ϟ

Mark A. Mintun

Here are all the papers by Mark A. Mintun that you can download and read on OA.mg.
Mark A. Mintun’s last known institution is . Download Mark A. Mintun PDFs here.

Claim this Profile →
DOI: 10.1002/mrm.1910330508
1995
Cited 3,112 times
Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold
The typical functional magnetic resonance (fMRI) study presents a formidable problem of multiple statistical comparisons (i.e., > 10,000 in a 128 x 128 image). To protect against false positives, investigators have typically relied on decreasing the per pixel false positive probability. This approach incurs an inevitable loss of power to detect statistically significant activity. An alternative approach, which relies on the assumption that areas of true neural activity will tend to stimulate signal changes over contiguous pixels, is presented. If one knows the probability distribution of such cluster sizes as a function of per pixel false positive probability, one can use cluster-size thresholds independently to reject false positives. Both Monte Carlo simulations and fMRI studies of human subjects have been used to verify that this approach can improve statistical power by as much as fivefold over techniques that rely solely on adjusting per pixel false positive probabilities.
DOI: 10.1038/331585a0
1988
Cited 2,438 times
Positron emission tomographic studies of the cortical anatomy of single-word processing
DOI: 10.1523/jneurosci.2177-05.2005
2005
Cited 1,884 times
Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory
Alzheimer's disease (AD) and antecedent factors associated with AD were explored using amyloid imaging and unbiased measures of longitudinal atrophy in combination with reanalysis of previous metabolic and functional studies. In total, data from 764 participants were compared across five in vivo imaging methods. Convergence of effects was seen in posterior cortical regions, including posterior cingulate, retrosplenial, and lateral parietal cortex. These regions were active in default states in young adults and also showed amyloid deposition in older adults with AD. At early stages of AD progression, prominent atrophy and metabolic abnormalities emerged in these posterior cortical regions; atrophy in medial temporal regions was also observed. Event-related functional magnetic resonance imaging studies further revealed that these cortical regions are active during successful memory retrieval in young adults. One possibility is that lifetime cerebral metabolism associated with regionally specific default activity predisposes cortical regions to AD-related changes, including amyloid deposition, metabolic disruption, and atrophy. These cortical regions may be part of a network with the medial temporal lobe whose disruption contributes to memory impairment.
DOI: 10.1038/sj.jcbfm.9600493
2007
Cited 1,833 times
Consensus Nomenclature for <i>in vivo</i> Imaging of Reversibly Binding Radioligands
An international group of experts in pharmacokinetic modeling recommends a consensus nomenclature to describe in vivo molecular imaging of reversibly binding radioligands.
DOI: 10.1126/science.3260686
1988
Cited 1,647 times
Nonoxidative Glucose Consumption During Focal Physiologic Neural Activity
Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.
DOI: 10.1146/annurev.neuro.29.051605.112819
2006
Cited 1,435 times
BRAIN WORK AND BRAIN IMAGING
Functional brain imaging with positron emission tomography and magnetic resonance imaging has been used extensively to map regional changes in brain activity. The signal used by both techniques is based on changes in local circulation and metabolism (brain work). Our understanding of the cell biology of these changes has progressed greatly in the past decade. New insights have emerged on the role of astrocytes in signal transduction as has an appreciation of the unique contribution of aerobic glycolysis to brain energy metabolism. Likewise our understanding of the neurophysiologic processes responsible for imaging signals has progressed from an assumption that spiking activity (output) of neurons is most relevant to one focused on their input. Finally, neuroimaging, with its unique metabolic perspective, has alerted us to the ongoing and costly intrinsic activity within brain systems that most likely represents the largest fraction of the brain's functional activity.
DOI: 10.1523/jneurosci.19-12-05034.1999
1999
Cited 1,271 times
Depression Duration But Not Age Predicts Hippocampal Volume Loss in Medically Healthy Women with Recurrent Major Depression
This study takes advantage of continuing advances in the precision of magnetic resonance imaging (MRI) to quantify hippocampal volumes in a series of human subjects with a history of depression compared with controls. We sought to test the hypothesis that both age and duration of past depression would be inversely and independently correlated with hippocampal volume. A sample of 24 women ranging in age from 23 to 86 years with a history of recurrent major depression, but no medical comorbidity, and 24 case-matched controls underwent MRI scanning. Subjects with a history of depression (post-depressed) had smaller hippocampal volumes bilaterally than controls. Post-depressives also had smaller amygdala core nuclei volumes, and these volumes correlated with hippocampal volumes. In addition, post-depressives scored lower in verbal memory, a neuropsychological measure of hippocampal function, suggesting that the volume loss was related to an aspect of cognitive functioning. In contrast, there was no difference in overall brain size or general intellectual performance. Contrary to our initial hypothesis, there was no significant correlation between hippocampal volume and age in either post-depressive or control subjects, whereas there was a significant correlation with total lifetime duration of depression. This suggests that repeated stress during recurrent depressive episodes may result in cumulative hippocampal injury as reflected in volume loss.
DOI: 10.1073/pnas.0812686106
2009
Cited 1,243 times
The default mode network and self-referential processes in depression
The recently discovered default mode network (DMN) is a group of areas in the human brain characterized, collectively, by functions of a self-referential nature. In normal individuals, activity in the DMN is reduced during nonself-referential goal-directed tasks, in keeping with the folk-psychological notion of losing one's self in one's work. Imaging and anatomical studies in major depression have found alterations in both the structure and function in some regions that belong to the DMN, thus, suggesting a basis for the disordered self-referential thought of depression. Here, we sought to examine DMN functionality as a network in patients with major depression, asking whether the ability to regulate its activity and, hence, its role in self-referential processing, was impaired. To do so, we asked patients and controls to examine negative pictures passively and also to reappraise them actively. In widely distributed elements of the DMN [ventromedial prefrontal cortex prefrontal cortex (BA 10), anterior cingulate (BA 24/32), lateral parietal cortex (BA 39), and lateral temporal cortex (BA 21)], depressed, but not control subjects, exhibited a failure to reduce activity while both looking at negative pictures and reappraising them. Furthermore, looking at negative pictures elicited a significantly greater increase in activity in other DMN regions (amygdala, parahippocampus, and hippocampus) in depressed than in control subjects. These data suggest depression is characterized by both stimulus-induced heightened activity and a failure to normally down-regulate activity broadly within the DMN. These findings provide a brain network framework within which to consider the pathophysiology of depression.
DOI: 10.1162/jocn.1989.1.2.153
1989
Cited 1,173 times
Positron Emission Tomographic Studies of the Processing of Singe Words
PET images of blood flow change that were averaged across individuals were used to identify brain areas related to lexical (single-word) processing, A small number of discrete areas were activated during several task conditions including: modality-specific (auditory or visual) areas activated by passive word input, primary motor and premotor areas during speech output, and yet further areas during tasks making semantic or intentional demands.
DOI: 10.1002/ana.20730
2006
Cited 1,169 times
Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ<sub>42</sub> in humans
Amyloid-beta(42) (Abeta(42)) appears central to Alzheimer's disease (AD) pathogenesis and is a major component of amyloid plaques. Mean cerebrospinal fluid (CSF) Abeta(42) is decreased in dementia of the Alzheimer's type. This decrease may reflect plaques acting as an Abeta(42) "sink," hindering transport of soluble Abeta(42) between brain and CSF. We investigated this hypothesis.We compared the in vivo brain amyloid load (via positron emission tomography imaging of the amyloid-binding agent, Pittsburgh Compound-B [PIB]) with CSF Abeta(42) and other measures (via enzyme-linked immunosorbent assay) in clinically characterized research subjects.Subjects fell into two nonoverlapping groups: those with positive PIB binding had the lowest CSF Abeta(42) level, and those with negative PIB binding had the highest CSF Abeta(42) level. No relation was observed between PIB binding and CSF Abeta(40), tau, phospho-tau(181), plasma Abeta(40), or plasma Abeta(42). Importantly, PIB binding and CSF Abeta(42) did not consistently correspond with clinical diagnosis; three cognitively normal subjects were PIB-positive with low CSF Abeta(42), suggesting the presence of amyloid in the absence of cognitive impairment (ie, preclinical AD).These observations suggest that brain amyloid deposition results in low CSF Abeta(42), and that amyloid imaging and CSF Abeta(42) may potentially serve as antecedent biomarkers of (preclinical) AD.
DOI: 10.1038/363623a0
1993
Cited 1,113 times
Spatial working memory in humans as revealed by PET
THE concept of working memory is central to theories of human cognition because working memory is essential to such human skills as language comprehension and deductive reasoning1–4. Working memory is thought to be composed of two parts, a set of buffers that temporarily store information in either a phonological or visuospatial form, and a central executive responsible for various computations such as mental arithmetic5,6. Although most data on working memory come from behavioural studies of normal and brain-injured humans7, there is evidence about its physiological basis from invasive studies of monkeys8–10. Here we report positron emission tomography (PET) studies of regional cerebral blood flow in normal humans that reveal activation in right-hemisphere prefrontal, occipital, parietal and premotor cortices accompanying spatial working memory processes. These results begin to uncover the circuitry of a working memory system in humans.
DOI: 10.1016/s0006-3223(01)01263-x
2001
Cited 1,109 times
Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study
The amygdala has a central role in processing emotions, particularly fear. During functional magnetic resonance imaging (fMRI) amygdala activation has been demonstrated outside of conscious awareness using masked emotional faces.We applied the masked faces paradigm to patients with major depression (n = 11) and matched control subjects (n = 11) during fMRI to compare amygdala activation in response to masked emotional faces before and after antidepressant treatment. Data were analyzed using left and right amygdala a priori regions of interest, in an analysis of variance block analysis and random effects model.Depressed patients had exaggerated left amygdala activation to all faces, greater for fearful faces. Right amygdala did not differ from control subjects. Following treatment, patients had bilateral reduced amygdala activation to masked fearful faces and bilateral reduced amygdala activation to all faces. Control subjects had no differences between the two scanning sessions.Depressed patients have left amygdala hyperarousal, even when processing stimuli outside conscious awareness. Increased amygdala activation normalizes with antidepressant treatment.
DOI: 10.1073/pnas.1000446107
2010
Cited 1,029 times
Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus
To better understand intrinsic brain connections in major depression, we used a neuroimaging technique that measures resting state functional connectivity using functional MRI (fMRI). Three different brain networks--the cognitive control network, default mode network, and affective network--were investigated. Compared with controls, in depressed subjects each of these three networks had increased connectivity to the same bilateral dorsal medial prefrontal cortex region, an area that we term the dorsal nexus. The dorsal nexus demonstrated dramatically increased depression-associated fMRI connectivity with large portions of each of the three networks. The discovery that these regions are linked together through the dorsal nexus provides a potential mechanism to explain how symptoms of major depression thought to arise in distinct networks--decreased ability to focus on cognitive tasks, rumination, excessive self-focus, increased vigilance, and emotional, visceral, and autonomic dysregulation--could occur concurrently and behave synergistically. It suggests that the newly identified dorsal nexus plays a critical role in depressive symptomatology, in effect "hot wiring" networks together; it further suggests that reducing increased connectivity of the dorsal nexus presents a potential therapeutic target.
DOI: 10.1212/01.wnl.0000228230.26044.a4
2006
Cited 1,008 times
[ <sup>11</sup> C]PIB in a nondemented population
Beta-amyloid (Abeta) plaques are the hallmark of Alzheimer disease (AD). A PET imaging tracer that binds to Abeta plaques in vivo, N-methyl-[(11)C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (or [(11)C]PIB for "Pittsburgh Compound-B"), has significantly higher binding in subjects diagnosed with dementia of the Alzheimer type (DAT) compared to nondemented controls. The authors used this imaging technique to investigate whether abnormal binding occurs in clinically normal individuals, prior to the development of cognitive changes.Forty-one nondemented subjects (age range 20 to 86 years) and 10 patients with DAT (age range 66 to 86 years) underwent [(11)C]PIB PET scanning. Regions of interest were drawn on the MRI over the cerebellar, prefrontal, lateral temporal, occipital, gyrus rectus, precuneus, and striatal cortex. Binding potential values (BPs), proportional to the density of [(11)C]PIB-Abeta binding sites, were calculated using the Logan graphical analysis and the cerebellar cortex for a reference tissue.Patients with DAT had elevated BP values vs nondemented subjects (p < 0.0001). Four of the 41 nondemented subjects had elevated cortical BP values and their BP values as a group were not significantly different from the DAT subjects' BP values. Two of these four nondemented subjects had [(11)C]PIB uptake, both visually and quantitatively, that was indistinguishable from the DAT subjects.Elevated [(11)C]PIB binding in nondemented subjects suggests that [(11)C]PIB amyloid imaging may be sensitive for detection of a preclinical Alzheimer disease state. Longitudinal studies will be required to determine the association of elevated [(11)C]PIB binding and risk of developing dementia of the Alzheimer type.
DOI: 10.1002/ana.410150302
1984
Cited 936 times
A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography
We propose an in vivo method for use with positron emission tomography (PET) that results in a quantitative characterization of neuroleptic binding sites using radiolabeled spiperone. The data are analyzed using a mathematical model that describes transport, nonspecific binding, and specific binding in the brain. The model demonstrates that the receptor quantities Bmax (i.e., the number of binding sites) and KD-1 (i.e., the binding affinity) are not separably ascertainable with tracer methodology in human subjects. We have, therefore, introduced a new term, the binding potential, equivalent to the product BmaxKD-1, which reflects the capacity of a given tissue, or region of a tissue, for ligand-binding site interaction. The procedure for obtaining these measurements is illustrated with data from sequential PET scans of baboons after intravenous injection of carrier-added [18F]spiperone. From these data we estimate the brain tissue nonspecific binding of spiperone to be in the range of 94.2 to 95.3%, and the regional brain spiperone permeability (measured as the permeability-surface area product) to be in the range of 0.025 to 0.036 cm3/(s X ml). The binding potential of the striatum ranged from 17.4 to 21.6; these in vivo estimates compare favorably to in vitro values in the literature. To our knowledge this represents the first direct evidence that PET can be used to characterize quantitatively, locally and in vivo, drug binding sites in brain. The ability to make such measurements with PET should permit the detailed investigation of diseases thought to result from disorders of receptor function.
DOI: 10.1001/archneur.64.3.noc60123
2007
Cited 835 times
Cerebrospinal Fluid tau/β-Amyloid42 Ratio as a Prediction of Cognitive Decline in Nondemented Older Adults
To investigate the ability of cerebrospinal fluid (CSF) and plasma measures to discriminate early-stage Alzheimer disease (AD) (defined by clinical criteria and presence/absence of brain amyloid) from nondemented aging and to assess whether these biomarkers can predict future dementia in cognitively normal individuals.Evaluation of CSF beta-amyloid(40) (Abeta(40)), Abeta(42), tau, phosphorylated tau(181), and plasma Abeta(40) and Abeta(42) and longitudinal clinical follow-up (from 1 to 8 years).Longitudinal studies of healthy aging and dementia through an AD research center.Community-dwelling volunteers (n = 139) aged 60 to 91 years and clinically judged as cognitively normal (Clinical Dementia Rating [CDR], 0) or having very mild (CDR, 0.5) or mild (CDR, 1) AD dementia.Individuals with very mild or mild AD have reduced mean levels of CSF Abeta(42) and increased levels of CSF tau and phosphorylated tau(181). Cerebrospinal fluid Abeta(42) level completely corresponds with the presence or absence of brain amyloid (imaged with Pittsburgh Compound B) in demented and nondemented individuals. The CSF tau/Abeta(42) ratio (adjusted hazard ratio, 5.21; 95% confidence interval, 1.58-17.22) and phosphorylated tau(181)/Abeta(42) ratio (adjusted hazard ratio, 4.39; 95% confidence interval, 1.62-11.86) predict conversion from a CDR of 0 to a CDR greater than 0.The very mildest symptomatic stage of AD exhibits the same CSF biomarker phenotype as more advanced AD. In addition, levels of CSF Abeta(42), when combined with amyloid imaging, augment clinical methods for identifying in individuals with brain amyloid deposits whether dementia is present or not. Importantly, CSF tau/Abeta(42) ratios show strong promise as antecedent (preclinical) biomarkers that predict future dementia in cognitively normal older adults.
DOI: 10.1056/nejmoa1705971
2018
Cited 776 times
Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease
Alzheimer's disease is characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The humanized monoclonal antibody solanezumab was designed to increase the clearance from the brain of soluble Aβ, peptides that may lead to toxic effects in the synapses and precede the deposition of fibrillary amyloid.We conducted a double-blind, placebo-controlled, phase 3 trial involving patients with mild dementia due to Alzheimer's disease, defined as a Mini-Mental State Examination (MMSE) score of 20 to 26 (on a scale from 0 to 30, with higher scores indicating better cognition) and with amyloid deposition shown by means of florbetapir positron-emission tomography or Aβ1-42 measurements in cerebrospinal fluid. Patients were randomly assigned to receive solanezumab at a dose of 400 mg or placebo intravenously every 4 weeks for 76 weeks. The primary outcome was the change from baseline to week 80 in the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; scores range from 0 to 90, with higher scores indicating greater cognitive impairment).A total of 2129 patients were enrolled, of whom 1057 were assigned to receive solanezumab and 1072 to receive placebo. The mean change from baseline in the ADAS-cog14 score was 6.65 in the solanezumab group and 7.44 in the placebo group, with no significant between-group difference at week 80 (difference, -0.80; 95% confidence interval, -1.73 to 0.14; P=0.10). As a result of the failure to reach significance with regard to the primary outcome in the prespecified hierarchical analysis, the secondary outcomes were considered to be descriptive and are reported without significance testing. The change from baseline in the MMSE score was -3.17 in the solanezumab group and -3.66 in the placebo group. Adverse cerebral edema or effusion lesions that were observed on magnetic resonance imaging after randomization occurred in 1 patient in the solanezumab group and in 2 in the placebo group.Solanezumab at a dose of 400 mg administered every 4 weeks in patients with mild Alzheimer's disease did not significantly affect cognitive decline. (Funded by Eli Lilly; EXPEDITION3 ClinicalTrials.gov number, NCT01900665 .).
DOI: 10.1002/ana.21843
2010
Cited 741 times
<i>APOE</i> predicts amyloid‐beta but not tau Alzheimer pathology in cognitively normal aging
To examine interactions of apolipoprotein E (APOE) genotype with age and with in vivo measures of preclinical Alzheimer disease (AD) in cognitively normal aging.Two hundred forty-one cognitively normal individuals, aged 45-88 years, had cerebral amyloid imaging studies with Pittsburgh Compound-B (PIB). Of the 241 individuals, 168 (70%) also had cerebrospinal fluid (CSF) assays of amyloid-beta(42) (Abeta(42)), tau, and phosphorylated tau (ptau(181)). All individuals were genotyped for APOE.The frequency of individuals with elevated mean cortical binding potential (MCBP) for PIB rose in an age-dependent manner from 0% at ages 45-49 years to 30.3% at 80-88 years. Reduced levels of CSF Abeta(42) appeared to begin earlier (18.2% of those aged 45-49 years) and increase with age in higher frequencies (50% at age 80-88 years) than elevations of MCBP. There was a gene dose effect for the APOE4 genotype, with greater MCBP increases and greater reductions in CSF Abeta(42) with increased numbers of APOE4 alleles. Individuals with an APOE2 allele had no increase in MCBP with age and had higher CSF Abeta(42) levels than individuals without an APOE2 allele. There was no APOE4 or APOE2 effect on CSF tau or ptau(181).Increasing cerebral Abeta deposition with age is the pathobiological phenotype of APOE4. The biomarker sequence that detects Abeta deposition may first be lowered CSF Abeta(42), followed by elevated MCBP for PIB. A substantial proportion of cognitively normal individuals have presumptive preclinical AD.
DOI: 10.1016/s1474-4422(12)70142-4
2012
Cited 689 times
Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study
Background Results of previous studies have shown associations between PET imaging of amyloid plaques and amyloid-β pathology measured at autopsy. However, these studies were small and not designed to prospectively measure sensitivity or specificity of amyloid PET imaging against a reference standard. We therefore prospectively compared the sensitivity and specificity of amyloid PET imaging with neuropathology at autopsy. Methods This study was an extension of our previous imaging-to-autopsy study of participants recruited at 22 centres in the USA who had a life expectancy of less than 6 months at enrolment. Participants had autopsy within 2 years of PET imaging with florbetapir (18F). For one of the primary analyses, the interpretation of the florbetapir scans (majority interpretation of five nuclear medicine physicians, who classified each scan as amyloid positive or amyloid negative) was compared with amyloid pathology (assessed according to the Consortium to Establish a Registry for Alzheimer's Disease standards, and classed as amyloid positive for moderate or frequent plaques or amyloid negative for no or sparse plaques); correlation of the image analysis results with amyloid burden was tested as a coprimary endpoint. Correlation, sensitivity, and specificity analyses were also done in the subset of participants who had autopsy within 1 year of imaging as secondary endpoints. The study is registered with ClinicalTrials.gov, number NCT 01447719 (original study NCT 00857415). Findings We included 59 participants (aged 47–103 years; cognitive status ranging from normal to advanced dementia). The sensitivity and specificity of florbetapir PET imaging for detection of moderate to frequent plaques were 92% (36 of 39; 95% CI 78–98) and 100% (20 of 20; 80–100%), respectively, in people who had autopsy within 2 years of PET imaging, and 96% (27 of 28; 80–100%) and 100% (18 of 18; 78–100%), respectively, for those who had autopsy within 1 year. Amyloid assessed semiquantitatively with florbetapir PET was correlated with the post-mortem amyloid burden in the participants who had an autopsy within 2 years (Spearman ρ=0·76; p<0·0001) and within 12 months between imaging and autopsy (0·79; p<0·0001). Interpretation The results of this study validate the binary visual reading method approved in the USA for clinical use with florbetapir and suggest that florbetapir could be used to distinguish individuals with no or sparse amyloid plaques from those with moderate to frequent plaques. Additional research is needed to understand the prognostic implications of moderate to frequent plaque density. Funding Avid Radiopharmaceuticals.
DOI: 10.1176/ajp.154.7.918
1997
Cited 686 times
Neuroanatomical correlates of externally and internally generated human emotion
Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus.Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli.Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli.While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
DOI: 10.1056/nejmoa2100708
2021
Cited 676 times
Donanemab in Early Alzheimer’s Disease
A hallmark of Alzheimer’s disease is the accumulation of amyloid-β (Aβ) peptide. Donanemab, an antibody that targets a modified form of deposited Aβ, is being investigated for the treatment of early Alzheimer’s disease.
DOI: 10.1016/j.jalz.2014.07.003
2014
Cited 636 times
The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET
Although amyloid imaging with PiB-PET ([C-11]Pittsburgh Compound-B positron emission tomography), and now with F-18-labeled tracers, has produced remarkably consistent qualitative findings across a large number of centers, there has been considerable variability in the exact numbers reported as quantitative outcome measures of tracer retention. In some cases this is as trivial as the choice of units, in some cases it is scanner dependent, and of course, different tracers yield different numbers. Our working group was formed to standardize quantitative amyloid imaging measures by scaling the outcome of each particular analysis method or tracer to a 0 to 100 scale, anchored by young controls (≤ 45 years) and typical Alzheimer's disease patients. The units of this scale have been named "Centiloids." Basically, we describe a "standard" method of analyzing PiB PET data and then a method for scaling any "nonstandard" method of PiB PET analysis (or any other tracer) to the Centiloid scale.
DOI: 10.1073/pnas.1010459107
2010
Cited 576 times
Regional aerobic glycolysis in the human brain
Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease.
DOI: 10.1152/jn.1996.75.1.454
1996
Cited 563 times
Positron emission tomography study of voluntary saccadic eye movements and spatial working memory
1. The purpose of this study is to define the cortical regions that subserve voluntary saccadic eye movements and spatial working memory in humans. 2. Regional cerebral blood flow (rCBF) during performance of oculomotor tasks was measured with [15O]-H2O positron emission tomography (PET). Eleven well-trained, healthy young adults performed the following tasks: visual fixation, visually guided saccades, antisaccades (a task in which subjects made saccades away from rather than toward peripheral targets), and either an oculomotor delayed response (ODR, a task requiring memory-guided saccades after a delay period) or a conditional antisaccade task (a task in which the color of the peripheral target determined whether a saccade toward or away from the target was required). An additional six subjects performed a sequential hand movement task to compare localization of hand-related motor cortex and the frontal eye fields (FEFs) and of the hand- and eye-movement-related regions of the supplementary motor area (SMA). 3. Friston's statistical parametric mapping (SPM) method was used to identify significant changes in rCBF associated with task performance. Because SPM does not take advantage of the anatomic information available in magnetic resonance (MR) scans, each subject's PET scan was registered to that individual's MR scan, after which all PET and MR studies were transformed to conform to a standard reference MR image set. Subtraction images were visually inspected while overlayed on the reference MR scan to which PET images had been aligned, in order to confirm anatomic localization of significant rCBF changes. 4. Compared with visual fixation, performing visually guided saccades led to a significant bilateral activation in FEF, cerebellum, striate cortex, and posterior temporal cortex. Right posterior thalamus activation was also observed. 5. The visually guided saccade task served as the comparison task for the ODR, antisaccade, and conditional antisaccade tasks for identification of task-related changes in rCBF beyond those associated with saccade execution. Performance on the ODR task was associated with a bilateral increase of rCBF in FEFs, SMA, dorsolateral prefrontal cortex (DLPFC), and posterior parietal cortex. The cortical regions of increased regional blood flow during the ODR task also showed increased rCBF during the antisaccade task; however, FEF and SMA activations were significant only in the right hemisphere. These findings closely parallel those of single-cell recording studies with behaving monkeys in indicating that FEF, DLPFC, SMA, and posterior parietal cortex perform computational activity for voluntary purposive saccades. 6. Comparison of PET scans obtained during performance of eye movement and hand movement tasks indicated that peak activations in FEF were located approximately 2 cm lateral and 1 cm anterior to those of hand-related motor cortex. The oculomotor area of SMA, the supplementary eye field (SEF), was located approximately 7-8 mm anterior and superior to the hand-related area of SMA. 7. During performance of antisaccade and ODR tasks, rCBF was significantly lower in ventromedial prefrontal cortex (PFC), along the rectus gyrus, and in ventral anterior cingulate cortex than during the visually guided saccade and fixation tasks. During the antisaccade task, the ventral region of lower rCBF involved medial structures including left ventral striatum and bilateral medial temporal-limbic cortex. During the ODR task, the ventral aspect of the region of lower rCBF extended laterally, rather than medially, to include the temporal poles. The lower blood flow observed in ventromedial PFC during both the antisaccade and ODR tasks, relative to the visually guided saccade and fixation tasks, suggests that modulation of output from ventromedial PFC to limbic cortex and the striatum may play a role in the voluntary control of saccadic eye movements, possibly in the suppression of responses that would interrupt
DOI: 10.1002/ana.23650
2012
Cited 561 times
Amyloid deposition, hypometabolism, and longitudinal cognitive decline
Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) population, we examined (1) cross-sectional relationships between amyloid deposition, hypometabolism, and cognition, and (2) associations between amyloid and hypometabolism measurements and longitudinal cognitive measurements.We examined associations between mean cortical florbetapir uptake, mean (18) F-fluorodeoxyglucose-positron emission tomography (FDG-PET) within a set of predefined regions, and Alzhiemer's Disease Assessment Scale (ADAS-cog) performance in 426 ADNI participants (126 normal, 162 early mild cognitive impairment [EMCI], 85 late MCI [LMCI], 53 Alzheimer disease [AD] patients). For a subset of these (76 normal, 81 LMCI) we determined whether florbetapir and FDG-PET were associated with retrospective decline in longitudinal ADAS-cog measurements.Twenty-nine percent of normal subjects, 43% of EMCI patients, 62% of LMCI patients, and 77% of AD patients were categorized as florbetapir positive. Florbetapir was negatively associated with concurrent FDG and ADAS-cog in both MCI groups. In longitudinal analyses, florbetapir-positive subjects in both normal and LMCI groups had greater ongoing ADAS-cog decline than those who were florbetapir negative. However, in normal subjects, florbetapir positivity was associated with greater ADAS-cog decline than FDG, whereas in LMCI, FDG positivity was associated with greater decline than florbetapir.Although both hypometabolism and β-amyloid (Aβ) deposition are detectable in normal subjects and all diagnostic groups, Aβ showed greater associations with cognitive decline in normal participants. In view of the minimal cognitive deterioration overall in this group, this suggests that amyloid deposition has an early and subclinical impact on cognition that precedes metabolic changes. At moderate and later stages of disease (LMCI/AD), hypometabolism becomes more pronounced and more closely linked to ongoing cognitive decline.
DOI: 10.1016/j.biopsych.2009.08.024
2010
Cited 526 times
Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly
Important functional connections within the default mode network (DMN) are disrupted in Alzheimer's disease (AD), likely from amyloid-beta (Abeta) plaque-associated neuronal toxicity. Here, we sought to determine if pathological effects of Abeta amyloid plaques could be seen, even in the absence of a task, by examining functional connectivity in cognitively normal participants with and without preclinical amyloid deposition.Participants with Alzheimer's disease (AD) (n = 35) were compared with 68 cognitively normal participants who were further subdivided by positron emission tomography (PET) Pittsburgh Compound-B (PIB) imaging into those without evidence of brain amyloid (PIB-) and those with brain amyloid (PIB+) deposition.Resting state functional magnetic resonance imaging (fMRI) demonstrated that, compared with the PIB- group, the PIB+ group differed significantly in functional connectivity of the precuneus to hippocampus, parahippocampus, anterior cingulate, dorsal cingulate, gyrus rectus, superior precuneus, and visual cortex. These differences were in the same regions and in the same direction as differences found in the AD group.Thus, before any manifestations of cognitive or behavioral changes, there were differences in resting state connectivity in cognitively normal subjects with brain amyloid deposition, suggesting that early manifestation of Abeta toxicity can be detected using resting state fMRI.
DOI: 10.1001/jama.2015.4669
2015
Cited 520 times
Prevalence of Amyloid PET Positivity in Dementia Syndromes
Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia.To use individual participant data meta-analysis to estimate the prevalence of amyloid positivity on PET in a wide variety of dementia syndromes.The MEDLINE and Web of Science databases were searched from January 2004 to April 2015 for amyloid PET studies.Case reports and studies on neurological or psychiatric diseases other than dementia were excluded. Corresponding authors of eligible cohorts were invited to provide individual participant data.Data were provided for 1359 participants with clinically diagnosed AD and 538 participants with non-AD dementia. The reference groups were 1849 healthy control participants (based on amyloid PET) and an independent sample of 1369 AD participants (based on autopsy).Estimated prevalence of positive amyloid PET scans according to diagnosis, age, and apolipoprotein E (APOE) ε4 status, using the generalized estimating equations method.The likelihood of amyloid positivity was associated with age and APOE ε4 status. In AD dementia, the prevalence of amyloid positivity decreased from age 50 to 90 years in APOE ε4 noncarriers (86% [95% CI, 73%-94%] at 50 years to 68% [95% CI, 57%-77%] at 90 years; n = 377) and to a lesser degree in APOE ε4 carriers (97% [95% CI, 92%-99%] at 50 years to 90% [95% CI, 83%-94%] at 90 years; n = 593; P < .01). Similar associations of age and APOE ε4 with amyloid positivity were observed in participants with AD dementia at autopsy. In most non-AD dementias, amyloid positivity increased with both age (from 60 to 80 years) and APOE ε4 carriership (dementia with Lewy bodies: carriers [n = 16], 63% [95% CI, 48%-80%] at 60 years to 83% [95% CI, 67%-92%] at 80 years; noncarriers [n = 18], 29% [95% CI, 15%-50%] at 60 years to 54% [95% CI, 30%-77%] at 80 years; frontotemporal dementia: carriers [n = 48], 19% [95% CI, 12%-28%] at 60 years to 43% [95% CI, 35%-50%] at 80 years; noncarriers [n = 160], 5% [95% CI, 3%-8%] at 60 years to 14% [95% CI, 11%-18%] at 80 years; vascular dementia: carriers [n = 30], 25% [95% CI, 9%-52%] at 60 years to 64% [95% CI, 49%-77%] at 80 years; noncarriers [n = 77], 7% [95% CI, 3%-18%] at 60 years to 29% [95% CI, 17%-43%] at 80 years.Among participants with dementia, the prevalence of amyloid positivity was associated with clinical diagnosis, age, and APOE genotype. These findings indicate the potential clinical utility of amyloid imaging for differential diagnosis in early-onset dementia and to support the clinical diagnosis of participants with AD dementia and noncarrier APOE ε4 status who are older than 70 years.
DOI: 10.1038/jcbfm.1988.111
1988
Cited 486 times
Enhanced Detection of Focal Brain Responses Using Intersubject Averaging and Change-Distribution Analysis of Subtracted PET Images
Intersubject averaging and change-distribution analysis of subtracted positron emission tomographic (PET) images were developed and tested. The purpose of these techniques is to increase the sensitivity and objectivity of functional mapping of the human brain with PET. To permit image averaging, all primary tomographic images were converted to anatomically standardized three-dimensional images using stereotactic anatomical localization and interslice interpolation. Image noise, measured in control-minus-control subtractions, was strongly suppressed by averaging. Signal-to-noise ratio, measured in stimulus-minus-control subtractions (hand vibration minus eyes-closed rest), rose steadily with averaging, confirming the accuracy of our method of anatomical standardization. Distribution analysis of CBF change images (outlier detection by gamma-2 statistic) was assessed as an omnibus test for state-dependent changes in regional neuronal activity. Sensitivity in detecting the somatosensory response rose steadily with averaging, increasing from 50% in individual images to 100% when three or more images were averaged. Specificity was 100% at all averaging levels. Although described here as a technique for functional brain mapping with H2(15O) CBF images, image averaging, and change-distribution analysis are more generally applicable techniques, not limited to a single purpose or tracer.
DOI: 10.1016/s0006-8993(97)00807-x
1997
Cited 477 times
Forebrain activation in REM sleep: an FDG PET study
Rapid eye movement (REM) sleep is a behavioral state characterized by cerebral cortical activation with dreaming as an associated behavior. The brainstem mechanisms involved in the generation of REM sleep are well-known, but the forebrain mechanisms that might distinguish it from waking are not well understood. We report here a positron emission tomography (PET) study of regional cerebral glucose utilization in the human forebrain during REM sleep in comparison to waking in six healthy adult females using the 18F-deoxyglucose method. In REM sleep, there is relative activation, shown by increased glucose utilization, in phylogenetically old limbic and paralimbic regions which include the lateral hypothalamic area, amygdaloid complex, septal-ventral striatal areas, and infralimbic, prelimbic, orbitofrontal, cingulate, entorhinal and insular cortices. The largest area of activation is a bilateral, confluent paramedian zone which extends from the septal area into ventral striatum, infralimbic, prelimbic, orbitofrontal and anterior cingulate cortex. There are only small and scattered areas of apparent deactivation. These data suggest that an important function of REM sleep is the integration of neocortical function with basal forebrain-hypothalamic motivational and reward mechanisms. This is in accordance with views that alterations in REM sleep in psychiatric disorders, such as depression, may reflect dysregulation in limbic and paralimbic structures.
DOI: 10.1001/archneurol.2009.269
2009
Cited 462 times
Pittsburgh Compound B Imaging and Prediction of Progression From Cognitive Normality to Symptomatic Alzheimer Disease
Objective: To determine whether preclinical Alzheimer disease (AD), as detected by the amyloid-imaging agent Pittsburgh Compound B (PiB) in cognitively normal older adults, is associated with risk of symptomatic AD.Design: A longitudinal cohort study of cognitively normal older adults assessed with positron emission tomography (PET) to determine the mean cortical binding potential for PiB and followed up with annual clinical and cognitive assessments for progression to very mild dementia of the Alzheimer type (DAT).
DOI: 10.1016/j.biopsych.2007.06.012
2008
Cited 456 times
Altered Emotional Interference Processing in Affective and Cognitive-Control Brain Circuitry in Major Depression
Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However, it is not yet clear whether this bias represents 1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or 2) enhanced bottom-up responses to affectively laden stimuli that dysregulate cognitive control mechanisms, potentially linked to deficits in amygdala and anterior cingulate function.We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 27 patients with major depression and 24 control participants was tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli.Compared with control subjects, patients with depression showed an enhanced amygdala response to unattended fear-related stimuli (relative to unattended neutral). By contrast, control participants showed increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli (relative to neutral), which the patients with depression did not show. In addition, the depressed participants failed to show evidence of error-related cognitive adjustments (increased activity in bilateral dorsolateral prefrontal cortex on posterror trials), but the control group did show them.These results suggest multiple sources of dysregulation in emotional and cognitive control circuitry in depression, implicating both top-down and bottom-up dysfunction.
DOI: 10.1006/nimg.1995.1034
1995
Cited 449 times
Interference and Facilitation Effects during Selective Attention: An H215O PET Study of Stroop Task Performance
To investigate the functional anatomy of interference and facilitation during selective attention, we studied 15 normal subjects using the H215O positron emission tomography technique and a computer presented single-trial Stroop task for cognitive activation. Increases in regional cerebral blood flow (rCBF) were observed in a network of structures that have been previously associated with selective attention, including the anterior cingulate gyrus, the frontal polar cortex, the inferior parietal lobule, and the thalamus, as well as the lingual gyrus. Furthermore rCBF decreases (compared to control states) were observed in lateral extra-striate cortex. rCBF changes in prefrontal and extra-striate regions varied with differences in the need to modulate the influence of word and color information while subjects responded to either incongruent or congruent Stroop stimuli. These results indicate the utility of Stroop procedures for investigating the functional anatomy of selective attention. Given recent interest regarding the role of the anterior cingulate gyrus in the pathophysiology of neuropsychiatric disorders, our results also suggest that the Stroop task can serve as a reliable neurobehavioral probe for this region. The significance of these results for understanding processing mechanisms underlying selective attention is discussed within the framework of a parallel distributed processing model of Stroop task performance.
DOI: 10.1016/s0360-3016(00)01433-4
2001
Cited 411 times
A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy
Locoregional tumor control for locally advanced cancers with radiation therapy has been unsatisfactory. This is in part associated with the phenomenon of tumor hypoxia. Assessing hypoxia in human tumors has been difficult due to the lack of clinically noninvasive and reproducible methods. A recently developed positron emission tomography (PET) imaging-based hypoxia measurement technique which employs a Cu(II)-diacetyl-bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) tracer is of great interest. Oxygen electrode measurements in animal experiments have demonstrated a strong correlation between low tumor pO(2) and excess (60)Cu-ATSM accumulation. Intensity-modulated radiation therapy (IMRT) allows selective targeting of tumor and sparing of normal tissues. In this study, we examined the feasibility of combining these novel technologies to develop hypoxia imaging (Cu-ATSM)-guided IMRT, which may potentially deliver higher dose of radiation to the hypoxic tumor subvolume to overcome inherent hypoxia-induced radioresistance without compromising normal tissue sparing.A custom-designed anthropomorphic head phantom containing computed tomography (CT) and positron emitting tomography (PET) visible targets consisting of plastic balls and rods distributed throughout the "cranium" was fabricated to assess the spatial accuracy of target volume mapping after multimodality image coregistration. For head-and-neck cancer patients, a CT and PET imaging fiducial marker coregistration system was integrated into the thermoplastic immobilization head mask with four CT and PET compatible markers to assist image fusion on a Voxel-Q treatment-planning computer. This system was implemented on head-and-neck cancer patients, and the gross tumor volume (GTV) was delineated based on physical and radiologic findings. Within GTV, regions with a (60)Cu-ATSM uptake twice that of contralateral normal neck muscle were operationally designated as ATSM-avid or hypoxic tumor volume (hGTV) for this feasibility study. These target volumes along with other normal organs contours were defined and transferred to an inverse planning computer (Corvus, NOMOS) to create a hypoxia imaging-guided IMRT treatment plan.A study of the accuracy of target volume mapping showed that the spatial fidelity and imaging distortion after CT and PET image coregistration and fusion were within 2 mm in phantom study. Using fiducial markers to assist CT/PET imaging fusion in patients with carcinoma of the head-and-neck area, a heterogeneous distribution of (60)Cu-ATSM within the GTV illustrated the success of (60)Cu-ATSM PET to select an ATSM-avid or hypoxic tumor subvolume (hGTV). We further demonstrated the feasibility of Cu-ATSM-guided IMRT by showing an example in which radiation dose to the hGTV could be escalated without compromising normal tissue (parotid glands and spinal cord) sparing. The plan delivers 80 Gy in 35 fractions to the ATSM-avid tumor subvolume and the GTV simultaneously receives 70 Gy in 35 fractions while more than one-half of the parotid glands are spared to less than 30 Gy.We demonstrated the feasibility of a novel Cu-ATSM-guided IMRT approach through coregistering hypoxia (60)Cu-ATSM PET to the corresponding CT images for IMRT planning. Future investigation is needed to establish a clinical-pathologic correlation between (60)Cu-ATSM retention and radiation curability, to understand tumor re-oxygenation kinetics, and tumor target uncertainty during a course of radiation therapy before implementing this therapeutic approach to patients with locally advanced tumor.
DOI: 10.1523/jneurosci.3987-10.2010
2010
Cited 400 times
APOE4 Allele Disrupts Resting State fMRI Connectivity in the Absence of Amyloid Plaques or Decreased CSF Aβ42
Identifying high-risk populations is an important component of disease prevention strategies. One approach for identifying at-risk populations for Alzheimer's disease (AD) is examining neuroimaging parameters that differ between patients, including functional connections known to be disrupted within the default-mode network. We have previously shown these same disruptions in cognitively normal elderly who have amyloid-β (Aβ) plaques [detected using Pittsburgh Compound B (PIB) PET imaging], suggesting neuronal toxicity of plaques. Here we sought to determine if pathological effects of apolipoprotein E ε4 (APOE4) genotype could be seen independent of Aβ plaque toxicity by examining resting state fMRI functional connectivity (fcMRI) in participants without preclinical fibrillar amyloid deposition (PIB-). Cognitively normal participants enrolled in longitudinal studies (n = 100, mean age = 62) who were PIB- were categorized into those with and without an APOE4 allele and studied using fcMRI. APOE4 allele carriers (E4+) differed significantly from E4- in functional connectivity of the precuneus to several regions previously defined as having abnormal connectivity in a group of AD participants. These effects were observed before any manifestations of cognitive changes and in the absence of brain fibrillar Aβ plaque deposition, suggesting that early manifestations of a genetic effect can be detected using fcMRI and that these changes may antedate the pathological effects of fibrillar amyloid plaque toxicity.
DOI: 10.1148/radiology.169.1.3262228
1988
Cited 394 times
Breast cancer: PET imaging of estrogen receptors.
Thirteen patients with primary breast masses were studied with positron emission tomography (PET) and 16 alpha-[fluorine-18]-fluoroestradiol-17 beta. PET images demonstrated uptake of the labeled estrogen analog at sites of primary carcinomas and in several foci of axillary lymph node metastases, as well as in one distant metastatic site. There was excellent correlation between uptake within the primary tumor measured on the PET images and the tumor estrogen-receptor concentration measured in vitro after excision (r = .96). This technique may provide an in vivo method of assessing estrogen receptors in primary and metastatic breast cancers and thus guide management of this disease with antiestrogen chemotherapy.
DOI: 10.1016/j.biopsych.2010.08.025
2010
Cited 392 times
YKL-40: A Novel Prognostic Fluid Biomarker for Preclinical Alzheimer's Disease
Background Disease-modifying therapies for Alzheimer's disease (AD) would be most effective during the preclinical stage (pathology present, cognition intact) before significant neuronal loss occurs. Therefore, biomarkers that detect AD pathology in its early stages and predict dementia onset and progression will be invaluable for patient care and efficient clinical trial design. Methods AD-associated changes in cerebrospinal fluid (CSF) were measured using two-dimensional difference gel electrophoresis and liquid chromatography tandem mass spectrometry. Subsequently, CSF YKL-40 was measured by enzyme-linked immunosorbent assay in the discovery cohort (n = 47), validation cohort (n = 292) with paired plasma samples (n = 237), frontotemporal lobar degeneration (PSP; n = 9), and progressive supranuclear palsy (PSP; n = 6). Immunohistochemistry was performed to identify source(s) of YKL-40 in human AD brain. Results Discovery and validation cohorts, showed higher mean CSF YKL-40 in very mild and mild AD-type dementia (Clinical Dementia Rating [CDR] 0.5 and 1) versus control subjects (CDR 0) and PSP subjects. Importantly, CSF YKL-40/Aβ42 ratio predicted risk of developing cognitive impairment (CDR 0 to CDR > 0 conversion), as well as the best CSF biomarkers identified to date, tau/Aβ42 and p-tau 181/Aβ42. Mean plasma YKL-40 was higher in CDR 0.5 and 1 versus CDR 0, and correlated with CSF levels. YKL-40 immunoreactivity labeled astrocytes near a subset of amyloid plaques, implicating YKL-40 in the neuroinflammatory response to Aβ deposition. Conclusions These data demonstrate that YKL-40, a putative indicator of neuroinflammation, is elevated in AD and, together with Aβ42, has potential prognostic utility as a biomarker for preclinical AD. Disease-modifying therapies for Alzheimer's disease (AD) would be most effective during the preclinical stage (pathology present, cognition intact) before significant neuronal loss occurs. Therefore, biomarkers that detect AD pathology in its early stages and predict dementia onset and progression will be invaluable for patient care and efficient clinical trial design. AD-associated changes in cerebrospinal fluid (CSF) were measured using two-dimensional difference gel electrophoresis and liquid chromatography tandem mass spectrometry. Subsequently, CSF YKL-40 was measured by enzyme-linked immunosorbent assay in the discovery cohort (n = 47), validation cohort (n = 292) with paired plasma samples (n = 237), frontotemporal lobar degeneration (PSP; n = 9), and progressive supranuclear palsy (PSP; n = 6). Immunohistochemistry was performed to identify source(s) of YKL-40 in human AD brain. Discovery and validation cohorts, showed higher mean CSF YKL-40 in very mild and mild AD-type dementia (Clinical Dementia Rating [CDR] 0.5 and 1) versus control subjects (CDR 0) and PSP subjects. Importantly, CSF YKL-40/Aβ42 ratio predicted risk of developing cognitive impairment (CDR 0 to CDR > 0 conversion), as well as the best CSF biomarkers identified to date, tau/Aβ42 and p-tau 181/Aβ42. Mean plasma YKL-40 was higher in CDR 0.5 and 1 versus CDR 0, and correlated with CSF levels. YKL-40 immunoreactivity labeled astrocytes near a subset of amyloid plaques, implicating YKL-40 in the neuroinflammatory response to Aβ deposition. These data demonstrate that YKL-40, a putative indicator of neuroinflammation, is elevated in AD and, together with Aβ42, has potential prognostic utility as a biomarker for preclinical AD.
DOI: 10.1176/ajp.155.9.1285
1998
Cited 391 times
Functional Hypofrontality and Working Memory Dysfunction in Schizophrenia
Hypofrontality is a common but not invariable finding in schizophrenia. Inconsistencies in the literature may reflect, in part, the fact that abnormal physiological responses in the prefrontal cortex are best identified under conditions that place well-specified functional demands on this region.The authors studied eight patients with schizophrenia and eight matched comparison subjects using [(15)O]H2O positron emission tomography and the "N-back" task, which activates the prefrontal cortex as a function of working memory load in normal subjects.Under low-working-memory-load conditions, the accuracy of both groups in the N-back task was equal, but when the memory load increased, the patients' performance deteriorated more than did that of the comparison subjects. The regional cerebral blood flow response to increased working memory load was significantly reduced in the patients' right dorsolateral prefrontal cortex.These results confirm the importance of using tasks that tap specific cognitive functions, linked to specific neural systems, in studies of brain-behavior relationships in schizophrenia. Hypofrontality is reliably demonstrated in schizophrenia during tasks that engage working memory functions of the prefrontal cortex.
DOI: 10.1176/ajp.154.12.1670
1997
Cited 386 times
Anterior Cingulate Gyrus Dysfunction and Selective Attention Deficits in Schizophrenia: [<sup>15</sup>O]H<sub>2</sub>O PET Study During Single-Trial Stroop Task Performance
OBJECTIVE: Attentional deficits are a prominent aspect of cognitive dysfunction in schizophrenia. The anterior cingulate gyrus is proposed to be an important component of frontal attentional control systems. Structural and functional abnormalities have been reported in this region in schizophrenia, but their relationship to attentional deficits is unknown. The authors investigated the function of the anterior cingulate gyrus and the related neural systems that are associated with selective attention in patients with schizophrenia. METHOD: While subjects performed multiple blocks of a single-trial Stroop task, [15O]H2O positron emission tomography scans were obtained. Fourteen patients with schizophrenia were compared with 15 normal subjects matched for age, gender, and parental education. RESULTS: The patients with schizophrenia responded at the same rate but made more errors in color naming during the color-incongruent condition. Consistent with the authors' hypothesis, patients with schizophrenia showed significantly less anterior cingulate gyrus activation while naming the color of color-incongruent stimuli. CONCLUSIONS: Patients with schizophrenia fail to activate the anterior cingulate gyrus during selective attention performance. This finding adds to the understanding of the functional significance of the structural and metabolic abnormalities in schizophrenia that have been previously reported in this region of the brain. (Am J Psychiatry 1997; 154:1670–1675)
DOI: 10.1038/323806a0
1986
Cited 381 times
Mapping human visual cortex with positron emission tomography
DOI: 10.2967/jnumed.112.109009
2012
Cited 368 times
Amyloid-β Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods
(11)C-Pittsburgh compound B ((11)C-PiB) and (18)F-florbetapir amyloid-β (Aβ) PET radioligands have had a substantial impact on Alzheimer disease research. Although there is evidence that both radioligands bind to fibrillar Aβ in the brain, direct comparisons in the same individuals have not been reported. Here, we evaluated PiB and florbetapir in a retrospective convenience sample of cognitively normal older controls, patients with mild cognitive impairment, and patients with Alzheimer disease from the Alzheimer's Disease Neuroimaging Initiative (ADNI).From the ADNI database, 32 participants were identified who had undergone at least 1 PiB study and subsequently underwent a florbetapir study approximately 1.5 y after the last PiB study. Cortical PiB and florbetapir retention was quantified using several different methods to determine the effect of preprocessing factors (such as smoothing and reference region selection) and image processing pipelines.There was a strong association between PiB and florbetapir cortical retention ratios (Spearman ρ = 0.86-0.95), and these were slightly lower than cortical retention ratios for consecutive PiB scans (Spearman ρ = 0.96-0.98) made approximately 1.1 y apart. Cortical retention ratios for Aβ-positive subjects tended to be higher for PiB than for florbetapir images, yielding slopes for linear regression of florbetapir against PiB of 0.59-0.64. Associations between consecutive PiB scans and between PiB and florbetapir scans remained strong, regardless of processing methods such as smoothing, spatial normalization to a PET template, and use of reference regions. The PiB-florbetapir association was used to interconvert cutoffs for Aβ positivity and negativity between the 2 radioligands, and these cutoffs were highly consistent in their assignment of Aβ status.PiB and florbetapir retention ratios were strongly associated in the same individuals, and this relationship was consistent across several data analysis methods, despite scan-rescan intervals of more than a year. Cutoff thresholds for determining positive or negative Aβ status can be reliably transformed from PiB to florbetapir units or vice versa using a population scanned with both radioligands.
DOI: 10.1073/pnas.1010461107
2010
Cited 348 times
Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition
Amyloid-β (Aβ) plaque deposition can precede the clinical manifestations of dementia of the Alzheimer type (DAT) by many years and can be associated with changes in brain metabolism. Both the Aβ plaque deposition and the changes in metabolism appear to be concentrated in the brain's default-mode network. In contrast to prior studies of brain metabolism which viewed brain metabolism from a unitary perspective that equated glucose utilization with oxygen consumption, we here report on regional glucose use apart from that entering oxidative phosphorylation (so-called "aerobic glycolysis"). Using PET, we found that the spatial distribution of aerobic glycolysis in normal young adults correlates spatially with Aβ deposition in individuals with DAT and cognitively normal participants with elevated Aβ, suggesting a possible link between regional aerobic glycolysis in young adulthood and later development of Alzheimer pathology.
DOI: 10.1007/s00259-003-1130-4
2003
Cited 347 times
In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM
DOI: 10.1001/jama.2023.13239
2023
Cited 334 times
Donanemab in Early Symptomatic Alzheimer Disease
Importance There are limited efficacious treatments for Alzheimer disease. Objective To assess efficacy and adverse events of donanemab, an antibody designed to clear brain amyloid plaque. Design, Setting, and Participants Multicenter (277 medical research centers/hospitals in 8 countries), randomized, double-blind, placebo-controlled, 18-month phase 3 trial that enrolled 1736 participants with early symptomatic Alzheimer disease (mild cognitive impairment/mild dementia) with amyloid and low/medium or high tau pathology based on positron emission tomography imaging from June 2020 to November 2021 (last patient visit for primary outcome in April 2023). Interventions Participants were randomized in a 1:1 ratio to receive donanemab (n = 860) or placebo (n = 876) intravenously every 4 weeks for 72 weeks. Participants in the donanemab group were switched to receive placebo in a blinded manner if dose completion criteria were met. Main Outcomes and Measures The primary outcome was change in integrated Alzheimer Disease Rating Scale (iADRS) score from baseline to 76 weeks (range, 0-144; lower scores indicate greater impairment). There were 24 gated outcomes (primary, secondary, and exploratory), including the secondary outcome of change in the sum of boxes of the Clinical Dementia Rating Scale (CDR-SB) score (range, 0-18; higher scores indicate greater impairment). Statistical testing allocated α of .04 to testing low/medium tau population outcomes, with the remainder (.01) for combined population outcomes. Results Among 1736 randomized participants (mean age, 73.0 years; 996 [57.4%] women; 1182 [68.1%] with low/medium tau pathology and 552 [31.8%] with high tau pathology), 1320 (76%) completed the trial. Of the 24 gated outcomes, 23 were statistically significant. The least-squares mean (LSM) change in iADRS score at 76 weeks was −6.02 (95% CI, −7.01 to −5.03) in the donanemab group and −9.27 (95% CI, −10.23 to −8.31) in the placebo group (difference, 3.25 [95% CI, 1.88-4.62]; P &amp;amp;lt; .001) in the low/medium tau population and −10.2 (95% CI, −11.22 to −9.16) with donanemab and −13.1 (95% CI, −14.10 to −12.13) with placebo (difference, 2.92 [95% CI, 1.51-4.33]; P &amp;amp;lt; .001) in the combined population. LSM change in CDR-SB score at 76 weeks was 1.20 (95% CI, 1.00-1.41) with donanemab and 1.88 (95% CI, 1.68-2.08) with placebo (difference, −0.67 [95% CI, −0.95 to −0.40]; P &amp;amp;lt; .001) in the low/medium tau population and 1.72 (95% CI, 1.53-1.91) with donanemab and 2.42 (95% CI, 2.24-2.60) with placebo (difference, −0.7 [95% CI, −0.95 to −0.45]; P &amp;amp;lt; .001) in the combined population. Amyloid-related imaging abnormalities of edema or effusion occurred in 205 participants (24.0%; 52 symptomatic) in the donanemab group and 18 (2.1%; 0 symptomatic during study) in the placebo group and infusion-related reactions occurred in 74 participants (8.7%) with donanemab and 4 (0.5%) with placebo. Three deaths in the donanemab group and 1 in the placebo group were considered treatment related. Conclusions and Relevance Among participants with early symptomatic Alzheimer disease and amyloid and tau pathology, donanemab significantly slowed clinical progression at 76 weeks in those with low/medium tau and in the combined low/medium and high tau pathology population. Trial Registration ClinicalTrials.gov Identifier: NCT04437511
DOI: 10.1126/science.276.5316.1272
1997
Cited 333 times
Brain Regions Responsive to Novelty in the Absence of Awareness
Brain regions responsive to novelty, without awareness, were mapped in humans by positron emission tomography. Participants performed a simple reaction-time task in which all stimuli were equally likely but, unknown to them, followed a complex sequence. Measures of behavioral performance indicated that participants learned the sequences even though they were unaware of the existence of any order. Once the participants were trained, a subtle and unperceived change in the nature of the sequence resulted in increased blood flow in a network comprising the left premotor area, left anterior cingulate, and right ventral striatum. Blood flow decreases were observed in the right dorsolateral prefrontal and parietal areas. The time course of these changes suggests that the ventral striatum is responsive to novel information, and the right prefrontal area is associated with the maintenance of contextual information, and both processes can occur without awareness.
DOI: 10.1002/ana.23908
2013
Cited 328 times
Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β‐amyloid
We examined agreement and disagreement between 2 biomarkers of β-amyloid (Aβ) deposition (amyloid positron emission tomography [PET] and cerebrospinal fluid [CSF] Aβ1-42 ) in normal aging and dementia in a large multicenter study.Concurrently acquired florbetapir PET and CSF Aβ were measured in cognitively normal, mild cognitive impairment (MCI), and Alzheimer's disease participants (n = 374) from the Alzheimer's Disease Neuroimaging Initiative. We also compared Aβ measurements in a separate group with serial CSF measurements over 3.1 ± 0.8 years that preceded a single florbetapir session. Additional biomarker and cognitive data allowed us to further examine profiles of discordant cases.Florbetapir and CSF Aβ were inversely correlated across all diagnostic groups, and dichotomous measurements were in agreement in 86% of subjects. Among subjects showing the most disagreement, the 2 discordant groups had different profiles: the florbetapir(+) /CSF Aβ(-) group was larger (n = 13) and was made up of only normal and early MCI subjects, whereas the florbetapir(-) /CSF Aβ(+) group was smaller (n = 7) and had poorer cognitive function and higher CSF tau, but no ApoE4 carriers. In the longitudinal sample, we observed both stable longitudinal CSF Aβ trajectories and those actively transitioning from normal to abnormal, but the final CSF Aβ measurements were in good agreement with florbetapir cortical retention.CSF and amyloid PET measurements of Aβ were consistent in the majority of subjects in the cross-sectional and longitudinal populations. Based on our analysis of discordant subjects, the available evidence did not show that CSF Aβ regularly becomes abnormal prior to fibrillar Aβ accumulation early in the course of disease.
DOI: 10.2967/jnumed.111.090340
2012
Cited 326 times
Performance Characteristics of Amyloid PET with Florbetapir F 18 in Patients with Alzheimer's Disease and Cognitively Normal Subjects
The objectives of this study were to examine the effective dose range and the test-retest reliability of florbetapir F 18 using, first, visual assessment by independent raters masked to clinical information and, second, semiautomated quantitative measures of cortical target area to cerebellum standardized uptake value ratios (SUVr) as primary outcome measures.Visual ratings of PET image quality and tracer retention or b-amyloid (Ab) binding expressed as SUVrs were compared after intravenous administration of either 111 MBq (3 mCi) or 370 MBq (10 mCi) of florbetapir F 18 in patients with Alzheimer's disease (AD) (n 5 9) and younger healthy controls (YHCs) (n 5 11).In a separate set of subjects (AD, n 5 10; YHCs, n 5 10), test-retest reliability was evaluated by comparing intrasubject visual read ratings and SUVrs for 2 PET images acquired within 4 wk of each other.Results: There were no meaningful differences between the 111-MBq (3-mCi) and 370-MBq (10-mCi) dose in the visual rating or SUVr.The difference in the visual quality across 111 and 370 MBq showed a trend toward lower image quality, but no statistical significance was achieved (t test; t 1 5 21.617, P 5 0.12) in this relatively small sample of subjects.At both dose levels, visual ratings of amyloid burden identified 100% of AD subjects as Ab-positive and 100% of YHCs as Ab-negative.Mean intrasubject test-retest variability for cortical average SUVrs with the cerebellum as a reference over the 50-to 70-min period was 2.4% 6 1.41% for AD subjects and 1.5% 6 0.84% for controls.The overall SUVr test-retest correlation coefficient was 0.99.The overall k-statistic for test-retest agreement for Ab classification of the masked reads was 0.89 (95% confidence interval, 0.69-1.0).Conclusion: Florbetapir F 18 appears to have a wide effective dose range and a high testretest reliability for both quantitative (SUVr) values and visual assessment of the ligand.These imaging performance properties provide important technical information on the use of florbetapir F 18 and PET to detect cerebral amyloid aggregates.
DOI: 10.1212/wnl.0000000000004643
2017
Cited 320 times
In vivo staging of regional amyloid deposition
To estimate a regional progression pattern of amyloid deposition from cross-sectional amyloid-sensitive PET data and evaluate its potential for in vivo staging of an individual's amyloid pathology.Multiregional analysis of florbetapir (18F-AV45)-PET data was used to determine individual amyloid distribution profiles in a sample of 667 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, including cognitively normal older individuals (CN) as well as patients with mild cognitive impairment and Alzheimer disease (AD) dementia. The frequency of regional amyloid positivity across CN individuals was used to construct a 4-stage model of progressing amyloid pathology, and individual distribution profiles were used to evaluate the consistency of this hierarchical stage model across the full cohort.According to a 4-stage model, amyloid deposition begins in temporobasal and frontomedial areas, and successively affects the remaining associative neocortex, primary sensory-motor areas and the medial temporal lobe, and finally the striatum. Amyloid deposition in these brain regions showed a highly consistent hierarchical nesting across participants, where only 2% exhibited distribution profiles that deviated from the staging scheme. The earliest in vivo amyloid stages were mostly missed by conventional dichotomous classification approaches based on global florbetapir-PET signal, but were associated with significantly reduced CSF Aβ42 levels. Advanced in vivo amyloid stages were most frequent in patients with AD and correlated with cognitive impairment in individuals without dementia.The highly consistent regional hierarchy of PET-evidenced amyloid deposition across participants resembles neuropathologic observations and suggests a predictable regional sequence that may be used to stage an individual's progress of amyloid pathology in vivo.
DOI: 10.1002/ana.21559
2009
Cited 315 times
Decreased cerebrospinal fluid Aβ<sub>42</sub> correlates with brain atrophy in cognitively normal elderly
For therapies for Alzheimer's disease (AD) to have the greatest impact, it will likely be necessary to treat individuals in the "preclinical" (presymptomatic) stage. Fluid and neuroimaging measures are being explored as possible biomarkers of AD pathology that could aid in identifying individuals in this stage to target them for clinical trials and to direct and monitor therapy. The objective of this study was to determine whether cerebrospinal fluid (CSF) biomarkers for AD suggest the presence of brain damage in the preclinical stage of AD.We investigated the relation between structural neuroimaging measures (whole-brain volume) and levels of CSF amyloid-beta (Abeta)(40), Abeta(42), tau, and phosphorylated tau(181) (ptau(181)), and plasma Abeta(40) and Abeta(42) in well-characterized research subjects with very mild and mild dementia of the Alzheimer type (n = 29) and age-matched, cognitively normal control subjects (n = 69).Levels of CSF tau and ptau(181), but not Abeta(42), correlated inversely with whole-brain volume in very mild and mild dementia of the Alzheimer type, whereas levels of CSF Abeta(42), but not tau or ptau(181), were positively correlated with whole-brain volume in nondemented control subjects.Reduction in CSF Abeta(42), likely reflecting Abeta aggregation in the brain, is associated with brain atrophy in the preclinical phase of AD. This suggests that there is toxicity associated with Abeta aggregation before the onset of clinically detectable disease. Increases in CSF tau (and ptau(181)) are later events that correlate with further structural damage and occur with clinical onset and progression.
DOI: 10.1001/archpsyc.1989.01810060013003
1989
Cited 312 times
Neuroanatomical Correlates of a Lactate-Induced Anxiety Attack
Positron emission tomographic measurements of regional blood flow were used to assess local neuronal activity in patients with panic disorder and in normal control subjects before and during the infusion of sodium lactate. A new technique for the analysis of positron emission tomographic data was employed to identify significant changes in regional blood flow associated with lactate infusion in the panicking patients, nonpanicking patients, and controls. Lactate-induced panic was associated with significant blood flow increases bilaterally in the temporal poles; bilaterally in insular cortex, claustrum, or lateral putamen; bilaterally in or near the superior colliculus; and in or near the left anterior cerebellar vermis. Lactate infusion was not associated with significant changes in regional blood flow in the nonpanicking patients or control subjects. Thus, the identified regions seemed to be involved in an anxiety attack.
DOI: 10.1002/emmm.200900048
2009
Cited 308 times
Cerebrospinal fluid tau and ptau <sub>181</sub> increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer's disease
Report26 November 2009Open Access Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer's disease Anne M. Fagan Corresponding Author Anne M. Fagan [email protected] Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Mark A. Mintun Mark A. Mintun Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Aarti R. Shah Aarti R. Shah Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Patricia Aldea Patricia Aldea Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Catherine M. Roe Catherine M. Roe Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Robert H. Mach Robert H. Mach Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Daniel Marcus Daniel Marcus Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author John C. Morris John C. Morris Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author David M. Holtzman David M. Holtzman Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Anne M. Fagan Corresponding Author Anne M. Fagan [email protected] Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Mark A. Mintun Mark A. Mintun Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Aarti R. Shah Aarti R. Shah Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Patricia Aldea Patricia Aldea Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Catherine M. Roe Catherine M. Roe Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Robert H. Mach Robert H. Mach Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Daniel Marcus Daniel Marcus Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author John C. Morris John C. Morris Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author David M. Holtzman David M. Holtzman Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO, USA Search for more papers by this author Author Information Anne M. Fagan *,1,2,3, Mark A. Mintun2,4, Aarti R. Shah1,3, Patricia Aldea4, Catherine M. Roe1,2, Robert H. Mach2,4, Daniel Marcus4, John C. Morris1,2,5 and David M. Holtzman1,2,3,6 1Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA 2Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA 3Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA 4Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA 6Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO, USA *Tel: +1 341 362 3453; Fax: +1 341 362 2244 EMBO Mol Med (2009)1:371-380https://doi.org/10.1002/emmm.200900048 PDFDownload PDF of article text and main figures. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Abstract Alzheimer's disease (AD) pathology is estimated to develop many years before detectable cognitive decline. Fluid and imaging biomarkers may identify people in early symptomatic and even preclinical stages, possibly when potential treatments can best preserve cognitive function. We previously reported that cerebrospinal fluid (CSF) levels of amyloid-β42 (Aβ42) serve as an excellent marker for brain amyloid as detected by the amyloid tracer, Pittsburgh compound B (PIB). Using data from 189 cognitively normal participants, we now report a positive linear relationship between CSF tau/ptau181 (primary constituents of neurofibrillary tangles) with the amount of cortical amyloid. We observe a strong inverse relationship of cortical PIB binding with CSF Aβ42 but not for plasma Aβ species. Some individuals have low CSF Aβ42 but no cortical PIB binding. Together, these data suggest that changes in brain Aβ42 metabolism and amyloid formation are early pathogenic events in AD, and that significant disruptions in CSF tau metabolism likely occur after Aβ42 initially aggregates and increases as amyloid accumulates. These findings have important implications for preclinical AD diagnosis and treatment. The paper explained PROBLEM: AD pathology is estimated to develop many years before detectable cognitive decline. Once symptoms are apparent, the brain has already experienced substantial neuronal and synaptic loss. Thus there is a great need to develop biomarkers that can identify people in the very earliest symptomatic and even ‘preclinical’ stages, prior to any cognitive impairment, when potential treatments will have the best opportunity to preserve cognitive function. RESULTS: We analysed CSF samples and in parallel determined the amount of cortical amyloid as evidenced by retention of the in vivo amyloid binding agent, PIB, in 189 cognitively normal research participants (age 43–89 years). We observed a positive linear relationship between the levels of CSF tau and ptau181 (primary constituents of neurofibrillary tangles) with the amount of cortical amyloid. We also observed a strong inverse relationship between cortical PIB binding and CSF Aβ42 (the primary constituent of amyloid plaques), but not plasma Aβ species, demonstrating that a low level of CSF Aβ42 is an excellent marker of brain amyloid even in the absence of cognitive symptoms. IMPACT: The data obtained shed light on the potential utility of PIB amyloid imaging and CSF Aβ42, tau and ptau181 as antecedent (‘preclinical’) biomarkers of AD and also provide insight into the normal time course of the pathophysiology of the disease as reflected in the CSF. These findings have important implications for preclinical AD diagnosis and treatment, and should aid in the design and evaluation of secondary prevention trials in AD. INTRODUCTION Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder that currently affects ∼10.6 million people in the US and Europe, with projected estimates reaching 15.4 million by the year 2030 (Alzheimer's Association). Clinicopathological studies support the notion of a long ‘preclinical’ stage of the disease, with brain pathology (amyloid plaques and neurofibrillary tangles) estimated to begin ∼10–20 years prior to significant neuronal cell death and the consequent appearance of any behavioural signs or symptoms (Braak & Braak, 1997; Gomez-Isla et al, 1996; Hulette et al, 1998; Markesbery et al, 2006; Morris & Price, 2001; Price et al, 2001). Fluid and imaging biomarkers of this pathology are currently being sought in order to confirm early diagnoses and, importantly, to identify individuals in the preclinical stage so emerging therapies ultimately have a chance to preserve normal brain function (Craig-Schapiro et al, 2008). We recently reported an inverse relationship between cortical amyloid deposits, as viewed by positron emission tomography (PET) imaging with the amyloid binding agent, Pittsburgh compound B (PIB) and the amount of cerebrospinal fluid (CSF) amyloid-β42 (Aβ42), the primary constituent of brain amyloid plaques (Fagan et al, 2006, 2007). Individuals with cortical amyloid (as detected by PET PIB) had low CSF Aβ42 whereas those without cortical amyloid had high CSF Aβ42. This relationship was observed independent of clinical status; several cognitively normal individuals had a CSF Aβ42/PIB profile indistinguishable from that of other individuals diagnosed clinically with early stage dementia of the Alzheimer type (DAT). These observations are consistent with the idea of preclinical AD and suggest that these measures may have clinical utility as antecedent biomarkers of the disease. We have now obtained CSF and PIB data from 189 cognitively normal individuals ranging in age from 43 to 89 years. We explored the relationship between in vivo brain amyloid and CSF markers of proteins present in neurons and constituents of neurofibrillary tangles (tau and ptau181), as well as Aβ species in plasma, and investigated whether the CSF Aβ42/PIB relationship remains robust in this large cohort of non-demented individuals. The data we obtained shed further light on the potential utility of these measures as antecedent biomarkers of AD, and also provide insight into the normal time course of the pathophysiology of the disease as reflected in CSF, information that should aid in the design and evaluation of secondary prevention trials. RESULTS One hundred and eighty-nine research participants with a clinical dementia rating of 0 (CDR 0, indicating cognitively normal) (Morris, 1993) met the selection criterion of having a PIB scan within 2 years of CSF collection by lumbar puncture (LP). Combined PIB and biomarker data from 25 of these participants have been reported by us in previous studies (Fagan et al, 2006, 2009), whereas the remaining 164 are unique to the present study. The demographic characteristics of the present cohort are similar to what we have previously published with the exception of age (Table 1). By design, we have included a wide range of ages in the present study (43–89 years, normally distributed) so as to better capture the various biomarker correlations during the potential preclinical stage of AD (which is estimated to begin 10–20 years prior to cognitive symptoms). Therefore, the mean age of our cohort is younger (64.7 ± 10.4) than what we have reported on previously (71.41 ± 8.62; Fagan et al, 2009). In keeping with this age difference, CSF Aβ42 levels in the present study (652 ± 235 pg/ml) are higher than that reported by us in our studies of older individuals (572 ± 208 pg/ml) and, as expected, CSF tau (285 ± 151 pg/ml vs. 334 ± 180 pg/ml), and ptau181 (52 ± 23 pg/ml vs. 61 ± 27 pg/ml) levels are lower (Fagan et al, 2009). The absolute plasma Aβ values cannot be compared between our various studies because different methods were used to measure these analytes. Table 1. Participant demographic characteristics, psychometric performance and biomarker values CDR 0 participants N 189 Age at LP (year) 64.7 (10.4) Age range (year) 43–89 M/F (%F) 62/127 (67%) APOE ε4–/ε4+ (% ε4+) 125/64 (34%) Selective remembering (possible score, 0–48) 31.2 (6.3) Animal naming 21.6 (5.3) Trailmaking A (# of connections/s) 0.916 (0.303) Trailmaking B (# of connections/s) 0.384 (0.151) CSF Aβ38 1228 (514) CSF Aβ40 8958 (4464) CSF Aβ42 652 (235) CSF tau 285 (151) CSF ptau181 52 (23) Plasma Aβ1–40 217 (60) Plasma Aβx–40 37 (11) Plasma Aβ1–42 193 (44) Plasma Aβx–42 25 (9) PIB MCBP 0.0931 (0.213) Fluid psychometric and PET PIB (MCBP) values are represented as means (standard deviations). CSF and plasma values are in pg/ml. PIB MCBP values are in arbitrary units (generated by Logan graphical analyses). APOE, apolipoprotein E; CDR, clinical dementia rating; CSF, cerebrospinal fluid; LP, lumbar puncture; MCBP, mean cortical binding potential; PIB, Pittsburgh compound B. Given the wide range of ages in the present cohort, we first investigated whether any of the biomarker measures correlated with age at the time of LP. As shown in Fig. 1, positive correlations were observed between age and cortical amyloid (represented by mean cortical PIB binding potential (MCBP); Mintun et al, 2006), CSF tau and ptau181 and plasma Aβ1–40. An inverse correlation was observed between age and CSF Aβ42, and no relationships between age and CSF Aβ38 or Aβ40 were found. Due to these age effects, all subsequent analyses were corrected for age. Figure 1. Cortical amyloid as detected by PET PIB and fluid biomarkers in CDR 0 participants (n = 189) as a function of age. Levels of A.. cortical amyloid are positively correlated with age in this CDR 0 cohort, B.. The level of CSF Aβ38 is not correlated with age, C.. nor is CSF Aβ40. D.. CSF Aβ42 is negatively correlated with age. E.. Positive correlations with age are observed for CSF tau, F.. CSF ptau181 and G.. plasma Aβ1–40. H.. Plasma Aβ1–42 is not correlated with age in this cohort. Download figure Download PowerPoint We next investigated whether the inverse relationship between CSF Aβ42 and cortical PIB binding that we had reported previously in a mixed cohort of mildly demented and non-demented individuals was observed in this cohort of cognitively normal individuals. Overall, 29 participants in this cohort had MCBP values greater than or equal to 0.18 whereas 160 participants had MCBPs below 0.18 (Fig 2A). In individuals with MCBP values greater than 0.18, PIB retention is visualized in the neocortex and appears qualitatively greater than background levels. We continued to observe a robust and linear relationship between CSF Aβ42 and cortical amyloid in this group of cognitively normal individuals (Fig 2B). Every participant with high PIB binding had CSF Aβ42 values <582 pg/ml; 86% had CSF Aβ42 values <500 pg/ml. A large majority (84%) of participants with low PIB binding had CSF Aβ42 values >500 pg/ml (Fig 2A). Consistent with our previous findings (Fagan et al, 2006, 2007), many of the CDR 0 participants within this broad age range had little or no cortical amyloid and high mean CSF Aβ42 levels (≥500 pg/ml) (Fig 2B). Twenty-five of the 189 CDR 0 participants displayed the typical AD biomarker phenotype in relation to Aβ, with high PIB binding and low CSF Aβ42 (Fig 2B). In many cases their PET PIB scans were indistinguishable from demented individuals with DAT (CDR > 0) (Fig 2C). In contrast to CSF Aβ42, CSF Aβ40 was not related to the presence or amount of cortical amyloid in these individuals (Fig 2D). Similarly, levels of CSF Aβ38 were not correlated with cortical amyloid load (Fig 2E), but the ratio of CSF Aβ38/Aβ42 was positively correlated with amyloid load (Fig 2F), likely due to the drop in CSF Aβ42 with amyloid deposition. Figure 2. Cortical amyloid as detected by PET PIB and its relationship to CSF Aβ in CDR 0 participants (n = 189). A.. A high percentage (84%) of participants with low PIB values (MCBP < 0.18) had high CSF Aβ42 levels (mean (SD) = 705 pg/ml (211)) whereas the vast majority of participants (86%) in the cohort who had high PIB binding (MCBP ≥ 0.18) had low CSF Aβ42 (mean (SD) = 362 pg/ml (115)). Horizontal lines represent the group means, and these means are statistically different from each other (asterisk, p < 0.0001). B.. Relationship between CSF Aβ42 levels and cortical amyloid. Most participants had low MCBP values. The vast majority (86%) of participants with MCBPs ≥ 0.18 had low CSF Aβ42 levels. These CDR 0 participants are hypothesized to have preclinical AD. The box outlined by dashed lines identifies the 28 individuals who have low cortical PIB binding (MCBP < 0.18) with low CSF Aβ42. There is a linear relationship between CSF Aβ42 and the amount of cortical amyloid although CSF Aβ42 appears to drop and then stay low as the amyloid load increases. C.. MRI (left) and PET PIB (right) images of a representative low PIB (MCBP = 0.0270) CDR 0 participant (top panel), a high PIB (MCBP = 0.7790) CDR 0 participant (middle panel), and a high PIB (MCBP = 0.7812) CDR > 0 participant (bottom panel). The amount of cortical PIB binding (yellow-red corresponds to high binding) in the high PIB CDR 0 participant and the high PIB CDR > 0 participant is comparable, whereas there is only background PIB binding (green) in white matter tracks in the low PIB CDR 0 participant. D,E.. No relationship between CSF Aβ40 (D) and CSF Aβ38 (E) levels and cortical amyloid was observed in this cognitively normal cohort (r = −0.0287, p = 0.6963; r = 0.06851, p = 0.3515, respectively). F.. A negative correlation was found between cortical amyloid and the CSF Aβ38/Aβ42 ratio. All Pearson correlation coefficients are corrected for age. n.s., not significant. Download figure Download PowerPoint Twenty-eight CDR 0 individuals showed a mismatch, appearing in the ‘lower quadrant’ of Fig 2B (whose boundaries are indicated by the square outlined in a dashed line in Fig 2B) in that they had little or no cortical PIB binding (MCPB < 0.18) but had low CSF Aβ42 (<500 pg/ml). The mean interval between LP and PIB scans for individuals in this quadrant did not differ statistically from the mean intervals of those participants in the other quadrants (i.e. low PIB/high CSF Aβ42 and high PIB/low CSF Aβ42) (p = 0.4693). In addition, this low PIB/low CSF Aβ42 group (‘lower quadrant’, n = 28) did not differ from the low PIB/high CSF Aβ42 group (‘upper quadrant’, n = 132) in the frequency of the ε4 allele of APOE (39% vs. 27%, respectively, p = 0.2049), nor did it differ from the high PIB/low CSF Aβ42 (‘PIB-positive quadrant’) group (39% vs. 62%, respectively), but it did approach statistical significance (p = 0.0854). The ε4+ frequency in the high PIB/low CSF Aβ42 (‘PIB-positive quadrant’) group did, however, differ significantly from that of the low PIB/high CSF Aβ42 (‘upper quadrant’) group (p = 0.0003). We did not observe any significant associations between quadrant membership and performance on any of the psychometric tests when adjusted for age (Selective Reminding, p = 0.2486; Animal Naming, p = 0.1209; Trailmaking A, p = 0.8561; Trailmaking B, p = 0.2817). The groups also did not differ in the percentage of self-reported presence or absence of heart disease, diabetes, history of stroke and/or TIAs, prior head trauma (with loss of consciousness) or NSAID use (all p > 0.05, Fisher's exact test). However, the low PIB/low CSF Aβ42 group (‘lower quadrant’) had a greater frequency of reported hypertension than the low PIB/high CSF Aβ42 group (‘upper quadrant’) (50% vs. 29.6%, respectively, p = 0.0469) and a greater frequency of arthritis than the low PIB/high CSF Aβ42 group (14.3% vs. 3.03%, respectively, p = 0.0323). The biological significance of these findings, if any, remains unclear but warrants further investigation. Overall, longitudinal PIB follow-up of the participants in this lower quadrant will be required to understand whether their low CSF Aβ42 represents Aβ aggregation in diffuse (PIB-negative) plaques, oligomeric forms prior to substantial fibrillar (PIB-positive) Aβ deposition or simply reflects the low end of the normal spectrum of CSF Aβ42 levels. It is interesting to note that one of the individuals in this quadrant (having no cortical PIB binding but low CSF Aβ42) has come to autopsy 2 years after LP and PIB testing. This participant was CDR 0 at the time of LP and PIB (6 months apart) but received a CDR rating of 0.5 (very mild dementia) just prior to death. Subsequent histological analysis of the brain revealed abundant diffuse but few neuritic (amyloid) plaques, (Cairns et al, 2009) consistent with the first proposed hypothesis. Despite the strong relationship between PIB binding and CSF Aβ42, we observed no relationship between cortical amyloid load and plasma levels of Aβ42, Aβx–42, Aβ40 or Aβx–40 (Fig. 3). Our previous study reported the same results in a much smaller, clinically mixed cohort. Furthermore, for the present study we used the xMAP plasma kit (Inno-Bia Plasma Aβ Forms Multiplex Assay) which generates reliable values in the lower pg/ml range required for plasma measures (Blennow et al, 2009; Lachno et al, 2009). We obtained reliable values (with low coefficients of variability) for all but five samples; these five had very low levels of Aβx–42 that were below the level of detection so they were assigned a value of 0 pg/ml. Figure 3. Cortical amyloid as detected by PET PIB and its relationship to plasma Aβ42 and Aβ40 species in CDR 0 participants (n = 189). No relationship was observed between mean cortical PIB binding and plasma A.. Aβ1–40 (r = −0.0724, p = 0.3234), B.. Aβ x–40 (r = 0.04583, p = 0.5323), C.. Aβ1–42 (r = −0.1015, p = 0.1658) or D.. Aβx–42 (r = −0.03869, p = 0.5981). Five participants had levels of plasma Aβx–42 below the level of detection so they are represented as having 0 pg/ml. All Pearson correlation coefficients are corrected for age. n.s., not significant. Download figure Download PowerPoint Importantly, analysis of this CDR 0 cohort revealed a novel pattern of increases in CSF tau (and ptau181) with increasing cortical amyloid deposition (Fig 4A,B). Elevations in CSF tau in general did not appear to occur substantially in participants with an MCBP less than 0.5 but did increase in many, but not all, participants with binding potentials 0.5 and greater. Regression analyses correcting for age revealed a linear relationship between CSF tau (and ptau181) and PIB binding (Fig 4A,B). In addition, the ratios of CSF tau/Aβ42 and ptau181/Aβ42 also increased linearly with amyloid deposition and the correlations were particularly robust (Fig 4C,D). Similar to what we observed for CSF tau and ptau181, the ratios of tau and ptau181 to CSF Aβ42 were generally not elevated until substantial PIB binding values were reached. Figure 4. Cortical amyloid as detected by PET PIB and its relationship to CSF tau and ptau181 and the ratios of CSF tau/Aβ42 and ptau181/Aβ42 in CDR 0 participants (n = 189). A linear relationship is observed between the amount of cortical amyloid and A.. the levels of CSF tau B.. the levels of CSF ptau181 C.. the ratios of CSF tau/Aβ42 and D.. the ratios of the ptau181/Aβ42. The correlations between the CSF tau(s)/Aβ42 ratios and MCBP remain significant even when the statistical outlier (high PIB, high ratio) is omitted from the analysis (tau/Aβ42, r = 0.74227, p < 0.0001; ptau181/Aβ42, r = 0.73510, p < 0.0001). All Pearson correlation coefficients are corrected for age. Download figure Download PowerPoint All participants in this cognitively normal cohort were administered a common battery of psychometric tests, including Selective Reminding (a measure of episodic memory) (Grober et al, 1988), Animal Naming (assesses semantic memory) (Goodglass & Kaplan, 1983) and a speeded visuospatial test with two parts: Trailmakings A and B (Armitage, 1946). None of the biomarker measures showed significant associations with performance on any of the psychometric tests, with the exception of negative correlations between Trailmaking A and CSF Aβ38 (r = −0.14621, p = 0.0464) and plasma Aβ1–40 (r = −0.24069, p = 0.0009). Due to the number of statistical tests conducted overall, however, some statistically significant differences could be due to chance. DISCUSSION The data presented here are part of an ongoing longitudinal study investigating fluid and imaging measures as possible antecedent (preclinical) biomarkers of AD. Importantly, they shed light on what may be the pathophysiology of the earliest events in the disease process and their relationship with CSF biomarkers. Consistent with our previous, smaller studies which included both non-demented and demented individuals (Fagan et al, 2006, 2007), we observed a robust relationship between cortical PIB binding and levels of CSF Aβ42 but not CSF Aβ40 (or Aβ38) in this large cohort of cognitively normal participants. While this relationship is linear, visual inspection of the graphs gives the impression of CSF Aβ42 levels dropping early in the disease process and staying low as the amount of cortical amyloid increases. The lack of correlation we observed between CSF Aβ38 and the amount of cortical amyloid is consistent with other studies suggesting this Aβ species does not change with dementia status (Mehta & Pirttila, 2005; Welge et al, 2009). However, these studies suggested that the ratio of Aβ38 to Aβ42, as opposed to Aβ38 alone, may have better specificity for distinguishing AD from controls or other non-AD dementias, although not all studies have reported this (Schoonenboom et al, 2005). The positive correlation we observed between cortical amyloid and the ratio of Aβ38 to Aβ42 is likely driven by the drop in Aβ42, as suggested by others (Mehta & Pirttila, 2005). We were also now able to measure, with great sensitivity and reliability, a number of Aβ species in plasma, including Aβ1–40, Aβx–40, Aβ1–42 and Aβx–42. However, the level of these species did not in any way relate to the presence or amount of amyloid in the brain. Previous studies investigating the utility of plasma Aβ species have reported mixed results. While plasma Aβ42 has been reported to be neither specific nor sensitive for a clinical diagnosis of mild cognitive impairment (MCI) or AD (Fukumoto et al, 2003), nor in predicting the probability of progression from MCI to AD (Hansson et al, 2008), other studies have reported that the ratio of plasma Aβ42/Aβ40 may be useful as an antecedent marker for identifying risk for developing cognitive impairment in cognitively normal elders (Graff-Radford et al, 2007). Others have reported alterations in the direction of change in plasma Aβ species over the course of the disease (Schupf et al, 2008). Using the same protocol as we used in the present study, a very recent study reported significant decreases in the levels of plasma Aβ42 and the Aβ42/Aβ40 ratio in those who were classified as having AD or MCI that would progress to AD (with subjects preselected based on clinical and CSF biomarker profiles) compared to those who did not have the ‘abnormal’ profile (Lewczuk et al, 2009). However, this decrease was not particularly robust, on the order of 10–15%, with great overlap between the groups. Thus, while the mechanism(s) underlying potential changes in Aβ metabolism in plasma is still unclear, our cross-sectional data indicate that Aβ42 levels in plasma do not reflect the amount of amyloid in the brain in cognitively normal individuals (nor are they related to the level of Aβ42 in the CSF, data not shown). In this large cohort we now observed a new grouping of participants; those who had low CSF Aβ42 levels in the absence of cortical PIB binding. It is unlikely that this is simply an APOE effect (Sunderland et al, 2004) since the frequency of the ε4 allele did not differ between the low PIB groups with low versus high CSF Aβ42. Instead, these data suggest that CSF Aβ42 may drop prior to amyloid becoming detectable by PIB, or this drop may reflect the presence of diffuse plaques and/or oligomeric Aβ species, consistent with the participant in the lower (low PIB/low CSF Aβ42) quadrant who has come to autopsy with abundant diffuse, but few amyloid (neuritic), plaques (Cairns et al, 2009). However, we cannot rule out the possib
DOI: 10.1073/pnas.1107411108
2011
Cited 289 times
Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans
Aggregation of amyloid-β (Aβ) as toxic oligomers and amyloid plaques within the brain appears to be the pathogenic event that initiates Alzheimer's disease (AD) lesions. One therapeutic strategy has been to reduce Aβ levels to limit its accumulation. Activation of certain neurotransmitter receptors can regulate Aβ metabolism. We assessed the ability of serotonin signaling to alter brain Aβ levels and plaques in a mouse model of AD and in humans. In mice, brain interstitial fluid (ISF) Aβ levels were decreased by 25% following administration of several selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Similarly, direct infusion of serotonin into the hippocampus reduced ISF Aβ levels. Serotonin-dependent reductions in Aβ were reversed if mice were pretreated with inhibitors of the extracellular regulated kinase (ERK) signaling cascade. Chronic treatment with an SSRI, citalopram, caused a 50% reduction in brain plaque load in mice. To test whether serotonin signaling could impact Aβ plaques in humans, we retrospectively compared brain amyloid load in cognitively normal elderly participants who were exposed to antidepressant drugs within the past 5 y to participants who were not. Antidepressant-treated participants had significantly less amyloid load as quantified by positron emission tomography (PET) imaging with Pittsburgh Compound B (PIB). Cumulative time of antidepressant use within the 5-y period preceding the scan correlated with less plaque load. These data suggest that serotonin signaling was associated with less Aβ accumulation in cognitively normal individuals.
DOI: 10.1001/archneurol.2009.272
2009
Cited 286 times
Cognitive Decline and Brain Volume Loss as Signatures of Cerebral Amyloid-β Peptide Deposition Identified With Pittsburgh Compound B
<h3>Objective</h3> To examine the relation of amyloid-β peptide (Aβ) levels in the cerebral cortex with structural brain integrity and cognitive performance in cognitively healthy older people. <h3>Design</h3> Longitudinal study from May 22, 1985, through October 15, 2008. <h3>Setting</h3> Washington University Alzheimer Disease Research Center. <h3>Participants</h3> A total of 135 individuals aged 65 to 88 years with a Clinical Dementia Rating of 0. <h3>Main Outcome Measures</h3> The relations between mean cortical carbon 11 (<sup>11</sup>C)–labeled Pittsburgh compound B (PiB) binding potential values, proportional to the density of fibrillar Aβ binding sites in the brain, concurrent regional brain volumes as assessed by magnetic resonance imaging, and both concurrent and longitudinal cognitive performance in multiple domains. <h3>Results</h3> Elevated cerebral Aβ levels, in some cases comparable to those seen in individuals with Alzheimer disease, were observed in 29 participants, who also had smaller regional volumes in the hippocampus, temporal neocortex, anterior cingulate, and posterior cingulate. Concurrent cognitive performance was unrelated to Aβ levels but was related to regional brain volumes with the exception of the caudate. Longitudinal cognitive decline in episodic and working memory and visuospatial ability was associated with elevated Aβ levels and decreased hippocampal volume. <h3>Conclusion</h3> The in vivo measure of cerebral amyloidosis known as [<sup>11</sup>C]PiB is associated with cross-sectional regionally specific brain atrophy and longitudinal cognitive decline in multiple cognitive domains that occur before the clinical diagnosis of Alzheimer disease. These findings contribute to the understanding of the cognitive and structural consequences of Aβ levels in cognitively healthy older adults.
DOI: 10.1002/ana.22096
2010
Cited 277 times
Exercise and Alzheimer's disease biomarkers in cognitively normal older adults
Abstract Objective In addition to the increasingly recognized role of physical exercise in maintaining cognition, exercise may influence Alzheimer's disease (AD) pathology, as transgenic mouse studies show lowered levels of AD pathology in exercise groups. The objective of this study was to elucidate the association between exercise and AD pathology in humans using Pittsburgh compound‐B (PIB), amyloid‐β (Aβ) 42 , tau, and phosphorylated tau (ptau) 181 biomarkers. Methods Sixty‐nine older adults (17 males, 52 females) aged 55 to 88 years, were recruited and confirmed to be cognitively normal. A questionnaire on physical exercise levels over the past decade was administered to all. Cerebrospinal fluid samples were collected from 56 participants, and amyloid imaging with PIB was performed on 54 participants. Results Participants were classified based on biomarker levels. Those with elevated PIB ( p = 0.030), tau ( p = 0.040), and ptau 181 ( p = 0.044) had significantly lower exercise, with a nonsignificant trend for lower Aβ 42 ( p = 0.135) to be associated with less exercise. Results were similar for PIB after controlling for covariates; tau ( p = 0.115) and ptau 181 ( p = 0.123) differences were reduced to nonsignificant trends. Additional analyses also demonstrated that active individuals who met the exercise guidelines set by the American Heart Association had significantly lower PIB binding and higher Aβ 42 levels with and without controlling for covariates (PIB: p = 0.006 and p = 0.001; Aβ 42 : p = 0.042 and p = 0.046). Last, the associations between exercise engagement and PIB levels were more prominent in APOE epsilon 4 noncarriers. Interpretation Collectively, these results are supportive of an association between exercise engagement and AD biomarkers in cognitively normal older adults. Ann Neurol 2010;68:311–318
DOI: 10.2967/jnumed.114.148981
2015
Cited 266 times
Measurement of Longitudinal β-Amyloid Change with <sup>18</sup>F-Florbetapir PET and Standardized Uptake Value Ratios
The accurate measurement of β-amyloid (Aβ) change using amyloid PET imaging is important for Alzheimer disease research and clinical trials but poses several unique challenges. In particular, reference region measurement instability may lead to spurious changes in cortical regions of interest. To optimize our ability to measure (18)F-florbetapir longitudinal change, we evaluated several candidate regions of interest and their influence on cortical florbetapir change over a 2-y period in participants from the Alzheimer Disease Neuroimaging Initiative (ADNI).We examined the agreement in cortical florbetapir change detected using 6 candidate reference regions (cerebellar gray matter, whole cerebellum, brain stem/pons, eroded subcortical white matter [WM], and 2 additional combinations of these regions) in 520 ADNI subjects. We used concurrent cerebrospinal fluid Aβ1-42 measurements to identify subgroups of ADNI subjects expected to remain stable over follow-up (stable Aβ group; n = 14) and subjects expected to increase (increasing Aβ group; n = 91). We then evaluated reference regions according to whether cortical change was minimal in the stable Aβ group and cortical retention increased in the increasing Aβ group.There was poor agreement across reference regions in the amount of cortical change observed across all 520 ADNI subjects. Within the stable Aβ group, however, cortical florbetapir change was 1%-2% across all reference regions, indicating high consistency. In the increasing Aβ group, cortical increases were significant with all reference regions. Reference regions containing WM (as opposed to cerebellum or pons) enabled detection of cortical change that was more physiologically plausible and more likely to increase over time.Reference region selection has an important influence on the detection of florbetapir change. Compared with cerebellum or pons alone, reference regions that included subcortical WM resulted in change measurements that are more accurate. In addition, because use of WM-containing reference regions involves dividing out cortical signal contained in the reference region (via partial-volume effects), use of these WM-containing regions may result in more conservative estimates of actual change. Future analyses using different tracers, tracer-kinetic models, pipelines, and comparisons with other biomarkers will further optimize our ability to accurately measure Aβ changes over time.
DOI: 10.1093/brain/aww334
2017
Cited 253 times
Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition
The advent of tau-targeted positron emission tomography tracers such as flortaucipir (18F-AV-1451, also known as 18F-T807) have made it possible to investigate the sequence of development of tau and amyloid-β in relationship to age, and to the development of cognitive impairment due to Alzheimer’s disease. In this study, flortaucipir tau and florbetapir amyloid positron emission tomography were obtained for 217 subjects including 16 young and 58 older cognitively normal subjects, 95 subjects with mild cognitive impairment (Mini-Mental State Examination 24–30) and 48 subjects with clinically-defined possible or probable Alzheimer’s disease (Mini-Mental State Examination >10). Images were evaluated visually and quantitatively by regional and voxel-based cortical to cerebellar standard uptake value ratios. For amyloid positron emission tomography positive (Aβ+) subjects, flortaucipir neocortical standard uptake value ratio was significantly higher with more advanced clinical stage (Alzheimer’s disease > mild cognitive impairment > older cognitively normal) and was significantly elevated for Aβ+ mild cognitive impairment and Alzheimer’s disease subjects relative to the respective Aβ− subjects. In contrast, florbetapir Aβ− older cognitively normal subjects showed an increase in flortaucipir standard uptake value ratios in mesial temporal lobe regions (amygdala, hippocampus/choroid plexus region of interest) compared to younger cognitively normal subjects, but no increased standard uptake value ratios in neocortical regions. Analysis of covariance with planned contrasts showed no differences in regional or composite posterior neocortical flortaucipir standard uptake value ratio as a function of diagnostic group among Aβ− older cognitively normal or clinically diagnosed Alzheimer’s disease or mild cognitive impairment subjects. The pattern of flortaucipir distribution among Aβ+ subjects was reminiscent of the cross-sectional distribution of tau reported in post-mortem pathology studies, in that the most commonly affected regions were the inferior and lateral temporal lobes, the same regions where the first signs of increased retention appeared in Aβ+ cognitively normal subjects. However, there was large variability in extent/density of flortaucipir tau binding among Aβ+ subjects. Although high neocortical flortaucipir retention was consistently associated with an Aβ+ florbetapir positron emission tomography scan, not all Aβ+ subjects had elevated flortaucipir standard uptake value ratios. Finally, within the Aβ+ group, increasing levels of flortaucipir tau binding were associated with increased cognitive impairment, as assessed by Mini-Mental State Examination and Alzheimer’s Disease Assessment Scale. These results suggest development of tau beyond the mesial temporal lobe is associated with, and may be dependent on, amyloid accumulation. Further, the results are consistent with the hypothesis that cortical tau is associated with cognitive impairment.
DOI: 10.1001/jamaneurol.2020.0528
2020
Cited 252 times
Positron Emission Tomography Imaging With [<sup>18</sup>F]flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes
<h3>Importance</h3> Positron emission tomography (PET) may increase the diagnostic accuracy and confirm the underlying neuropathologic changes of Alzheimer disease (AD). <h3>Objective</h3> To determine the accuracy of antemortem [<sup>18</sup>F]flortaucipir PET images for predicting the presence of AD-type tau pathology at autopsy. <h3>Design, Setting, and Participants</h3> This diagnostic study (A16 primary cohort) was conducted from October 2015 to June 2018 at 28 study sites (27 in US sites and 1 in Australia). Individuals with a terminal illness who were older than 50 years and had a projected life expectancy of less than 6 months were enrolled. All participants underwent [<sup>18</sup>F]flortaucipir PET imaging, and scans were interpreted by 5 independent nuclear medicine physicians or radiologists. Supplemental autopsy [<sup>18</sup>F]flortaucipir images and pathological samples were also collected from 16 historically collected cases. A second study (FR01 validation study) was conducted from March 26 to April 26, 2019, in which 5 new readers assessed the original PET images for comparison to autopsy. <h3>Main Outcomes and Measures</h3> [<sup>18</sup>F]flortaucipir PET images were visually assessed and compared with immunohistochemical tau pathology. An AD tau pattern of flortaucipir retention was assessed for correspondence with a postmortem B3-level (Braak stage V or VI) pathological pattern of tau accumulation and to the presence of amyloid-β plaques sufficient to meet the criteria for high levels of AD neuropathological change. Success was defined as having at least 3 of the 5 readers above the lower bounds of the 95% CI for both sensitivity and specificity of 50% or greater. <h3>Results</h3> A total of 156 patients were enrolled in the A16 study and underwent [<sup>18</sup>F]flortaucipir PET imaging. Of these, 73 died during the study, and valid autopsies were performed for 67 of these patients. Three autopsies were evaluated as test cases and removed from the primary cohort (n = 64). Of the 64 primary cohort patients, 34 (53%) were women and 62 (97%) were white; mean (SD) age was 82.5 (9.6) years; and 49 (77%) had dementia, 1 (2%) had mild cognitive impairment, and 14 (22%) had normal cognition. Prespecified success criteria were met for the A16 primary cohort. The flortaucipir PET scans predicted a B3 level of tau pathology, with sensitivity ranging from 92.3% (95% CI, 79.7%-97.3%) to 100.0% (95% CI, 91.0%-100.0%) and specificity ranging from 52.0% (95% CI, 33.5%-70.0%) to 92.0% (95% CI, 75.0%-97.8%). A high level of AD neuropathological change was predicted with sensitivity of 94.7% (95% CI, 82.7%-98.5%) to 100.0% (95% CI, 90.8%-100.0%) and specificity of 50.0% (95% CI, 32.1%-67.9%) to 92.3% (95% CI, 75.9%-97.9%). The FR01 validation study also met prespecified success criteria. Addition of the supplemental autopsy data set and 3 test cases, which comprised a total of 82 patients and autopsies for both the A16 and FR01 studies, resulted in improved specificity and comparable overall accuracy. Among the 156 enrolled participants, 14 (9%) experienced at least 1 treatment-emergent adverse event. <h3>Conclusions and Relevance</h3> This study’s findings suggest that PET imaging with [<sup>18</sup>F]flortaucipir could be used to identify the density and distribution of AD-type tau pathology and the presence of high levels of AD neuropathological change, supporting a neuropathological diagnosis of AD.
DOI: 10.1001/archneurol.2011.845
2012
Cited 236 times
Exercise Engagement as a Moderator of the Effects of &lt;emph type="ital"&gt;APOE&lt;/emph&gt; Genotype on Amyloid Deposition
APOE ε4 status has been associated with greater cortical amyloid deposition, whereas exercise has been associated with less in cognitively normal adults. The primary objective here was to examine whether physical exercise moderates the association between APOE genotype and amyloid deposition in cognitively normal adults.APOE genotyping data and answers to a questionnaire on physical exercise engagement over the last decade were obtained in conjunction with cerebrospinal fluid (CSF) samples and amyloid imaging with carbon 11-labeled Pittsburgh Compound B ([(11)C]PiB) positron emission tomography. Participants were classified as either low or high exercisers based on exercise guidelines of the American Heart Association.Knight Alzheimer's Disease Research Center at Washington University, St Louis, Missouri.A total of 201 cognitively normal adults (135 of whom were women) aged 45 to 88 years were recruited from the Knight Alzheimer's Disease Research Center. Samples of CSF were collected from 165 participants. Amyloid imaging was performed for 163 participants.APOE ε4 carriers evidenced higher [(11)C]PiB binding (P<.001) and lower CSF Aβ42 levels (P<.001) than did noncarriers. Our previous findings of higher [(11)C]PiB binding (P=.005) and lower CSF Aβ42 levels (P=.009) in more sedentary individuals were replicated. Most importantly, we observed a novel interaction between APOE status and exercise engagement for [(11)C]PiB binding (P=.008) such that a more sedentary lifestyle was significantly associated with higher [(11)C]PiB binding for ε4 carriers (P=.013) but not for noncarriers (P=.20). All findings remained significant after controlling for age; sex; educational level; body mass index; the presence or history of hypertension, diabetes mellitus, heart problems, or depression; and the interval between assessments.Collectively, these results suggest that cognitively normal sedentary APOE ε4-positive individuals may be at augmented risk for cerebral amyloid deposition.
DOI: 10.1007/s00259-014-2753-3
2014
Cited 232 times
Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers
The increasing use of amyloid PET in Alzheimer's disease research and clinical trials has motivated efforts to standardize methodology. We compared retention of the (11)C radiotracer Pittsburgh Compound B (PiB) and that of two (18)F amyloid radiotracers (florbetapir and flutemetamol) using two study populations. We also examined the feasibility of converting between tracer-specific measures, using PiB as the common link between the two (18)F tracers.One group of 40 subjects underwent PiB and flutemetamol imaging sessions and a separate group of 32 subjects underwent PiB and florbetapir imaging sessions. We compared cortical and white matter retention for each (18)F tracer relative to that of PiB, as well as retention in several reference regions and image analysis methods. Correlations between tracer pairs were used to convert tracer-specific threshold values for amyloid positivity between tracers.Cortical retention for each pair of tracers was strongly correlated regardless of reference region (PiB-flutemetamol, ρ = 0.84-0.99; PiB-florbetapir, ρ = 0.83-0.97) and analysis method (ρ = 0.90-0.99). Compared to PiB, flutemetamol had higher white matter retention, while florbetapir had lower cortical retention. Two previously established independent thresholds for amyloid positivity were highly consistent when values were converted between tracer pairs.Despite differing white and grey matter retention characteristics, cortical retention for each (18)F tracer was highly correlated with that of PiB, enabling conversion of thresholds across tracer measurement scales with a high level of internal consistency. Standardization of analysis methods and measurement scales may facilitate the comparison of amyloid PET data obtained using different tracers.
DOI: 10.1016/j.jad.2008.04.027
2009
Cited 232 times
Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression
Major depression (MDD) is characterized by altered emotion processing and deficits in cognitive control. In cognitive interference tasks, patients with MDD have shown excessive amygdala activity and under-recruitment of dorsolateral prefrontal cortex (DLPFC). The purpose of this study was to examine the effects of antidepressant treatment on anomalous neural activity in cognitive-control and emotion-processing circuitry.Functional magnetic resonance imaging was conducted on depressed patients (n=23) (both before and after antidepressant treatment) compared with matched controls (n=18) while they performed a cognitive task involving attended and unattended fear-related stimuli.After eight weeks of SSRI antidepressant treatment, patients with depression showed significantly increased DLPFC activity to unattended fear-related stimuli and no longer differed from controls in either DLPFC or amygdala activity.These results suggest that antidepressant treatment increases DLPFC under-activity during cognitive tasks that include emotional interference.The sample was fairly homogeneous and this may limit generalizability.
DOI: 10.1073/pnas.0910878107
2010
Cited 231 times
A commonly carried allele of the obesity-related <i>FTO</i> gene is associated with reduced brain volume in the healthy elderly
A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an approximately 1.2 kg higher weight, on average, in adults and an approximately 1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimer's Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of approximately 8% in the frontal lobes and 12% in the occipital lobes-these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.
DOI: 10.1038/s41598-018-37769-z
2019
Cited 223 times
Predicting Alzheimer’s disease progression using multi-modal deep learning approach
Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC) = 0.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC = 0.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials.
DOI: 10.1212/wnl.0b013e3182661f74
2012
Cited 207 times
Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline
Florbetapir F 18 PET can image amyloid-β (Aβ) aggregates in the brains of living subjects. We prospectively evaluated the prognostic utility of detecting Aβ pathology using florbetapir PET in subjects at risk for progressive cognitive decline.A total of 151 subjects who previously participated in a multicenter florbetapir PET imaging study were recruited for longitudinal assessment. Subjects included 51 with recently diagnosed mild cognitive impairment (MCI), 69 cognitively normal controls (CN), and 31 with clinically diagnosed Alzheimer disease dementia (AD). PET images were visually scored as positive (Aβ+) or negative (Aβ-) for pathologic levels of β-amyloid aggregation, blind to diagnostic classification. Cerebral to cerebellar standardized uptake value ratios (SUVr) were determined from the baseline PET images. Subjects were followed for 18 months to evaluate changes in cognition and diagnostic status. Analysis of covariance and correlation analyses were conducted to evaluate the association between baseline PET amyloid status and subsequent cognitive decline.In both MCI and CN, baseline Aβ+ scans were associated with greater clinical worsening on the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog (p < 0.01) and Clinical Dementia Rating-sum of boxes (CDR-SB) (p < 0.02). In MCI Aβ+ scans were also associated with greater decline in memory, Digit Symbol Substitution (DSS), and Mini-Mental State Examination (MMSE) (p < 0.05). In MCI, higher baseline SUVr similarly correlated with greater subsequent decline on the ADAS-Cog (p < 0.01), CDR-SB (p < 0.03), a memory measure, DSS, and MMSE (p < 0.05). Aβ+ MCI tended to convert to AD dementia at a higher rate than Aβ- subjects (p < 0.10).Florbetapir PET may help identify individuals at increased risk for progressive cognitive decline.
DOI: 10.1016/j.jalz.2012.10.007
2013
Cited 200 times
Florbetapir (F18‐AV‐45) PET to assess amyloid burden in Alzheimer's disease dementia, mild cognitive impairment, and normal aging
Objective To evaluate the performance characteristics of florbetapir F18 positron emission tomography (PET) in patients with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy control subjects (HCs). Methods Florbetapir PET was acquired in 184 subjects (45 AD patients, 60 MCI patients, and 79 HCs) within a multicenter phase 2 study. Amyloid burden was assessed visually and quantitatively, and was classified as positive or negative. Results Florbetapir PET was rated visually amyloid positive in 76% of AD patients, 38% of MCI patients, and 14% of HCs. Eighty‐four percent of AD patients, 45% of MCI patients, and 23% of HCs were classified as amyloid positive using a quantitative threshold. Amyloid positivity and mean cortical amyloid burden were associated with age and apolipoprotein E ε4 carrier status. Conclusions The data are consistent with expected rates of amyloid positivity among individuals with clinical diagnoses of AD and MCI, and indicate the potential value of florbetapir F18 PET as an adjunct to clinical diagnosis.
DOI: 10.1212/wnl.0b013e3182918ca6
2013
Cited 199 times
Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later
We compared the ability of molecular biomarkers for Alzheimer disease (AD), including amyloid imaging and CSF biomarkers (Aβ42, tau, ptau181, tau/Aβ42, ptau181/Aβ42), to predict time to incident cognitive impairment among cognitively normal adults aged 45 to 88 years and followed for up to 7.5 years.Longitudinal data from Knight Alzheimer's Disease Research Center participants (N = 201) followed for a mean of 3.70 years (SD = 1.46 years) were used. Participants with amyloid imaging and CSF collection within 1 year of a clinical assessment indicating normal cognition were eligible. Cox proportional hazards models tested whether the individual biomarkers were related to time to incident cognitive impairment. "Expanded" models were developed using the biomarkers and participant demographic variables. The predictive values of the models were compared.Abnormal levels of all biomarkers were associated with faster time to cognitive impairment, and some participants with abnormal biomarker levels remained cognitively normal for up to 6.6 years. No differences in predictive value were found between the individual biomarkers (p > 0.074), nor did we find differences between the expanded biomarker models (p > 0.312). Each expanded model better predicted incident cognitive impairment than the model containing the biomarker alone (p < 0.005).Our results indicate that all AD biomarkers studied here predicted incident cognitive impairment, and support the hypothesis that biomarkers signal underlying AD pathology at least several years before the appearance of dementia symptoms.
DOI: 10.1038/s41591-021-01369-8
2021
Cited 199 times
A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease
Dominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.
DOI: 10.1371/journal.pone.0073377
2013
Cited 193 times
Quantitative Analysis of PiB-PET with FreeSurfer ROIs
In vivo quantification of β-amyloid deposition using positron emission tomography is emerging as an important procedure for the early diagnosis of the Alzheimer's disease and is likely to play an important role in upcoming clinical trials of disease modifying agents. However, many groups use manually defined regions, which are non-standard across imaging centers. Analyses often are limited to a handful of regions because of the labor-intensive nature of manual region drawing. In this study, we developed an automatic image quantification protocol based on FreeSurfer, an automated whole brain segmentation tool, for quantitative analysis of amyloid images. Standard manual tracing and FreeSurfer-based analyses were performed in 77 participants including 67 cognitively normal individuals and 10 individuals with early Alzheimer's disease. The manual and FreeSurfer approaches yielded nearly identical estimates of amyloid burden (intraclass correlation = 0.98) as assessed by the mean cortical binding potential. An MRI test-retest study demonstrated excellent reliability of FreeSurfer based regional amyloid burden measurements. The FreeSurfer-based analysis also revealed that the majority of cerebral cortical regions accumulate amyloid in parallel, with slope of accumulation being the primary difference between regions.
DOI: 10.1056/nejmoa1900757
2019
Cited 168 times
Tau Positron-Emission Tomography in Former National Football League Players
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been associated with a history of repetitive head impacts. The neuropathological diagnosis is based on a specific pattern of tau deposition with minimal amyloid-beta deposition that differs from other disorders, including Alzheimer's disease. The feasibility of detecting tau and amyloid deposition in the brains of living persons at risk for CTE has not been well studied.We used flortaucipir positron-emission tomography (PET) and florbetapir PET to measure deposition of tau and amyloid-beta, respectively, in the brains of former National Football League (NFL) players with cognitive and neuropsychiatric symptoms and in asymptomatic men with no history of traumatic brain injury. Automated image-analysis algorithms were used to compare the regional tau standardized uptake value ratio (SUVR, the ratio of radioactivity in a cerebral region to that in the cerebellum as a reference) between the two groups and to explore the associations of SUVR with symptom severity and with years of football play in the former-player group.A total of 26 former players and 31 controls were included in the analysis. The mean flortaucipir SUVR was higher among former players than among controls in three regions of the brain: bilateral superior frontal (1.09 vs. 0.98; adjusted mean difference, 0.13; 95% confidence interval [CI], 0.06 to 0.20; P<0.001), bilateral medial temporal (1.23 vs. 1.12; adjusted mean difference, 0.13; 95% CI, 0.05 to 0.21; P<0.001), and left parietal (1.12 vs. 1.01; adjusted mean difference, 0.12; 95% CI, 0.05 to 0.20; P = 0.002). In exploratory analyses, the correlation coefficients in these three regions between the SUVRs and years of play were 0.58 (95% CI, 0.25 to 0.79), 0.45 (95% CI, 0.07 to 0.71), and 0.50 (95% CI, 0.14 to 0.74), respectively. There was no association between tau deposition and scores on cognitive and neuropsychiatric tests. Only one former player had levels of amyloid-beta deposition similar to those in persons with Alzheimer's disease.A group of living former NFL players with cognitive and neuropsychiatric symptoms had higher tau levels measured by PET than controls in brain regions that are affected by CTE and did not have elevated amyloid-beta levels. Further studies are needed to determine whether elevated CTE-associated tau can be detected in individual persons. (Funded by Avid Radiopharmaceuticals and others.).
DOI: 10.1038/mp.2014.9
2014
Cited 164 times
Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective multicenter study
This study was designed to evaluate whether subjects with amyloid beta (Aβ) pathology, detected using florbetapir positron emission tomorgraphy (PET), demonstrated greater cognitive decline than subjects without Aβ pathology. Sixty-nine cognitively normal (CN) controls, 52 with recently diagnosed mild cognitive impairment (MCI) and 31 with probable Alzheimer's disease (AD) dementia were included in the study. PET images obtained in these subjects were visually rated as positive (Aβ+) or negative (Aβ-), blind to diagnosis. Fourteen percent (10/69) of CN, 37% (19/52) of MCI and 68% (21/31) of AD were Aβ+. The primary outcome was change in ADAS-Cog score in MCI subjects after 36 months; however, additional outcomes included change on measures of cognition, function and diagnostic status. Aβ+ MCI subjects demonstrated greater worsening compared with Aβ- subjects on the ADAS-Cog over 36 months (5.66 ± 1.47 vs -0.71 ± 1.09, P = 0.0014) as well as on the mini-mental state exam (MMSE), digit symbol substitution (DSS) test, and a verbal fluency test (P < 0.05). Similar to MCI subjects, Aβ+ CN subjects showed greater decline on the ADAS-Cog, digit-symbol-substitution test and verbal fluency (P<0.05), whereas Aβ+ AD patients showed greater declines in verbal fluency and the MMSE (P < 0.05). Aβ+ subjects in all diagnostic groups also showed greater decline on the CDR-SB (P<0.04), a global clinical assessment. Aβ+ subjects did not show significantly greater declines on the ADCS-ADL or Wechsler Memory Scale. Overall, these findings suggest that in CN, MCI and AD subjects, florbetapir PET Aβ+ subjects show greater cognitive and global deterioration over a 3-year follow-up than Aβ- subjects do.
DOI: 10.1093/brain/awz090
2019
Cited 164 times
A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia
The advent of tau-targeted PET tracers such as flortaucipir (18F) (flortaucipir, also known as 18F-AV-1451 or 18F-T807) have made it possible to investigate the sequence of development of tau in relationship to age, amyloid-β, and to the development of cognitive impairment due to Alzheimer’s disease. Here we report a multicentre longitudinal evaluation of the relationships between baseline tau, tau change and cognitive change, using flortaucipir PET imaging. A total of 202 participants 50 years old or older, including 57 cognitively normal subjects, 97 clinically defined mild cognitive impairment and 48 possible or probable Alzheimer’s disease dementia patients, received flortaucipir PET scans of 20 min in duration beginning 80 min after intravenous administration of 370 MBq flortaucipir (18F). On separate days, subjects also received florbetapir amyloid PET imaging, and underwent a neuropsychological test battery. Follow-up flortaucipir scans and neuropsychological battery assessments were also performed at 9 and 18 months. Fifty-five amyloid-β+ and 90 amyloid-β− subjects completed the baseline and 18-month study visits and had valid quantifiable flortaucipir scans at both time points. There was a statistically significant increase in the global estimate of cortical tau burden as measured by standardized uptake value ratio (SUVr) from baseline to 18 months in amyloid-β+ but not amyloid-β− subjects (least squared mean change in flortaucipir SUVr : 0.0524 ± 0.0085, P < 0.0001 and 0.0007 ± 0.0024 P = 0.7850, respectively), and a significant association between magnitude of SUVr increase and baseline tau burden. Voxel-wise evaluations further suggested that the regional pattern of change in flortaucipir PET SUVr over the 18-month study period (i.e. which regions exhibited the greatest change) also varied as a function of baseline global estimate of tau burden. In subjects with lower global SUVr, temporal lobe regions showed the greatest flortaucipir retention, whereas in subjects with higher baseline SUVr, parietal and frontal regions were increasingly affected. Finally, baseline flortaucipir and change in flortaucipir SUVr were both significantly (P < 0.0001) associated with changes in cognitive performance. Taken together, these results provide a preliminary characterization of the longitudinal spread of tau in Alzheimer’s disease and suggest that the amount and location of tau may have implications both for the spread of tau and the cognitive deterioration that may occur over an 18-month period.
DOI: 10.1212/wnl.0000000000002922
2016
Cited 146 times
Polygenic risk of Alzheimer disease is associated with early- and late-life processes
To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies.We computed polygenic risk scores (PGRS) using summary statistics from the International Genomics of Alzheimer's Project genome-wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGRS and hippocampus volume were additionally examined within healthy younger participants (age 18-35 years).Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of β-amyloid burden as measured with florbetapir PET (p = 0.03) but did not reach statistical significance for CSF β-amyloid (p = 0.11). Within the younger group, higher PGRS was associated with smaller hippocampus volume (p = 0.05). This pattern was evident when examining a PGRS that included many loci below the genome-wide association study (GWAS)-level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms).Effects related to common genetic risk loci distributed throughout the genome are detectable among individuals without dementia. The influence of this genetic risk may begin in early life and make an individual more susceptible to cognitive impairment in late life. Future refinement of polygenic risk scores may help identify individuals at risk for AD dementia.
DOI: 10.1093/brain/awz019
2019
Cited 128 times
Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers
Tauopathy is a hallmark pathology of Alzheimer's disease with a strong relationship with cognitive impairment. As such, understanding tau may be a key to clinical interventions. In vivo tauopathy has been measured using cerebrospinal fluid assays, but these do not provide information about where pathology is in the brain. The introduction of PET ligands that bind to paired helical filaments provides the ability to measure the amount and distribution of tau pathology. The heritability of the age of dementia onset tied to the specific mutations found in autosomal dominant Alzheimer's disease families provides an elegant model to study the spread of tau across the course of the disease as well as the cross-modal relationship between tau and other biomarkers. To better understand the pathobiology of Alzheimer's disease we measured levels of tau PET binding in individuals with dominantly inherited Alzheimer's disease using data from the Dominantly Inherited Alzheimer Network (DIAN). We examined cross-sectional measures of amyloid-β, tau, glucose metabolism, and grey matter degeneration in 15 cognitively normal mutation non-carriers, 20 asymptomatic carriers, and 15 symptomatic mutation carriers. Linear models examined the association of pathology with group, estimated years to symptom onset, as well as cross-modal relationships. For comparison, tau PET was acquired on 17 older adults with sporadic, late onset Alzheimer disease. Tau PET binding was starkly elevated in symptomatic DIAN individuals throughout the cortex. The brain areas demonstrating elevated tau PET binding overlapped with those seen in sporadic Alzheimer's disease, but with a greater cortical involvement and greater levels of binding despite similar cognitive impairment. Tau PET binding was elevated in the temporal lobe, but the most prominent loci of pathology were in the precuneus and lateral parietal regions. Symptomatic mutation carriers also demonstrated elevated tau PET binding in the basal ganglia, consistent with prior work with amyloid-β. The degree of tau tracer binding in symptomatic individuals was correlated to other biomarkers, particularly markers of neurodegeneration. In addition to the differences seen with tau, amyloid-β was increased in both asymptomatic and symptomatic groups relative to non-carriers. Glucose metabolism showed decline primarily in the symptomatic group. MRI indicated structural degeneration in both asymptomatic and symptomatic cohorts. We demonstrate that tau PET binding is elevated in symptomatic individuals with dominantly inherited Alzheimer's disease. Tau PET uptake was tied to the onset of cognitive dysfunction, and there was a higher amount, and different regional pattern of binding compared to late onset, non-familial Alzheimer's disease.
DOI: 10.1001/jamaneurol.2022.3392
2022
Cited 75 times
Association of Donanemab Treatment With Exploratory Plasma Biomarkers in Early Symptomatic Alzheimer Disease
Importance Plasma biomarkers of Alzheimer disease may be useful as minimally invasive pharmacodynamic measures of treatment outcomes. Objective To analyze the association of donanemab treatment with plasma biomarkers associated with Alzheimer disease. Design, Setting, and Participants TRAILBLAZER-ALZ was a randomized, double-blind, placebo-controlled clinical trial conducted from December 18, 2017, to December 4, 2020, across 56 sites in the US and Canada. Exploratory biomarkers were prespecified with the post hoc addition of plasma glial fibrillary acidic protein and amyloid-β. Men and women aged 60 to 85 years with gradual and progressive change in memory function for at least 6 months were included. A total of 1955 participants were assessed for eligibility. Key eligibility criteria include Mini-Mental State Examination scores of 20 to 28 and elevated amyloid and intermediate tau levels. Interventions Randomized participants received donanemab or placebo every 4 weeks for up to 72 weeks. The first 3 doses of donanemab were given at 700 mg and then increased to 1400 mg with blinded dose reductions as specified based on amyloid reduction. Main Outcomes and Measures Change in plasma biomarker levels after donanemab treatment. Results In TRAILBLAZER-ALZ, 272 participants (mean [SD] age, 75.2 [5.5] years; 145 [53.3%] female) were randomized. Plasma levels of phosphorylated tau 217 (pTau 217 ) and glial fibrillary acidic protein were significantly lower with donanemab treatment compared with placebo as early as 12 weeks after the start of treatment (least square mean change difference vs placebo, –0.04 [95% CI, –0.07 to –0.02]; P = .002 and –0.04 [95% CI, –0.07 to –0.01]; P = .01, respectively). No significant differences in plasma levels of amyloid-β 42/40 and neurofilament light chain were observed between treatment arms at the end of treatment. Changes in plasma pTau 217 and glial fibrillary acidic protein were significantly correlated with the Centiloid percent change in amyloid (Spearman rank correlation coefficient [ R ] = 0.484 [95% CI, 0.359-0.592]; P &amp;amp;lt; .001 and R = 0.453 [95% CI, 0.306-0.579]; P &amp;amp;lt; .001, respectively) following treatment. Additionally, plasma levels of pTau 217 and glial fibrillary acidic protein were significantly correlated at baseline and following treatment ( R = 0.399 [95% CI, 0.278-0.508], P &amp;amp;lt; .001 and R = 0.393 [95% CI, 0.254-0.517]; P &amp;amp;lt; .001, respectively). Conclusions and Relevance Significant reductions in plasma biomarkers pTau 217 and glial fibrillary acidic protein compared with placebo were observed following donanemab treatment in patients with early symptomatic Alzheimer disease. These easily accessible plasma biomarkers might provide additional evidence of Alzheimer disease pathology change through anti-amyloid therapy. Usefulness in assessing treatment response will require further evaluation. Trial Registration ClinicalTrials.gov Identifier: NCT03367403
DOI: 10.1001/jamaneurol.2022.2793
2022
Cited 55 times
Association of Amyloid Reduction After Donanemab Treatment With Tau Pathology and Clinical Outcomes
Importance β-amyloid plaques and neurofibrillary tau deposits biologically define Alzheimer disease. Objective To perform post hoc analyses of amyloid reduction after donanemab treatment and assess its association with tau pathology and clinical measures. Design, Setting, and Participants The Study of LY3002813 in Participants With Early Symptomatic Alzheimer’s Disease (TRAILBLAZER-ALZ) was a phase 2, placebo-controlled, randomized clinical trial conducted from December 18, 2017, to December 4, 2020, with a double-blind period of up to 76 weeks and a 48-week follow-up period. The study was conducted at 56 centers in the US and Canada. Enrolled were participants from 60 to 85 years of age with gradual and progressive change in memory function for 6 months or more, early symptomatic Alzheimer disease, elevated amyloid, and intermediate tau levels. Interventions Donanemab (an antibody specific for the N-terminal pyroglutamate β-amyloid epitope) dosing was every 4 weeks: 700 mg for the first 3 doses, then 1400 mg for up to 72 weeks. Blinded dose-reduction evaluations occurred at 24 and 52 weeks based on amyloid clearance. Main Outcomes and Measures Change in amyloid, tau, and clinical decline after donanemab treatment. Results The primary study randomized 272 participants (mean [SD] age, 75.2 [5.5] years; 145 female participants [53.3%]). The trial excluded 1683 of 1955 individuals screened. The rate of donanemab-induced amyloid reduction at 24 weeks was moderately correlated with the amount of baseline amyloid (Spearman correlation coefficient r , −0.54; 95% CI, −0.66 to −0.39; P &amp;amp;lt; .001). Modeling provides a hypothesis that amyloid would not reaccumulate to the 24.1-centiloid threshold for 3.9 years (95% prediction interval, 1.9-8.3 years) after discontinuing donanemab treatment. Donanemab slowed tau accumulation in a region-dependent manner as measured using neocortical and regional standardized uptake value ratios with cerebellar gray reference region. A disease-progression model found a significant association between percentage amyloid reduction and change on the integrated Alzheimer Disease Rating Scale only in apolipoprotein E ( APOE ) ε4 carriers (95% CI, 24%-59%; P &amp;amp;lt; .001). Conclusions and Relevance Results of post hoc analyses for donanemab-treated participants suggest that baseline amyloid levels were directly associated with the magnitude of amyloid reduction and inversely associated with the probability of achieving complete amyloid clearance. The donanemab-induced slowing of tau was more pronounced in those with complete amyloid clearance and in brain regions identified later in the pathologic sequence. Data from other trials will be important to confirm aforementioned observations, particularly treatment response by APOE ε4 status. Trial Registration ClinicalTrials.gov Identifier: NCT03367403
DOI: 10.1038/s41467-022-34129-4
2022
Cited 45 times
Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease
For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, we need to better understand the pathophysiological cascade of Aβ- and tau-related processes. Therefore, we set out to investigate how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with PET and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Using human cross-sectional and longitudinal neuroimaging and cognitive assessment data, we show that in early stages of AD, increased concentration of soluble CSF p-tau is strongly associated with accumulation of insoluble tau aggregates across the brain, and CSF p-tau levels mediate the effect of Aβ on tau aggregation. Further, higher soluble p-tau concentrations are mainly related to faster accumulation of tau aggregates in the regions with strong functional connectivity to individual tau epicenters. In this early stage, higher soluble p-tau concentrations is associated with cognitive decline, which is mediated by faster increase of tau aggregates. In contrast, in AD dementia, when Aβ fibrils and soluble p-tau levels have plateaued, cognitive decline is related to the accumulation rate of insoluble tau aggregates. Our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD, before widespread insoluble tau aggregates.
DOI: 10.1073/pnas.111164398
2001
Cited 328 times
Blood flow and oxygen delivery to human brain during functional activity: Theoretical modeling and experimental data
Coupling of cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO(2)) in physiologically activated brain states remains the subject of debates. Recently it was suggested that CBF is tightly coupled to oxidative metabolism in a nonlinear fashion. As part of this hypothesis, mathematical models of oxygen delivery to the brain have been described in which disproportionately large increases in CBF are necessary to sustain even small increases in CMRO(2) during activation. We have explored the coupling of CBF and oxygen delivery by using two complementary methods. First, a more complex mathematical model was tested that differs from those recently described in that no assumptions were made regarding tissue oxygen level. Second, [(15)O] water CBF positron emission tomography (PET) studies in nine healthy subjects were conducted during states of visual activation and hypoxia to examine the relationship of CBF and oxygen delivery. In contrast to previous reports, our model showed adequate tissue levels of oxygen could be maintained without the need for increased CBF or oxygen delivery. Similarly, the PET studies demonstrated that the regional increase in CBF during visual activation was not affected by hypoxia. These findings strongly indicate that the increase in CBF associated with physiological activation is regulated by factors other than local requirements in oxygen.
DOI: 10.1016/s0360-3016(02)04477-2
2003
Cited 318 times
Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response—a preliminary report
Purpose Tumor hypoxia is associated with poor response to therapy. We have investigated whether pretreatment tumor hypoxia assessed by positron emission tomography (PET) with Cu-60 diacetyl-bis(N4-methylthiosemicarbazone) (60Cu-ATSM) predicts responsiveness to subsequent therapy in cervical cancer. Methods and materials Fourteen patients with biopsy-proved cervical cancer were studied by PET with 60Cu-ATSM before initiation of radiotherapy and chemotherapy. 60Cu-ATSM uptake was evaluated semiquantitatively by determining the tumor-to-muscle activity ratio (T/M) and peak slope index of tumor tracer uptake. All patients also underwent clinical PET with F-18 fluorodeoxyglucose (FDG) before institution of therapy. The PET results were correlated with follow-up evaluation (14–24 months). Results Tumor uptake of 60Cu-ATSM was inversely related to progression-free survival and overall survival (log–rank p = 0.0005 and p = 0.015, respectively). An arbitrarily selected T/M threshold of 3.5 discriminated those likely to develop recurrence; 6 of 9 patients with normoxic tumors (T/M < 3.5) are free of disease at last follow-up, whereas all of 5 patients with hypoxic tumors (T/M > 3.5) have already developed recurrence. Similar discrimination was achieved with the peak slope index. The frequency of locoregional nodal metastasis was greater in hypoxic tumors (p = 0.03). Tumor FDG uptake did not correlate with 60Cu-ATSM uptake (r = 0.04; p = 0.80), and there was no significant difference in tumor FDG uptake between patients with hypoxic tumors and those with normoxic tumors. Conclusion 60Cu-ATSM-PET in patients with cervical cancer revealed clinically relevant information about tumor oxygenation that was predictive of tumor behavior and response to therapy in this small study.
DOI: 10.1002/(sici)1097-0193(1997)5:2<84::aid-hbm2>3.0.co;2-i
1997
Cited 268 times
Regional cerebral blood flow during word and nonword reading
The purpose of this study was to examine changes in regional cerebral blood flow (rCBF) using positron emission tomography (PET) during overt word and nonword reading tasks to determine structures involved in semantic processing. Ten young, healthy, right-handed subjects were scanned 12 times, twice in each of six specific conditions. Blood flow was measured by 15O-water using standard PET imaging technology. The rCBFs during different cognitive conditions were compared by using analysis of covariance (SPM94), which resulted in three-dimensional maps of those brain regions more active in one condition relative to another. When the subjects read aloud words with difficult or unusual grapheme-phoneme translations (i.e., third-order approximation to English or irregularly spelled real words), increases in activation were seen in the inferior frontal cortex. When subjects were reading aloud regular and irregular words (which had important semantic components relative to nonwords), activation of the fusiform gyrus was seen. These data are broadly consistent with brain regions generally associated with reading based on other neuropsychological paradigms, and they emphasize the multicomponent aspects of this complex cognitive process. Hum. Brain Mapping 5:84–92, 1997. © 1997 Wiley-Liss Inc.
DOI: 10.1200/jco.2004.11.089
2004
Cited 243 times
Positron Emission Tomography in Limited-Stage Small-Cell Lung Cancer: A Prospective Study
To determine how often positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose (FDG-PET) detects extensive-stage small-cell lung cancer (SCLC) in patients considered to have limited-stage disease based on conventional staging procedures, and to determine the impact of PET on treatment planning for presumed limited-stage SCLC.We prospectively performed pretreatment FDG-PET on 24 patients determined by conventional staging methods to have limited-stage SCLC (defined as disease that could be encompassed within a reasonable radiotherapy portal, excluding bilateral supraclavicular disease). PET images were evaluated for evidence of extensive-stage disease. Tumor-node-metastasis system staging was also assigned for each patient, with and without PET information.FDG-PET demonstrated findings consistent with extensive-stage SCLC in three of 24 patients. FDG-PET correctly upstaged two (8.3%) of 24 patients to extensive-stage disease (95% CI, 1.03% to 27.0%). PET correctly identified tumor in each SCLC mass (primary or nodal) that was suspected on computed tomography (CT) imaging, thus giving a lesion-based sensitivity relative to CT of 100%. PET identified unsuspected regional nodal metastasis in six (25%) of 24 patients, and the radiation therapy plan was significantly altered to include the PET-positive/CT-negative nodes within the high-dose region in each of these patients. Brain PET images in 23 patients disclosed no evidence of brain metastasis.FDG-PET has high sensitivity for SCLC and appears to be of value for initial staging and treatment planning of patients with presumed limited-stage disease.
DOI: 10.1212/wnl.46.3.692
1996
Cited 231 times
Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease
Conscious recall of past events that have specific temporal and spatial contexts, termed episodic memory, is mediated by a system of interrelated brain regions. In Alzheimer's disease (AD) this system breaks down, resulting in an inability to recall events from the immediate past. Using subtraction techniques with PET-acquired images of regional cerebral blood flow, we demonstrate that AD patients show a greater activation of regions of cerebral cortex normally involved in auditory-verbal memory, as well as activation of cortical areas not activated by normal elderly subjects. These results provide clear evidence of functional plasticity in the AD patient's brain even if those changes do not result in normal memory function, and provide insights into the mechanism by which the AD brain attempts to compensate for neurodegeneration.
DOI: 10.1038/jcbfm.1989.13
1989
Cited 227 times
A Highly Accurate Method of Localizing Regions of Neuronal Activation in the Human Brain with Positron Emission Tomography
Functional mapping of the human brain with positron emission tomography (PET) can best be performed by obtaining multiple short measurements of cerebral blood flow in a single sitting. In this manner regional changes in blood flow accompanying the increased neuronal activity from a movement, sensation, or even cognition task, have been identified. However, localizing a functional region with PET has been severely limited by the poor resolving properties of PET devices. Using a new method of data analysis we recently reported the mapping of visual field stimuli on human visual cortex with surprisingly high reliability as measured by the low standard deviation in positions across different subjects (as low as 1 mm). In this work the analysis technique enabling such high-resolution functional brain mapping is fully described. Additionally, simulations are presented to illustrate its advantages and limitations.
DOI: 10.1038/jcbfm.1984.49
1984
Cited 226 times
A Noninvasive Approach to Quantitative Functional Brain Mapping with H<sub>2</sub><sup>15</sup>O and Positron Emission Tomography
Positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) with intravenously administered 15O-labeled water and an adaptation of the Kety autoradiographic model are well suited to the study of functional-anatomical correlations within the human brain. This model requires arterial blood sampling to determine rCBF from the regional tissue radiotracer concentration (Cr) recorded by the tomograph. Based upon the well-defined, nearly linear relation between Cr and rCBF inherent in the model, we have developed a method for estimating changes in rCBF from changes in Cr without calculating true rCBF and thus without arterial sampling. This study demonstrates that quantitative functional brain mapping does not require the determination of rCBF from Cr when regional neuronal activation is expressed as the change in rCBF from an initial, resting-state measurement. Patterned-flash visual stimulation was used to produce a wide range of increases in rCBF within the striate cortex. Changes in occipital rCBF were found to be accurately estimated directly from Cr over a series of 56 measurements on eight subjects. This adaptation of the PET/autoradiographic method serves to simplify its application and to make it more acceptable to the subject.
DOI: 10.1172/jci118724
1996
Cited 215 times
The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.
Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondiabetic, and eight obese subjects with NIDDM. In additional studies, vastus lateralis muscle was obtained by percutaneous biopsy during basal and insulin-stimulated conditions for assay of hexokinase and citrate synthase, and for immunohistochemical labeling of Glut 4. Quantitative confocal laser scanning microscopy was used to ascertain Glut 4 at the sarcolemma as an index of insulin-regulated translocation. In lean individuals, insulin stimulated a 10-fold increase of 2-deoxy-2[18F]fluoro-D-glucose (FDG) clearance into muscle and significant increases in the rate constants for inward transport and phosphorylation of FDG. In obese individuals, the rate constant for inward transport of glucose was not increased by insulin infusion and did not differ from values in NIDDM. Insulin stimulation of the rate constant for glucose phosphorylation was similar in obese and lean subjects but reduced in NIDDM. Insulin increased by nearly twofold the number and area of sites labeling for Glut 4 at the sarcolemma in lean volunteers, but in obese and NIDDM subjects translocation of Glut 4 was attenuated. Activities of skeletal muscle HK I and II were similar in lean, obese and NIDDM subjects. These in vivo and ex vivo assessments indicate that impaired glucose transport plays a key role in insulin resistance of NIDDM and obesity and that an additional impairment of glucose phosphorylation is evident in the insulin resistance of NIDDM.
DOI: 10.1001/archneurol.2007.27
2008
Cited 203 times
Brain Volume Decline in Aging
To assess the relation between socioeconomic status (SES) and structural brain change in nondemented older adults and to ascertain the potential role of preclinical Alzheimer disease (AD).Cross-sectional and longitudinal observation.Alzheimer's Disease Research Center, St Louis, Missouri.Volunteer sample of 362 nondemented adults aged 18 to 93 years. The main cohort of 100 was evaluated for dementia and SES; a Clinical Dementia Rating (CDR) of 0 (no dementia) and middle, high-middle, or high SES was required for eligibility. All 362 received magnetic resonance imaging; of the main 100, 91 received follow-up clinical assessment, and 33 received follow-up magnetic resonance imaging over at least a 3-year interval. A separate sample of 58 CDR 0 participants (aged 47 to 86 years) took part in amyloid imaging with Pittsburgh Compound B (PiB) labeled with radioactive carbon ((11)C).Whole-brain volume adjusted for head size (aWBV) and change per year.aWBV declined by 0.22% per year between the ages of 20 and 80 years with accelerated decline in advanced aging. Controlling for effects of age and sex in older adults (>65 years) with CDR 0, higher SES was associated with smaller aWBV (3.8% difference spanning the sample range from middle to high privilege, P< .01) and more rapid volume loss (0.39% per year to 0.68% per year from middle to high privilege, P< .05). aWBV was reduced by 2.5% in individuals positive for PiB binding (n=9) as compared with individuals negative for PiB binding (n=49, P< .05), supporting an influence of undetected preclinical AD. Follow-up clinical data revealed that brain volume reduction associated with SES was greater in those who later developed very mild dementia (preclinical CDR 0 group, n=19) compared with those who remained nondemented (stable CDR 0 group, n=64; group x SES interaction, P< .05).Privileged nondemented older adults harbor more preclinical brain atrophy, consistent with their having greater reserve against the expression of AD.
DOI: 10.1073/pnas.0906053106
2009
Cited 197 times
Subregional neuroanatomical change as a biomarker for Alzheimer's disease
Regions of the temporal and parietal lobes are particularly damaged in Alzheimer's disease (AD), and this leads to a predictable pattern of brain atrophy. In vivo quantification of subregional atrophy, such as changes in cortical thickness or structure volume, could lead to improved diagnosis and better assessment of the neuroprotective effects of a therapy. Toward this end, we have developed a fast and robust method for accurately quantifying cerebral structural changes in several cortical and subcortical regions using serial MRI scans. In 169 healthy controls, 299 subjects with mild cognitive impairment (MCI), and 129 subjects with AD, we measured rates of subregional cerebral volume change for each cohort and performed power calculations to identify regions that would provide the most sensitive outcome measures in clinical trials of disease-modifying agents. Consistent with regional specificity of AD, temporal-lobe cortical regions showed the greatest disease-related changes and significantly outperformed any of the clinical or cognitive measures examined for both AD and MCI. Global measures of change in brain structure, including whole-brain and ventricular volumes, were also elevated in AD and MCI, but were less salient when compared to changes in normal subjects. Therefore, these biomarkers are less powerful for quantifying disease-modifying effects of compounds that target AD pathology. The findings indicate that regional temporal lobe cortical changes would have great utility as outcome measures in clinical trials and may also have utility in clinical practice for aiding early diagnosis of neurodegenerative disease.
DOI: 10.1001/archneurol.2009.279
2009
Cited 196 times
Absence of Pittsburgh Compound B Detection of Cerebral Amyloid β in a Patient With Clinical, Cognitive, and Cerebrospinal Fluid Markers of Alzheimer Disease
<h3>Background</h3> To date, there have been no reports of individuals who have been characterized longitudinally using clinical and cognitive measures and who transitioned from cognitive normality to early symptomatic Alzheimer disease (AD) during a period when both cerebrospinal fluid (CSF) markers and Pittsburgh Compound B (PiB) amyloid imaging were obtained. <h3>Objective</h3> To determine the temporal relationships of clinical, cognitive, CSF, and PiB amyloid imaging markers of AD. <h3>Design</h3> Case report. <h3>Setting</h3> Alzheimer disease research center. <h3>Participant</h3> Longitudinally assessed 85-year-old man in a memory and aging study who was cognitively normal at his initial and next 3 annual assessments. <h3>Main Outcome Measures</h3> Serial clinical and psychometric assessments over 6 years in addition to PiB imaging with positron emission tomography (PET) and CSF biomarker assays before autopsy. <h3>Results</h3> Decline in measures of episodic memory and, to a lesser degree, working memory began at about age 88 years. PiB PET amyloid imaging was negative at age 88½ years, but at age 89½ years there was reduced amyloid β 42 and elevated levels of tau in the CSF. Beginning at age 89 years, very mild cognitive and functional decline reported by his collateral source resulted in a diagnosis of very mild dementia of the Alzheimer type. After death at age 91 years, the autopsy revealed foci of frequent neocortical diffuse amyloid β plaques sufficient to fulfill Khachaturian neuropathologic criteria for definite AD, but other neuropathologic criteria for AD were not met because only sparse neuritic plaques and neurofibrillary tangles were present. Postmortem biochemical analysis of the cerebral tissue confirmed that PiB PET binding was below the level needed for in vivo detection. <h3>Conclusion</h3> Clinical, cognitive, and CSF markers consistent with AD may precede detection of cerebral amyloid β using amyloid imaging agents such as PiB that primarily label fibrillar amyloid β plaques.
DOI: 10.1176/appi.ajp.2007.07010175
2008
Cited 196 times
Regional White Matter Hyperintensity Burden in Automated Segmentation Distinguishes Late-Life Depressed Subjects From Comparison Subjects Matched for Vascular Risk Factors
Objective: Segmented brain white matter hyperintensities were compared between subjects with late-life depression and age-matched subjects with similar vascular risk factor scores. Correlations between neuropsychological performance and whole brain-segmented white matter hyperintensities and white and gray matter volumes were also examined. Method: Eighty-three subjects with late-life depression and 32 comparison subjects underwent physical examination, psychiatric evaluation, neuropsychological testing, vascular risk factor assessment, and brain magnetic resonance imaging (MRI). Automated segmentation methods were used to compare the total brain and regional white matter hyperintensity burden between depressed patients and comparison subjects. Results: Depressed patients and comparison subjects did not differ in demographic variables, including vascular risk factor, or whole brain-segmented volumes. However, depressed subjects had seven regions of greater white matter hyperintensities located in the following white matter tracts: the superior longitudinal fasciculus, fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, and inferior longitudinal fasciculus. These white matter tracts underlie brain regions associated with cognitive and emotional function. In depressed patients but not comparison subjects, volumes of three of these regions correlated with executive function; whole brain white matter hyperintensities correlated with executive function; whole brain white matter correlated with episodic memory, processing speed, and executive function; and whole brain gray matter correlated with processing speed. Conclusions: These findings support the hypothesis that the strategic location of white matter hyperintensities may be critical in late-life depression. Further, the correlation of neuropsychological deficits with the volumes of whole brain white matter hyperintensities and gray and white matter in depressed subjects but not comparison subjects supports the hypothesis of an interaction between these structural brain components and depressed status.
DOI: 10.1001/archneur.65.11.1467
2008
Cited 192 times
Alzheimer Disease and Cognitive Reserve
<h3>Objective</h3> To evaluate the cognitive reserve hypothesis by examining whether individuals of greater educational attainment have better cognitive function than individuals with less education in the presence of elevated fibrillar brain amyloid levels. <h3>Design, Setting, and Participants</h3> Uptake of carbon 11–labeled Pittsburgh Compound B ([<sup>11</sup>C]PiB) was measured for participants assessed between August 15, 2003, and January 8, 2008, at the Washington University Alzheimer's Disease Research Center and diagnosed either as nondemented (n = 161) or with dementia of the Alzheimer type (n = 37). Multiple regression was used to determine whether [<sup>11</sup>C]PiB uptake interacted with level of educational attainment to predict cognitive function. <h3>Main Outcome Measures</h3> Scores on the Clinical Dementia Rating sum of boxes, Mini-Mental State Examination, and Short Blessed Test and individual measures from a psychometric battery. <h3>Results</h3> Uptake of [<sup>11</sup>C]PiB interacted with years of education in predicting scores on the Clinical Dementia Rating sum of boxes (<i>P</i> = .003), the Mini-Mental State Examination (<i>P</i> &lt; .001), the Short Blessed Test (<i>P</i> = .03), and a measure of verbal abstract reasoning and conceptualization (<i>P</i> = .02) such that performance on these measures increased with increasing education for participants with elevated PiB uptake. Education was unrelated to global cognitive functioning scores among those with lower PiB uptake. <h3>Conclusion</h3> The results support the hypothesis that cognitive reserve influences the association between Alzheimer disease pathological burden and cognition.
DOI: 10.1002/jps.2600700103
1981
Cited 191 times
Dissolution Kinetics of Carboxylic Acids I: Effect of pH Under Unbuffered Conditions
The dissolution behavior of benzoic acid, 2-naphthoic acid, and indomethacin from rotating compressed disks into aqueous solutions of constant ionic strength (μ = 0.5 with potassium chloride) at 25° was investigated. The pH of the bulk aqueous medium was maintained during dissolution by means of a pH-stat apparatus. A model for the initial steady-state dissolution rate of a monoprotic carboxylic acid was derived from Fick's second law of diffusion. This model assumed that diffusion-controlled mass transport and simple, instantaneously established reaction equilibria existed across a postulated diffusion layer. Using previously determined intrinsic solubilities, pKa values, and diffusion coefficients, the model was found to predict the dissolution rates of these acids accurately as a function of the bulk solution pH. Hydroxide ion and water were the only reactive base species present in the bulk solution. The concentration profiles of all of the species across the diffusion layer were generated for a given bulk pH. Furthermore, the model generated values for the pH profile within the microclimate of the diffusion layer and the pH at the solid-solution boundary.
DOI: 10.1016/j.brainres.2009.12.092
2010
Cited 177 times
Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system
Recently, a novel method for detection of DNA synthesis has been developed based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analogue, into cellular DNA and the subsequent reaction of EdU with a fluorescent azide in a copper-catalyzed [3+2] cycloaddition ("Click" reaction). In the present study, we evaluated this method for studying cell proliferation in the adult central nervous system in comparison with the "gold standard" method of 5-bromo-2'-deoxyuridine (BrdU) staining using two behavioral paradigms, voluntary exercise and restraint stress. Our data demonstrate that the number of EdU-positive cells in the dentate gyrus of the hippocampus (DG) slightly increased in an EdU dose-dependent manner in both the control and voluntary exercise (running) mouse groups. The number of EdU-labeled cells was comparable to the number of BrdU-labeled cells in both the control and running mice. Furthermore, EdU and BrdU co-localized to the same cells within the DG. Voluntary exercise significantly increased the number of EdU- and BrdU-positive cells in the DG. In contrast, restraint stress significantly decreased the number of EdU-positive cells. The EdU-positive cells differentiated into mature neurons. EdU staining is compatible with immunohistochemical staining of other antigens. Moreover, our data demonstrated EdU staining can be combined with BrdU staining, providing a valuable tool of double labeling DNA synthesis, e.g., for tracking the two populations of neurons generated at different time points. In conclusion, our results suggest that EdU staining is a fast, sensitive and reproducible method to study cell proliferation in the central nervous system.
DOI: 10.3171/jns.1985.62.4.0539
1985
Cited 172 times
Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm
✓ Regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of oxygen (rCMRO 2 ) were measured by positron emission tomography (PET) in four patients with subarachnoid hemorrhage and hemiparesis due to cerebral vasospasm. With resolution of the vasospasm, two patients recovered and two remained hemiparetic. Contralateral to the hemiparesis, rCBF was slightly higher in the two patients who eventually recovered (15.0 and 16.2 ml/100 gm/min) than in the two who remained hemiparetic (12.0 and 11.7 ml/100 gm/min). The rCMRO 2 measurements showed similar differences, with values of 1.34 and 2.60 ml/100 gm/min in the patients who recovered, and 0.72 and 1.66 ml/100 gm/min in those who did not. These preliminary findings indicate that with PET studies it may be possible to prospectively differentiate patients with neurological deficits due to reversible ischemia from patients with irreversible infarction.
1989
Cited 170 times
Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity.
Change-distribution analysis and intersubject averaging of subtracted positron emission tomography (PET) images are new techniques for detecting, localizing, and quantifying state-dependent focal transients in neuronal activity. We previously described their application to cerebral blood flow images (intravenous bolus H215O, Kety autoradiographic model). We now describe their application to images of H215O regional tissue activity without conversion to units of blood flow. The sensitivity and specificity of response detection and the accuracy of response localization were virtually identical for the two types of images. Response magnitude expressed in percent change from rest was slightly, but consistently smaller in tissue-activity images. Response magnitude expressed in z-score was the same for the two-image types. Most research and clinical applications of functional brain mapping can employ images of H215O tissue activity (intravenous bolus, 40-sec nondynamic scan) without conversion to units of blood flow. This eliminates arterial blood sampling, thereby simplifying and minimizing the invasivity of the PET procedure.
DOI: 10.1016/j.neurobiolaging.2012.04.017
2013
Cited 169 times
Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease
Investigate apolipoprotein E ε4 (APOE4) gene and aging effects on florbetapir F18 positron emission tomography (PET) in normal aging and Alzheimer's disease (AD).Florbetapir F18 PET images were analyzed from 245 participants, 18-92 years of age, from Avid Radiopharmaceutical's multicenter registered trials, including 86 younger healthy control volunteers (yHC), 61 older healthy control volunteers (oHC), 53 mild cognitive impairment (MCI) patients, and 45 AD dementia patients (DAT). Mean florbetapir standard uptake value ratios (SUVRs) were used to evaluate the effects of APOE4 carrier status, older age, and their interaction in each of these groups.In comparison with non-carriers, the APOE4 carriers in each of the oHC, MCI, and DAT groups had higher mean cortical-to-cerebellar florbetapir SUVRs, patterns of florbetapir PET elevations characteristic of DAT, and a higher proportion meeting florbetapir PET positivity criteria. Only the oHC group had a significant association between mean cortical florbetapir SUVRs and age. In cognitively normal adults, without regards to APOE4 genotype, amyloid began to increase at age 58 (95% confidence interval [CI]: 52.3-63.7), with a predicted typical age of florbetapir positivity occurring around age 71 years. Presence of the APOE4 gene reduced the age of predicted florbetapir positivity in normal aging to around age 56 years, approximately 20 years younger than non-carriers.Cerebral amyloid deposition is associated with APOE4 carrier status in older healthy control subjects and symptomatic AD patients, and increases with age in older cognitively normal individuals. Amyloid imaging positivity appears to begin near age 56 years in cognitively intact APOE4 carriers and age 76 years in APOE4 non-carriers.
DOI: 10.1001/archneurol.2011.105
2011
Cited 163 times
Comparison of Analytical Platforms for Cerebrospinal Fluid Measures of β-Amyloid 1-42, Total tau, and P-tau<sub>181</sub> for Identifying Alzheimer Disease Amyloid Plaque Pathology
Background Cerebrospinal fluid (CSF) biomarkers of Alzheimer disease (AD) are currently being considered for inclusion in revised diagnostic criteria for research and/or clinical purposes to increase the certainty of antemortem diagnosis. Objective To test whether CSF biomarker assays differ in their ability to identify true markers of underlying AD pathology (eg, amyloid plaques and/or neurofibrillary tangles) in living individuals. Design We compared the performances of the 2 most commonly used platforms, INNOTEST enzyme-linked immunosorbent assay and INNO-BIA AlzBio3, for measurement of CSF β-amyloid (Aβ) and tau proteins to identify the presence of amyloid plaques in a research cohort (n=103). Values obtained for CSF Aβ1-42, total tau, and phosphorylated tau 181 (p-tau 181 ) using the 2 assay platforms were compared with brain amyloid load as assessed by positron emission tomography using the amyloid imaging agent Pittsburgh compound B. Setting The Knight Alzheimer's Disease Research Center at Washington University in St Louis, Missouri. Subjects Research volunteers who were cognitively normal or had mild to moderate AD dementia. Results The 2 assay platforms yielded different (approximately 2- to 6-fold) absolute values for the various analytes, but relative values were highly correlated. The CSF Aβ1-42 correlated inversely and tau and p-tau 181 correlated positively with the amount of cortical Pittsburgh compound B binding, albeit to differing degrees. Both assays yielded similar patterns of CSF biomarker correlations with amyloid load. The ratios of total tau to Aβ1-42 and p-tau 181 to Aβ1-42 outperformed any single analyte, including Aβ1-42, in discriminating individuals with vs without cortical amyloid. Conclusions The INNOTEST and INNO-BIA CSF platforms perform equally well in identifying individuals with underlying amyloid plaque pathology. Differences in absolute values, however, point to the need for assay-specific diagnostic cutoff values.
DOI: 10.1002/jps.2600700104
1981
Cited 156 times
Dissolution Kinetics of Carboxylic Acids II: Effect of Buffers
The dissolution behavior of 2-naphthoic acid from rotating compressed disks into aqueous buffered solutions of constant ionic strength (mu = 0.5 with potassium chloride) at 25 degrees was investigated. A model was developed for the flux of a solid monoprotic carboxylic acid in aqueous buffered solutions as a function of the solution pH and the physicochemical properties of the buffer. The model assumes a diffusion layer-controlled mass transport process and simple, instantaneously established reaction equilibrium between all reactive species (acids and bases) across the diffusion layer. Using intrinsic solubilities, pKa values, and diffusion coefficients, the model accurately predicts the dissolution of 2-naphthoic acid as a function of the bulk solution composition. The concentration profiles of all species across the diffusion layer are generated for each buffer concentration and bulk solution pH, including the pH profile within the microclimate of the diffusion layer and the pH at the solid-solution boundary.
DOI: 10.1016/j.biopsych.2003.08.015
2004
Cited 154 times
Decreased hippocampal 5-HT2A receptor binding in major depressive disorder: in vivo measurement with [18F]altanserin positron emission tomography
Serotonin 5-HT(2A) receptors play an important role in the regulation of many functions that are disturbed in patients with major depressive disorder. Postmortem and positron emission tomography studies have reported both increased and decreased 5-HT(2A) receptor binding in different limbic and paralimbic regions.We conducted a quantitative 5-HT(2A) receptor binding study using positron emission tomography and [(18)F]altanserin of four regions hypothesized to have altered levels of 5-HT(2A) receptors in major depressive disorder. Using a four-compartment model, the 5-HT(2A) receptor distribution was estimated by calculating the regional [(18)F]altanserin k(3)/k(4) ratio in which k(3) is the rate of binding to the receptor and k(4) is the rate of dissociation from the receptor. Forty-six antidepressant-free patients with major depressive disorder and 29 healthy control subjects were enrolled.5-HT(2A) receptor binding in the hippocampus was reduced by 29% in depressed subjects (p =.004). In other regions, 5-HT(2A) receptor binding was decreased (averaging 15%) but not significantly. Both groups had similar age-dependent decreases in 5-HT(2A) receptors throughout all brain regions.Altered serotoninergic function in the hippocampus is likely involved in the disturbances of mood regulation in major depressive disorder, although the specific role of the 5-HT(2A) receptor changes is still unclear.
DOI: 10.1126/scitranslmed.3008169
2014
Cited 142 times
An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice
Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer's disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested the growth of preexisting plaques and reduced the appearance of new plaques by 78%. In healthy human volunteers, citalopram's effects on Aβ production and Aβ concentrations in cerebrospinal fluid (CSF) were measured prospectively using stable isotope labeling kinetics, with CSF sampling during acute dosing of citalopram. Aβ production in CSF was slowed by 37% in the citalopram group compared to placebo. This change was associated with a 38% decrease in total CSF Aβ concentrations in the drug-treated group. The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. This study demonstrates key target engagement for future AD prevention trials.
DOI: 10.1212/wnl.0b013e31826c1b9d
2012
Cited 139 times
Vascular burden and Alzheimer disease pathologic progression
<h3>Objective:</h3> To investigate the vascular contribution to longitudinal changes in Alzheimer disease (AD) biomarkers. <h3>Methods:</h3> The Alzheimer9s Disease Neuroimaging Initiative is a clinic based, longitudinal study with CSF, PET, and MRI biomarkers repeatedly measured in participants with normal cognition (NC), mild cognitive impairment (MCI), and mild AD. Participants with severe cerebrovascular risks were excluded. Cardiovascular risk scores and MRI white matter hyperintensities (WMHs) were treated as surrogate markers for vascular burden. Generalized estimating equations were applied, and both vascular burden and its interaction with time (vascular burden × time) or time-varying WMHs were entered into regression models to assess whether biomarker rates of change were modified by vascular burden. <h3>Results:</h3> Cardiovascular risk profiles were not predictive of progression in CSF β<sub>42</sub>-amyloid, [<sup>18</sup>F]fluorodeoxyglucose (FDG) PET uptake, and MRI hippocampal atrophy. Greater baseline cardiovascular risks or WMHs were generally associated with cognitive impairment, particularly poor executive function. WMHs increased over time with a faster rate in MCI and AD than in NC. Increased time-varying WMH was associated with faster decline in executive function and lower FDG uptake in NC. Otherwise, WMH was not associated with CSF and MRI biomarkers in the 3 groups. These findings remained unchanged after accounting for <i>APOE</i>4. <h3>Conclusion:</h3> Increased WMHs are associated with aging, decreased glucose metabolism, and decline in executive function but do not affect AD-specific pathologic progression, suggesting that the vascular contribution to dementia is probably additive although not necessarily independent of the amyloid pathway.
DOI: 10.1002/ana.22448
2011
Cited 138 times
Visinin‐like protein‐1: Diagnostic and prognostic biomarker in Alzheimer disease
Abstract Objective: There is a growing need to identify cerebrospinal fluid (CSF) markers that can detect Alzheimer's disease (AD) pathology in cognitively normal individuals because it is in this population that disease‐modifying therapies may have the greatest chance of success. While AD pathology is estimated to begin ∼10–15 years prior to the onset of cognitive decline, substantial neuronal loss is present by the time the earliest signs of cognitive impairment appear. Visinin‐like protein‐1 (VILIP‐1) has demonstrated potential utility as a marker of neuronal injury. Here we investigate CSF VILIP‐1 and VILIP‐1/amyloid‐β42 (Aβ42) ratio as diagnostic and prognostic markers in early AD. Methods: We assessed CSF levels of VILIP‐1, tau, phosphorylated‐tau181 (p‐tau181), and Aβ42 in cognitively normal controls (CNC) (n = 211), individuals with early symptomatic AD (n = 98), and individuals with other dementias (n = 19). Structural magnetic resonance imaging (n = 192) and amyloid imaging with Pittsburgh Compound‐B (n = 156) were obtained in subsets of this cohort. Among the CNC cohort, 164 individuals had follow‐up annual cognitive assessments for 2–3 years. Results: CSF VILIP‐1 levels differentiated individuals with AD from CNC and individuals with other dementias. CSF VILIP‐1 levels correlated with CSF tau, p‐tau181, and brain volumes in AD. VILIP‐1 and VILIP‐1/Aβ42 predicted future cognitive impairment in CNC over the follow‐up period. Importantly, CSF VILIP‐1/Aβ42 predicted future cognitive impairment at least as well as tau/Aβ42 and p‐tau181/Aβ42. Interpretation: These findings suggest that CSF VILIP‐1 and VILIP‐1/Aβ42 offer diagnostic utility for early AD, and can predict future cognitive impairment in cognitively normal individuals similarly to tau and tau/Aβ42, respectively. ANN NEUROL 2011;
DOI: 10.1002/ana.22608
2011
Cited 136 times
Amyloid‐beta plaque growth in cognitively normal adults: Longitudinal [<sup>11</sup>C]Pittsburgh compound B data
Abstract Amyloid‐beta (Aβ) accumulation was evaluated with 2 [ 11 C]Pittsburgh compound B (PiB) positron emission tomography scans about 2.5 years apart in 146 cognitively normal adults. Seventeen of 21 participants with initially elevated Aβ deposition demonstrated subsequent Aβ plaque growth (approximately 8.0% per year), and none reverted to a state of no Aβ deposits. Ten individuals converted from negative to positive PiB status, based on a threshold of the mean cortical binding potential, representing a conversion rate of 3.1% per year. Individuals with an ε4 allele of apolipoprotein E demonstrated increased incidence of conversion (7.0% per year). Our findings suggest that the major growth in Aβ burden occurs during a preclinical stage of Alzheimer disease (AD), prior to the onset of AD‐related symptoms. Ann Neurol 2011
DOI: 10.1212/wnl.0000000000002570
2016
Cited 135 times
Better verbal memory in women than men in MCI despite similar levels of hippocampal atrophy
<h3>Objective:</h3> To examine sex differences in the relationship between clinical symptoms related to Alzheimer disease (AD) (verbal memory deficits) and neurodegeneration (hippocampal volume/intracranial volume ratio [HpVR]) across AD stages. <h3>Methods:</h3> The sample included 379 healthy participants, 694 participants with amnestic mild cognitive impairment (aMCI), and 235 participants with AD and dementia from the Alzheimer9s Disease Neuroimaging Initiative who completed the Rey Auditory Verbal Learning Test (RAVLT). Cross-sectional analyses were conducted using linear regression to examine the interaction between sex and HpVR on RAVLT across and within diagnostic groups adjusting for age, education, and <i>APOE</i> ε4 status. <h3>Results:</h3> Across groups, there were significant sex × HpVR interactions for immediate and delayed recall (<i>p</i> &lt; 0.01). Women outperformed men among individuals with moderate to larger HpVR, but not among individuals with smaller HpVR. In diagnosis-stratified analyses, the HpVR × sex interaction was significant in the aMCI group, but not in the control or AD dementia groups, for immediate and delayed recall (<i>p</i> &lt; 0.01). Among controls, women outperformed men on both outcomes irrespective of HpVR (<i>p</i> &lt; 0.001). In AD dementia, better RAVLT performance was independently associated with female sex (immediate, <i>p</i> = 0.04) and larger HpVR (delayed, <i>p</i> = 0.001). <h3>Conclusion:</h3> Women showed an advantage in verbal memory despite evidence of moderate hippocampal atrophy. This advantage may represent a sex-specific form of cognitive reserve delaying verbal memory decline until more advanced disease stages.