ϟ

Joseph H. Helkowski

Here are all the papers by Joseph H. Helkowski that you can download and read on OA.mg.
Joseph H. Helkowski’s last known institution is . Download Joseph H. Helkowski PDFs here.

Claim this Profile →
DOI: 10.1126/science.1111772
2005
Cited 9,425 times
Global Consequences of Land Use
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
DOI: 10.1007/s00382-008-0445-z
2008
Cited 314 times
Effects of global irrigation on the near-surface climate
Irrigation delivers about 2,600 km3 of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by ~0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by ~1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery.