ϟ

Maria Condello

Here are all the papers by Maria Condello that you can download and read on OA.mg.
Maria Condello’s last known institution is . Download Maria Condello PDFs here.

Claim this Profile →
DOI: 10.1016/j.taap.2010.04.012
2010
Cited 258 times
Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells
Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics. The physico-chemical characteristics were evaluated by analytical electron microscopy. The cytotoxicity was determined by growth curves and water-soluble tetrazolium assay. The reactive oxygen species production, cellular glutathione content, changes of mitochondrial membrane potential and apoptosis cell death were quantified by flow cytometry. The inflammatory cytokines were evaluated by enzyme-linked immunoadsorbent assay. Treatment with ZnO (5 μg/cm2 corresponding to 11.5 μg/ml) for 24 h induced on LoVo cells a significant decrease of cell viability, H2O2/OH increase, O2− and GSH decrease, depolarization of inner mitochondrial membranes, apoptosis and IL-8 release. Higher doses induced about 98% of cytotoxicity already after 24 h of treatment. The experimental data show that oxidative stress may be a key route in inducing the cytotoxicity of ZnO nanoparticles in colon carcinoma cells. Moreover, the study of the relationship between toxicological effects and physico-chemical characteristics of particles suggests that surface area does not play a primary role in the cytotoxicity.
DOI: 10.18632/oncotarget.10574
2016
Cited 119 times
Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells
Background: Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk.Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression.Results: CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA.Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes.Materials and Methods: Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression.Conclusions: CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression.Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.
DOI: 10.3390/ijms20030725
2019
Cited 89 times
Targeting Autophagy to Overcome Human Diseases
Autophagy is an evolutionarily conserved cellular process, through which damaged organelles and superfluous proteins are degraded, for maintaining the correct cellular balance during stress insult. It involves formation of double-membrane vesicles, named autophagosomes, that capture cytosolic cargo and deliver it to lysosomes, where the breakdown products are recycled back to cytoplasm. On the basis of degraded cell components, some selective types of autophagy can be identified (mitophagy, ribophagy, reticulophagy, lysophagy, pexophagy, lipophagy, and glycophagy). Dysregulation of autophagy can induce various disease manifestations, such as inflammation, aging, metabolic diseases, neurodegenerative disorders and cancer. The understanding of the molecular mechanism that regulates the different phases of the autophagic process and the role in the development of diseases are only in an early stage. There are still questions that must be answered concerning the functions of the autophagy-related proteins. In this review, we describe the principal cellular and molecular autophagic functions, selective types of autophagy and the main in vitro methods to detect the role of autophagy in the cellular physiology. We also summarize the importance of the autophagic behavior in some diseases to provide a novel insight for target therapies.
DOI: 10.1016/j.biotechadv.2011.08.001
2012
Cited 78 times
The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells
We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.
DOI: 10.1016/j.tiv.2016.06.005
2016
Cited 67 times
ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells
Zinc Oxide (ZnO) nanoparticles are widely used both in the industry and in biomedical applications for their chemical and physical nanomaterial properties. It is therefore essential to go in depth into the cytotoxicity mechanisms and interactions between nanomaterials and cells. The aim of this work was to evaluate the dissolution of ZnO nanoparticles and their uptake, from a few minutes after treatments up to 24h. ZnO nanoparticles routes of entry into the human colon carcinoma cells (LoVo) were followed at different times by a thorough ultrastructural investigation and semiquantitative analysis. The intracellular release of Zn(2+) ions by Zinquin fluorescent dye, and phosphorylated histone H2AX (γ-H2AX) expression were evaluated. The genotoxic potential of ZnO nanoparticles was also investigated by determining the levels of 8-hydroxyl-2'-deoxyguanosine (8-oxodG). The experimental data show that ZnO nanoparticles entered LoVo cells by either passive diffusion or endocytosis or both, depending on the agglomeration state of the nanomaterial. ZnO nanoparticles coming into contact with acid pH of lysosomes altered organelles structure, resulting in the release of Zn(2+) ions. The simultaneous presence of ZnO nanoparticles and Zn(2+) ions in the LoVo cells determined the formation of reactive oxygen species at the mitochondrial and nuclear level, inducing severe DNA damage.
DOI: 10.4161/auto.6952
2008
Cited 65 times
The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells
AbstractIn our previous studies, the bisindolic alkaloid voacamine (VOA), isolated from the plant Peschiera fuchsiaefolia, proved to exert a chemosensitizing effect on cultured multidrug resistant (MDR) osteosarcoma cells exposed to doxorubicin (DOX). In particular, VOA was capable of inhibiting P-glycoprotein action in competitive way, thus explaining the enhancement of the cytotoxic effect induced by DOX on MDR cells. Afterwards, preliminary observations suggested that such an enhancement did not involve the apoptotic process but was rather due to the induction of autophagic cell death. The results of the present investigation demonstrate that the plant alkaloid VOA is an autophagy inducer able to exert apoptosis-independent cytotoxic effect on both wild type and MDR tumor cells. In fact, under treatment condition causing about 50% of cell death, no evidence of apoptosis could be revealed by microscopical observations, Annexin V-FITC labeling and analysis of PARP cleavage, whereas the same cells underwent apoptosis when treated with apoptosis inducers, such as doxorubicin and staurosporine. Conversely, VOA-induced autophagy was clearly evidentiated by electron microscopy observations, monodansylcadaverine staining, LC3 expression and conversion. These results were confirmed by the analysis of the modulating effects of the pretreatment with autophagy inhibitors prior to VOA administration. In addition, transfection of osteosarcoma cells with siRNA against ATG genes reduced VOA cytotoxicity. In conclusion, considering the very debated dual role of autophagy in cancer cells (protective or lethal, pro- or anti-apoptotic) our findings seem to demonstrate, at least in vitro, that a natural product able to induce autophagy can be effective against drug resistant tumors, either used alone or in association with conventional chemotherapeutics.
DOI: 10.3390/cells10123326
2021
Cited 17 times
Role of Natural Antioxidant Products in Colorectal Cancer Disease: A Focus on a Natural Compound Derived from Prunus spinosa, Trigno Ecotype
Colorectal cancer (CRC) is on the rise in industrialized countries, which is why it is important to find new compounds that are effective, with little or no adverse health effects. CRC arises from some cells of the epithelium which, following a series of genetic or epigenetic mutations, obtain a selective advantage. This work consists of a review on endogenous and exogenous antioxidant products that may have an efficacy in the treatment of CRC and an experimental study, in which the treatment was carried out with a natural compound with antitumor and antiproliferative activity, Prunus spinosa Trigno ecotype, patented by us, on HCT116 colorectal carcinoma cell line. The superoxide content was quantified after the treatments at different concentrations (2, 5, or 10 mg/mL) by means of the DHR123 probe; loss of the mitochondrial membrane potential with the tetramethylrodamine methyl ester (TMRM) cationic probe and reduced glutathione content (GSH) from monochlorobimane (MCB). This study revealed the importance of a careful choice of the concentration of the natural compound to be used in the CRC, due to the presence of a paradoxical effect, both antioxidant and pro-oxidant, depending on the different physiological conditions of the cell.
DOI: 10.1016/j.taap.2021.115816
2022
Cited 10 times
A natural product, voacamine, sensitizes paclitaxel-resistant human ovarian cancer cells
Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.
DOI: 10.2174/156800911794519707
2011
Cited 31 times
Autophagy: Molecular Mechanisms and their Implications for Anticancer Therapies
Autophagy is a catabolic process whereby cells maintain homeostasis by eliminating unnecessary proteins and damaged organelles. It may be triggered under physiological conditions, such as nutrient starvation, or in response to a variety of stress stimuli, such as exposure to radiations or cytotoxic compounds. Although autophagy is basically a protective mechanism that sustains cell survival under adverse conditions, it has been recently demonstrated that the induction of autophagic process may ultimately lead to cell death. As for the role of autophagy in cancer, it is still very controversial whether it suppresses tumorigenesis or provides cancer cells with a rescue mechanism under unfavourable conditions. Therefore, the dual role of autophagy in tumor progression and in the response of cancer cells to chemotherapeutic drugs is still open to debate. The first part of this review describes the cellular events occurring during the various phases of the autophagic process. Special attention has been given to the morphological aspects and the regulatory molecules involved in autophagic cell death. Specifically, we have focused on the proteins necessary for autophagosome formation, encoded by the ATG (AuTophaGy-related gene) gene family, and their role in the regulation of the process of autophagy. We also examined the effects of autophagy modulators on cell survival and cell death and discussed the recent efforts aimed at finding novel agents that activate or inhibit autophagy by targeting regulatory molecules of the complex autophagy pathways.
DOI: 10.1038/cddis.2013.53
2013
Cited 30 times
The thiazole derivative CPTH6 impairs autophagy
We have previously demonstrated that the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) induces apoptosis and cell cycle arrest in human leukemia cells. The aim of this study was to evaluate whether CPTH6 is able to affect autophagy. By using several human tumor cell lines with different origins we demonstrated that CPTH6 treatment induced, in a dose-dependent manner, a significant increase in autophagic features, as imaged by electron microscopy, immunoblotting analysis of membrane-bound form of microtubule-associated protein 1 light chain 3 (LC3B-II) levels and by appearance of typical LC3B-II-associated autophagosomal puncta. To gain insights into the molecular mechanisms of elevated markers of autophagy induced by CPTH6 treatment, we silenced the expression of several proteins acting at different steps of autophagy. We found that the effect of CPTH6 on autophagy developed through a noncanonical mechanism that did not require beclin-1-dependent nucleation, but involved Atg-7-mediated elongation of autophagosomal membranes. Strikingly, a combined treatment of CPTH6 with late-stage autophagy inhibitors, such as chloroquine and bafilomycin A1, demonstrates that under basal condition CPTH6 reduces autophagosome turnover through an impairment of their degradation pathway, rather than enhancing autophagosome formation, as confirmed by immunofluorescence experiments. According to these results, CPTH6-induced enhancement of autophagy substrate p62 and NBR1 protein levels confirms a blockage of autophagic cargo degradation. In addition, CPTH6 inhibited autophagosome maturation and compounds having high structural similarities with CPTH6 produced similar effects on the autophagic pathway. Finally, the evidence that CPTH6 treatment decreased α-tubulin acetylation and failed to increase autophagic markers in cells in which acetyltransferase ATAT1 expression was silenced indicates a possible role of α-tubulin acetylation in CPTH6-induced alteration in autophagy. Overall, CPTH6 could be a valuable agent for the treatment of cancer and should be further studied as a possible antineoplastic agent.
DOI: 10.3390/molecules22091578
2017
Cited 24 times
Cytotoxic and Apoptotic Activities of Prunus spinosa Trigno Ecotype Extract on Human Cancer Cells
The aim of this work was to demonstrate that a natural compound, not-toxic to normal cells, has cytotoxic and sensitizing effects on carcinoma cells, with the final goal of combining it with chemotherapeutic drugs to reduce the overall dose. Prunus spinosa Trigno ecotype (PsT) drupe extract with a nutraceutical activator complex (NAC) made of amino acids, vitamins and mineral salt blends, has shown in vitro anticancer activity. The cytotoxic effect of (PsT + NAC)® has been evaluated on human cancer cells, with an initial screening with colorectal, uterine cervical, and bronchoalveolar cells, and a subsequent focus on colon carcinoma cells HCT116 and SW480. The viability reduction of HCT116 and SW480 after treatment with (PsT 10 mg/mL + NAC)® was about 40% (p < 0.05), compared to control cells. The cell's survival reduction was ineffective when the drug vehicle (NAC) was replaced with a phosphate buffer saline (PBS) or physiological solution (PS). The flow cytometry evaluation of cancer cells' mitochondrial membrane potential showed an increase of 20% depolarized mitochondria. Cell cycle analysis showed a sub G1 (Gap 1 phase) peak appearance (HCT116: 35.1%; SW480: 11.6%), indicating apoptotic cell death induction that was confirmed by Annexin V assay (HCT116: 86%; SW480: 96%). Normal cells were not altered by (PsT + NAC)® treatments.
DOI: 10.1016/j.biopha.2019.109281
2019
Cited 23 times
Anticancer activity of “Trigno M”, extract of Prunus spinosa drupes, against in vitro 3D and in vivo colon cancer models
In 2018 there were over 1.8 million new cases worldwide of colorectal cancer and relapses after clinical treatments. Many studies ascribe the risk of the appearance of this cancer to the Western life style : a sedentary life, obesity, and low -fiber, high -fat diets can promote the onset of disease. Several studies have shown supplement phytochemicals to have an inhibiting effect on the growth of various cancers through the activation of apoptosis. Our goal was to prove the effectiveness of a natural compound in the combined therapy of colorectal cancer. Trigno M supplement was an optimal candidate as anticancer product for its high concentrations of phenolic acids, flavonoids and anthocyanins. Our work showed the antitumor activity of Trigno M, extract of Prunus spinosa drupes combined with the nutraceutical activator complex (NAC), in 2D, 3D and in vivo colorectal cancer models. The cellular model we used both in vitro and in vivo was the HCT116 cell line, particularly suitable for engraftment after inoculation in mice. Trigno M inhibited the growth and colony formation of HCT116 cells (35%) as compared to the chemotherapy treatment with 5-fluorouracil (80%) used in clinical therapy. The reduction of the morphological dimensions in the spheroid cells after Trigno M, was compared with 5-fluorouracil demonstrating the efficacy of the Trigno M compound also in 3D models. Flow cytometric analysis on 3D cells showed a significant increase in the apoptotic cell fraction after Trigno M treatment (44.8%) and a low level of necrotic fraction (6.7%) as compared with control cells. Trigno M and 5-fluorouracil induced the apoptosis in a comparable percentage. Monotherapy with Trigno M in severely immunodeficient mice, carrying colon rectal cancer xenografts, significantly reduced tumor growth. The histopatological analysis of the ectopic tumors showed a lower level of necrosis after Trigno M treatment compared with the control. We conclude that Trigno M is well tolerated by mice, delays colorectal cancer growth in these animals and should be weighed up for integration of the current multi-drug protocols in the treatment of colon carcinoma.
DOI: 10.1002/jbm.b.34423
2019
Cited 20 times
In vitro toxicity assessment of hydrogel patches obtained by cation‐induced cross‐linking of rod‐like cellulose nanocrystals
Abstract With the purpose of designing active patches for photodynamic therapy of melanoma, transparent and soft hydrogel membranes (HMs) have been fabricated by cation‐induced gelation of rod‐like cellulose nanocrystals (CNCs) bearing negatively charged carboxylic groups. Na + , Ca 2+ , Mg 2+ have been used as cross‐linkers of cellulose nanocrystal (CNC). The biosafety of this material and of its precursors has been evaluated in vitro in cell cultures. Morphological changes, cell organelles integrity, and cell survival with the tetrazolium salt reduction (MTT) assay were utilized as tests of cytotoxicity. Preliminary investigation was performed by addition of the hydrogel components to the cell culture medium and by incubations of the CNC‐HM in direct and indirect contact with a confluent monolayer of A375 melanoma cells. Direct contact assays suffered from interference of physical stress. Careful evaluation of cytotoxicity was obtained considering the overall picture provided by microscopy and biochemical tests performed with the CNC‐HM in indirect contact with two melanoma cell lines (A375, M14) and human fibroblasts. CNCs have been demonstrated to be a safe precursor material and CNC‐HMs have a good biocompatibility provided that the excess of cations, in particular of Ca 2+ is removed. These results indicate that CNC and can be safely used to fabricate biomedical devices such as transparent hydrogel patches, although attention must be paid to the fabrication procedure.
DOI: 10.1016/j.tiv.2006.09.007
2007
Cited 36 times
Autophagy-mediated chemosensitizing effect of the plant alkaloid voacamine on multidrug resistant cells
In our previous studies, voacamine, a bisindolic alkaloid extracted from Peschiera fuchsiaefolia, was examined for its possible capability of enhancing the cytotoxic effect of doxorubicin (DOX) on multidrug resistant (MDR) human osteosarcoma cells (U-2 OS-R). Voacamine induced in resistant cells a significant increase of drug retention and intranuclear location which became comparable to those observed in the parental sensitive counterparts (U-2 OS-WT). In the present study, the cell survival analysis and the electron microscopic observations confirmed the evident cytotoxicity of DOX on MDR cells after pre-treatment with the plant extract. Moreover, an increase of the reactivity of P-glycoprotein (P-gp) with the monoclonal antibody UIC2, which recognizes an epitope of the drug transporter in its functional conformation, was revealed, demonstrating that voacamine is a substrate of P-gp, thus acting as a competitive antagonist of the cytotoxic agent. Moreover, to investigate if the enhancement of the cytotoxic effect induced by voacamine could be due to an apoptotic process, we carried out the analysis of cell morphology after Hoechst staining and the quantification of apoptosis by Annexin V-FITC assay. These evaluations showed a very low rate of apoptosis in U-2 OS-R cells treated with voacamine and DOX given in association. In addition, the combined treatment induced ultrastructural modifications suggestive of autophagic cell death. In particular, transmission electron microscopy observations revealed the presence of numerous lysosomes and the formation of a large number of autophagosomes containing residual digested material. In conclusion, these findings seem to indicate that voacamine is capable of enhancing the cytotoxic effect of DOX on MDR cells by favouring a lethal autophagic process.
DOI: 10.1016/j.bbamcr.2006.07.014
2006
Cited 35 times
Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): Sensitization by heat and MDL 72527
In situ formation of cytotoxic metabolites by an enzyme-catalyzed reaction is a recent approach in cancer chemotherapy. We demonstrate that multidrug resistant human melanoma cells (M14 ADR) are more sensitive than the corresponding wild type cells (M14 WT) to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Hydrogen peroxide was mainly responsible for the loss of cell viability. With about 20%, the aldehydes formed from spermine contribute also to cytotoxicity. Elevation of temperature from 37 degrees C to 42 degrees C decreased survival of both cell lines by about one log unit. Pre-treatment with N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), a lysosomotropic compound, sensitized cells to toxic spermine metabolites. MDL 72527 (at 300 microM) produced in M14 cells numerous cytoplasmic vacuoles which, however, disappeared by 24 h, even in the presence of the drug. Mitochondrial damage, as observed by transmission electron microscopy, correlated better with the cytotoxic effects of the treatment than vacuole formation. Since the release of lysosomal enzymes causes oxidative stress and apoptosis, we suggest that the lysosomotropic effect of MDL 72527 is the major reason for its sensitizing effect.
DOI: 10.1016/j.ejca.2011.11.031
2012
Cited 24 times
Electroporation adopting trains of biphasic pulses enhances in vitro and in vivo the cytotoxic effect of doxorubicin on multidrug resistant colon adenocarcinoma cells (LoVo)
Few articles in the literature have focused on electroporation as a strategy to reverse multidrug resistance (MDR) of tumour cells and they are mostly limited to the improved efficacy of bleomycin. We tested the application of trains of biphasic pulses to cell suspensions and to murine xenografts as a strategy to increase the uptake of doxorubicin (DOX) and to enhance its cytotoxicity against chemoresistant cells. The human colon adenocarcinoma cell line LoVo DX, expressing MDR phenotype with high levels of P-glycoprotein (P-gp), has been used. The in vitro and in vivo studies gave the following results: (i) the application of the electric pulses to the cell suspension, immediately before DOX administration, induced a significant increase of drug retention; (ii) confocal microscopy observations showed a remarkable increase of intranuclear accumulation of DOX induced by electroporation; (iii) cell survival assay revealed a decrease of cell viability in the cultures treated with the combination of electroporation and doxorubicin; (iv) scanning electron microscopy observations revealed consistent morphological changes after the combined exposure to electroporation and doxorubicin; (v) in implanted mice the combined treatment induced an evident slowdown on the tumour growth when compared to treatment with DOX alone; (vi) histopathological analysis evidenced tumour destruction and its replacement by scar tissue in the tumours treated with the combination of doxorubicin and electroporation.
DOI: 10.1021/np400950h
2014
Cited 21 times
Voacamine Modulates the Sensitivity to Doxorubicin of Resistant Osteosarcoma and Melanoma Cells and Does Not Induce Toxicity in Normal Fibroblasts
In previous studies it has been demonstrated that the plant alkaloid voacamine (1), used at noncytotoxic concentrations, enhanced the cytotoxicity of doxorubicin and exerted a chemosensitizing effect on cultured multidrug-resistant (MDR) U-2 OS-DX osteosarcoma cells. The in vitro investigations reported herein gave the following results: (i) the chemosensitizing effect of 1, in terms of drug accumulation and cell survival, was confirmed using SAOS-2-DX cells, another MDR osteosarcoma cell line; (ii) compound 1 enhanced the cytotoxic effect of doxorubicin also on the melanoma cell line Me30966, intrinsically drug resistant and P-glycoprotein-negative; (iii) at the concentrations used to sensitize tumor cells, 1 was not cytotoxic to normal cells (human fibroblasts). These findings suggest possible applications of voacamine (1) in integrative oncologic therapies against resistant tumors.
DOI: 10.3389/fphar.2020.00787
2020
Cited 17 times
The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they are the sole nanoparticles that are actually used as drug carriers in oncological clinical settings. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
DOI: 10.3390/cancers14174341
2022
Cited 8 times
Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors
Electrochemotherapy (ECT) is one of the innovative strategies to overcome the multi drug resistance (MDR) that often occurs in cancer. Resistance to anticancer drugs results from a variety of factors, such as genetic or epigenetic changes, an up-regulated outflow of drugs, and various cellular and molecular mechanisms. This technology combines the administration of chemotherapy with the application of electrical pulses, with waveforms capable of increasing drug uptake in a non-toxic and well tolerated mechanical system. ECT is used as a first-line adjuvant therapy in veterinary oncology, where it improves the efficacy of many chemotherapeutic agents by increasing their uptake into cancer cells. The chemotherapeutic agents that have been enhanced by this technique are bleomycin, cisplatin, mitomycin C, and 5-fluorouracil. After their use, a better localized control of the neoplasm has been observed. In humans, the use of ECT was initially limited to local palliative therapy for cutaneous metastases of melanoma, but phase I/II studies are currently ongoing for several histotypes of cancer, with promising results. In this review, we described the preclinical and clinical use of ECT on drug-resistant solid tumors, such as head and neck squamous cell carcinoma, breast cancer, gynecological cancer and, finally, colorectal cancer.
DOI: 10.1016/j.bmc.2008.10.067
2009
Cited 25 times
Synthesis and biological activity of 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole derivatives, novel pro-apoptotic mitochondrial targeted agents
This study reports the synthesis of a number of 1- and 2-phenyl derivatives of the 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole nucleus, which were obtained by the reaction of the versatile 7-substituted 2,3-dihydro-3-hydroxymethylene-4H-1-benzothiopyran-4-ones with hydrazine and substituted phenylhydrazines. The antiproliferative activity of the synthesized compounds was evaluated by an in vitro assay on human tumor cell lines (HL-60 and HeLa) and showed a significant capacity of the 7-methoxy-substituted benzothiopyrano[4,3-c]pyrazoles 3b-d, carrying the pendant phenyl group in the 1-position, to inhibit cell growth. Investigation of the mechanism of action indicated the induction of the mitochondrial permeability transition (MPT) as the molecular event responsible for the inhibition of cell growth. This phenomenon is related to the ability of the test compounds to cause a rapid Ca2+-dependent and cyclosporin A-sensitive collapse of the transmembrane potential (DeltaPsi) and matrix swelling. All this leads to the release of caspase activators, such as cytochrome c (cyt c) and apoptosis-inducing factor (AIF), which trigger the pro-apoptotic pathway leading to DNA fragmentation.
DOI: 10.1002/jemt.22266
2013
Cited 21 times
Structural and functional alterations of cellular components as revealed by electron microscopy
Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions. The study of intracellular vesicle compartmentalization is raising even more interest in the light of the importance of intracellular localization of mediators of the signaling in eliciting different biological responses. The study of the morphology of some intracellular organelles can supply information on the bio-energetic status of the cells. TEM has also a pivotal role in the determination of different types of programmed cell death. In fact, the visualization of autophagosomes and autophagolysosomes is essential to determine the occurrence of autophagy (and also to discriminate micro-autophagy from macro-autophagy), while the presence of fragmented nuclei and surface blebbing is characteristic of apoptosis. SEM is particularly useful for the study of the morphological features of the cells and, therefore, can shed light, for instance, on cell-cell interactions. After a brief introduction on the basic principles of the main electron microscopy methods, the article describes some cell components with the aim to demonstrate the huge role of the ultrastructural analysis played in the knowledge of the relationship between function and structure of the biological objects.
DOI: 10.1039/c5md00077g
2015
Cited 19 times
Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment
Liposomes containing novel 5-fluorouracil derivatives differing in the length of their polyoxyethylenic spacer were shown active against colorectal tumor cells.
DOI: 10.1155/2022/2923967
2022
Cited 7 times
Complementary and Integrative Approaches to Cancer: A Pilot Survey of Attitudes and Habits among Cancer Patients in Italy
Cancer patients are among the main consumers of traditional, complementary, integrative, and alternative medicine (TCIM) such as natural products (herbals, integrators, etc.) and mind and body practices (yoga, acupuncture, etc.).A questionnaire on TCIM was submitted to 415 Italian cancer patients. The questionnaire consisted of three sections: (i) biographical and clinical information; (ii) use of natural substances; and (iii) use of mind-body practices.406 patients completed the questionnaire. The prevalence of TCIM use was 72.3%. Of them, 75.6% started to use TCIM after a tumor diagnosis. The main reasons for using TCIM were to mitigate side effects (65.0%), to regain physical and mental balance (35.9%), to relieve pain (18.3%), and to improve the efficacy of cancer therapy (16.0%). 44.7% of patients taking natural products used them during conventional therapies (chemotherapy, radiotherapy, etc.), and in 67.5% of cases without consulting a doctor. As a consequence, only about 50% of patients taking natural substances used these compounds appropriately, and the most common errors were related with the purpose of reducing the side effects of the therapy (52.3%) and for boosting immune system (32.1%).There is an impelling need to provide patients with scientifically validated information to raise awareness about the benefits and risks of using TCIM.
DOI: 10.3390/cancers16051067
2024
Electroporation in Translational Medicine: From Veterinary Experience to Human Oncology
Electroporation (EP) is a broadly accepted procedure that, through the application of electric pulses with appropriate amplitudes and waveforms, promotes the delivery of anticancer molecules in various oncology therapies. EP considerably boosts the absorptivity of targeted cells to anticancer molecules of different natures, thus upgrading their effectiveness. Its use in veterinary oncology has been widely explored, and some applications, such as electrochemotherapy (ECT), are currently approved as first-line treatments for several neoplastic conditions. Other applications include irreversible electroporation and EP-based cancer vaccines. In human oncology, EP is still mostly restricted to therapies for cutaneous tumors and the palliation of cutaneous and visceral metastases of malignant tumors. Fields where veterinary experience could help smooth the clinical transition to humans include intraoperative EP, interventional medicine and cancer vaccines. This article recapitulates the state of the art of EP in veterinary and human oncology, recounting the most relevant results to date.
DOI: 10.3892/ijo.2014.2502
2014
Cited 17 times
The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: A new therapeutic approach
It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic, in M14 cells, than exogenous H2O2 and acrolein, even though their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Binding of BSAO to the cell membrane and release of the reaction products of spermine into the immediate vicinity of the cells, or directly into the cells, may explain the apparently paradoxical phenomenon. Both WT and MDR cells, after pre-treatment for 24 h, or longer, with the lysosomotropic compound chloroquine (CQ), show to be sensitized to subsequent exposure to BSAO/spermine enzymatic system. Evidence of ultrastructural aberrations and acridine orange release from lysosomes is presented in this study that is in favor of the permeabilization of the lysosomal membrane as the major cause of sensitization by CQ. Pre-treatment with CQ amplifies the ability of the metabolites formed from spermine by oxidative deamination to induce cell death. Melanocytes, differently from melanoma cells, were unaffected by the enzymatic system, even when preceded by CQ treatment. Since it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumour cells, it is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.
DOI: 10.1016/j.freeradbiomed.2005.12.011
2006
Cited 24 times
The nitroxide Tempol modulates anthracycline resistance in breast cancer cells
The occurrence of multidrug resistance (MDR) is the major obstacle to successful anthracycline-based cancer chemotherapy. In the present study, we assessed the effects of Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TPL), a piperidine nitroxide with growth-inhibitory properties in tumor cell lines, on a number of molecular mechanisms involved in the resistance of human breast adenocarcinoma cell lines to doxorubicin (DOX). Cytotoxicity studies in MCF-7 wildtype and their MDR variant MCF-7 Adr(R) cells showed a synergistic effect between TPL and DOX when exposure to TPL preceded or was simultaneous with DOX treatment in MCF-7 Adr(R) cells. This effect of TPL seems to be due in part to its ability to increase peroxide levels and to deplete cellular glutathione pools. In addition, TPL increased DOX accumulation in MCF-7 Adr(R) cells by interfering with P-glycoprotein-mediated DOX efflux, as evidenced using a specific antibody that recognizes the active form of the protein. TPL was also found to affect the expression levels of proteins involved in response to drug treatment (e.g., p53, bcl2, bax, p21). Taken together, our results indicate that TPL is a potential new agent that may improve the clinical effect of DOX in tumors exhibiting a MDR phenotype.
DOI: 10.1007/s00775-011-0771-1
2011
Cited 14 times
Platinum(II) chloride indenyl complexes: electrochemical and biological evaluation
DOI: 10.1016/j.chemphyslip.2019.05.006
2019
Cited 11 times
Influence of lipid composition on the ability of liposome loaded voacamine to improve the reversion of doxorubicin resistant osteosarcoma cells
The plant alkaloid voacamine (VOA) displays many interesting pharmacological activities thus, considering its scarce solubility in water, its encapsulation into liposome formulations for its delivery is an important goal. Different cationic liposome formulations containing a phospholipid, cholesterol and one of two diasteromeric cationic surfactants resulted able to maintain a stable transmembrane difference in ammonium sulfate concentration and/or pH gradient and to accumulate VOA in their internal aqueous bulk. The fluidity of the lipid bilayer affects both the ability to maintain a stable imbalance of protons and/or ammonium ions across the membrane and the entrapment efficiency. It was shown that VOA loaded into liposomes is more efficient than the free alkaloid to revert resistance of osteosarcoma cells resistant to doxorubicin to an extent depending on their composition.
DOI: 10.1186/s12951-021-01033-w
2021
Cited 8 times
Label-free cell based impedance measurements of ZnO nanoparticles—human lung cell interaction: a comparison with MTT, NR, Trypan blue and cloning efficiency assays
There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays.ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability.ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies.
2005
Cited 17 times
Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells.
Multidrug resistance (MDR) in tumor cells is generally associated with increased efflux of the cytotoxic compounds, due to the activation of mechanisms of intracellular transport and to the overexpression of surface proteins, such as P-glycoprotein (Pgp), which act as ATP-dependent molecular pumps. In a previous study, voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia, was examined for its possible capability of enhancing the cytotoxic effect of doxorubicin (DOX) on resistant human osteosarcoma cells. The effects of voacamine on the cell survival and on accumulation of DOX were investigated on both the parental cell line, U-2 OS-WT, and its resistant counterpart, U-2 OS-R. A differential effect between sensitive and resistant cells on the intracellular DOX concentration and distribution was revealed. In particular, voacamine induced a significant increase of drug retention and intranuclear location in resistant cells. Moreover, the cell survival analysis and the electron microscopic observations revealed an enhancement of the cytotoxic effect of DOX induced by the plant extract. In the present study, a panel of monoclonal antibodies (MAbs), recognizing different and specific structural and functional state of Pgp, was used. By flow cytometry and immunofluorescence confocal microscopy, a dose-dependent increase of the reactivity of Pgp with MAb UIC2, which specifically recognizes an epitope of the drug transporter in its functional conformation, was detected in voacamine-treated U-2 OS-R cells. Conversely, the expression of the epitope recognized by MAb MC57 was downregulated while MAb MM4.17 did not change its binding level to treated and untreated MDR cells. These data suggest that the plant extract reacts with Pgp producing conformational changes with consequent epitope modulation. Taken together, our observations seem to demonstrate that voacamine is a substrate for Pgp and, therefore, interferes with the Pgp-mediated drug export, acting as a competitive antagonist of cytotoxic agents.
DOI: 10.1016/j.tiv.2020.104819
2020
Cited 9 times
Voacamine: Alkaloid with its essential dimeric units to reverse tumor multidrug resistance
Search for natural substances in association with conventional chemotherapeutic drugs with a chemiosensitizing action easily accessible to the tumor mass has encouraged our studies on voacamine (VOA) and its monomeric units, voacangine and vobasine. Our previous results showed that VOA sensitized multidrug resistant (MDR) osteosarcoma cells (U-2 OS/DX) to doxorubicin (DOX) cytotoxicity. VOA, extracted by Peschiera fuchsiaefolia plant, is a bisindole alkaloid consisting of an Iboga skeleton (voacangine) directly linked to a 2-acyl indole unit (vobasine). High-performance thin-layer chromatography densitometry demonstrated the purity of VOA, voacangine and vobasine samples. Flow cytometry analysis showed that VOA, voacangine and vobasine enhanced DOX accumulation of U-2 OS/DX cells, in equally way, whereas VOA reduced more efficiently DOX efflux. Optical microscopy and clonogenic assay confirmed that VOA was more effective than voacangine and vobasine in enhancing DOX cytotoxic effect. These results showed that monomers linked together are necessary to modulate resistant phenotype of osteosarcoma cells. To complete the study, we evaluated the effect of three compounds on microtubules by confocal microscopy, suggesting that only the whole molecule depolymerizes the microtubules blocking so DOX efflux-mediated by vesicles.
DOI: 10.1080/08854726.2020.1814089
2020
Cited 9 times
‘This ward has no ears’: Role of the pastoral care practitioner in the hospital ward
National Guidelines for Spiritual Care in Australia recommend incorporation of spiritual care in multidisciplinary patient care planning, however it is not known how consistently this is done. A qualitative interview study was designed to explore the practices of pastoral care practitioners in two city hospitals in Australia. Fourteen pastoral care practitioners participated (100% response rate). Interviews were taped and transcribed verbatim. Transcripts were analysed according to thematic analysis. Six themes were identified in the data. These were: (1) a vocation, (2) the role of pastoral care, (3) documentation, (4) communication with other ward staff, (5) barriers to communication, and (6) official recognition of pastoral care workers. While pastoral care workers are convinced of the importance of their work, they experience challenges in expressing this to their colleagues, which may reduce their impact on patient care. Ongoing professionalization of pastoral care will help to reduce this discrepancy.
DOI: 10.4415/ann_15_02_12
2015
Cited 6 times
Migratory behaviour of tumour cells: a scanning electron microscopy study.
Tumour cells utilize different migration strategies to invade surrounding tissues and elude anticancer treatments. It is therefore important to understand the mechanisms underlying migration process, in order to aid the development of therapies aimed at blocking the dissemination of cancer cells.In this study tumour cell lines of different histological origin were analysed by combining 2D and 3D in vitro assays, biochemical tests and high resolution imaging by scanning electron microscopy (SEM) in order to look insight strategies adopted by tumour cells to invade extracellular matrix.Quantitative (computer-assisted colour camera equipped-light microscopy) and qualitative analysis (SEM) indicated that the most aggressive tumour cells adopt an "individual" behaviour. The analysis of intracellular signalling demonstrated that the highest invasive potential was associated with the activation of AKT, ERK, FAK and ERM proteins. The "individual" behaviour was positively related to the expression of VLA-2 and inversely related with the E-cadherin expression.The combination of 2D and 3D in vitro assays, biochemical tests and ultrastructural investigations proved to be a suitable test for the investigation of tumour cell migration and invasion. The high resolution imaging by SEM highlighted the interrelationships between cells in different migratory behaviours of tumour cells.
DOI: 10.1371/journal.pone.0213529
2019
Cited 6 times
The bacterial protein CNF1 as a new strategy against Plasmodium falciparum cytoadherence
Plasmodium falciparum severe malaria causes more than 400,000 deaths every year. One feature of P. falciparum-parasitized erythrocytes (pRBC) leading to cerebral malaria (CM), the most dangerous form of severe malaria, is cytoadherence to endothelium and blockage of the brain microvasculature. Preventing ligand-receptor interactions involved in this process could inhibit pRBC sequestration and insurgence of severe disease whilst reversing existing cytoadherence could be a saving life adjunct therapy. Increasing evidence indicate the endothelial Rho signaling as a crucial player in malaria parasite cytoadherence. Therefore, we have used the cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli protein able to modulate the activity of Cdc42, Rac, and Rho, three subfamilies of the Rho GTPases family, to study interactions between infected erythrocytes and cerebral endothelium in co-culture models. The main results are that CNF1 not only prevents cytoadherence but, more importantly, induces the detachment of pRBCs from endothelia monolayers. We first observed that CNF1 does affect neither parasite growth, nor the morphology and concentration of knobs that characterize the parasitized erythrocyte surface, as viewed by scanning electron microscopy. On the other hand, flow cytometry experiments show that cytoadherence reversion induced by CNF1 occurs in parallel with a decreased ICAM-1 receptor expression on the cell surface, suggesting the involvement of a toxin-promoted endocytic activity in such a response. Furthermore, since the endothelial barrier functionality is compromised by P. falciparum, we conducted a permeability assay on endothelial cells, revealing the CNF1 capacity to restore the brain endothelial barrier integrity. Then, using pull-down assays and inhibitory studies, we demonstrated, for the first time, that CNF1 is able not only to prevent but also to cause the parasite detachment by simultaneously activating Rho, Rac and Cdc42 in endothelial cells. All in all our findings indicate that CNF1 may represent a potential novel therapeutic strategy for preventing neurological complications of CM.
DOI: 10.1042/bst0350343
2007
Cited 7 times
MDL 72527 and spermine oxidation products induce a lysosomotropic effect and mitochondrial alterations in tumour cells
Cytotoxic products of polyamines generated in situ by an enzyme-catalysed reaction may be useful as a new avenue in combating cancer. This study demonstrated that MDR (multidrug-resistant) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding WT (wild-type) ones to H(2)O(2) and aldehydes, the products of BSAO (bovine serum amine oxidase)-catalysed oxidation of spermine. Moreover, cytotoxicity was considerably greater when the treatment was carried out at 42 degrees C than at 37 degrees C. TEM (transmission electron microscopy) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. After treatment with BSAO/spermine, a higher mitochondrial membrane depolarization and an increased mitochondrial activity in drug-resistant cells were observed.
DOI: 10.1002/jat.4178
2021
Cited 4 times
A harmonized and standardized in vitro approach produces reliable results on silver nanoparticles toxicity in different cell lines
Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS). DNA and chromosomal damage on BEAS-2B and RAW 264.7 cells were evaluated by comet and micronucleus assays, while oxidative DNA damage by modified comet assay and 8-oxodG/8-oxodA detection. We also investigated immunotoxicity and immunomodulation by cytokine release and NO production in RAW 264.7 and MH-S cells, with or without lipopolysaccharide (LPS) stimulus. Transmission electron microscope (TEM) analysis was used to analyze cellular uptake of AgNPs. Our results indicate different values of AgNPs hydrodynamic diameter depending on the medium, some genotoxic effect just on BEAS-2B and no or slight effects on function of RAW 264.7 and MH-S in absence or presence of LPS stimulus. This study highlights the relevance of using optimized protocols and multiple endpoints to analyze the potential toxicity of AgNPs and to obtain reliable and comparable results.
DOI: 10.3892/ijo.29.4.947
2006
Cited 7 times
Sensitization of human colon adenocarcinoma cells (LoVo) to reactive oxygen species by a lysosomotropic compound
The in situ formation of cytotoxic metabolites by an enzyme-catalyzed reaction is a recent approach in cancer therapy. The present results show that multidrug-resistant human colon adenocarcinoma cells (LoVo) are significantly more sensitive than corresponding wild-type cells to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Pre-treatment of the cells with N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), a lysosomotropic compound, sensitized both cell lines to the subsequent exposure to spermine metabolites, as was evident from the decrease of cell survival by a log unit. The sensitizing effect was greater in the case of the multidrug-resistant cell line, an aspect of particular importance with respect to potential therapeutic applications of the method, since conventional cancer therapy suffers from the development of drug resistance. Cell viability was determined using a clonogenic assay. MDL 72527 (at 300 microM) produced numerous cytoplasmic vacuoles, presumably of lysosomal origin, after 6-h exposure, which decreased in size and number (in the presence of the drug) by 24 h and had almost disappeared completely at 48 h. Mitochondrial damage, as observed by transmission electron microscopy, seemed to correlate better with the cytotoxic effects of the treatment than the formation of vacuoles. We suggest that the release of lysosomal enzymes into the cytosol by MDL 72527 is the main reason for its sensitizing effect. It is known that lysosomotropic compounds, which release lysosomal enzymes, produce oxidative stress and apoptosis.
DOI: 10.1016/j.bbamem.2019.06.003
2019
Cited 4 times
Structurally related glucosylated liposomes: Correlation of physicochemical and biological features
Liposomes functionalized on their surface with carbohydrates (glycoliposomes) represent an optimal approach for targeting of drugs to diseased tissues in vivo, thanks to biocompatibility, low toxicity and easy manufacturing of these lipid nanoparticles. Here we report on the study of liposomes including a novel glycosylated amphiphile and on the comparison of their features with those of glycosylated analogues described previously. Further, the capability of the different glucosylated formulations to interact with three breast cancer cell lines was investigated. Our results show that the hydrophobic portion of the lipid bilayer strongly influences both the properties and the internalization of glycosylated liposomes.
DOI: 10.3390/cancers13153867
2021
Cited 4 times
Electrochemotherapy with Mitomycin C Potentiates Apoptosis Death by Inhibiting Autophagy in Squamous Carcinoma Cells
We investigated the chemosensitizing effect of electroporation (EP), which, using electrical pulses, permeabilizes cancer cells to drugs. The study involved two human hypopharyngeal and tongue carcinoma cell lines. The surface and intracytoplasmic expression of P-gp were evaluated by flow cytometry, demonstrating that both lines were intrinsically resistant. After establishing the optimal dose of mitomycin C (MMC) to be used, in combination with EP, we showed, by both MTT assay and optical and electron scanning microscopy, the potentiating cytotoxic effect of EP with MMC compared to single treatments. Flow cytometry showed that the cytotoxicity of EP + MMC was due to the induction of apoptosis. In addition to verifying the release of cytochrome C in EP + MMC samples, we performed an expression analysis of caspase-3, caspase-9, Akt, pAkt, HMGB1, LC3I, LC3II, p62, Beclin1, and associated proteins with both apoptotic and autophagic phenomena. Our results were confirmed by two veterinary patients in whom the EP + MMC combination was used to control margins after the resection of corneal squamous carcinoma. In conclusion, we affirmed that the effect for which EP enhances MMC treatment is due to the inhibition of the autophagic process induced by the drug in favor of apoptosis.
DOI: 10.1039/c5md90061a
2016
Cited 3 times
Correction: Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment
DOI: 10.3389/fonc.2023.1217401
2023
Editorial: Autophagy modulation in cancer treatment utilizing nanomaterials and nanocarriers
EDITORIAL article Front. Oncol., 06 June 2023Sec. Molecular and Cellular Oncology Volume 13 - 2023 | https://doi.org/10.3389/fonc.2023.1217401
DOI: 10.1016/j.jpba.2015.08.012
2015
High-performance thin-layer chromatography for the evaluation of voacamine intracellular concentration related to its cytotoxic effect
Previous investigations demonstrated that pretreatment with non-cytotoxic concentrations of voacamine had a chemosensitizing effect on cultured multidrug resistant osteosarcoma cells exposed to doxorubicin; whereas when used alone at high concentrations voacamine induced apoptosis-independent cell death on both sensitive and resistant cells. To gain insight into the mechanism of action of voacamine at the subcellular level, we developed an analytical high-performance thin-layer chromatography technique to assess the intracellular content of voacamine that could be correlated with the induction of cell death and consequent morphological and ultrastructural changes. The results of the quantitative analysis not only did allow us to measure both the amount of unmodified voacamine molecules (determined by the method) and the amount of molecules which reacted with cellular components (undetectable), but also to confirm the findings of our previous studies and support the validity of this method.
DOI: 10.1021/acsomega.2c02872
2022
Innovative Codeposition of a Ag–Al<sub>2</sub>O<sub>3</sub> Layer: An Attractive Combination of High Durability and Lack of Cytotoxicity for Public Space Applications
Today, the use of silver in surfaces for public environments is very frequent, as it ensures high antimicrobial activities, avoiding the continuous disinfection of the surfaces themselves. Similarly, thanks to its interesting combination of technological properties, anodized aluminum is widely employed in the production of components for applications in public spaces. Therefore, this work describes a simple method of the codeposition of silver and anodized aluminum to combine the remarkable properties of Al2O3 layers with the antibacterial performances of silver. The effect of silver in modifying the durability features of the anodized aluminum layer was evaluated by means of various accelerated degradation techniques, such as the exposure in a climatic chamber to UV-B radiation or an aggressive atmosphere simulated by the Kesternich test. These analyses showed the good compatibility between Ag and the alumina matrix, whose durability performances were not particularly influenced by silver. Furthermore, the composite layers did not express relevant cytotoxicity activity, as evidenced by Trypan blue flow cytometry analysis and microscopy observations, ensuring the possible use of this material in applications in close contact with humans. This same conclusion was reached by observing an almost negligible ionic release of Ag by the composite layers, even following severe degradation of the alumina matrix due to exposure to a particular acid solution. In conclusion, this work presents an innovative material that can be used in public spaces, thanks to its interesting combination of high durability and low cytotoxicity.
DOI: 10.3390/ijms232416098
2022
Prunus spinosa Extract Sensitized HCT116 Spheroids to 5-Fluorouracil Toxicity, Inhibiting Autophagy
Autophagy is a lysosomal degradation and recycling process involved in tumor progression and drug resistance. The aim of this work was to inhibit autophagy and increase apoptosis in a 3D model of human colorectal cancer by combined treatment with our patented natural product Prunus spinosa + nutraceutical activator complex (PsT + NAC®) and 5-fluorouracil (5-FU). By means of cytotoxic evaluation (MTT assay), cytofluorimetric analysis, light and fluorescence microscopy investigation and Western blotting evaluation of the molecular pathway PI3/AKT/mTOR, Caspase-9, Caspase-3, Beclin1, p62 and LC3, we demonstrated that the combination PsT + NAC® and 5-FU significantly reduces autophagy by increasing the apoptotic phenomenon. These results demonstrate the importance of using non-toxic natural compounds to improve the therapeutic efficacy and reduce the side effects induced by conventional drugs in human colon cancer.
DOI: 10.1002/9783527808465.emc2016.6707
2016
Short time of <scp>Z</scp> n <scp>O</scp> nanoparticles uptake induces <scp>DNA</scp> damage and specific mitochondrial degeneration in human colon carcinoma cells
Thanks to their unique physico‐chemical properties, ZnO nanoparticles are widely used in consumer and industrial products, due to their higher chemical reactivity, stronger oxidation and corrosion resistance, antimicrobial properties, as compared with larger micro‐sized counterparts (Madhumitha et al., 2016). Recent studies have shown that ZnO nanoparticles can be promising candidates for biomedical applications and therapeutic interventions, and also successful as drug carrier and in targeted gene delivery (Peng et al., 2015; Velmurugan et al.,2015). In our previous in vitro study, ZnO nanoparticles showed to induce oxidative stress in human colon carcinoma cells (LoVo), resulting in significant decrease of cell viability (De Berardis et al., 2010). In order to gain insight into the mechanism of action at subcellular level, aim of the present investigation was to carry out an ultrastructural study by transmission electron microscopy (TEM) on the subcellular localization of ZnO nanoparticles and a semi‐quantitative analysis of cellular uptake at multiple time points (from a few minutes up to 24 h of exposure). Electron microscopy observations of ZnO treated cells revealed two different mechanisms of cellular uptake, passive diffusion and endocytosis. Control cells show a mitochondria and nuclear normal shape (Fig. 1A). Small particles entry by passive diffusion crossing the plasma membrane without altering its structure (30 min of treatment, Fig. 1B; arrow indicates the nanoparticle in the cell membrane area). After 1h of treatment ZnO nanoparticles are already visible in the mitochondria cristae (Fig. 1C). The induction of the apoptosis is clearly showed in Fig. 1D, after 24 h of treatment. Quantitative analysis of cell death has been performed by flow cytometry. We also evaluated the intracellular ions release from ZnO nanoparticles, their genotoxic potential by determining 7,8‐dihydro‐8‐oxo‐deoxyguanosine (8‐oxodG) levels, and the expression of phosphorylated histone H2AX (γ‐H2AX). The simultaneous presence of ZnO nanoparticles and Zn 2+ ions in the LoVo cells determined the formation of reactive oxygen species at the mitochondrial and nuclear level, inducing severe DNA damage. In conclusion, our observations showed that ZnO nanoparticles entered LoVo cells by either passive diffusion or endocytosis or both, depending on the agglomeration state of the nanomaterial. ZnO nanoparticles coming into contact with acid pH of lysosomes altered organelles structure, resulting in the release of Zn 2+ ions. Taken together, the results of this study provide the evidence that damage induced by ZnO nanoparticles in LoVo cells derives from a combined action between intact nanoparticles and Zn 2+ ions, leading new insights into their toxicity.
DOI: 10.1166/jnd.2014.1063
2014
Remote Loading of Alkaloid Voacamine in Cationic Liposomes to Improve the Reversion of Drug Resistant Phenotype
DOI: 10.1042/bst0411773u
2013
MDL 72527 and spermine oxidation products induce a lysosomotropic effect and mitochondrial alterations in tumour cells