ϟ

M. Hohlmann

Here are all the papers by M. Hohlmann that you can download and read on OA.mg.
M. Hohlmann’s last known institution is . Download M. Hohlmann PDFs here.

Claim this Profile →
DOI: 10.1088/1361-6471/ab4574
2020
Cited 165 times
Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.
DOI: 10.1016/j.nima.2011.01.163
2011
Cited 80 times
Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors
Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30cm \times 30cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (~0.03 liters) using GEM-based Muon Tomography.
DOI: 10.1140/epjc/s10052-009-0965-7
2009
Cited 59 times
Kinematic distributions and nuclear effects of J/ψ production in 920 GeV fixed-target proton-nucleus collisions
Measurements of the kinematic distributions of J/ψ mesons produced in p–C, p–Ti and p–W collisions at $\sqrt{s}=41.6~\mathrm{GeV}$ in the Feynman-x region −0.34<x F <0.14 and for transverse momentum up to p T =5.4 GeV/c are presented. The x F and p T dependencies of the nuclear suppression parameter, α, are also given. The results are based on 2.4×105 J/ψ mesons reconstructed in both the e + e − and μ + μ − decay channels. The data have been collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The measurement explores the negative region of x F for the first time. The average value of α in the measured x F region is 0.981±0.015. The data suggest that the strong nuclear suppression of J/ψ production previously observed at high x F turns into an enhancement at negative x F .
DOI: 10.1109/tns.2009.2016197
2009
Cited 42 times
GEANT4 Simulation of a Cosmic Ray Muon Tomography System With Micro-Pattern Gas Detectors for the Detection of High-${\rm Z}$ Materials
Muon tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing shipping containers is a promising candidate for identifying threatening high-Z materials. Since position-sensitive detectors with high spatial resolution should be particularly suited for tracking muons in a MT application, we propose to use compact micro-pattern gas detectors, such as gas electron multipliers (GEMs), for muon tomography. We present a detailed GEANT4 simulation of a GEM-based MT station for various scenarios of threat material detection. Cosmic ray muon tracks crossing the material are reconstructed with a point-of-closest-approach algorithm to form 3-D tomographic images of the target material. We investigate acceptance, Z-discrimination capability, effects of placement of high-Z material and shielding materials inside the cargo, and detector resolution effects for such a MT station.
DOI: 10.1016/j.nima.2012.10.058
2013
Cited 32 times
GEM based detector for future upgrade of the CMS forward muon system
In view of an upgrade of the CMS experiment, the GEM for CMS collaboration is performing feasibility studies on employing Triple-GEM detectors for the high-η region (1.6–2.4) of the CMS endcaps. A detailed review of the development and characterization of the CMS full-size prototype baseline detector will be presented. GEMs have excellent spatial and time resolution, high rate capability and radiation hardness, they are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in the high-η region. The GEM for CMS collaboration has studied the performance of small and full-size prototype detectors during several test beam campaigns in order to validate new technologies and techniques in view of a mass production for CMS experiment. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown from both small and large prototypes.
DOI: 10.1016/j.nima.2022.166716
2022
Cited 10 times
Quality control of mass-produced GEM detectors for the CMS GE1/1 muon upgrade
The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton collisions is expected to exceed $2-3\times10^{34}$~cm$^{-2}$s$^{-1}$ for Run 3 (starting in 2022), and it will be at least $5\times10^{34}$~cm$^{-2}$s$^{-1}$ when the High Luminosity Large Hadron Collider is completed for Run 4. These conditions will affect muon triggering, identification, and measurement, which are critical capabilities of the experiment. To address these challenges, additional muon detectors are being installed in the CMS endcaps, based on Gas Electron Multiplier technology. For this purpose, 161 large triple-Gas Electron Multiplier detectors have been constructed and tested. Installation of these devices began in 2019 with the GE1/1 station and will be followed by two additional stations, GE2/1 and ME0, to be installed in 2023 and 2026, respectively. The assembly and quality control of the GE1/1 detectors were distributed across several production sites around the world. We motivate and discuss the quality control procedures that were developed to standardize the performance of the detectors, and we present the final results of the production. Out of 161 detectors produced, 156 detectors passed all tests, and 144 detectors are now installed in the CMS experiment. The various visual inspections, gas tightness tests, intrinsic noise rate characterizations, and effective gas gain and response uniformity tests allowed the project to achieve this high success rate.
DOI: 10.1016/j.nima.2005.09.043
2005
Cited 49 times
The Outer Tracker detector of the HERA-B experiment—Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with about 113000 read-out channels. Its inner part has been designed to be exposed to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions similar to those expected for future hadron collider experiments. 13 superlayers, each consisting of two individual chambers, have been assembled and installed in the experiment. The stereo layers inside each chamber are composed of honeycomb drift tube modules with 5 and 10 mm diameter cells. Chamber aging is prevented by coating the cathode foils with thin layers of copper and gold, together with a proper drift gas choice. Longitudinal wire segmentation is used to limit the occupancy in the most irradiated detector regions to about 20 %. The production of 978 modules was distributed among six different laboratories and took 15 months. For all materials in the fiducial region of the detector good compromises of stability versus thickness were found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all chambers. The successful operation of the HERA-B Outer Tracker shows that a large tracker can be efficiently built and safely operated under huge radiation load at a hadron collider.
DOI: 10.1140/epjc/s10052-006-0139-9
2006
Cited 42 times
A Measurement of the ψ′ to J/ψ production ratio in 920 GeV proton-nucleus interactions
Ratios of the ψ′ over the J/ψ production cross sections in the dilepton channel for C, Ti and W targets have been measured in 920 GeV proton-nucleus interactions with the HERA-B detector at the HERA storage ring. The ψ′ and J/ψ states were reconstructed in both the μ+μ- and the e+e- decay modes. The measurements covered the kinematic range -0.35≤xF≤0.1 with transverse momentum pT≤4.5 GeV/c. The angular dependence of the ratio has been used to measure the difference of the ψ′ and J/ψ polarization. All results for the muon and electron decay channels are in good agreement: their ratio, averaged over all events, is Rψ′(μ)/Rψ′(e)=1.00±0.08±0.04. This result constitutes a new, direct experimental constraint on the double ratio of branching fractions, (B′(μ)B(e))/(B(μ)B′(e)), of ψ′ and J/ψ in the two channels. The ψ′ to J/ψ production ratio is almost constant in the covered xF range and shows a slow increase with pT.
DOI: 10.1016/j.nima.2007.03.025
2007
Cited 36 times
The outer tracker detector of the HERA-B experiment. Part III: Operation and performance
In this paper we describe the operation and performance of the HERA-B Outer Tracker, a 112674 channel system of planar drift tube layers. The performance of the HERA-B Outer Tracker system fullfilled all requirements for stable and efficient operation in a hadronic environment, thus confirming the adequacy of the honeycomb drift tube technology and of the front-end readout system. The detector was stably operated with a gas gain of 30000 in an Ar/CF4/CO2 (65:30:5) gas mixture, yielding a good efficiency for triggering and track reconstruction, larger than 95 % for tracks with momenta above 5 GeV/c. The hit resolution of the drift cells was 300 to 320 micrometers and the relative momentum resolution can be described as: sigma(p)/p (in %) = (1.61 +- 0.02) + (0.0051 +- 0.0006) p. At the end of the HERA-B running no aging effects in the Outer Tracker cells were observed.
DOI: 10.1140/epjc/s10052-009-0957-7
2009
Cited 29 times
Angular distributions of leptons from J/ψ’s produced in 920 GeV fixed-target proton-nucleus collisions
A study of the angular distributions of leptons from decays of J/ψ's produced in p-C and p-W collisions at $\sqrt{s}=41.6\mbox{~GeV}$ has been performed in the J/ψ Feynman-x region −0.34<x F <0.14 and for J/ψ transverse momenta up to 5.4 GeV/c. The data were collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The results, based on a clean selection of 2.3×105 J/ψ's reconstructed in both the e + e − and μ + μ − decay channels, indicate that J/ψ's are produced polarized. The magnitude of the effect is maximal at low p T . For p T >1 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.
DOI: 10.1016/j.nima.2003.08.144
2003
Cited 38 times
Aging studies for the large honeycomb drift tube system of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.
DOI: 10.1109/nssmic.2010.5873822
2010
Cited 24 times
Detection and imaging of high-Z materials with a muon tomography station using GEM detectors
Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\times 2 \times 2 mm^3$ voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 \times 30 cm^2$ GEM detector for the next muon tomography prototype with final frontend electronics and DAQ system. This constitutes the first full-size implementation of the Scalable Readout System (SRS) recently developed specifically for Micropattern Gas Detectors by the RD51 collaboration. Design of the SRS and first performance results when reading out GEM detectors are presented.
DOI: 10.1088/1748-0221/9/10/c10036
2014
Cited 18 times
Upgrade of the CMS muon system with triple-GEM detectors
The CMS collaboration considers upgrading the muon forward region which is particularly affected by the high-luminosity conditions at the LHC. The proposal involves Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs and its impact on the CMS performance.
DOI: 10.1016/j.nima.2018.11.061
2019
Cited 16 times
Layout and assembly technique of the GEM chambers for the upgrade of the CMS first muon endcap station
Triple-GEM detector technology was recently selected by CMS for a part of the upgrade of its forward muon detector system as GEM detectors provide a stable operation in the high radiation environment expected during the future High-Luminosity phase of the Large Hadron Collider (HL-LHC). In a first step, GEM chambers (detectors) will be installed in the innermost muon endcap station in the $1.6<\left|\eta\right|<2.2$ pseudo-rapidity region, mainly to control level-1 muon trigger rates after the second LHC Long Shutdown. These new chambers will add redundancy to the muon system in the $\eta$-region where the background rates are high, and the bending of the muon trajectories due to the CMS magnetic field is small. A novel construction technique for such chambers has been developed in such a way where foils are mounted onto a single stack and then uniformly stretched mechanically, avoiding the use of spacers and glue inside the active gas volume. We describe the layout, the stretching mechanism and the overall assembly technique of such GEM chambers.
DOI: 10.1140/epjc/s10052-007-0237-3
2007
Cited 26 times
K*0 and φ meson production in proton–nucleus interactions at $\sqrt{s}=41.6\text{GeV}$
The inclusive production cross sections of the strange vector mesons K*0, K*0bar, and phi have been measured in interactions of 920 GeV protons with C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of rapidity and transverse momentum have been measured in the central rapidity region and for transverse momenta up to pT=3.5 GeV/c. The atomic number dependence is parametrised as sigma(pA) = sigma(pN)*A**alpha, where sigma(pN) is the proton-nucleon cross section. Within the phase space accessible, alpha(K*0) = 0.86+/-0.03, alpha(K*0bar) = 0.87+/-0.03, and alpha(phi) = 0.96+/-0.02. The total proton-nucleon cross sections, determined by extrapolating the differential measurements to full phase space, are sigma(pN->K*0) = 5.06+/-0.54 mb, sigma(pN->K*0bar) = 4.02+/-0.45 mb, and sigma(pN->phi) = 1.17+/-0.11 mb. The Cronin effect is observed for the first time for vector mesons containing strange quarks; compared to the measurements of Cronin et al. for K+- mesons, the measured values of alpha for phi mesons coincide with those of K- mesons for all transverse momenta, while the enhancement for K*0 / K*0bar mesons is smaller.
DOI: 10.1140/epjc/s10052-007-0427-z
2007
Cited 25 times
Measurement of D0, D+, Ds + and D*+ production in fixed target 920 GeV proton–nucleus collisions
The inclusive production cross sections of the charmed mesons D0,D+,Ds + and D*+ have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman’s x variable are given for the central rapidity region and for transverse momenta up to pT=3.5 GeV/c. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.
DOI: 10.1109/nssmic.2010.5874006
2010
Cited 22 times
Characterization of GEM detectors for application in the CMS muon detection system
The muon detection system of the Compact Muon Solenoid experiment at the CERN Large Hadron Collider is based on different technologies for muon tracking and triggering. In particular, the muon system in the endcap disks of the detector consists of Resistive Plate Chambers for triggering and Cathode Strip Chambers for tracking. At present, the endcap muon system is only partially instrumented with the very forward detector region remaining uncovered. In view of a possible future extension of the muon endcap system, we report on a feasibility study on the use of Micro-Pattern Gas Detectors, in particular Gas Electron Multipliers, for both muon triggering and tracking. Results on the construction and characterization of small triple-Gas Electron Multiplier prototype detectors are presented.
DOI: 10.1088/1748-0221/11/01/c01023
2016
Cited 12 times
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown.
DOI: 10.1016/j.physletb.2006.03.064
2006
Cited 20 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi>ψ</mml:mi></mml:math> production cross section in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mn>920</mml:mn><mml:mtext> GeV</mml:mtext><mml:mo stretchy="false">/</mml:mo><mml:mi>c</mml:mi></mml:math> fixed-target proton–nucleus interactions
The mid-rapidity (dσpN/dy at y=0) and total (σpN) production cross sections of Jψ mesons are measured in proton–nucleus interactions. Data collected by the HERA-B experiment in interactions of 920 GeV/c protons with carbon, titanium and tungsten targets are used for this analysis. The Jψ mesons are reconstructed by their decay into lepton pairs. The total production cross section obtained is σpNJ/ψ=663±74±46 nb/nucleon. In addition, our result is compared with previous measurements.
DOI: 10.1016/j.physletb.2006.05.040
2006
Cited 20 times
Polarization of Λ and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mover accent="true"><mml:mi>Λ</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math> in 920 GeV fixed-target proton–nucleus collisions
A measurement of the polarization of Λ and Λ¯ baryons produced in pC and pW collisions at s=41.6GeV has been performed with the HERA-B spectrometer. The measurements cover the kinematic range of 0.6GeV/c<p⊥<1.2GeV/c in transverse momentum and −0.15<xF<0.01 in Feynman-x. The polarization results from the two different targets agree within the statistical error. In the combined data set, the largest deviation from zero, +0.054±0.029, is measured for xF≲−0.07. Zero polarization is expected at xF=0 in the absence of nuclear effects. The polarization results for the Λ agree with a parametrization of previous measurements which were performed at positive xF values, where the Λ polarization is negative. Results of Λ¯ polarization measurements are consistent with zero.
DOI: 10.1016/j.nima.2017.12.074
2018
Cited 12 times
A GEM readout with radial zigzag strips and linear charge-sharing response
We study the position sensitivity of radial zigzag strips intended to read out large GEM detectors for tracking at future experiments. Zigzag strips can cover a readout area with fewer strips than regular straight strips while maintaining good spatial resolution. Consequently, they can reduce the number of required electronic channels and related cost for large-area GEM detector systems. A non-linear relation between incident particle position and hit position measured from charge sharing among zigzag strips was observed in a previous study. We significantly reduce this non-linearity by improving the interleaving of adjacent physical zigzag strips. Zigzag readout structures are implemented on PCBs and on a flexible foil and are tested using a 10 cm by 10 cm triple-GEM detector scanned with a strongly collimated X-ray gun on a 2D motorized stage. Angular resolutions of60-84 urad are achieved with a 1.37 mrad angular strip pitch at a radius of 784 mm. On a linear scale this corresponds to resolutions below 100 um.
DOI: 10.1016/j.nima.2015.11.157
2016
Cited 11 times
Performance of a large-area GEM detector read out with wide radial zigzag strips
A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run radially with an azimuthal pitch of 1.37 mrad to measure the azimuthal ϕ-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4±0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193±3) μrad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.
DOI: 10.1109/tns.2018.2846403
2018
Cited 11 times
Design Studies for a TPC Readout Plane Using Zigzag Patterns With Multistage GEM Detectors
New design studies have been carried out for a readout plane for gas electron multiplier detectors using zigzag patterns that can significantly reduce the readout channel count while preserving excellent spatial resolution for tracking detectors. While zigzag patterns have been used in a number of applications, these studies were designed to investigate the fundamental limits of charge sharing between the electrodes to optimize the spatial resolution and minimize the nonuniformities across the readout plane, while exploring the limits of manufacturing capabilities for producing the readout board. Simulation studies were carried out to optimize the readout electrode structure, and readout boards were produced with similar zigzag designs that were tested in the laboratory using a scanning X-ray source. These studies were aimed at developing a readout board for the new time projection chamber for the sPHENIX experiment at relativistic heavy ion collider, but can readily be used in other applications, including various micropattern gas detectors, such as Micromegas.
DOI: 10.1109/nssmic.2009.5402470
2009
Cited 14 times
Design and construction of a first prototype Muon Tomography system with GEM detectors for the detection of nuclear contraband
Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm × 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assembly of the GEM-based tracking stations in collaboration with CERN and the RD51 collaboration as well as the design of the initial front-end electronics and readout system.
DOI: 10.1109/nssmic.2008.4774639
2008
Cited 13 times
Performance expectations for a Tomography System using cosmic ray muons and micro pattern gas detectors for the detection of nuclear contraband
We present results from a detailed GEANT4 simulation of a proposed Muon Tomography System that employs compact Micro Pattern Gas Detectors with high spatial resolution. A basic Point-Of-Closest-Approach algorithm is applied to reconstructed muon tracks for forming 3D tomographic images of interrogated targets. Criteria for discriminating materials by Z and discrimination power achieved by the technique for simple scenarios are discussed for different integration times. The simulation shows that Muon Tomography can clearly distinguish high-Z material from low-Z and medium-Z material. We have studied various systematic effects that affect the performance of the MT and the discrimination power. The implications of the simulation results for the planned development of a prototype MT station are discussed.
DOI: 10.1016/j.nima.2020.164104
2020
Cited 8 times
Performance of prototype GE1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1083" altimg="si14.svg"><mml:mo>∕</mml:mo></mml:math>1 chambers for the CMS muon spectrometer upgrade
The high-luminosity phase of the Large Hadron Collider (HL-LHC) will result in ten times higher particle background than measured during the first phase of LHC operation. In order to fully exploit the highly-demanding operating conditions during HL-LHC, the Compact Muon Solenoid (CMS) Collaboration will use Gas Electron Multiplier (GEM) detector technology. The technology will be integrated into the innermost region of the forward muon spectrometer of CMS as an additional muon station called GE1∕1. The primary purpose of this auxiliary station is to help in muon reconstruction and to control level-1 muon trigger rates in the pseudo-rapidity region 1.6≤|η|≤2.2. The new station will contain trapezoidal-shaped GEM detectors called GE1∕1 chambers. The design of these chambers is finalized, and the installation is in progress during the Long Shutdown phase two (LS-2) that started in 2019. Several full-size prototypes were built and operated successfully in various test beams at CERN. We describe performance measurements such as gain, efficiency, and time resolution of these prototype chambers, developed after years of R&D, and summarize their behavior in different gas compositions as a function of the applied voltage.
DOI: 10.1088/1748-0221/8/12/c12031
2013
Cited 9 times
Status of the Triple-GEM project for the upgrade of the CMS Muon System
The CMS GEM collaboration is performing a feasibility study to install triple-GEM detectors in the forward region of the muon system (1.6 < |η| < 2.4) of the CMS detector at the LHC. Such micro-pattern gas detectors are able to cope with the extreme particle rates that are expected in that region during the High Luminosity phase of the LHC. With their spatial resolution of order 100 micron GEMs would not only provide additional benefits in the CMS muon High Level Trigger, but also in the muon identification and track reconstruction, effectively combining tracking and triggering capabilities in one single device. The present status of the full project will be reviewed, highlighting all importants steps and achievements since the start of the R&amp;D in 2009. Several small and full-size prototypes were constructed with different geometries and techniques. The baseline design of the triple-GEM detector for CMS will be described, along with the results from extensive test measurements of all prototypes both in the lab and in test beams at the CERN SPS. The proposed on- and off-detector electronics for the final system will be presented.
DOI: 10.1109/nssmic.2011.6154312
2011
Cited 9 times
Construction and performance of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system
At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\eta region. An international collaboration is investigating the possibility of covering the 1.6 < |\eta| < 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.
DOI: 10.1016/j.nima.2016.05.067
2017
Cited 9 times
R&amp;D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector
This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern (FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described in detail and the results of the characterization study performed with an X-ray gun will be presented, together with the first results on time resolution based on data collected with muon/pion test beams.
DOI: 10.1109/tns.2002.801666
2002
Cited 15 times
Summary and outlook of the international workshop on aging phenomena in gaseous detectors (DESY, Hamburg, October 2001)
High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors.
DOI: 10.1016/j.nima.2004.12.005
2005
Cited 14 times
The Outer Tracker detector of the HERA-B experiment. Part II: Front-end electronics
The HERA-B Outer Tracker is a large detector with 112 674 drift chamber channels.It is exposed to a particle flux of up to 2 • 10 5 cm -2 s -1 thus coping with conditions similar to those expected for the LHC experiments.The front-end readout system, based on the ASD-8 chip and a customized TDC chip, is designed to fulfil the requirements on low noise, high sensitivity, rate tolerance, and high integration density.The TDC system is based on an ASIC which digitizes the time in bins of about 0.5 ns within a total of 256 bins.The chip also comprises a pipeline to store data from 128 events which is required for a deadtime-free trigger and data acquisition system.We report on the development, installation, and commissioning of the front-end electronics, including the grounding and noise suppression schemes, and discuss its performance in the HERA-B experiment.
DOI: 10.1007/978-3-540-92814-0_35
2009
Cited 9 times
Muon Tomography Algorithms for Nuclear Threat Detection
In this article on Muon Tomography we report our work on the development of an intelligent pattern detection system for materials with high atomic numbers (Z) for Homeland Security application. Muons are naturally produced in the upper atmosphere by primary cosmic rays and are used as passive probes of a cargo volume. By sensing the incoming and outgoing tracks and measuring the momentum of each muon for a probed volume one may derive the scattering parameters. A statistical algorithm is being used to estimate scattering densities of the material in each unit volume (voxel) of the probed target. The article describes the algorithm and some results from our simulation experiments.
DOI: 10.1109/nssmic.2010.5874107
2010
Cited 9 times
Construction of the first full-size GEM-based prototype for the CMS high-&amp;#x03B7; muon system
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger information, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
DOI: 10.1109/nssmic.2012.6551293
2012
Cited 8 times
Beam test results for new full-scale GEM prototypes for a future upgrade of the CMS high-&amp;#x03B7; Muon System
The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5 <; |η| <; 2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-η region. Employing a new faster construction and assembly technique, we built four full-scale Triple-GEM muon detectors for the inner ring of the first muon endcap station. We plan to install these or further improved versions in CMS during the first long LHC shutdown in 2013/14 for continued testing. These detectors are designed for the stringent rate and resolution requirements in the increasingly hostile environments expected at CMS after the second long LHC shutdown in 2018/19. The new prototypes were studied in muon/pion beams at the CERN SPS. We discuss our experience with constructing the new full-scale production prototypes and present preliminary performance results from the beam test. We also tested smaller Triple-GEM prototypes with zigzag readout strips with 2 mm pitch in these beams and measured a spatial resolution of 73 μm. This readout offers a potential reduction of channel count and consequently electronics cost for this system while maintaining high spatial resolution.
DOI: 10.1088/1748-0221/10/03/c03039
2015
Cited 7 times
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised.
DOI: 10.1016/j.nima.2013.08.015
2013
Cited 7 times
The status of the GEM project for CMS high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0002.gif" overflow="scroll"><mml:mi>η</mml:mi></mml:math> muon system
The dedicated CMS R&D program was intended to study the feasibility of using micropattern detectors for the instrumentation of the vacant |η|>1.6 region in the present Resistive Plate Chambers (RPCs) endcap system. The proposed detector for CMS is a Triple-Gas Electron Multiplier (GEM) trapezoidal chamber, equipped with 1D readout. While during 2010–2011 the Collaboration worked on the prototyping of the detector, during the first part of 2012 a newly developed assembly technique to be used for the mass production was adopted. GEMs can provide precision tracking and fast trigger information, contributing on one hand to the improvement of the CMS muon Trigger and on the other hand to provide the missing redundancy in the high η region. In the view of the next LHC long shutdown (LS1) the CMS GEM Collaboration designed and built four full-size Triple GEM-based muon detectors.
DOI: 10.1016/s0168-9002(02)01463-8
2002
Cited 11 times
Aging phenomena in gaseous detectors – perspectives from the 2001 workshop
Abstract High-Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors, and resistive plate chambers—each with their own specific aging characteristics—have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. The 2001 workshop provided a forum to review the progress since 1986 in understanding aging effects and to exchange recent experiences. A summary of the main results reported at the 2001 workshop is presented providing a systematic review of aging effects in state-of-the-art detectors.
DOI: 10.1142/9789814405072_0081
2012
Cited 5 times
Construction and Performance of full scale GEM prototypes for future upgrades of the CMS forward Muon system
DOI: 10.48550/arxiv.1211.3939
2012
Cited 5 times
Beam Test Results for New Full-scale GEM Prototypes for a Future Upgrade of the CMS High-eta Muon System
The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5<|eta|<2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-eta region. Employing a new faster construction and assembly technique, we built four full-scale Triple-GEM muon detectors for the inner ring of the first muon endcap station. We plan to install these or further improved versions in CMS during the first long LHC shutdown in 2013/14 for continued testing. These detectors are designed for the stringent rate and resolution requirements in the increasingly hostile environments expected at CMS after the second long LHC shutdown in 2018/19. The new prototypes were studied in muon/pion beams at the CERN SPS. We discuss our experience with constructing the new full-scale production prototypes and present preliminary performance results from the beam test. We also tested smaller Triple-GEM prototypes with zigzag readout strips with 2 mm pitch in these beams and measured a spatial resolution of 73 microns. This readout offers a potential reduction of channel count and consequently electronics cost for this system while maintaining high spatial resolution.
DOI: 10.1088/1748-0221/9/04/c04022
2014
Cited 4 times
A study of film and foil materials for the GEM detector proposed for the CMS muon system upgrade
During the next shutdown of the LHC at CERN, the CMS experiment plans to start installing GEM detectors in the endcap (high pseudorapidity) region. These muon detectors have excellent spatial and temporal resolution as well as a high chemical stability and radiation hardness. A report is given on preliminary results of materials studies that aimed to fully characterize the GEM detector components before and after the exposure to a high-radiation environment.
DOI: 10.1088/1748-0221/9/01/c01053
2014
Cited 4 times
Studies on the upgrade of the muon system in the forward region of the CMS experiment at LHC with GEMs
The LHC data-taking will resume in 2015 with energy of 13–14 TeV and luminosity of 2÷5 × 1034 cm−2 s−1. At those energies, a considerable fraction of the particles produced propagate in the high pseudo-rapidity regions. The proposal for the upgrade of the CMS muon forward system involves Gas Electron Multiplier (GEM) chambers to be installed during the second LHC Long Shutdown (LS2) covering the pseudorapidity range 1.5 < |η| < 2.2. This detector is able to handle the extreme particle rates expected in this region when the LHC will be running at higher luminosity. The GEM is an excellent choice, as its high spatial resolution (order of 100 μm) allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs, discussing also the trigger performance.
DOI: 10.1088/1748-0221/16/11/p11014
2021
Cited 4 times
Performance of a triple-GEM demonstrator in pp collisions at the CMS detector
After the Phase-2 high-luminosity upgrade to the Large Hadron Collider (LHC), the collision rate and therefore the background rate will significantly increase, particularly in the high $\eta$ region. To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.
DOI: 10.1016/s0168-9002(00)01162-1
2001
Cited 10 times
The Outer Tracker of HERA–B
The Outer Tracker of the HERA–B experiment at DESY is a gaseous detector that provides tracking of charged particles over a large volume in a high-rate, hadronic environment. The radiation load at 40 MHz interaction rate is comparable to what will be encountered by large trackers in future LHC experiments. The Outer Tracker allows pattern recognition for event reconstruction, momentum measurement, and highly selective triggering on dileptons from J/ψ decays. Its wire–chamber modules comprise 110,000 honeycomb drift cells of up to 4.5m length operating with an Ar/CF4/CO2 gas mixture. The detector was fully installed in January 2000 and is currently operating in HERA-B's first physics run. During detector development different types of severe aging effects were observed. The solutions to the aging problems, detector construction, and detector performance during the early commissioning phase are discussed.
DOI: 10.1088/1748-0221/8/11/c11017
2013
Cited 4 times
Development and performance of large scale triple GEM for CMS
The international CMS GEM collaboration is studying the feasibility of upgrading the CMS forward muon system by adding layers of triple GEM based detectors. After successful tests of small size tripe-GEM chambers in the period of 2010-2011, the collaboration has designed, built and tested full-size GEM chambers for the upgrade purpose. We report on results from test beam and simulation that were conducted to study the performance of the GEM chambers.
DOI: 10.48550/arxiv.1309.0842
2013
Cited 4 times
Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation
This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to partner with industry in taking on such a challenge.
DOI: 10.1016/j.nima.2016.05.127
2017
Cited 4 times
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6<|η|<2.2, while continuing R&D is ongoing for additional regions.
DOI: 10.1088/1748-0221/15/05/p05023
2020
Cited 4 times
Detector Control System for the GE1/1 slice test
Gas Electron Multiplier (GEM) technology, in particular triple-GEM, was selected for the upgrade of the CMS endcap muon system following several years of intense effort on R&D. The triple-GEM chambers (GE1/1) are being installed at station 1 during the second long shutdown with the goal of reducing the Level-1 muon trigger rate and improving the tracking performance in the harsh radiation environment foreseen in the future LHC operation [1]. A first installation of a demonstrator system started at the beginning of 2017: 10 triple-GEM detectors were installed in the CMS muon system with the aim of gaining operational experience and demonstrating the integration of the GE1/1 system into the trigger. In this context, a dedicated Detector Control System (DCS) has been developed, to control and monitor the detectors installed and integrating them into the CMS operation. This paper presents the slice test DCS, describing in detail the different parts of the system and their implementation.
DOI: 10.1088/1748-0221/15/10/p10013
2020
Cited 4 times
Triple-GEM discharge probability studies at CHARM: simulations and experimental results
The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2 and an integrated charge of 8 C/cm2 over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups.
DOI: 10.1109/nssmic.2009.5402209
2009
Cited 4 times
Simulation study of muon scattering for tomography reconstruction
Nuclear materials that pose a homeland security threat typically have high atomic numbers (Z > 82). It is of vital importance to develop smart, efficient, and inexpensive systems to detect such high-Z materials without opening a container. Muon Tomography (MT) provides a non-invasive channel for such investigation. We have been investigating such muon scattering with numerical simulation with GEANT4 for some time [6]. In this article we report the development of an efficient clustering algorithm for detecting threat objects in a probed volume.
DOI: 10.1088/1748-0221/9/03/c03052
2014
Cited 3 times
Development of the data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer
In this contribution we will report on the progress of the design of the readout and data acquisition system being developed for triple-GEM detectors which will be installed in the forward region (1.5 < |η| < 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, expected in the period 2017–2018. The system will be designed to take full advantage of current generic developments introduced for the LHC upgrades. The current design is based on the use of CERN GLIB boards hosted in micro-TCA crates for the off-detector electronics and the Versatile Link with the GBT chipset to link the front-end electronics to the GLIB boards. In this contribution we will describe the physics goals, the hardware architectures and report on the expected performance of the CMS GEM readout system, including preliminary timing resolution simulations.
DOI: 10.1088/1748-0221/7/05/c05008
2012
Cited 3 times
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < |η| < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-η area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm × 10cm) and full-size trapezoidal (1m × 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported.
DOI: 10.1109/nssmic.2011.6154688
2011
Cited 3 times
Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-&amp;#x03B7; muon system
Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the 1.6 <; |η| <; 2:4 endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the prototypes at the beam tests will be discussed.
DOI: 10.1016/j.nima.2003.08.140
2003
Cited 6 times
A large ultra-clean gas system with closed loop for the high-rate Outer Tracker at HERA-B
The gas system for the Outer Tracker of the HERA-B experiment at DESY produces the desired counting gas mixture Ar/CF4/CO2 65:30:5 and circulates it through the detector at a flow rate of 20m3/h, i.e. ∼1vol/h. It controls flows and regulates pressures in all 26 OTR half-superlayers, purifies the gas upon return from the detector, and automatically performs a quantitative analysis of main and trace (O2, N2, H2O) gas components for the common input and the outputs of all half-superlayers. The first running experience and the strategies employed during system construction to avoid any detector aging possibly induced by the gas system are discussed. The large system with major gas purification stations was constructed using only non-outgassing, “clean” materials and devices, such as stainless steel, PEEK, baked Viton, and metal bellows pumps. An epoxy glue was used extensively as a non-outgassing sealing material in applications with up to 100bar pressure.
DOI: 10.1109/tns.2018.2871428
2018
Cited 3 times
Operational Experience With the GEM Detector Assembly Lines for the CMS Forward Muon Upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement.
DOI: 10.1140/epjc/s10052-009-1005-3
2009
Cited 3 times
V0 production in p+A collisions at $\sqrt{s}=41.6$ GeV
Inclusive doubly differential cross sections d 2 σ pA /dx F dp 2 as a function of Feynman-x (x F ) and transverse momentum (p T ) for the production of K 0 , Λ and $\bar{\varLambda}$ in proton-nucleus interactions at 920 GeV are presented. The measurements were performed by HERA-B in the negative x F range (−0.12<x F <0.0) and for transverse momenta up to p T =1.6 GeV/c. Results for three target materials: carbon, titanium and tungsten are given. The ratios of production cross sections are presented and discussed. The Cronin effect is clearly observed for all three V 0 species. The atomic number dependence is parameterized as σ pA =σ pN ⋅A α where σ pN is the proton-nucleon cross section. The measured values of α are all near one. The results are compared with EPOS 1.67 and PYTHIA 6.3. EPOS reproduces the data to within ≈20% except at very low transverse momentum.
DOI: 10.1016/j.nima.2016.01.059
2016
Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
DOI: 10.1109/nssmic.2006.356204
2006
Cited 4 times
Design and Performance of the Alignment System for the CMS Muon Endcaps
The alignment system for the CMS muon endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large cathode strip chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4 T field is switched on and off. The muon endcap alignment system is required to monitor chamber positions with 75-200 mum accuracy in the Rphi plane, ~400 mum in the radial direction, and ~1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4 T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations.
DOI: 10.1016/j.nuclphysa.2006.06.162
2006
Cited 4 times
A hadron blind detector for the PHENIX experiment at RHIC
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.
DOI: 10.1016/j.nima.2007.09.011
2007
Cited 3 times
Luminosity determination at HERA-B
A detailed description of an original method used to measure the luminosity accumulated by the HERA-B experiment for a data sample taken during the 2002-2003 HERA running period is reported. We show that, with this method, a total luminosity measurement can be achieved with a typical precision, including overall systematic uncertainties, at a level of 5% or better. We also report evidence for the detection of delta-rays generated in the target and comment on the possible use of such delta rays to measure luminosity.
2011
Thermal Stretching of Large-Area GEM Foils Using an Infrared Heating Method
As GEM foils continue to increase in size, traditional methods of stretching and framing become more cumbersome and costly. We have developed a low-cost method of foil stretching based on a modified thermal technique using Plexiglas frames and infrared heat lamps. An overall temperature variation of not more than 5 o C across a 1.2 m x 0.7 m stretching frame is observed. We have applied this scalable technique to stretch and mount several 30 x 30 cm GEM foils for use in a muon tomography station and to stretch a 1 m x 0.5 m drift foil for the prototype of the CMS high-η muon detector upgrade. Two 30 cm x 30 cm triple-GEM detectors were successfully constructed from foils stretched by this method. Potential future improvements to this method and one other potential low-cost method of thermal stretching of large-area GEM foils are also discussed.
DOI: 10.1109/nssmic.2015.7581797
2015
Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC
The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≥ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = −ln(tan(θ/2)), where θ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 < |η| < 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> (70/30) and Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> /CF <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution.
DOI: 10.48550/arxiv.2306.13567
2023
Detector R&amp;D needs for the next generation $e^+e^-$ collider
The 2021 Snowmass Energy Frontier panel wrote in its final report "The realization of a Higgs factory will require an immediate, vigorous and targeted detector R&D program". Both linear and circular $e^+e^-$ collider efforts have developed a conceptual design for their detectors and are aggressively pursuing a path to formalize these detector concepts. The U.S. has world-class expertise in particle detectors, and is eager to play a leading role in the next generation $e^+e^-$ collider, currently slated to become operational in the 2040s. It is urgent that the U.S. organize its efforts to provide leadership and make significant contributions in detector R&D. These investments are necessary to build and retain the U.S. expertise in detector R&D and future projects, enable significant contributions during the construction phase and maintain its leadership in the Energy Frontier regardless of the choice of the collider project. In this document, we discuss areas where the U.S. can and must play a leading role in the conceptual design and R&D for detectors for $e^+e^-$ colliders.
DOI: 10.1016/j.nima.2023.168723
2023
Production and validation of industrially produced large-sized GEM foils for the Phase-2 upgrade of the CMS muon spectrometer
The upgrade of the CMS detector for the high luminosity LHC (HL-LHC) will include gas electron multiplier (GEM) detectors in the end-cap muon spectrometer. Due to the limited supply of large area GEM detectors, the Korean CMS (KCMS) collaboration had formed a consortium with Mecaro Co., Ltd. to serve as a supplier of GEM foils with area of approximately 0.6 m2. The consortium has developed a double-mask etching technique for production of these large-sized GEM foils. This article describes the production, quality control, and quality assessment (QA/QC) procedures and the mass production status for the GEM foils. Validation procedures indicate that the structure of the Korean foils are in the designed range. Detectors employing the Korean foils satisfy the requirements of the HL-LHC in terms of the effective gain, response uniformity, rate capability, discharge probability, and hardness against discharges. No aging phenomena were observed with a charge collection of 82 mC cm−2. Mass production of KCMS GEM foils is currently in progress.
DOI: 10.1088/1748-0221/18/11/p11029
2023
Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation
Abstract The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7 th of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, p short HV OFF = 0.42 -0.35 +0.94 % with detector HV OFF and p short HV OFF &lt; 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure.
DOI: 10.1109/nssmicrtsd49126.2023.10337875
2023
Performance of a Large-area GEM Detector with Low Mass for EIC
We present the tracking performance of a large low-mass Triple-GEM detector prototype in a 120 GeV proton beam. The trapezoidal detector covers an azimuthal angle of 30.1 degrees and a radial range of 8-90 cm. This detector has been developed as a prototype for tracking with MPGDs at the future Electron-Ion Collider. In this environment, such a detector would mainly support the pattern recognition for tracking in the forward and backward directions. Because multiple scattering of tracks must be minimized, the material budget for the forward and backward tracking detectors is critical. Consequently, this detector implements drift and readout electrodes on large foils instead of on standard PCBs. All five foils including the three GEM foils are mechanically stretched in a single stack adapting an assembly technique pioneered by CMS for the muon endcap GEM upgrade. This results in total detector material of only 0.6% radiation lengths in the active area. Outer frames custom-made from stiff carbon-fiber composite material are employed to take up the large tension from the stretched foil stack and to provide detector rigidity while keeping the detector mass low. We describe the mitigation of insufficient rigidity of the initial design and of HV instabilities that arise from using conductive carbon fiber material. The signal is read out with one-dimensional radial zigzag strips that reduce the number of electronics channels and cost associated with that while maintaining good spatial resolution. We present performance results including a measurement of the spatial resolution of the detector obtained in a beam test at the Fermilab test beam facility.
DOI: 10.1016/0168-9002(91)91095-d
1991
Cited 7 times
Precision reconstruction of charged tracks with simultaneous electron identification in a gaseous detector using transition radiation
Results are presented from tests of a radial wire drift chamber, the design of which is optimised for both accurate spatial reconstruction of charged tracks and efficient detection of incident X-rays. With flash digitised readout, we demonstrate that analysis of pulse profile can yield good spatial accuracy (σdrift∼150μm, σchdiv∼1% wire length) together with useful hadron/electron discrimination if(π/e∼8% at 60 GeV>c) using a transition radiator immediately preceding the chamber. The exploitation of this technique at high energy proton-proton and electron-proton collider storage rings is briefly discussed.
DOI: 10.1088/1748-0221/12/02/p02003
2017
The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade
The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.
DOI: 10.1051/epjconf/201817403002
2018
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m 2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
2021
Investigation and Mitigation of Crosstalk in the Prototype ME0 GEM Detector for the Phase-2 Muon System Upgrade of the CMS Experiment.
The LHC is undergoing a high luminosity upgrade, which is set to increase the instantaneous luminosity by at least a factor of five, resulting in a higher muon flux rate in the forward region, which will overwhelm the current trigger system of the CMS experiment. The ME0, a gas electron multiplier detector, is proposed for the Phase-2 Muon System Upgrade to help increase the muon acceptance and to control the Level 1 muon trigger rate. To lower the probability of HV discharges, the ME0 was designed with GEM foils that are segmented on both sides. Initial testing of the ME0 showed substantial crosstalk between readout sectors. Here, we investigate, characterize, and quantify the crosstalk in the detector, and estimate the performance of the chamber as a result of this crosstalk via simulation of the detector dead time, efficiency loss, and frontend electronics response. The results of crosstalk via signals produced by applying a square voltage pulse directly on the readout strips of the detector with a pulser are summarized, and the efficacy of various mitigation strategies are presented. The crosstalk is a result of capacitive coupling between the readout strips on the readout board and between the readout strips and the bottom of GEM3. The crosstalk also generally follows a pattern where the largest magnitude of crosstalk is within the same azimuthal readout segment in the detector and in the nearest horizontal segments. The use of bypass capacitors and larger HV segments successfully reduce the crosstalk: we observe a maximum decrease of crosstalk in sectors previously experiencing crosstalk from $(1.66\pm0.03)\%$ to $(1.11\pm0.02)\%$ with all HV segments connected in parallel on the bottom of GEM3, with an HV low-pass filter, and an HV divider. These mitigation strategies slightly increase crosstalk $\big(\hspace{-0.1cm}\lessapprox 0.4\%\big)$ in readout sectors farther away.
DOI: 10.1016/j.nima.2015.11.125
2016
Status report of the upgrade of the CMS muon system with Triple-GEM detectors
For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5<|η|<2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.
DOI: 10.1088/1748-0221/11/06/p06012
2016
Accuracy of the geometric-mean method for determining spatial resolutions of tracking detectors in the presence of multiple Coulomb scattering
The geometric-mean method is often used to estimate the spatial resolution of a position-sensitive detector probed by tracks. It calculates the resolution solely from measured track data without using a detailed tracking simulation and without considering multiple Coulomb scattering effects. Two separate linear track fits are performed on the same data, one excluding and the other including the hit from the probed detector. The geometric mean of the widths of the corresponding exclusive and inclusive residual distributions for the probed detector is then taken as a measure of the intrinsic spatial resolution of the probed detector: σ=√σex·σin. The validity of this method is examined for a range of resolutions with a stand-alone Geant4 Monte Carlo simulation that specifically takes multiple Coulomb scattering in the tracking detector materials into account. Using simulated as well as actual tracking data from a representative beam test scenario, we find that the geometric-mean method gives systematically inaccurate spatial resolution results. Good resolutions are estimated as poor and vice versa. The more the resolutions of reference detectors and probed detector differ, the larger the systematic bias. An attempt to correct this inaccuracy by statistically subtracting multiple-scattering effects from geometric-mean results leads to resolutions that are typically too optimistic by 10–50%. This supports an earlier critique of this method based on simulation studies that did not take multiple scattering into account.
DOI: 10.1016/j.nima.2003.08.141
2003
Cited 3 times
A long-term aging study of honeycomb drift tubes for the HERA-B Outer Tracker using a circulated and purified CF4 gas mixture
Abstract The Outer Tracker of HERA-B uses a gas mixture containing CF 4 to obtain high electron drift velocities. The high cost of this gas makes it necessary to circulate the gas mixture which must then be purified to avoid accumulation of air and pollutants. However, the usage of gas purifiers poses the danger of outgassing pollutants from the purifiers themselves into the gas stream. Purifiers could also be attacked chemically by the aggressive products from the cracking of CF 4 molecules in the plasma avalanches of the detector. This could potentially release further harmful pollutants into the gas stream. To test for such effects, a long-term irradiation study of about 3000 h was carried out with the honeycomb drift tubes that are used in the Outer Tracker. This provided a check of the long-term stability of the gas purifiers before putting them into operation for the full-size detector. We report on the experimental setup, procedures and the results obtained.
2011
Performance studies of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system
DOI: 10.48550/arxiv.1306.1924
2013
Micro-Pattern Gas Detectors for Charged-Particle Tracking and Muon Detection
In the context of the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community, this white paper outlines a roadmap for further development of Micro-pattern Gas Detectors for tracking and muon detection in HEP experiments. We briefly discuss technical requirements and summarize current capabilities of these detectors with a focus of operation in experiments at the energy frontier in the medium-term to long-term future. Some key directions for future R&amp;D on Micro-pattern Gas Detectors in the U.S. are suggested.
2011
Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-$\eta$ muon system
Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6<| \eta |<2.4$ endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the prototypes at the beam tests will be discussed.
DOI: 10.1109/nssmic.2015.7581965
2015
R&amp;D on GEM detectors for forward tracking at a future Electron-Ion Collider
We report the status of R&D on large triple-GEM detectors for a forward tracker (FT) in an experiment at a future Electron Ion Collider (EIC) that will improve our understanding of QCD. We have designed a detector prototype specifically targeted for the EIC-FT, which has a trapezoidal shape with 30.1° opening angle. We are investigating different detector assembly techniques and signal readout technologies, but have designed a common GEM foil to minimize NRE cost for foil production. The assembly techniques comprise either a purely mechanical method including foil stretching as pioneered by CMS but with certain modifications, or gluing foils to frames that are then assembled mechanically, or gluing foils to frames that are then glued together. The first two assembly techniques allow for re-opening chambers so that a GEM foil can be replaced if it is damaged. For readout technologies, we are pursuing a cost-effective one-dimensional readout with wide zigzag strips that maintains reasonable spatial resolution, as well two-dimensional readouts - one with stereo-angle (u-v) strips and another with r-φ strips. In addition, we aim at an overall low-mass detector design to facilitate good energy resolution for electrons scattered at low momenta. We present design for GEM foils and other detector parts, which we plan to entirely acquire from U.S. companies.
2014
Impact of the Radiation Background on the CMS muon high-eta upgrade for the LHC high luminosity scenario
The Compact Muon Solenoid (CMS) experiment at the LHC is planning an upgrade of its muon detection system aiming to extend the muon detection capabilities in the forward region with the installation of new muon stations based on Gas Electron Multiplier (GEM) and Resistive Plate Chambers (RPC) technologies during the so-called Phase-2 upgrade scenario. With the imminent increase on luminosity to 5 × 1034cm-2s-1 and center of mass collision energy of 14 TeV an unprecedented and hostile radiation environment will be created, the most affected detectors will be the ones located in the forward region where the intense flux of neutrons and photons could potentially degrade the detector performance. Using FLUKA simulation the expected radiation environment is estimated for the regions of interest, possible shielding scenarios are proposed and the effect on the detector performance is discussed.
DOI: 10.48550/arxiv.1412.0228
2014
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < \mid\eta\mid < 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $\mu$rad pitch arranged in eight $\eta$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $\mu$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\pm$ 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 $\pm$ 1.6 (stat)] $\mu$rad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by $\sim$ 10 $\mu$rad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 $\pm$ 2.5 stat] $\mu$rad is measured, consistent with the expected resolution of strip-pitch/$\sqrt{12}$ = 131.3 $\mu$rad. Other $\eta$-sectors of the detector show similar response and performance.
DOI: 10.1109/nssmic.2014.7431142
2014
A volume clearing algorithm for Muon Tomography
The primary objective is to enhance muon-tomographic image reconstruction capability by providing distinctive information in terms of deciding on the properties of regions or voxels within a probed volume `V' during any point of scanning: threat type, non-threat type, or not-sufficient data. An algorithm (MTclear) is being developed to ray-trace muon tracks and count how many straight tracks are passing through a voxel. If a voxel `v' has sufficient number of straight tracks (t), then `v' is a non-threat type voxel, unless there are sufficient number of scattering points (p) in `v' that will make it a threat-type voxel. The algorithm also keeps track of voxels for which not enough information is known: where p and v both fall below their respective threshold parameters. We present preliminary results showing how the algorithm works on data collected with a Muon Tomography station based on gas electron multipliers operated by our group. The MTclear algorithm provides more comprehensive information to a human operator or to a decision algorithm than that provided by conventional muon-tomographic reconstruction algorithms, in terms of qualitatively determining the threat possibility from a probed volume. This is quite important because only low numbers of cosmic ray source muons are typically available in nature for tomography, while a quick determination of threats is essential.
2010
Construction of the first full-size GEM-based prototype for the CMS high-$\eta$ muon system
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger information, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
DOI: 10.1109/nssmic.2017.8532722
2017
A Low-mass GEM Detector with Radial Zigzag Readout Strips for Forward Tracking at the EIC
We present design and construction of a large low-mass Triple-GEM detector prototype for forward tracking at a future Electron-Ion Collider. In this environment, multiple scattering of forward and backward tracks must be minimized so that electron tracks can be cleanly matched to calorimeter clusters and so that hadron tracks can efficiently seed RICH ring reconstruction for particle identification. Consequently, the material budget for the forward tracking detectors is critical. The construction of the detector builds on the mechanical foil stretching and assembly technique pioneered by CMS for the muon endcap GEM upgrade. As an innovation, this detector implements drift and readout electrodes on thin large foils instead of on PCBs. These foils get stretched mechanically together with three GEM foils in a single stack. This reduces the radiation length of the total detector material in the active area by a factor seven from over 4% to below 0.6%. It also aims at improving the uniformity of drift and induction gap sizes across the detector and consequently signal response uniformity. Thin outer frames custom-made from carbon-fiber composite material take up the tension from the stretched foil stack and provide detector rigidity while keeping the detector mass low. The gas volume is closed with thin aluminized polyimide foils. The trapezoidal detector covers an azimuthal angle of 30.1 degrees and a radius from 8 cm to 90 cm. It is read out with radial zigzag strips with pitches of 1.37 mrad at the outer radius and 4.14 mrad at the inner radius that reduce the number of required electronics channels and associated cost while maintaining good spatial resolution. All front-end readout electronics is located away from the active area at the outer radius of the trapezoid. Scans of small readout boards with the same type of zigzag strip structure using highly collimated X-rays show spatial resolutions of 60-90 microns.
DOI: 10.1140/epjc/s10052-009-1138-4
2009
Erratum to: V0 production in p+A collisions at $\sqrt{s}=41.6$ GeV
DOI: 10.1051/epjconf/201817403003
2018
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&amp;D and moving to production. An unprecedented large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.
DOI: 10.1109/nssmic.2007.4436418
2007
Aligning the CMS muon endcap detector with a system of optical sensors
The positions and orientations of the one sixth of 468 large cathode strip chambers in the endcaps of the CMS muon detector are directly monitored by several hundred sensors including 2-D optical sensors with linear CCDs illuminated by cross-hair lasers. Position measurements obtained by photogrammetry and survey under field-off conditions show that chambers in the +Z endcap have been placed on the yoke disks wih an average accuracy of about ±1 mm in all 3 dimensions. We reconstruct absolute Z <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CMS</inf> -positions and orientations of chambers at B=0T and B=4T using data from the optical alignment system. The measured position resolution and sensitivity to relative motion is ∼60 ∼m. The precision for measuring chamber positions taking into account mechanical toleranecs is ∼270 ∼m. Comparing reconstruction of optical alignment data and photogrammetry measurements at B=0T indicates an accuracy of ∼ 680 ∼m currently achieved with the hardware alignment system. Optical position measurements at B=4T show significant chamber displacements up to 13 mm due to yoke disk deformation.
DOI: 10.1088/1742-6596/1561/1/012006
2020
Two years’ test of a temperature sensing system based on fibre Bragg grating technology for the CMS GE1/1 detectors
Abstract A temperature monitoring system based on fibre Bragg grating (FBG) fibre optic sensors has been developed for the gas electron multiplier (GEM) chambers of the Compact Muon Solenoid (CMS) detector. The monitoring system was tested in prototype chambers undergoing a general test of the various technological solutions adopted for their construction. The test lasted about two years and was conducted with the chambers being installed in the CMS detector and operated during regular experimental running. In this paper, we present test results that address the choice of materials and procedures for the production and installation of the FBG temperature monitoring system in the final GEM chambers.
DOI: 10.1088/1748-0221/15/12/p12019
2020
Interstrip capacitances of the readout board used in large triple-GEM detectors for the CMS Muon Upgrade
We present analytical calculations, Finite Element Analysis modelling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequently maximize the signal-to-noise ratio for the detector. We find agreement at the 1.5–4.8% level between the two methods of calculations and on the average at the 17% level between calculations and measurements. A configuration with halved strip lengths and doubled strip widths results in a measured 27–29% reduction over the original configuration while leaving the total number of strips unchanged. We have now adopted this design modification for all eight module types of the GE2/1 detector and will produce the final detector with this new strip design.
DOI: 10.1109/nss/mic42677.2020.9507854
2020
A Model for Crosstalk in Micropattern Gas Detectors
Crosstalk characteristics such as pulse amplitude and shape are studied with a simple PSpice model of the capacitive couplings within an MPGD. The crosstalk pulse shape can be understood as due to a CR-differentiator. Crosstalk can occur simultaneously through more than one capacitive coupling path. The crosstalk signals on these paths add differently if the signal is induced via a current source as in normal detector operation or via a voltage source as is often done in benchtop tests with an external voltage pulse generator. A few means for reducing the crosstalk are investigated with the model. It shows that a low-impedance AC path from the amplification electrode that faces the readout structure to ground is important for minimizing crosstalk. This implies a need for a sufficiently large capacitance of that amplification electrode to ground. This result has consequences for how much such an amplification electrode can be segmented without incurring crosstalk.
DOI: 10.22323/1.397.0224
2021
Illuminating long-lived dark vector bosons via exotic Higgs decays at $\sqrt{s} = 13\,{\text {TeV}}$
The possibility of producing a measurable long-lived dark Z boson, that is assumed to mix kinetically with the hypercharge gauge boson in Higgs decays and to be produced also in Higgs decays through Higgs-to-dark-Higgs mixing, at the Large Hadron Collider (LHC) is investigated.Displaced dimuons in the final state are considered where each of the Z and the dark Z bosons decays directly to a dimuon.The total cross sections for the decay modes of interest as well as the decay widths and decay lengths are calculated to next-to-leading order (NLO) by using Monte Carlo (MC) simulation in the framework of M G 5_aMC@NLO and compared to the available analytical calculations to leading order (LO).The sensitivity of the LHC in Runs 2 and 3 to such searches is discussed.
DOI: 10.1016/0168-9002(92)90323-v
1992
Cited 3 times
Electron identification in the H1 radial wire drift chambers
Tests of a radial wire drift chamber for the H1 experiment at the HERA ep-collider were performed at a test beam at the CERN SPS. These types of chambers, part of the H1 forward track detector, are designed to determine accurate vector track segments and to identify electrons by means of dEdx and transition radiation (TR) detection. The electron/pion discrimination has been evaluated at particle momenta from 5 to 50 GeV/c using gas mixtures containing 15 to 30% xenon. Methods and results of this analysis are presented.
DOI: 10.1016/0168-9002(92)90286-d
1992
Cited 3 times
Spatial precision of H1 radial wire drift chambers using gas mixtures suitable for transition radiation detection
Results are presented from calibration and tests of a radial wire drift chamber for the H1 experiment at the HERA ep collider. The chambers form part of the H1 forward track detector (FTD) and are designed both to determine accurate vector track segments and to identify simultaneously electrons by means of dEdx measurement and transition radiation (TR) detection. The spatial reconstruction accuracy (from drift timing and charge division) has been investigated using gas mixtures suitable for TR X-ray detection. A novel technique for enhancing the precision of determination of the radial (non-drift) coordinate of each track using the drift cell geometry is evaluated. A brief summary of the performance of the three radial wire chambers in the FTD is given.
DOI: 10.1016/j.nima.2003.09.026
2003
Final remarks—do we need a Global Universal Aging Research &amp; Development (GUARD) facility?
A small new research facility dedicated to aging studies for gaseous detectors is proposed with the goal of overcoming current shortcomings in this research area. The general framework and a possible path towards such a facility are outlined.
DOI: 10.1393/ncc/i2016-16260-7
2015
Impact of the GE1/1 upgrade on CMS muon system performance
During the future LHC upgrade planned in 2018, the forward endcap region of the CMS muon spectrometer will be upgraded with GEM chambers. GEM technology is able to withstand the radiation environment expected in the forward region. The GE1/1 station will be included in the muon L1 trigger, allowing to keep low p(T) threshold even at high luminosity. Moreover, it will bring detection redundancy in the most critical part of the CMS muon system, along with benefits to muon reconstruction performance.
DOI: 10.1393/ncc/i2016-16269-x
2016
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on cham design features and will discuss the performance of the upgraded detector.
DOI: 10.1142/9789814603164_0083
2014
Upgrade of the muon system in the high eta region of the CMS experiment at LHC with GEMs
DOI: 10.1109/nssmic.2015.7581803
2015
CMS muon system phase 2 upgrade with triple-GEM detectors
The Compact Muon Solenoid (CMS) detector installed at the CERN Large Hadron Collider (LHC) has an extensive muon system which provides information simultaneously for identification, track reconstruction and triggering of muons. As a consequence of the extreme particle rate and high integrated charge, the essentiality to upgrade the LHC has given rise to the High Luminosity phase of the LHC (HL-LHC) project so that the CMS muon system will be upgraded with superior technological challenges. The CMS GEM collaboration offers a solution to equip the high-eta region of the muon system for Phase 2 (after the year 2017) with large-area triple-layer Gas Electron Multiplier (GEM) detectors, since GEMs have the ability to provide robust and redundant tracking and triggering functions with an excellent spatial resolution of order 100 micron and a high particle rate capability, with a close to 100% detection efficiency. In this contribution, the present status of the triple-GEM project will be reviewed, and the significant achievements from the start of the R&D in 2009 will be emphasized.
DOI: 10.1103/baps.2014.april.x12.9
2014
Beam test results for a large-area GEM detector read out with radial zigzag strips
DOI: 10.2172/1234548
2016
Experimental High Energy Physics Research
This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 GeV for a Z' with the same standard-model couplings as the Z boson. Our student team operated a Tier-3 cluster on the Open Science Grid (OSG) to support local CMS physics analysis and remote OSG activity. As a service to the HEP community, Hohlmann participated in the Snowmass effort over the course of 2013. Specifically, he acted as a liaison for gaseous detectors between the Instrumentation Frontier and the Energy Frontier and contributed to five papers and reports submitted to the summer study.
2014
Study of Large-Area GEM Detector Read Out with Radial Zigzag Strips for Forward Tracking in Experiments at a Future Electron-Ion Collider
DOI: 10.48550/arxiv.1512.08529
2015
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
DOI: 10.22323/1.234.0225
2016
Physics motivations and expected performance of the CMS muon system upgrade with triple-GEM detectors
For the LHC High Luminosity phase (HL-LHC) the CMS GEM Collaboration is planning to install new large size triple-GEM detectors in the forward region of the muon system (1.5<|η|<2.2) of the CMS detector.The muon reconstruction with triple-GEM chambers information included have been successfully integrated in the official CMS software, allowing physics studies to be carried out.The new sub-detector will be able to cope the extreme particle rates expected in this region along with a high spatial resolution.The resulting benefit in terms of triggering and tracking capabilities has been studied: the expected improvement in the performance of the muon identification and track reconstruction as well as the expected improvement coming from the lowering of the muon p T trigger tresholds will be presented.The contribution will review the status of the CMS upgrade project with the usage of GEM detector, discussing the trigger, the muon reconstruction performance and the impact on the physics analyses.