ϟ

Lisa Borgonovi

Here are all the papers by Lisa Borgonovi that you can download and read on OA.mg.
Lisa Borgonovi’s last known institution is . Download Lisa Borgonovi PDFs here.

Claim this Profile →
DOI: 10.48550/arxiv.1811.10545
2018
Cited 55 times
CEPC Conceptual Design Report: Volume 2 - Physics & Detector
The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios.
DOI: 10.23731/cyrm-2019-007
2019
Cited 37 times
Report on the Physics at the HL-LHC,and Perspectives for the HE-LHC
This report comprises the outcome of five working groups that have studied the physics potential of the high-luminosity phase of the LHC (HL-LHC) and the perspectives for a possible future high-energy LHC (HE-LHC).The working groups covered a broad range of topics: Standard Model measurements, studies of the properties ofthe Higgs boson, searches for phenomena beyond the Standard Model, flavor physics of heavy quarks and leptonsand studies of QCD matter at high density and temperature.The work is prepared as an input to the ongoing process of updating the European Strategy for Particle Physics,a process that will be concluded in May 2020.
2019
Cited 33 times
Higgs Physics at the HL-LHC and HE-LHC
The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15 ab$^{-1}$, is also discussed.
DOI: 10.1016/j.nima.2022.166716
2022
Cited 10 times
Quality control of mass-produced GEM detectors for the CMS GE1/1 muon upgrade
The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton collisions is expected to exceed $2-3\times10^{34}$~cm$^{-2}$s$^{-1}$ for Run 3 (starting in 2022), and it will be at least $5\times10^{34}$~cm$^{-2}$s$^{-1}$ when the High Luminosity Large Hadron Collider is completed for Run 4. These conditions will affect muon triggering, identification, and measurement, which are critical capabilities of the experiment. To address these challenges, additional muon detectors are being installed in the CMS endcaps, based on Gas Electron Multiplier technology. For this purpose, 161 large triple-Gas Electron Multiplier detectors have been constructed and tested. Installation of these devices began in 2019 with the GE1/1 station and will be followed by two additional stations, GE2/1 and ME0, to be installed in 2023 and 2026, respectively. The assembly and quality control of the GE1/1 detectors were distributed across several production sites around the world. We motivate and discuss the quality control procedures that were developed to standardize the performance of the detectors, and we present the final results of the production. Out of 161 detectors produced, 156 detectors passed all tests, and 144 detectors are now installed in the CMS experiment. The various visual inspections, gas tightness tests, intrinsic noise rate characterizations, and effective gas gain and response uniformity tests allowed the project to achieve this high success rate.
DOI: 10.1016/j.nima.2018.11.061
2019
Cited 16 times
Layout and assembly technique of the GEM chambers for the upgrade of the CMS first muon endcap station
Triple-GEM detector technology was recently selected by CMS for a part of the upgrade of its forward muon detector system as GEM detectors provide a stable operation in the high radiation environment expected during the future High-Luminosity phase of the Large Hadron Collider (HL-LHC). In a first step, GEM chambers (detectors) will be installed in the innermost muon endcap station in the $1.6<\left|\eta\right|<2.2$ pseudo-rapidity region, mainly to control level-1 muon trigger rates after the second LHC Long Shutdown. These new chambers will add redundancy to the muon system in the $\eta$-region where the background rates are high, and the bending of the muon trajectories due to the CMS magnetic field is small. A novel construction technique for such chambers has been developed in such a way where foils are mounted onto a single stack and then uniformly stretched mechanically, avoiding the use of spacers and glue inside the active gas volume. We describe the layout, the stretching mechanism and the overall assembly technique of such GEM chambers.
DOI: 10.1016/j.nima.2023.168103
2023
The Analytical Method algorithm for trigger primitives generation at the LHC Drift Tubes detector
The Compact Muon Solenoid (CMS) experiment prepares its Phase-2 upgrade for the high-luminosity era of the LHC operation (HL-LHC). Due to the increase of occupancy, trigger latency and rates, the full electronics of the CMS Drift Tube (DT) chambers will need to be replaced. In the new design, the time bin for the digitization of the chamber signals will be of around 1 ns, and the totality of the signals will be forwarded asynchronously to the service cavern at full resolution. The new backend system will be in charge of building the trigger primitives of each chamber. These trigger primitives contain the information at chamber level about the muon candidates position, direction, and collision time, and are used as input in the L1 CMS trigger. The added functionalities will improve the robustness of the system against ageing. An algorithm based on analytical solutions for reconstructing the DT trigger primitives, called Analytical Method, has been implemented both as a software C++ emulator and in firmware. Its performance has been estimated using the software emulator with simulated and real data samples, and through hardware implementation tests. Measured efficiencies are 96 to 98% for all qualities and time and spatial resolutions are close to the ultimate performance of the DT chambers. A prototype chain of the HL-LHC electronics using the Analytical Method for trigger primitive generation has been installed during Long Shutdown 2 of the LHC and operated in CMS cosmic data taking campaigns in 2020 and 2021. Results from this validation step, the so-called Slice Test, are presented.
DOI: 10.1088/1748-0221/12/06/c06027
2017
Cited 14 times
The μ-RWELL detector
The μ-RWELL has been conceived as a compact, simple and robust Micro-Pattern-Gaseous-Detector (MPGD) for very large area HEP applications requiring the operation in harsh environment. The detector amplification stage, similar to a GEM foil, is realized with a polyimide structure micro-patterned with a blind-hole matrix, embedded through a thin Diamond Like Carbon (DLC) resistive layer in the readout PCB. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to stand high particle fluxes. In this work we give an overview of the two detector layouts designed for low and high rate applications, presenting the results of a systematic study of the detector performance as a function of the surface resistivity and discussing the status of the Technology Transfer towards the industry for large area detector manufacturing.
DOI: 10.1016/j.nima.2020.164104
2020
Cited 8 times
Performance of prototype GE1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1083" altimg="si14.svg"><mml:mo>∕</mml:mo></mml:math>1 chambers for the CMS muon spectrometer upgrade
The high-luminosity phase of the Large Hadron Collider (HL-LHC) will result in ten times higher particle background than measured during the first phase of LHC operation. In order to fully exploit the highly-demanding operating conditions during HL-LHC, the Compact Muon Solenoid (CMS) Collaboration will use Gas Electron Multiplier (GEM) detector technology. The technology will be integrated into the innermost region of the forward muon spectrometer of CMS as an additional muon station called GE1∕1. The primary purpose of this auxiliary station is to help in muon reconstruction and to control level-1 muon trigger rates in the pseudo-rapidity region 1.6≤|η|≤2.2. The new station will contain trapezoidal-shaped GEM detectors called GE1∕1 chambers. The design of these chambers is finalized, and the installation is in progress during the Long Shutdown phase two (LS-2) that started in 2019. Several full-size prototypes were built and operated successfully in various test beams at CERN. We describe performance measurements such as gain, efficiency, and time resolution of these prototype chambers, developed after years of R&D, and summarize their behavior in different gas compositions as a function of the applied voltage.
DOI: 10.1016/j.nima.2019.04.042
2020
Cited 6 times
First test-beam results obtained with IDEA, a detector concept designed for future lepton colliders
IDEA (Innovative Detector for Electron–positron Accelerators) is a detector concept designed for a future leptonic collider operating as a Higgs factory. It is based on innovative detector technologies developed over years of R&D. In September 2018, prototypes of the proposed sub-detectors have been tested for the first time on a beam line at CERN. The preliminary results from this test of a full slice of the IDEA detector and standalone measurements of dual read-out calorimeter prototypes are presented.
DOI: 10.1088/1748-0221/16/11/p11014
2021
Cited 4 times
Performance of a triple-GEM demonstrator in pp collisions at the CMS detector
After the Phase-2 high-luminosity upgrade to the Large Hadron Collider (LHC), the collision rate and therefore the background rate will significantly increase, particularly in the high $\eta$ region. To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.
DOI: 10.1088/1748-0221/15/05/p05023
2020
Cited 4 times
Detector Control System for the GE1/1 slice test
Gas Electron Multiplier (GEM) technology, in particular triple-GEM, was selected for the upgrade of the CMS endcap muon system following several years of intense effort on R&D. The triple-GEM chambers (GE1/1) are being installed at station 1 during the second long shutdown with the goal of reducing the Level-1 muon trigger rate and improving the tracking performance in the harsh radiation environment foreseen in the future LHC operation [1]. A first installation of a demonstrator system started at the beginning of 2017: 10 triple-GEM detectors were installed in the CMS muon system with the aim of gaining operational experience and demonstrating the integration of the GE1/1 system into the trigger. In this context, a dedicated Detector Control System (DCS) has been developed, to control and monitor the detectors installed and integrating them into the CMS operation. This paper presents the slice test DCS, describing in detail the different parts of the system and their implementation.
DOI: 10.1088/1748-0221/15/10/p10013
2020
Cited 4 times
Triple-GEM discharge probability studies at CHARM: simulations and experimental results
The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2 and an integrated charge of 8 C/cm2 over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups.
DOI: 10.1109/tns.2018.2871428
2018
Cited 3 times
Operational Experience With the GEM Detector Assembly Lines for the CMS Forward Muon Upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement.
2018
Cited 3 times
Higgs measurements at FCC-hh
DOI: 10.1016/j.nima.2023.168723
2023
Production and validation of industrially produced large-sized GEM foils for the Phase-2 upgrade of the CMS muon spectrometer
The upgrade of the CMS detector for the high luminosity LHC (HL-LHC) will include gas electron multiplier (GEM) detectors in the end-cap muon spectrometer. Due to the limited supply of large area GEM detectors, the Korean CMS (KCMS) collaboration had formed a consortium with Mecaro Co., Ltd. to serve as a supplier of GEM foils with area of approximately 0.6 m2. The consortium has developed a double-mask etching technique for production of these large-sized GEM foils. This article describes the production, quality control, and quality assessment (QA/QC) procedures and the mass production status for the GEM foils. Validation procedures indicate that the structure of the Korean foils are in the designed range. Detectors employing the Korean foils satisfy the requirements of the HL-LHC in terms of the effective gain, response uniformity, rate capability, discharge probability, and hardness against discharges. No aging phenomena were observed with a charge collection of 82 mC cm−2. Mass production of KCMS GEM foils is currently in progress.
DOI: 10.1088/1748-0221/18/11/p11029
2023
Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation
Abstract The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7 th of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, p short HV OFF = 0.42 -0.35 +0.94 % with detector HV OFF and p short HV OFF &lt; 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure.
2018
Higgs Boson Pair Production at Colliders: Status and Perspectives
DOI: 10.22323/1.302.0002
2017
Advances on micro-RWELL gaseous detector
The R&D on the micro-Resistive-WELL (µ-RWELL) detector technology aims in developing a new scalable, compact, spark-protected, single amplification stage Micro-Pattern Gas Detectors (MPGD) for large area HEP applications as tracking and calorimeter device as well as for industrial and medical applications as X-ray and neutron imaging gas pixel detector.The novel microstructure, exploiting several solutions and improvements achieved in the last years for MPGDs, in particular for GEMs and Micromegas, is an extremely simple detector allowing an easy engineering with consequent technological transfer toward the photolithography industry.Large area detectors (up 1×2 m 2 ) can be realized splicing µ-RWELL_PCB tiles of smaller size (about 0.5×1 m 2 -typical PCB industrial size).The detector, composed by few basic elements such as the readout-PCB embedded with the amplification stage (through the resistive layer) and the cathode defining the gas drift-conversion gap has been largely characterized on test bench with X-ray and with beam test.
DOI: 10.1088/1742-6596/1561/1/012006
2020
Two years’ test of a temperature sensing system based on fibre Bragg grating technology for the CMS GE1/1 detectors
Abstract A temperature monitoring system based on fibre Bragg grating (FBG) fibre optic sensors has been developed for the gas electron multiplier (GEM) chambers of the Compact Muon Solenoid (CMS) detector. The monitoring system was tested in prototype chambers undergoing a general test of the various technological solutions adopted for their construction. The test lasted about two years and was conducted with the chambers being installed in the CMS detector and operated during regular experimental running. In this paper, we present test results that address the choice of materials and procedures for the production and installation of the FBG temperature monitoring system in the final GEM chambers.
DOI: 10.1088/1748-0221/15/12/p12019
2020
Interstrip capacitances of the readout board used in large triple-GEM detectors for the CMS Muon Upgrade
We present analytical calculations, Finite Element Analysis modelling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequently maximize the signal-to-noise ratio for the detector. We find agreement at the 1.5–4.8% level between the two methods of calculations and on the average at the 17% level between calculations and measurements. A configuration with halved strip lengths and doubled strip widths results in a measured 27–29% reduction over the original configuration while leaving the total number of strips unchanged. We have now adopted this design modification for all eight module types of the GE2/1 detector and will produce the final detector with this new strip design.
DOI: 10.1393/ncc/i2017-17085-6
2017
Physics studies to define the CMS muon detector upgrade for High-Luminosity LHC
DOI: 10.1088/1748-0221/17/09/c09028
2022
Background in the CMS drift tubes: measurements with LHC collision data and implications for detector longevity at HL-LHC
Abstract Drift Tubes (DT) are installed in the barrel region of the CMS muon spectrometer. They are used for offline tracking of muons and provide standalone trigger capabilities. Though an upgrade of the DT system electronics is foreseen for the High Luminosity LHC (HL-LHC), the present DT chambers will not be replaced, hence they will be called to operate enduring integrated doses far beyond what they were initially designed for. Together with accelerated aging studies, accurate measurements of the background-induced hit rates and currents observed over Run-2 are critical to assess the longevity of the DT chambers and to make projections of the expected performance of the system throughout HL-LHC. This report presents the state of the art of the studies on the background affecting the DT system, and connects them to results from longevity studies performed at the CERN high-intensity gamma irradiation facility (GIF++). Moreover, it describes all measures that have been put in place, by the end of Run-2 and over LS2, to mitigate aging and, where possible, reduce background level, with the aim of maximizing the performance of the DT muon detector throughout HL-LHC.
DOI: 10.22323/1.350.0038
2019
Projections for HH measurements in the bbZZ(4l) final state with the CMS experiment at the HL-LHC
Prospects for the study of Higgs boson pair (HH) production in the HH → b b4l (l = e, µ) channel are studied in the context of the High Luminosity LHC.The analysis is performed using a parametric simulation of the Phase-2 CMS detector response provided by the Delphes software and assuming an average of 200 proton-proton collisions per bunch crossing at a center-of-mass energy of 14 TeV.Assuming a projected integrated luminosity of 3000 fb -1 , the expected significance for the nonresonant standard model (SM) HH signal is 0.37 σ ; a 95% confidence level (CL) upper limit on its cross section is set to 6.6 times the SM prediction.The statistical combination of five decay channels (b bb b, b bττ, b bγγ, b bWW, b bZZ) results in an expected significance for the SM HH signal of 2.6 σ and an expected 68% and 95% CL intervals for the self-coupling modifier κ λ = λ HHH /λ SM HHH of [0.35, 1.9] and [-0.18, 3.6], respectively.
DOI: 10.6092/unibo/amsdottorato/9453
2020
Higgs self-coupling measurements with the CMS detector at the LHC and at future colliders in the HH → ZZ(4l)bb decay channel
This thesis presents the perspectives on the Higgs boson pair production (HH) measurements in the four-lepton plus two b jets decay channel: HH→ZZ(4l)bb. The HH production gives a direct access to the Higgs boson trilinear self-coupling, providing confirmation to the standard model (SM) predictions and sensitivity to possible physics processes beyond the standard model (BSM). This study has been performed in different scenarios in terms of center-of-mass energy, integrated luminosity and detector layouts. Starting from proton-proton collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC during 2018, the search has been extended to future experimental scenarios obtained with the upgrade layout of the CMS detector for the High Luminosity (HL-LHC) and the possible subsequent High Energy (HE-LHC) phases of the LHC accelera- tor. The analysis has been repeated with a very high energy hadronic Future Circular Collider (FCC-hh), resulting in a unique overview of the capabilities, exploiting this channel, to confirm or disprove the SM predictions. Finally, since future upgrades of existing detectors and even future accelerator projects have been a consistent part of the work described, this thesis presents also the studies performed on innovative micropattern gaseous detectors (MPGD) called μ-RWELL, that could be suitable for these future experiments. Longevity studies exploiting a gamma source irradiating a μ-RWELL prototype have been conducted to understand the detector behavior in a high radiation environment, foreseen for future implementations in high energy physics experiments. In addition, a homogeneity test on a large area μ-RWELL prototype, to verify the feasibility and robustness of large surface detectors realized with this technology, without compromising the excellent performances, is described.
2021
Higgs and Electro-weak symmetry breaking at the FCC-hh
CERN-ACC-2018-004517 March 2019Higgs and Electro-weak symmetry breaking at the FCC-hhL. Borgonovi∗, S. Braibant∗, B. Di Micco†, E. Fontanesi∗, P. Harris‡, C. Helsens§, D. Jamin§,M.L. Mangano§, G. Ortona¶, M. Selvaggi1)§, A. Sznajder‖, M. Testa¶, M. Verducci¶On behalf of the FCC-hh Collaboration∗Universita di Bologna, Italy,†Universita degli Studi Roma Tre, Italy,‡Massachusetts Institute of Technology (MIT), Cambridge, USA,§European Organization for Nuclear Research (CERN), Geneva, Switzerland,¶Laboratoire Leprince-Ringuet, Ecole Polytechnique (LLR), Palaiseau, France,‖Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, BrazilAbstractThe future circular hadron-hadron collider FCC-hh is expected to produce collisions at thecenter of mass energy of√s=100 TeV and to deliver an integrated luminosity of 30 ab−1.The Higgs-self coupling will be measured with a 5% precision via double Higgs production.Tens of billions of Higgs bosons will be produced at the FCC-hh. Such large statisticswill allow for a wide range of possibilities in the realm of precision Higgs measurements.Several Higgs couplings will be measured to a percent level precision, including the secondgeneration muon yukawa coupling. The Higgs to invisible branching fraction will be probedto a level of few 10−4and the rate of longitudinally polarized vector bosons produced invector boson scattering will be measured with 2% precision.
2021
Performance of a Triple-GEM Demonstrator in $pp$ Collisions at the CMS Detector
The Phase-II high luminosity upgrade to the Large Hadron Collider (LHC) is planned for 2023, significantly increasing the collision rate and therefore the background rate, particularly in the high $\eta$ region. To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.
DOI: 10.1088/1748-0221/16/12/p12026
2021
Benchmarking LHC background particle simulation with the CMS triple-GEM detector
Abstract In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN's Large Hadron Collider (LHC). The demonstrator's design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×10 34 cm -2 s -1 . The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 10 -11 to 10 4 MeV for neutrons, 10 -3 to 10 4 MeV for γ's, 10 -2 to 10 4 MeV for e ± , and 10 -1 to 10 4 MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC.