ϟ

Marc Dünser

Here are all the papers by Marc Dünser that you can download and read on OA.mg.
Marc Dünser’s last known institution is . Download Marc Dünser PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/13/01/c01029
2018
Cited 41 times
Diamond detectors for high energy physics experiments
Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.
DOI: 10.1016/j.nima.2018.05.016
2018
Cited 25 times
Tests of a dual-readout fiber calorimeter with SiPM light sensors
In this paper, we describe the first tests of a dual-readout fiber calorimeter in which silicon photomultipliers are used to sense the (scintillation and Cherenkov) light signals. The main challenge in this detector is implementing a design that minimizes the optical crosstalk between the two types of fibers, which are located very close to each other and carry light signals that differ in intensity by about a factor of 60. The experimental data, which were obtained with beams of high-energy electrons and muons as well as in lab tests, illustrate to what extent this challenge was met. The Cherenkov light yield, a limiting factor for the energy resolution of this type of calorimeter, was measured to be about twice that of the previously tested configurations based on photomultiplier tubes. The lateral profiles of electromagnetic showers were measured on a scale of millimeters from the shower axis and significant differences were found between the profiles measured with the scintillating and the Cherenkov fibers.
DOI: 10.48550/arxiv.1902.04070
2019
Cited 18 times
Standard Model Physics at the HL-LHC and HE-LHC
The successful operation of the Large Hadron Collider (LHC) and the excellent performance of the ATLAS, CMS, LHCb and ALICE detectors in Run-1 and Run-2 with $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV as well as the giant leap in precision calculations and modeling of fundamental interactions at hadron colliders have allowed an extraordinary breadth of physics studies including precision measurements of a variety physics processes. The LHC results have so far confirmed the validity of the Standard Model of particle physics up to unprecedented energy scales and with great precision in the sectors of strong and electroweak interactions as well as flavour physics, for instance in top quark physics. The upgrade of the LHC to a High Luminosity phase (HL-LHC) at 14 TeV center-of-mass energy with 3 ab$^{-1}$ of integrated luminosity will probe the Standard Model with even greater precision and will extend the sensitivity to possible anomalies in the Standard Model, thanks to a ten-fold larger data set, upgraded detectors and expected improvements in the theoretical understanding. This document summarises the physics reach of the HL-LHC in the realm of strong and electroweak interactions and top quark physics, and provides a glimpse of the potential of a possible further upgrade of the LHC to a 27 TeV $pp$ collider, the High-Energy LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab$^{-1}$.
DOI: 10.1088/1361-6463/ab37c6
2019
Cited 14 times
A study of the radiation tolerance of poly-crystalline and single-crystalline CVD diamond to 800 MeV and 24 GeV protons
Abstract We have measured the radiation tolerance of poly-crystalline and single-crystalline diamonds grown by the chemical vapor deposition (CVD) process by measuring the charge collected before and after irradiation in a 50 m pitch strip detector fabricated on each diamond sample. We irradiated one group of sensors with 800 MeV protons, and a second group of sensors with 24 GeV protons, in steps, to protons cm −2 and protons cm −2 respectively. We observe the sum of mean drift paths for electrons and holes for both poly-crystalline CVD diamond and single-crystalline CVD diamond decreases with irradiation fluence from its initial value according to a simple damage curve characterized by a damage constant for each irradiation energy and the irradiation fluence. We find for each irradiation energy the damage constant, for poly-crystalline CVD diamond to be the same within statistical errors as the damage constant for single-crystalline CVD diamond. We find the damage constant for diamond irradiated with 24 GeV protons to be and the damage constant for diamond irradiated with 800 MeV protons to be . Moreover, we observe the pulse height decreases with fluence for poly-crystalline CVD material and within statistical errors does not change with fluence for single-crystalline CVD material for both 24 GeV proton irradiation and 800 MeV proton irradiation. Finally, we have measured the uniformity of each sample as a function of fluence and observed that for poly-crystalline CVD diamond the samples become more uniform with fluence while for single-crystalline CVD diamond the uniformity does not change with fluence.
DOI: 10.3390/s20226648
2020
Cited 11 times
A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions
We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015 protons/cm2, (1.43±0.14) × 1016 neutrons/cm2, and (6.5±1.4) × 1014 pions/cm2, respectively. By observing the charge induced due to the separation of electron-hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10-18 cm2/(p μm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10-18 cm2/(n μm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10-18 cm2/(π μm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve.
DOI: 10.1016/j.nima.2018.06.009
2019
Cited 9 times
Diamond detector technology, status and perspectives
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used extensively and successfully in beam conditions/beam loss monitors as the innermost detectors in the highest radiation areas of Large Hadron Collider (LHC) experiments. The startup of the LHC in 2015 brought a new milestone where the first polycrystalline CVD (pCVD) diamond pixel modules were installed in an LHC experiment and successfully began operation. The RD42 collaboration at CERN is leading the effort to develop polycrystalline CVD diamond as a material for tracking detectors operating in extreme radiation environments. The status of the RD42 project with emphasis on recent beam test results is presented.
DOI: 10.1016/j.nima.2018.08.038
2019
Cited 8 times
Results on radiation tolerance of diamond detectors
In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.
DOI: 10.1016/j.nima.2015.09.079
2016
Cited 7 times
A 3D diamond detector for particle tracking
In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.
DOI: 10.1016/j.nima.2019.04.042
2020
Cited 6 times
First test-beam results obtained with IDEA, a detector concept designed for future lepton colliders
IDEA (Innovative Detector for Electron–positron Accelerators) is a detector concept designed for a future leptonic collider operating as a Higgs factory. It is based on innovative detector technologies developed over years of R&D. In September 2018, prototypes of the proposed sub-detectors have been tested for the first time on a beam line at CERN. The preliminary results from this test of a full slice of the IDEA detector and standalone measurements of dual read-out calorimeter prototypes are presented.
DOI: 10.1016/j.nima.2019.162675
2020
Cited 5 times
New test beam results of 3D and pad detectors constructed with poly-crystalline CVD diamond
We have measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 µm pitch strip detector fabricated on each diamond sample before and after irradiation.We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV) and a third group of samples with 200 MeV pions, in steps, to (8.8 ± 0.9) × 10 15 protons/cm 2 , (1.43 ± 0.14) × 10 16 neutrons/cm 2 and (6.5 ± 0.5) × 10 14 pions/cm 2 respectively.By observing the charge induced due to the separation of electron-hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all data sets can be described by a first order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons and 200 MeV pions.We find the damage constant for diamond irradiated with 70 MeV protons to be 1.61 ± 0.07 (stat) ± 0.15 (syst) × 10 -18 cm 2 /(p µm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65 ± 0.13 (stat) ± 0.16 (syst) × 10 -18 cm 2 /(n µm) and the damage constant for diamond irradiated with 200 MeV pions to be 2.0 ± 0.2 (stat) ± 0.5 (syst) × 10 -18 cm 2 /(π µm).The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond.We find 70 MeV protons are 2.60 ± 0.27 times more damaging than 24 GeV protons, fast reactor neutrons are 4.27 ± 0.34 times more damaging than 24 GeV protons and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons.We also observe the measured data can be described by a universal damage curve for all proton, neutron and pion irradiations we have performed of Chemical Vapor Deposition diamond.Finally, we confirm the FWHM/MP ratio of the signal spectrum, a measure of the spatial uniformity of the collected charge, decreases with fluence for polycrystalline Chemical Vapor Deposition diamond and this effect can also be described by a universal curve.
DOI: 10.22323/1.314.0516
2017
Diamond Detector Technology: Status and Perspectives
The planned upgrade of the LHC to the High-Luminosity-LHC will push the luminosity limits above the original design values. Since the current detectors will not be able to cope with this environment ATLAS and CMS are doing research to find more radiation tolerant technologies for their innermost tracking layers. Chemical Vapour Deposition (CVD) diamond is an excellent candidate for this purpose. Detectors out of this material are already established in the highest irradiation regimes for the beam condition monitors at LHC. The RD42 collaboration is leading an effort to use CVD diamonds also as sensor material for the future tracking detectors. The signal behaviour of highly irradiated diamonds is presented as well as the recent study of the signal dependence on incident particle flux. There is also a recent development towards 3D detectors and especially 3D detectors with a pixel readout based on diamond sensors.
DOI: 10.1088/1742-6596/2374/1/012172
2022
Radiation tolerance of diamond detectors
Diamond is used as detector material in high energy physics experiments due to its inherent radiation tolerance. The RD42 collaboration has measured the radiation tolerance of chemical vapour deposition (CVD) diamond against proton, pion, and neutron irradiation. Results of this study are summarized in this article. The radiation tolerance of diamond detectors can be further enhanced by using a 3D electrode geometry. We present preliminary results of a poly-crystalline CVD (pCVD) diamond detector with a 3D electrode geometry after irradiation and compare to planar devices of roughly the same thickness.
DOI: 10.1051/epjconf/20136020036
2013
Search for new physics using events with two same-sign isolated leptons in the final state at CMS
We present a search for new physics using events with two same-sign isolated leptons with the presence of b-jets in the final state, targetting SUSY scenarios by strong production of squarks and gluinos where the 3rd generation squarks are lighter than other squarks. No excess above the standard model background is observed. The results are interpreted in various SUSY models, and we are able to exclude gluino (sbottom) masses up to 1000 (450) GeV at 95% CL.
DOI: 10.22323/1.340.0597
2019
Latest Results on Radiation Tolerance of Diamond Detectors
At present most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades in the next 5-10 years for their innermost tracking layers as well as luminosity monitors to be able to take data as the luminosity increases and CERN moves toward the High Luminosity-LHC (HL-LHC). These upgrades will most likely require more radiation tolerant technologies than exist today. As a result this is one area of intense research, and Chemical Vapour Deposition (CVD) diamond is one such technology. CVD diamond has been used extensively in beam condition monitors as the innermost detectors in the highest radiation areas of all LHC experiments. This talk describes the preliminary radiation tolerance measurements of the highest quality polycrystalline CVD material for a range of proton energies and neutrons obtained with this material with the goal of elucidating the issues that should be addressed for future diamond based detectors. The talk presents the evolution of various semiconductor parameters as a function of dose.
DOI: 10.3929/ethz-a-010477238
2015
Same-sign dileptons as a search tool at CMS
DOI: 10.22323/1.234.0288
2016
Test Beam Results of a 3D Diamond Detector
3D pixel technology has been used successfully in the past with silicon detectors for tracking applications.Recently, a first prototype of the same 3D technology has been produced on a chemical vapour deposited single-crystal diamond sensor.This device has been subsequently tested in a beam test at CERN's SPS accelerator in a beam of 120 GeV protons.Details on the production and results of testbeam data are presented.
DOI: 10.1088/1742-6596/623/1/012011
2015
Measurements of the top-quark mass and properties at CMS
Measurements of the top-quark mass and other top-quark properties are presented, obtained from the CMS data collected in 2011 and 2012 at centre-of-mass energies of 7 and 8 TeV. The mass of the top quark is measured using several methods and decay channels. The measurements of the top-quark properties include the W helicity in top-quark decays, the search for anomalous couplings, and the ratio of top-quarks decaying to bW over qW in order to gain information on |Vtb| using both and single-top quark event samples. The results are compared with predictions from the standard model as well as new physics models. The cross section of events produced in association with a W, Z boson or a photon is also measured.
DOI: 10.1051/epjconf/20136018009
2013
SUSY searches for EWK production of Gauginos and Sleptons at the LHC by CMS
We search for signs of new physics in events with multi-leptonic final states in 9.2 fb−1 of protonproton collisions at √s = 8 TeV with the CMS experiment [1]. The final states under study comprise exactly three leptons, four leptons, a pair of same-sign leptons, two opposite-sign-same-flavor leptons plus jets, and two opposite- sign leptons which have a mass outside the Z-boson decay window. Observations agree well with the expectations from the standard model. The obtained results are then interpreted as limits on the direct electroweak SUSY production of charginos, neutralinos and sleptons.
DOI: 10.22323/1.287.0027
2017
Diamond detector technology: status and perspectives
The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm$^2$ to 10 MHz/cm$^2$. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout electronics is shown.
DOI: 10.48550/arxiv.1910.07621
2019
Recent Results from Polycrystalline CVD Diamond Detectors
Diamond is a material in use at many nuclear and high energy facilities due to its inherent radiation tolerance and ease of use. We have characterized detectors based on chemical vapor deposition (CVD) diamond before and after proton irradiation. We present preliminary results of the spatial resolution of unirradiated and irradiated CVD diamond strip sensors. In addition, we measured the pulse height versus particle rate of unirradiated and irradiated polycrystalline CVD (pCVD) diamond pad detectors up to a particle flux of $20\,\mathrm{MHz/cm^2}$ and a fluence up to $4 \times 10^{15}\,n/\mathrm{cm^2}$.
DOI: 10.22323/1.367.0080
2019
Beam test results of 3D pixel detectors constructed with poly-crystalline CVD diamond
As a possible candidate for extremely radiation tolerant tracking devices we present a novel detector design - namely 3D detectors - based on poly-crystalline CVD diamond sensors with a pixel readout. The fabrication of recent 3D detectors as well their results in recent beam tests are presented. We measured the hit efficiency and signal response of two 3D diamond detectors with 50 × 50 μm cell sizes using pixel readout chip technologies currently used at CMS and ATLAS. In all runs, both devices attained efficiencies >98 % in a normal incident test beam of minimum ionising particles. The highest efficiency observed during the beam tests was 99.2 %.
DOI: 10.22323/1.367.0079
2019
Latest Results on the Radiation Tolerance of Diamond Detectors
We have measured the radiation tolerance of chemical vapor deposition (CVD) diamond against protons and neutrons.The relative radiation damage constant of 24 GeV protons, 800 MeV protons, 70 MeV protons, and fast reactor neutrons is presented.The results are used to combine the measured data into a universal damage curve for diamond material.