ϟ

K. Mandal

Here are all the papers by K. Mandal that you can download and read on OA.mg.
K. Mandal’s last known institution is . Download K. Mandal PDFs here.

Claim this Profile →
DOI: 10.1364/boe.8.002210
2017
Cited 106 times
Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers
We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.
DOI: 10.1109/itsc.2011.6082954
2011
Cited 72 times
Road traffic congestion monitoring and measurement using active RFID and GSM technology
In this paper, we present an intelligent Traffic Congestion Monitoring & Measurement System called TrafficMonitor to monitor and measure the road traffic congestions using probe vehicle. The concept of probe vehicle has come up in recent times for collecting real time traffic data. Our system provides an easy platform to analyze the traffic movement and congestion pattern. TrafficMonitor is a rapidly deployable, cost-effective and easily maintainable traffic congestion monitoring & measurement system that combines active RFID (based on IEEE 802.15.4 protocol, 2.4 GHz ISM band) and GSM technologies. The congestion detection algorithm is based upon calculation of vehicular speed over a stretch of road and the average waiting time of vehicles at road-crossing. Besides providing a complete description of our system and the concepts developed, the paper also provides a comprehensive description of on-road test results to support our concepts. We also provide a detailed description of all the field trials conducted, various traffic data gathered and finally the conclusions derived from such data. Government agencies, especially traffic control department, may use this system for realtime congestion monitoring by installing the system with probe vehicles. Road research organizations and NGOs may use this for studying and analyzing traffic mobility and congestion patterns.
DOI: 10.1088/1748-0221/9/10/c10036
2014
Cited 18 times
Upgrade of the CMS muon system with triple-GEM detectors
The CMS collaboration considers upgrading the muon forward region which is particularly affected by the high-luminosity conditions at the LHC. The proposal involves Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs and its impact on the CMS performance.
DOI: 10.48550/arxiv.2404.13883
2024
Decoherence of a charged Brownian particle in a magnetic field : an analysis of the roles of coupling via position and momentum variables
The study of decoherence plays a key role in our understanding of the transition from the quantum to the classical world. Typically, one considers a system coupled to an external bath which forms a model for an open quantum system. While most of the studies pertain to a position coupling between the system and the environment, some involve a momentum coupling, giving rise to an anomalous diffusive model. Here we have gone beyond existing studies and analysed the quantum Langevin dynamics of a harmonically oscillating charged Brownian particle in the presence of a magnetic field and coupled to an Ohmic heat bath via both position and momentum couplings. The presence of both position and momentum couplings leads to a stronger interaction with the environment, resulting in a faster loss of coherence compared to a situation where only position coupling is present. The rate of decoherence can be tuned by controlling the relative strengths of the position and momentum coupling parameters. In addition, the magnetic field results in the slowing down of the loss of information from the system, irrespective of the nature of coupling between the system and the bath. Our results can be experimentally verified by designing a suitable ion trap setup.
DOI: 10.1007/s11548-016-1366-7
2016
Cited 15 times
Vessel-based registration of an optical shape sensing catheter for MR navigation
DOI: 10.1088/1748-0221/11/01/c01023
2016
Cited 12 times
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown.
DOI: 10.1088/1748-0221/10/03/c03039
2015
Cited 7 times
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised.
DOI: 10.1117/12.2214998
2016
Cited 7 times
3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry
We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.
DOI: 10.1016/j.nima.2016.05.127
2017
Cited 4 times
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6<|η|<2.2, while continuing R&D is ongoing for additional regions.
DOI: 10.1117/12.2081198
2015
Cited 3 times
Calibration of a needle tracking device with fiber Bragg grating sensors
Accurate needle placement is essential in percutaneous procedures such as radiofrequency ablation (RFA) of liver tumors. Use of real-time navigation of an interventional needle can improve targeting accuracy and yield precise measurements of the needle tip inside the body. An emerging technology based on Fiber Bragg Grating (FBG) sensors has demonstrated the potential of estimating shapes at high frequencies (up to 20 kHz), fast enough for real-time applications. In this paper, we present a calibration procedure for this novel needle tracking technology using strain measurements obtained from fiber Bragg gratings (FBGs). Three glass fibers equipped with two FBGs each were incorporated into a 19G needle. The 3D needle shape is reconstructed based on a polynomial fitting of strain measurements obtained from the fibers. The real-time information provided by the needle tip position and shape allows tracking of the needle deflections during tissue insertion. An experimental setup was designed to yield a calibration that is insensitive to ambient temperature fluctuations and robust to slight external disturbances. We compare the shape of the 3D reconstructed needle to measurements obtained from camera images, as well as assess needle tip tracking accuracy on a ground-truth phantom. Initial results show that the tracking errors for the needle tip are under 1mm, while 3D shape deflections are minimal near the needle tip. The accuracy is appropriate for applications such as RFA of liver tumors.
DOI: 10.1109/nssmic.2014.7431249
2014
Cited 3 times
Performance of a large-area GEM detector prototype for the upgrade of the CMS muon endcap system
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5 <| η |< 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 µrad pitch arranged in eight η-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20–120 GeV hadron beams at Fermilab using Ar/CO2 70∶30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 µrad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ± 0.2 (stat)]%. The azimuthal resolution is found to be [123.5 ± 1.6 (stat)] µrad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by ∼ 10 µrad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ± 2.5 stat] µrad is measured, consistent with the expected resolution of strip-pitch/equation µrad. Other η-sectors of the detector show similar response and performance.
DOI: 10.1016/j.nima.2016.01.059
2016
Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
DOI: 10.1109/nssmic.2015.7581797
2015
Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC
The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≥ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = −ln(tan(θ/2)), where θ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 < |η| < 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> (70/30) and Ar/CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> /CF <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution.
DOI: 10.48550/arxiv.2301.06365
2023
Decoherence and the ultraviolet cutoff: non-Markovian dynamics of a charged particle in a magnetic field
We derive a non-Markovian master equation for a charged particle in a magnetic field coupled to a bath and study decoherence by analysing the temporal decay of the off-diagonal elements of the reduced density matrix in the position basis. The coherent oscillations characterised by the cyclotron frequency get suppressed as a result of decoherence due to coupling with the environment. We consider an Ohmic bath with three distinct models for the high-frequency cutoff for the spectral density of the bath and compare the three cases. As expected, the three cutoff models converge in the limit of the uppermost frequency of the bath tending to infinity. We notice a dramatic slowing down of loss of coherence in the low-temperature limit dominated by zero point quantum fluctuations compared to the high-temperature classical limit dominated by thermal fluctuations. We also go beyond the Ohmic model and study super-Ohmic and sub-Ohmic baths with the spectral densities deviating from a linear dependence on the frequency. Our results are testable in a state of the art cold atom laboratory.
DOI: 10.1088/1751-8121/acd231
2023
Decoherence and the ultraviolet cutoff: non-Markovian dissipative dynamics of a charged particle in a magnetic field
Abstract We derive a non-Markovian master equation for a charged particle in a magnetic field coupled to a bath and study decoherence by analyzing the temporal decay of the off-diagonal elements of the reduced density matrix in the position basis. The coherent oscillations characterized by the cyclotron frequency get suppressed as a result of decoherence due to coupling with the environment. We consider an Ohmic bath with three distinct models for the high-frequency cutoff for the spectral density of the bath and compare the three cases. As expected, the three cutoff models converge in the limit of the uppermost frequency of the bath tending to infinity. We notice a dramatic slowing down of loss of coherence in the low-temperature limit dominated by zero point quantum fluctuations compared to the high-temperature classical limit dominated by thermal fluctuations. We also go beyond the Ohmic model and study super-Ohmic and sub-Ohmic baths with the spectral densities deviating from a linear dependence on the frequency. Our results are testable in a state of the art cold atom laboratory.
DOI: 10.1007/s10773-023-05389-7
2023
Atomic Inversion and Entanglement Dynamics for Squeezed Coherent Thermal States in the Jaynes-Cummings Model
The tussling interplay between the thermal photons and the squeezed photons is discussed. Thermal and squeezed photons are chosen to represent the ‘classical’ and ‘quantum’ noises respectively, and, they are pitted against each other in a coherent background radiation field (represented by coherent photons). The squeezed coherent thermal states (SCTS) and their photon counting distributions (PCD) are employed for this purpose. It is observed that the addition of thermal photons and squeezed photons have counterbalancing effects, by delocalizing and localizing the PCD, respectively. Various aspects of the atom-field interaction, like the atomic inversion, and entanglement dynamics in the Jaynes-Cummings model have been investigated. Particular attention is given to the study of atomic inversion and entanglement dynamics due to the addition of thermal and squeezed photons to the coherent state. The interplay of thermal photons and squeezed photons have drastic effects on the PCD, atomic inversion, and entanglement dynamics of the atom-field interaction. The thermal photons display supremacy over the squeezed photons at the level of PCD and atomic inversion. The entanglement dynamics vary from that of a coherent state to a Glauber-Lachs state. We have also studied the mixing of thermal photons and squeezed photons using coherent squeezed thermal states, for which the behaviour of PCD, atomic inversion, and entanglement dynamics are contrasting to those of squeezed coherent thermal states. The parameter ranges for these states for which the zero Hanbury Brown and Twiss correlation is exhibited are also obtained. The associated Wigner distribution functions are also discussed.
DOI: 10.48550/arxiv.2310.13918
2023
Effects of Thermal Photons and Squeezed Photons on Entanglement Dynamics Between Different Subsystems of Atom-Field System inside a Cavity with Atoms in a Pure and Mixed States in the Double Jaynes-Cummings Model
The effects of squeezed photons and thermal photons on the entanglement dynamics of atom-atom, atom-field and field-field subsystems are studied for the double Jaynes-Cummings model. For this purpose, squeezed coherent states and Glauber-Lachs states of radiation are chosen as field states. For the atomic states, we choose one of the Bell state as pure state and a Werner-type state as mixed state. Werner-type state is used to understand the effects of mixedness on entanglement. To measure the entanglement between the two atoms, Wootters' concurrence is used; whereas for the atom-field and field-field subsystems, negativity is chosen. The squeezed photons and thermal photons create, destroy and transfer entanglement within various subsystems. Also, the addition of squeezed photons and thermal photons either lengthens or shortens the duration of entanglement sudden deaths (ESD) associated with atom-atom, atom-field and field-field entanglement dynamics in a complementary way. The effects of Ising-type interaction, detuning and Kerr-nonlinearity on the entanglement dynamics are studied. Each of these interactions removes the ESDs associated with various subsystems. We show that new entanglements are created in this atom-field system by introducing Ising-type interaction between the two atoms. With proper choice of the parameters corresponding to Ising-type interaction, detuning and Kerr-nonliearity, entanglement can be transferred among various subsystems.
DOI: 10.1088/1748-0221/12/02/p02003
2017
The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade
The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.
DOI: 10.1051/epjconf/201817403002
2018
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m 2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
DOI: 10.18231/j.ijpns.2020.021
2021
Study to determine the relationship between parenting style and adolescent self-esteem
Introduction: Parents are the basic sculptors of their child’s future. There are three basic types of parenting styles - Authoritarian, Authoritative and permissive, and each parenting style has different bearing on child’s nature and self-esteem. A high level of self-esteem comes handy when life goes badly so that one treats himself with tolerance and understanding at tough times of life. Materials and Methods: This study was conducted on the adolescents and their parents attending the adolescent health clinic in a tertiary medical care hospital for various problems . Adolescents were interviewed using the Rosenberg questionnaire and their parents were interviewed using the Parenting styles and dimensions questionnaire and demographic data were collected. All data were tabulated and statistically analysed to find significant associations. Result: Among them, 44.4% had high self-esteem, 35.2% had moderate self-esteem levels and 20.4% had low self-esteem. Regarding the parenting styles, 73.2% parents followed Authoritative parenting style, 20% followed Authoritarian and 6.8% followed Permissive style of parenting. Among adolescents receiving Authoritative parenting, 56.28% had high self-esteem levels, 30.05% had moderate and 13.66% had low self-esteem. Authoritative parenting was more common in mothers with higher levels of education (p=0.014). Conclusion: The results revealed positive influence of Authoritative parenting on self-esteem level of adolescents and Authoritarian parenting was associated with lower levels of self-esteem. Formal education of the mother is not associated with choosing appropriate type of parenting. Keywords: Parenting, Self esteem, Influencing factors.
DOI: 10.1016/j.nima.2015.11.125
2016
Status report of the upgrade of the CMS muon system with Triple-GEM detectors
For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5<|η|<2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.
DOI: 10.1117/12.2209672
2016
3D shape tracking of minimally invasive surgical instruments using OFDR in optical fibers (Conference Presentation)
2014
Impact of the Radiation Background on the CMS muon high-eta upgrade for the LHC high luminosity scenario
The Compact Muon Solenoid (CMS) experiment at the LHC is planning an upgrade of its muon detection system aiming to extend the muon detection capabilities in the forward region with the installation of new muon stations based on Gas Electron Multiplier (GEM) and Resistive Plate Chambers (RPC) technologies during the so-called Phase-2 upgrade scenario. With the imminent increase on luminosity to 5 × 1034cm-2s-1 and center of mass collision energy of 14 TeV an unprecedented and hostile radiation environment will be created, the most affected detectors will be the ones located in the forward region where the intense flux of neutrons and photons could potentially degrade the detector performance. Using FLUKA simulation the expected radiation environment is estimated for the regions of interest, possible shielding scenarios are proposed and the effect on the detector performance is discussed.
DOI: 10.48550/arxiv.1412.0228
2014
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < \mid\eta\mid < 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $\mu$rad pitch arranged in eight $\eta$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $\mu$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\pm$ 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 $\pm$ 1.6 (stat)] $\mu$rad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by $\sim$ 10 $\mu$rad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 $\pm$ 2.5 stat] $\mu$rad is measured, consistent with the expected resolution of strip-pitch/$\sqrt{12}$ = 131.3 $\mu$rad. Other $\eta$-sectors of the detector show similar response and performance.
DOI: 10.1115/1.4036338
2017
Assessment of the Accuracy of Optical Shape Sensing for Needle Tracking Interventions
Accurate needle guidance is essential for a number of magnetic resonance imaging (MRI)-guided percutaneous procedures, such as radiofrequency ablation (RFA) of metastatic liver tumors. A promising technology to obtain real-time tracking of the shape and tip of a needle is by using high-frequency (up to 20 kHz) fiber Bragg grating (FBG) sensors embedded in optical fibers, which are insensitive to external magnetic fields. We fabricated an MRI-compatible needle designed for percutaneous procedures with a series of FBG sensors which would be tracked in an image-guidance system, allowing to display the needle shape within a navigation image. A series of phantom experiments demonstrated needle tip tracking errors of 1.05 ± 0.08 mm for a needle deflection up to 16.82 mm on a ground-truth model and showed nearly similar accuracy to electromagnetic (EM) tracking (i.e., 0.89 ± 0.09 mm). We demonstrated feasibility of the FBG-based tracking system for MRI-guided interventions with differences under 1 mm between tracking systems. This study establishes the needle tracking accuracy of FBG needle tracking for image-guided procedures.
DOI: 10.1051/epjconf/201817403003
2018
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC. This project is at the final stages of R&amp;D and moving to production. An unprecedented large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.
DOI: 10.1393/ncc/i2016-16260-7
2015
Impact of the GE1/1 upgrade on CMS muon system performance
During the future LHC upgrade planned in 2018, the forward endcap region of the CMS muon spectrometer will be upgraded with GEM chambers. GEM technology is able to withstand the radiation environment expected in the forward region. The GE1/1 station will be included in the muon L1 trigger, allowing to keep low p(T) threshold even at high luminosity. Moreover, it will bring detection redundancy in the most critical part of the CMS muon system, along with benefits to muon reconstruction performance.
DOI: 10.1393/ncc/i2016-16269-x
2016
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on cham design features and will discuss the performance of the upgraded detector.
DOI: 10.1109/nssmic.2015.7581803
2015
CMS muon system phase 2 upgrade with triple-GEM detectors
The Compact Muon Solenoid (CMS) detector installed at the CERN Large Hadron Collider (LHC) has an extensive muon system which provides information simultaneously for identification, track reconstruction and triggering of muons. As a consequence of the extreme particle rate and high integrated charge, the essentiality to upgrade the LHC has given rise to the High Luminosity phase of the LHC (HL-LHC) project so that the CMS muon system will be upgraded with superior technological challenges. The CMS GEM collaboration offers a solution to equip the high-eta region of the muon system for Phase 2 (after the year 2017) with large-area triple-layer Gas Electron Multiplier (GEM) detectors, since GEMs have the ability to provide robust and redundant tracking and triggering functions with an excellent spatial resolution of order 100 micron and a high particle rate capability, with a close to 100% detection efficiency. In this contribution, the present status of the triple-GEM project will be reviewed, and the significant achievements from the start of the R&D in 2009 will be emphasized.
DOI: 10.1109/nssmic.2014.7431236
2014
Status report on the CMS forward muon upgrade with large-size triple-GEM detectors
For the High-Luminosity LHC (HL-LHC) phase the CMS GEM Collaboration is planning to install new large-size (990×220–455mm2) triple-GEM detectors, equipped with a new readout system, in the forward region of the muon system (1.5< |η| <2.2) of the CMS detector. Combining triggering and tracking functionalities the new triple-foil Gas Electron Multiplier (GEM) chambers will improve both the performance of the CMS muon trigger and the muon reconstruction/identification in CMS experiment. The addition of triple-GEM chambers to the forward region of the CMS muon system will add a necessary layer of redundancy. Starting from 2009 the CMS GEM Collaboration has built several small and full-size prototypes with different geometries, keeping improving the assembly techniques. All these prototypes have been tested in laboratories as well as with beam tests at the CERN Super Proton Synchrotron (SPS) and at Fermi National Accelerator Laboratory. In this contribution we will report on the status of the CMS upgrade project with triple-GEM chambers and its impact on the CMS performance as well as the hardware architectures and expected capability of the CMS GEM readout system.
DOI: 10.22323/1.213.0065
2015
The Triple-GEM Project for the Phase 2 Upgrade of the CMS Muon System
In view of the high-luminosity phase of the LHC, the CMS Collaboration is considering the use of Gas Electron Multiplier (GEM) detector technology for the upgrade of its muon system in the forward region. With their ability to handle the extreme particle rates expected in that area, such micro-pattern gas detectors can sustain a high performance and redundant muon trigger system. At the same time, with their excellent spatial resolution, they can improve the muon track reconstruction and identification capabilities of the forward detector, effectively combining tracking and triggering functions in one single device. The present status of the CMS GEM project will be reviewed, highlighting importants steps and achievements since the start of the R&D activities in 2009. The baseline design of the triple-GEM detectors proposed for installation in different stations of the CMS muon endcap system will be described, along with the associated frontend electronics and data-acquisition system. The expected impact on the performance of the CMS muon system will be discussed, and results from detector tests, both in the lab and in test beams will be presented.
DOI: 10.48550/arxiv.1512.08529
2015
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
DOI: 10.48550/arxiv.2204.12342
2022
Some aspects of Microscopic Mechanism of Superconductivity in conventional and non-conventional systems
A broad review of theoretical research work involving different types of microscopic mechanism in various classes of superconductors, carried out in our research group over a decade or so, is presented. These mechanisms include both conventional as well as exotic ones. Special emphasis is placed on the possible applications to the experimental situations. Moreover, comparison of our works with various theoretical proposals made by various other researchers, with regard to high temperature superconductivity in particular, is made. The crucial importance and special significance of our results are highlighted.
DOI: 10.48550/arxiv.2208.12989
2022
Quantum Langevin Equation of a spin in a magnetic field : an analysis
We derive a quantum Langevin equation for a quantum spin in the presence of a magnetic field and study its dynamics in the Markovian limit using the Ohmic bath model. We extend our analysis to the Drude bath with a finite memory. We study the time evolution of the expectation values of the magnetic moments. The spin auto-correlation functions exhibit a damped oscillatory behaviour with the randomization time being determined by the damping rate and also the memory time for the Drude bath model. We also analyse the spin response function of the system for the Ohmic bath model. Our results are consistent with findings in cold atom experiments. In addition we make predictions which can be tested in future ultra cold atom experiments.
DOI: 10.32479/ijeep.13391
2022
Analysing Time-frequency Relationship between Oil price and Sectoral Indices in India using Wavelet Techniques
Oil is considered an essential factor of any economy. This paper examines the time-varying correlation between oil price return, BSE SENSEX, and 14 sectoral indexes in India using multiscale wavelet decomposition and wavelet coherence analysis. The maximal wavelet discrete wavelet transform analysis shows a feedback relationship between 13 sectors at higher time horizons (dC4, dC5, and dC6). Based on the wavelet coherence plot, the oil price and sectoral index return show a high co-movement at 32 to 128 weeks. The wavelet coherence plot shows that the oil price and sectoral index return show a high co-movement during the period of Mar-May 2020 (especially during the period of financial crisis widely spread due to the COVID19 pandemic and nationwide lockdown notification announced by the Government of India). We discuss the implications of these studies in detail.
DOI: 10.48550/arxiv.2212.05042
2022
Atomic Inversion and Entanglement Dynamics for Squeezed Coherent Thermal States in the Jaynes-Cummings Model
The tussling interplay between the thermal photons and the squeezed photons is discussed. The `classical noise' is represented by the thermal photons and the `quantum noise' is represented by the squeezed photons, which are pitted against each other in the background of a coherent field (represented by the coherent photons). The photon counting distribution (PCD) corresponding to the squeezed coherent thermal states are employed for this purpose. It is observed that the addition of thermal photons and squeezed photons have counterbalancing effects, by delocalizing and localizing the PCD, respectively. Various aspects of the atom-field interaction, like the atomic inversion, entanglement dynamics in the Jaynes-Cummings model have been investigated. Particular attention is given to the study of atomic inversion and entanglement dynamics due to the addition of thermal and squeezed photons to the coherent state. The interplay of thermal photons and squeezed photons have drastic effects on the PCD, atomic inversion and entanglement dynamics of the atom-field interaction.
2019
Search for scalar top quark using 13 TeV proton proton collision data from CMS LHC
2020
患者における腹腔鏡下エントリーのための代替非臍エントリーポート【JST・京大機械翻訳】
2021
Atomic and entanglement dynamics in the mixed squeezed coherent state version of the Jaynes-Cummings interaction
The main objective of this work is to study the Jaynes-Cummings model interaction of a two-level atom interacting with a mixed field state of a squeezed vacuum and a coherent state. Here, the pure squeezed coherent state (PSCS) and the mixed squeezed coherent state (MSCS) have been used as the states of the radiation field. The photon-counting distribution (PCD), the atomic inversion and the entanglement dynamics of atom-field interaction for both the radiation fields are investigated and compared with each other. We observe that depending on the state of the field, squeezing has very different effects on coherent photons. Mild squeezing on the coherent photons localizes the PCD for PSCS; however, for MSCS there is no such localization observed - instead squeezing manifests for MSCS as oscillations in the PCD. The effects of squeezing on the atomic inversion and the entanglement dynamics for PSCS are very different as compared with the corresponding quantities associated with MSCS; in fact, they are contrasting. It is well known in the literature that for PSCS, increasing the squeezing increases the well-known ringing revivals in the atomic inversion, and also increases irregularity in the entanglement dynamics. However, increasing the squeezing in MSCS very significantly alters the collapse-revival pattern in the atomic inversion and the entanglement dynamics of the Jaynes-Cummings model. For MSCS, the effect of squeezing on the quadrature variables and Mandel's $Q$ parameter are also presented.
DOI: 10.48550/arxiv.2110.14165
2021
Atomic and entanglement dynamics in the mixed squeezed coherent state version of the Jaynes-Cummings interaction
The main objective of this work is to study the Jaynes-Cummings model interaction of a two-level atom interacting with a mixed field state of a squeezed vacuum and a coherent state. Here, the pure squeezed coherent state (PSCS) and the mixed squeezed coherent state (MSCS) have been used as the states of the radiation field. The photon-counting distribution (PCD), the atomic inversion and the entanglement dynamics of atom-field interaction for both the radiation fields are investigated and compared with each other. We observe that depending on the state of the field, squeezing has very different effects on coherent photons. Mild squeezing on the coherent photons localizes the PCD for PSCS; however, for MSCS there is no such localization observed - instead squeezing manifests for MSCS as oscillations in the PCD. The effects of squeezing on the atomic inversion and the entanglement dynamics for PSCS are very different as compared with the corresponding quantities associated with MSCS; in fact, they are contrasting. It is well known in the literature that for PSCS, increasing the squeezing increases the well-known ringing revivals in the atomic inversion, and also increases irregularity in the entanglement dynamics. However, increasing the squeezing in MSCS very significantly alters the collapse-revival pattern in the atomic inversion and the entanglement dynamics of the Jaynes-Cummings model. For MSCS, the effect of squeezing on the quadrature variables and Mandel's $Q$ parameter are also presented.