetic and phylogenomic analyses and mining of functional genes.
DOI: 10.1007/s00572-016-0755-7
2016
Cited 19 times
Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands
DOI: 10.1111/1462-2920.14069
2018
Cited 19 times
Host genetic variation strongly influences the microbiome structure and function in fungal fruiting‐bodies
Summary Despite increasing knowledge on host‐associated microbiomes, little is known about mechanisms underlying fungus‐microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus‐associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting‐bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting‐bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades . Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting‐bodies are suitable for further genome‐centric studies on host–microbiome interactions.
DOI: 10.1186/s13073-017-0451-z
2017
Cited 19 times
Erratum to: Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients
DOI: 10.3897/mycokeys.16.10000
2016
Cited 18 times
Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden)
Recent molecular studies have identified substantial fungal diversity in indoor environments. Fungi and fungal particles have been linked to a range of potentially unwanted effects in the built environment, including asthma, decay of building materials, and food spoilage. The study of the built mycobiome is hampered by a number of constraints, one of which is the poor state of the metadata annotation of fungal DNA sequences from the built environment in public databases. In order to enable precise interrogation of such data – for example, “retrieve all fungal sequences recovered from bathrooms” – a workshop was organized at the University of Gothenburg (May 23-24, 2016) to annotate public fungal barcode (ITS) sequences according to the MIxS-Built Environment annotation standard (http://gensc.org/mixs/). The 36 participants assembled a total of 45,488 data points from the published literature, including the addition of 8,430 instances of countries of collection from a total of 83 countries, 5,801 instances of building types, and 3,876 instances of surface-air contaminants. The results were implemented in the UNITE database for molecular identification of fungi (http://unite.ut.ee) and were shared with other online resources. Data obtained from human/animal pathogenic fungi will furthermore be verified on culture based metadata for subsequent inclusion in the ISHAM-ITS database (http://its.mycologylab.org).
DOI: 10.1111/1758-2229.12612
2018
Cited 18 times
The genome and microbiome of a dikaryotic fungus (<i>Inocybe terrigena</i> , Inocybaceae) revealed by metagenomics
Summary Recent advances in molecular methods have increased our understanding of various fungal symbioses. However, little is known about genomic and microbiome features of most uncultured symbiotic fungal clades. Here, we analysed the genome and microbiome of Inocybaceae (Agaricales, Basidiomycota), a largely uncultured ectomycorrhizal clade known to form symbiotic associations with a wide variety of plant species. We used metagenomic sequencing and assembly of dikaryotic fruiting‐body tissues from Inocybe terrigena (Fr.) Kuyper, to classify fungal and bacterial genomic sequences, and obtained a nearly complete fungal genome containing 93% of core eukaryotic genes. Comparative genomics reveals that I. terrigena is more similar to ectomycorrhizal and brown rot fungi than to white rot fungi. The reduction in lignin degradation capacity has been independent from and significantly faster than in closely related ectomycorrhizal clades supporting that ectomycorrhizal symbiosis evolved independently in Inocybe . The microbiome of I. terrigena fruiting‐bodies includes bacteria with known symbiotic functions in other fungal and non‐fungal host environments, suggesting potential symbiotic functions of these bacteria in fungal tissues regardless of habitat conditions. Our study demonstrates the usefulness of direct metagenomics analysis of fruiting‐body tissues for characterizing fungal genomes and microbiome.