ϟ

Matteo Bordi

Here are all the papers by Matteo Bordi that you can download and read on OA.mg.
Matteo Bordi’s last known institution is . Download Matteo Bordi PDFs here.

Claim this Profile →
DOI: 10.1038/ncb2708
2013
Cited 665 times
mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
DOI: 10.1038/s41418-019-0292-y
2019
Cited 274 times
Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications
Autophagy and mitophagy act in cancer as bimodal processes, whose differential functions strictly depend on cancer ontogenesis, progression, and type. For instance, they can act to promote cancer progression by helping cancer cells survive stress or, instead, when mutated or abnormal, to induce carcinogenesis by influencing cell signaling or promoting intracellular toxicity. For this reason, the study of autophagy in cancer is the main focus of many researchers and several clinical trials are already ongoing to manipulate autophagy and by this way determine the outcome of disease therapy. Since the establishment of the cancer stem cell (CSC) theory and the discovery of CSCs in individual cancer types, autophagy and mitophagy have been proposed as key mechanisms in their homeostasis, dismissal or spread, even though we still miss a comprehensive view of how and by which regulatory molecules these two processes drive cell fate. In this review, we will dive into the deep water of autophagy, mitophagy, and CSCs and offer novel viewpoints on possible therapeutic strategies, based on the modulation of these degradative systems.
DOI: 10.1080/15548627.2016.1239003
2016
Cited 251 times
Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy
Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and protein expression levels for autophagosome components and increased LC3-positive puncta. Increased lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators, particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more strongly with glia than neurons. These findings establish that autophagic sequestration is both competent and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance, as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal size and total area. We propose that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis.
DOI: 10.1038/ncb3072
2014
Cited 209 times
AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation
Inhibition of a main regulator of cell metabolism, the protein kinase mTOR, induces autophagy and inhibits cell proliferation. However, the molecular pathways involved in the cross-talk between these two mTOR-dependent cell processes are largely unknown. Here we show that the scaffold protein AMBRA1, a member of the autophagy signalling network and a downstream target of mTOR, regulates cell proliferation by facilitating the dephosphorylation and degradation of the proto-oncogene c-Myc. We found that AMBRA1 favours the interaction between c-Myc and its phosphatase PP2A and that, when mTOR is inhibited, it enhances PP2A activity on this specific target, thereby reducing the cell division rate. As expected, such a de-regulation of c-Myc correlates with increased tumorigenesis in AMBRA1-defective systems, thus supporting a role for AMBRA1 as a haploinsufficient tumour suppressor gene.
DOI: 10.1073/pnas.1722452115
2018
Cited 131 times
<i>S</i> -nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy
S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.
DOI: 10.1038/s41586-021-03422-5
2021
Cited 84 times
AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity
Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.
DOI: 10.1523/jneurosci.0578-19.2019
2019
Cited 112 times
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99)
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer9s disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one <i>Bace1</i> allele from adult Ts2 mice had similar rescue effects <i>in vivo</i>. The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD. <b>SIGNIFICANCE STATEMENT</b> Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer9s disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (<i>APP</i>) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
DOI: 10.1016/j.celrep.2018.11.018
2018
Cited 88 times
Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming
Mitochondria are key players in the regulation of T cell biology by dynamically responding to cell needs, but how these dynamics integrate in T cells is still poorly understood. We show here that the mitochondrial pro-fission protein Drp1 fosters migration and expansion of developing thymocytes both in vitro and in vivo. In addition, we find that Drp1 sustains in vitro clonal expansion and cMyc-dependent metabolic reprogramming upon activation, also regulating effector T cell numbers in vivo. Migration and extravasation defects are also exhibited in Drp1-deficient mature T cells, unveiling its crucial role in controlling both T cell recirculation in secondary lymphoid organs and accumulation at tumor sites. Moreover, the observed Drp1-dependent imbalance toward a memory-like phenotype favors T cell exhaustion in the tumor microenvironment. All of these findings support a crucial role for Drp1 in several processes during T cell development and in anti-tumor immune-surveillance.
DOI: 10.1016/j.celrep.2015.06.055
2015
Cited 78 times
The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities
In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function.
DOI: 10.1038/s41419-019-1752-5
2019
Cited 75 times
mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy
Abstract Down syndrome (DS), a complex genetic disorder caused by chromosome 21 trisomy, is associated with mitochondrial dysfunction leading to the accumulation of damaged mitochondria. Here we report that mitophagy, a form of selective autophagy activated to clear damaged mitochondria is deficient in primary human fibroblasts derived from individuals with DS leading to accumulation of damaged mitochondria with consequent increases in oxidative stress. We identified two molecular bases for this mitophagy deficiency: PINK1/PARKIN impairment and abnormal suppression of macroautophagy. First, strongly downregulated PARKIN and the mitophagic adaptor protein SQSTM1/p62 delays PINK1 activation to impair mitophagy induction after mitochondrial depolarization by CCCP or antimycin A plus oligomycin. Secondly, mTOR is strongly hyper-activated, which globally suppresses macroautophagy induction and the transcriptional expression of proteins critical for autophagosome formation such as ATG7, ATG3 and FOXO1. Notably, inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) using AZD8055 (AZD) restores autophagy flux, PARKIN/PINK initiation of mitophagy, and the clearance of damaged mitochondria by mitophagy. These results recommend mTORC1-mTORC2 inhibition as a promising candidate therapeutic strategy for Down Syndrome.
DOI: 10.1016/j.celrep.2020.108093
2020
Cited 57 times
Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
DOI: 10.1038/s41419-021-04121-9
2021
Cited 54 times
A gene toolbox for monitoring autophagy transcription
Autophagy is a highly dynamic and multi-step process, regulated by many functional protein units. Here, we have built up a comprehensive and up-to-date annotated gene list for the autophagy pathway, by combining previously published gene lists and the most recent publications in the field. We identified 604 genes and created main categories: MTOR and upstream pathways, autophagy core, autophagy transcription factors, mitophagy, docking and fusion, lysosome and lysosome-related genes. We then classified such genes in sub-groups, based on their functions or on their sub-cellular localization. Moreover, we have curated two shorter sub-lists to predict the extent of autophagy activation and/or lysosomal biogenesis; we next validated the "induction list" by Real-time PCR in cell lines during fasting or MTOR inhibition, identifying ATG14, ATG7, NBR1, ULK1, ULK2, and WDR45, as minimal transcriptional targets. We also demonstrated that our list of autophagy genes can be particularly useful during an effective RNA-sequencing analysis. Thus, we propose our lists as a useful toolbox for performing an informative and functionally-prognostic gene scan of autophagy steps.
DOI: 10.1093/nar/gku922
2014
Cited 67 times
Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection
Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5' splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5' splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5' splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5' splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5' splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5' splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator.
DOI: 10.3389/fonc.2017.00081
2017
Cited 51 times
The Close Interconnection between Mitochondrial Dynamics and Mitophagy in Cancer
Recent decades have revealed the shape changes of mitochondria and their regulators to be main players in a plethora of physiological cell processes. Mitochondria are extremely dynamic organelles whose highly controlled morphological changes respond to specific and diverse pathophysiological needs. Thus, their qualitative control is crucial for the determination of cell function and fate. Moreover, ever-new metabolic changes, mainly attributable to mitochondrial (dys)functions, are strongly connected to cancer and its microenvironment. For this reason, the aspects controlling mitochondria activity and status are in the oncological spotlight. In this review, we elucidate the most intriguing discoveries related to two apparently independent but strictly interconnected processes crucial for the organelle functionality and fate, mitochondrial dynamics, and mitophagy. We will mostly focus on their metabolic interconnections and regulations that can causally foster a tumoral context.
DOI: 10.1038/s41467-021-22772-2
2021
Cited 32 times
Loss of Ambra1 promotes melanoma growth and invasion
Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.
DOI: 10.1007/s00401-021-02347-7
2021
Cited 25 times
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
DOI: 10.1038/ncb3171
2015
Cited 41 times
Erratum: Corrigendum: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation
Nat. Cell Biol. 17, 20–30 (2015); published online 1 December 2014; corrected after print 1 April 2015 In the version of this Article originally published, incorrect western blot scans were provided for the actin panels in Figure 4h,i. These panels have been corrected online and are shown above. Allsamples in 4i were collected and processed simultaneously, on the same or on parallel gels/blots.
DOI: 10.1016/j.celrep.2020.107993
2020
Cited 21 times
ATF4 Regulates MYB to Increase γ-Globin in Response to Loss of β-Globin
β-Hemoglobinopathies can trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here, we use CRISPR-Cas genome editing to model the stress caused by reduced levels of adult β-globin. We find that decreased β-globin is sufficient to induce robust re-expression of γ-globin, and RNA sequencing (RNA-seq) of differentiating isogenic erythroid precursors implicates ATF4 as a causal regulator of this response. ATF4 binds within the HBS1L-MYB intergenic enhancer and regulates expression of MYB, a known γ-globin regulator. Overall, the reduction of ATF4 upon β-globin knockout decreases the levels of MYB and BCL11A. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could inform strategies to treat hemoglobinopathies.
DOI: 10.15252/embj.2019103563
2021
Cited 17 times
TFG binds LC3C to regulate ULK1 localization and autophagosome formation
The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.
DOI: 10.1038/cdd.2009.211
2010
Cited 34 times
A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2
Apoptosis-inducing factor (AIF) has important supportive as well as potentially lethal roles in neurons. Under normal physiological conditions, AIF is a vital redox-active mitochondrial enzyme, whereas in pathological situations, it translocates from mitochondria to the nuclei of injured neurons and mediates apoptotic chromatin condensation and cell death. In this study, we reveal the existence of a brain-specific isoform of AIF, AIF2, whose expression increases as neuronal precursor cells differentiate. AIF2 arises from the utilization of the alternative exon 2b, yet uses the same remaining 15 exons as the ubiquitous AIF1 isoform. AIF1 and AIF2 are similarly imported to mitochondria in which they anchor to the inner membrane facing the intermembrane space. However, the mitochondrial inner membrane sorting signal encoded in the exon 2b of AIF2 is more hydrophobic than that of AIF1, indicating a stronger membrane anchorage of AIF2 than AIF1. AIF2 is more difficult to be desorbed from mitochondria than AIF1 on exposure to non-ionic detergents or basic pH. Furthermore, AIF2 dimerizes with AIF1, thereby preventing its release from mitochondria. Conversely, it is conceivable that a neuron-specific AIF isoform, AIF2, may have been ‘designed’ to be retained in mitochondria and to minimize its potential neurotoxic activity.
DOI: 10.1038/s41419-021-03485-2
2021
Cited 13 times
Transglutaminase Type 2 regulates the Wnt/β-catenin pathway in vertebrates
Abstract TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress‐responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/β-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with β-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio . Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.
DOI: 10.1186/s13023-021-01731-6
2021
Cited 12 times
Clinical and molecular characterization of patients with adenylosuccinate lyase deficiency
Adenylosuccinate lyase deficiency (ADSLD) is an ultrarare neurometabolic recessive disorder caused by loss-of-function mutations in the ADSL gene. The disease is characterized by wide clinical variability. Here we provide an updated clinical profiling of the disorder and discuss genotype-phenotype correlations.Data were collected through "Our Journey with ADSL deficiency Association" by using a dedicated web survey filled-in by parents. Clinical and molecular data were collected from 18 patients (12 males, median age 10.9 years ± 7.3), from 13 unrelated families. The age at onset ranged from birth to the first three years (median age 0.63 years ± 0.84 SD), and age at diagnosis varied from 2 months to 17 years, (median age 6.4 years ± 6.1 SD). The first sign was a psychomotor delay in 8/18 patients, epilepsy in 3/18, psychomotor delay and epilepsy in 3/18, and apneas, hypotonia, nystagmus in single cases. One patient (sibling of a previously diagnosed child) had a presymptomatic diagnosis. The diagnosis was made by exome sequencing in 7/18 patients. All patients were definitively diagnosed with ADSL deficiency based on pathogenic variants and/or biochemical assessment. One patient had a fatal neonatal form of ADSL deficiency, seven showed features fitting type I, and nine were characterized by a milder condition (type II), with two showing a very mild phenotype. Eighteen different variants were distributed along the entire ADSL coding sequence and were predicted to have a variable structural impact by impairing proper homotetramerization or catalytic activity of the enzyme. Six variants had not previously been reported. All but two variants were missense.The study adds more details on the spectrum of ADSLD patients' phenotypes and molecular data.
DOI: 10.1038/cdd.2010.125
2010
Cited 21 times
The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage
Apaf1 is a key regulator of the mitochondrial intrinsic pathway of apoptosis, as it activates executioner caspases by forming the apoptotic machinery apoptosome. Its genetic regulation and its post-translational modification are crucial under the various conditions where apoptosis occurs. Here we describe Ku70/86, a mediator of non-homologous end-joining pathway of DNA repair, as a novel regulator of Apaf1 transcription. Through analysing different Apaf1 promoter mutants, we identified an element repressing the Apaf1 promoter. We demonstrated that Ku70/86 is a nuclear factor able to bind this repressing element and downregulating Apaf1 transcription. We also found that Ku70/86 interaction with Apaf1 promoter is dynamically modulated upon DNA damage. The effect of this binding is a downregulation of Apaf1 expression immediately following the damage to DNA; conversely, we observed Apaf1 upregulation and apoptosis activation when Ku70/86 unleashes the Apaf1-repressing element. Therefore, besides regulating DNA repair, our results suggest that Ku70/86 binds to the Apaf1 promoter and represses its activity. This may help to inhibit the apoptosome pathway of cell death and contribute to regulate cell survival.
DOI: 10.1155/2012/752420
2012
Cited 17 times
Oxidative DNA Damage in Neurons: Implication of Ku in Neuronal Homeostasis and Survival
Oxidative DNA damage is produced by reactive oxygen species (ROS) which are generated by exogenous and endogenous sources and continuously challenge the cell. One of the most severe DNA lesions is the double-strand break (DSB), which is mainly repaired by nonhomologous end joining (NHEJ) pathway in mammals. NHEJ directly joins the broken ends, without using the homologous template. Ku70/86 heterodimer, also known as Ku, is the first component of NHEJ as it directly binds DNA and recruits other NHEJ factors to promote the repair of the broken ends. Neurons are particularly metabolically active, displaying high rates of transcription and translation, which are associated with high metabolic and mitochondrial activity as well as oxygen consumption. In such a way, excessive oxygen radicals can be generated and constantly attack DNA, thereby producing several lesions. This condition, together with defective DNA repair systems, can lead to a high accumulation of DNA damage resulting in neurodegenerative processes and defects in neurodevelopment. In light of recent findings, in this paper, we will discuss the possible implication of Ku in neurodevelopment and in mediating the DNA repair dysfunction observed in certain neurodegenerations.
DOI: 10.1038/s41388-022-02219-8
2022
Cited 5 times
PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production
DOI: 10.1038/s41419-019-2099-7
2019
Cited 9 times
Modulation of autophagy by RTN-1C: role in autophagosome biogenesis
Abstract The endoplasmic reticulum (ER) is a key organelle fundamental for the maintenance of cellular homeostasis and to determine the cell’s fate under stress conditions. Among the known proteins that regulate ER structure and function there is Reticulon-1C (RTN-1C), a member of the reticulon family localized primarily on the ER membrane. We previously demonstrated that RTN-1C expression affects ER function and stress condition. ER is an essential site for the regulation of apoptotic pathways and it has also been recently recognized as an important component of autophagic signaling. Based on these evidences, we have investigated the impact of RTN-1C modulation on autophagy induction. Interestingly we found that reticulon overexpression is able to activate autophagic machinery and its silencing results in a significative inhibition of both basal and induced autophagic response. Using different experimental approaches we demonstrated that RTN-1C colocalizes with ATG16L and LC3II on the autophagosomes. Considering the key role of reticulon proteins in the control of ER membrane shaping and homeostasis, our data suggest the participation of RTN-1C in the autophagic vesicle biogenesis at the level of the ER compartment. Our data indicate a new mechanism by which this structural ER protein modulates cellular stress, that is at the basis of different autophagy-related pathologies.
DOI: 10.1016/j.isci.2021.103350
2021
Cited 7 times
The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics
Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA CDK6-AS1 able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. CDK6-AS1 silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued. This latter phenomenon derived from RUNX1 transcriptional control, responsible for the stemness of hematopoietic precursors and for the block of differentiation in AML. By CDK6-AS1 silencing in vitro, AML mitochondrial mass decreased with augmented pharmacological sensitivity to mitochondria-targeting drugs. In vivo, the combination of tigecycline and cytarabine reduced leukemia progression in the AML-PDX model with high CDK6-AS1 levels, supporting the concept of a mitochondrial vulnerability. Together, these findings uncover CDK6-AS1 as crucial in myeloid differentiation and mitochondrial mass regulation.
DOI: 10.1007/s00018-008-8075-5
2008
Cited 12 times
Faf1 is expressed during neurodevelopment and is involved in Apaf1-dependent caspase-3 activation in proneural cells
Fas-associated factor 1 (Faf1) has been described as a Fas-binding pro-apoptotic protein and as a component of the death-inducing signaling complex (DISC) in Fas-mediated apoptosis. Faf1 is able to potentiate Fas-induced apoptosis in several cell lines, although its specific functions are still not clear. Here we show that Faf1 is highly expressed in several areas of the developing telencephalon. Its expression pattern appears to be dynamic at different embryonic stages and to be progressively confined within limited territories. To decipher the specific role of Faf1 in developing brain, we used cDNA over-expression and mRNA down-regulation experiments to modulate Faf1 expression in telencephalic neural precursor cells, and we showed that in neural cell death Faf1 acts as a Fas-independent apoptotic enhancer. Moreover, we found that Faf1 protein level is down-regulated during apoptosis in a caspase- and Apaf1-dependent manner.
DOI: 10.1016/j.ymgmr.2020.100592
2020
Cited 6 times
Very mild isolated intellectual disability caused by adenylosuccinate lyase deficiency: a new phenotype
Adenylosuccinate lyase deficiency is a rare neurometabolic recessive disorder of purine metabolism characterized by a wide range of clinical manifestations. We present a very mild phenotype of two siblings characterized by mild isolated cognitive disability, in absence of brain anomalies, seizures, EEG anomalies and without progression of disease. The two patients had unsuccessfully been investigated until clinical exome was performed. In both siblings, compound heterozygosity for two inherited missense variants in ADSL gene, c.76A>T (p.Met26Leu) and c.1187G>A (p.Arg396His), were detected. Analysis of the catabolic pathway of autophagy on EBV-transformed B lymphoblastoid cell derived from the male patient excluded the presence of any autophagy alterations at the basal level. Further studies are necessary to understand the pathogenesis of the disease and to elucidate the potential role of autophagy in the development of ADSL deficiency.
DOI: 10.1101/2021.06.01.446664
2021
PLK1 inhibition selectively kills ARID1A deficient cells through uncoupling of oxygen consumption from ATP production
Abstract Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2-M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knocked-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/ expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of a key subunit of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer. Statement of significance Currently, no predictive biomarkers have been identified for PLK1 inhibitors in cancer treatment. We show that ARID1A loss sensitizes cells to PLK1 inhibitors through a previously unrecognized vulnerability in mitochondrial oxygen metabolism.
DOI: 10.1101/2020.01.15.905943
2020
ATF4 mediates fetal globin upregulation in response to reduced β-globin
Abstract Fetal development and anemias such as β-hemoglobinopathies trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin, which has suggested strategies to treat hemoglobinopathies such as thalassemia and sickle cell disease. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here we use CRISPR-Cas genome editing and CRISPRi transcriptional repression to model the stress caused by reduced levels of adult β-globin. We find that loss of β-globin is sufficient to induce widespread globin compensation, including robust re-expression of γ-globin. Time-course RNA-seq of differentiating isogenic erythroid precursors identified the ATF4 transcription factor as a causal regulator of this response. ChIP-seq of multiple erythroid precursor genotypes and differentiation states revealed that β-globin knockout leads to reduced engagement of ATF4 targets involved in the unfolded protein response. This ATF4 program indirectly regulates the levels of BCL11A, a key repressor of γ-globin. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could be relevant for proposed gene editing strategies to treat hemoglobinopathies.
DOI: 10.1038/s41388-022-02338-2
2022
Correction: PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production
DOI: 10.2139/ssrn.4106838
2022
Lysosomal Dysfunction in Down Syndrome and Alzheimer Mouse Models is Caused by Selective V-Atpase Inhibition by Tyr &lt;sup&gt;682&lt;/sup&gt; Phosphorylated APP βCTF
Lysosome dysfunction arises early and propels Alzheimer’s Disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down Syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal v-ATPase and acidification. In human DS fibroblasts or brains of DS model mice, the phosphorylated682 YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits its association with the V1 subcomplex of v-ATPase. Inhibiting FYN, a mediator of APP Tyr682 phosphorylation which is over-active in AD and DS, restores normal v-ATPase and lysosome function in DS fibroblasts and DS model mice. Notably, lowering APP-βCTF or APP Tyr682 phosphorylation below normal baseline levels boosts v-ATPase assembly and acidification, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. These findings offer insight into pathogenic mechanisms also relevant to late onset AD.
DOI: 10.1182/blood-2019-128152
2019
The Long Noncoding RNA BALR2 Controls Novel Transcriptional Circuits Involved in Chemotherapy Sensitivity of Pediatric Acute Myeloid Leukemia (AML) Blasts
In acute myeloid leukemia (AML), the assessment of post-induction minimal residual disease (MRD) is largely utilized for choosing post-remission therapies aimed at maintaining complete remission (CR) and preventing relapse. This latter is still the major cause of treatment failure in pediatric AML, and even if several efforts have been spent to validate MRD as a prognostic marker, numerous studies demonstrated that MRD negativity cannot be considered a completely reliable surrogate biomarker predicting outcome, since it does not exclude a relapse. The current interpretation is that disease relapse is due to mechanisms leading to therapy resistance mainly depending on driver chimeric or oncogenic protein-coding genes, which are monitored during treatment, and does not consider that chemotherapy resistance may arise from other genetic markers, phenomenon linked to methylation and non-coding RNAs genomic pressure. We, thus, hypothesized that other markers need to be explored to re-interpret leukemia progression. We showed an overall hyper-expression of the lncRNA BALR2 in 132 de novo AML bone marrow samples collected at diagnosis and analyzed the gene expression profile (GEP) of 58 cases. By unsupervised clustering analysis, we produced important advances in identifying BALR2 as a robust novel molecular marker of a new subgroup of AML characterized by a high rate of resistance to induction therapy, independently from the genetic lesions detected at diagnosis and any other prognostic clinical and genetic features. We demonstrated in vitro that BALR2 has a direct role in controlling bi-directionally its own and of its neighbor gene CDK6 promoter activity. This latter finding of high CDK6 expression was shown to sustain its complex with RUNX1 in order to inhibit RUNX1 binding to its target promoters, thus preventing the process of hematopoietic differentiation progression. To support BALR2 as a new proto-oncogene involved in the control of the myeloid differentiation program, we ranked the genes across the expression profile obtaining a signature of 337 transcripts able to cluster CD34+ human stem cell precursors (HSCPs) separately from more mature CD14+ cells. These in silico findings were validated in vitro by showing that, after BALR2 depletion, CD34+ cells had a skewed myeloid differentiation. Furthermore, we found that AML differentiation toward mature myeloid cells with increased phagocytic capacity was obtained through BALR2 level reduction, and enhanced by combinatorial differentiation stimuli. Our findings attribute a distinct role to BALR2 in the block of myeloid stem cell differentiation occurring during leukemogenesis. At the same time, we interrogated GEP ontology, finding that enrichments of genes involved in mitochondrial synthesis pathways were significantly correlated to patients with highest BALR2 levels, and confirmed the same mitochondriogenesis profile in the immature CD34+ HSCPs. We moved to deconvolute this feature and demonstrated that BALR2, by controlling mitochondria gene balance, was directly controlling the mitochondrial mass, which dramatically decreased after BALR2 silencing, this supporting the hypothesis that BALR2 would maintain mitochondrial functions to confer AML resistance to cytotoxicity. Consistently with this line of reasoning, we inhibited mitochondria by tigecycline, demonstrating that its activity was dramatically strengthened in BALR2 depleted cells, when used either alone or in combination with cytosine-arabinoside (Ara-C). Concomitantly, tigecycline treatment in BALR2 silenced AML cells reduced mitochondria depolarization, and increased the number of differentiated M-CFU colonies formation, confirming that BALR2, together with CDK6, forms novel transcriptional networks to create a circuit able to impair myeloid differentiation and to lower chemo-sensitivity in AML. We speculate that a novel therapeutic window of mitochondrial targeting in defined AML subgroups, identified through assessment of BALR2 levels at diagnosis or persistent MRD levels, could be envisaged to optimize the outcome of childhood AML. Disclosures Locatelli: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria.
2021
Hyperbaric Exposure and Oxidative Stress in occupational activities (HEOxS): the study protocol
Background: Hyperbaric exposure (HE) is proven to be a stressor to several mechanisms in living cells. Even if after homeostasis restoration, harmful effects are expected, in particular a presence of free radicals. These latter are the stimulus to negative phenomenon as inflammation or cancer. In Italy, with 7500 km of sea shores, a large quantity of workers is exposed to HE during occupational activities. A deep knowledge of HE and bodily effects is not well defined; hence a multidisciplinary assessment of risk is needed. To detect one or more indicators of HE a research group is organised, under the INAIL sponsorship. The research project focused on the oxidative stress (OxS) and this paper details on the possible protocol to estimate, with a large amount of techniques on several human liquids, the relationship between OxS and HE. Specific attention will be paid to identify confounding factors and their influence. Methods: Blood and urine will be sampled. Several lab techniques will be performed on samples, both targeted, to measure the level of well-known biomarkers, and untargeted.  Regard the formers: products of oxidation of DNA and RNA in urine; inflammation and temperature cytokines and protein carbonyles in blood. Untargeted evaluation will be performed for a metabolomics analysis in urine. Confounding factors: temperature, body fat, fitness, allergies and dietary habits. These factors will be assessed, directly or indirectly, prior and after HE. The final scope of the project is to determine one or more indicators that relates to HE in hits twofold nature: depth and duration. Conclusion: The relationship between OxS and HE is not deeply investigated and literature proposes diverging results. The project aims to define the time dependence of biomarkers related to OxS, to rise knowledge in risk assessment in workers exposed to HE.
DOI: 10.14616/sands-2021-1-12121229
2021
Hyperbaric exposure and oxidative stress in occupational activities (HEOxS): the study protocol