ϟ

John C. van Swieten

Here are all the papers by John C. van Swieten that you can download and read on OA.mg.
John C. van Swieten’s last known institution is . Download John C. van Swieten PDFs here.

Claim this Profile →
DOI: 10.1093/brain/awr179
2011
Cited 3,940 times
Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, 'possible' behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). 'Probable' behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia 'with definite frontotemporal lobar degeneration' requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer's disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met 'possible' criteria, and 104 (76%) met criteria for 'probable' behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with 'possible' and 'probable' criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.
DOI: 10.1016/j.neuron.2011.09.010
2011
Cited 3,807 times
A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD
The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.
DOI: 10.1159/000477538
2017
Cited 1,708 times
Qualitative Assessment of Verbal Fluency Performance in Frontotemporal Dementia
&lt;b&gt;&lt;i&gt;Background/Aims:&lt;/i&gt;&lt;/b&gt; Verbal fluency is impaired in patients with frontotemporal dementia (FTD) and primary progressive aphasia (PPA). This study explored qualitative differences in verbal fluency (clustering of words, switching between strategies) between FTD and PPA variants. &lt;b&gt;&lt;i&gt;Methods:&lt;/i&gt;&lt;/b&gt; Twenty-nine patients with behavioral variant FTD (bvFTD) and 50 with PPA (13 nonfluent/agrammatic, 14 semantic, and 23 logopenic) performed a semantic and letter fluency task. Clustering (number of multiword strings) and switching (number of transitions between clustered and nonclustered words) were recorded by two independent raters. Between-group differences, associations with memory, language, and executive functioning, and longitudinal change (subsample) in clustering and switching were examined. &lt;b&gt;&lt;i&gt;Results:&lt;/i&gt;&lt;/b&gt; Interrater reliability was high (median 0.98). PPA patients generated (a) smaller (number of) clusters on semantic and letter fluency than bvFTD patients (&lt;i&gt;p&lt;/i&gt; &lt; 0.05). Semantic variant patients used more switches than nonfluent/agrammatic or logopenic variant patients (&lt;i&gt;p&lt;/i&gt; &lt; 0.05). Clustering in semantic fluency was significantly associated with memory and language (range standardized regression coefficients 0.24-0.38). Switching in letter fluency was associated with executive functioning (0.32-0.35). &lt;b&gt;&lt;i&gt;Conclusion:&lt;/i&gt;&lt;/b&gt; Clustering and switching in verbal fluency differed between patients with subtypes of FTD and PPA. Qualitative aspects of verbal fluency provide additional information on verbal ability and executive control which can be used for clinically diagnostic purposes.
DOI: 10.1002/mds.26987
2017
Cited 1,446 times
Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria
PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome.We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP.We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Second, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a 2-day meeting, and refined in three further Delphi rounds.Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria, or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, and suggestive of PSP). Clinical clues and imaging findings represent supportive features.Here, we present new criteria aimed to optimize early, sensitive, and specific clinical diagnosis of PSP on the basis of currently available evidence. © 2017 International Parkinson and Movement Disorder Society.
DOI: 10.1016/s1474-4422(12)70043-1
2012
Cited 1,040 times
Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study
We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion.In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years.A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.Full funding sources listed at end of paper (see Acknowledgments).
DOI: 10.1136/jnnp.2010.212225
2010
Cited 535 times
Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review
Frontotemporal dementia (FTD) is the second most common young-onset dementia and is clinically characterised by progressive behavioural change, executive dysfunction and language difficulties. Three clinical syndromes, behavioural variant FTD, semantic dementia and progressive non-fluent aphasia, form part of a clinicopathological spectrum named frontotemporal lobar degeneration (FTLD). The classical neuropsychological phenotype of FTD has been enriched by tests exploring Theory of Mind, social cognition and emotional processing. Imaging studies have detailed the patterns of atrophy associated with different clinical and pathological subtypes. These patterns offer some diagnostic utility, while measures of progression of atrophy may be of use in future trials. 30-50% of FTD is familial, and mutations in two genes, microtubule associated protein tau and Progranulin (GRN), account for about half of these cases. Rare defects in VCP, CHMP2B, TARDP and FUS genes have been found in a small number of families. Linkage to chromosome 9p13.2-21.3 has been established in familial FTD with motor neuron disease, although the causative gene is yet to be identified. Recent developments in the immunohistochemistry of FTLD, and also in amyotrophic lateral sclerosis (ALS), have led to a new pathological nomenclature. The two major groups are those with tau-positive inclusions (FTLD-tau) and those with ubiquitin-positive and TAR DNA-binding protein of 43&emsp14;kDa (TDP-43) positive inclusions (FTLD-TDP). Recently, a new protein involved in familial ALS, fused in sarcoma (FUS), has been found in FTLD patients with ubiquitin-positive and TDP-43-negative inclusions. In this review, the authors discuss recent clinical, neuropsychological, imaging, genetic and pathological developments that have changed our understanding of FTD, its classification and criteria. The potential to establish an early diagnosis, predict underlying pathology during life and quantify disease progression will all be required for disease-specific therapeutic trials in the future.
DOI: 10.1038/ng.536
2010
Cited 493 times
Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
DOI: 10.1086/322996
2001
Cited 352 times
PARK7, a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, on Chromosome 1p36
Although the role of genetic factors in the origin of Parkinson disease has long been disputed, several genes involved in autosomal dominant and recessive forms of the disease have been localized. Mutations associated with early-onset autosomal recessive parkinsonism have been identified in the Parkin gene, and recently a second gene, PARK6, involved in early-onset recessive parkinsonism was localized on chromosome 1p35-36. We identified a family segregating early-onset parkinsonism with multiple consanguinity loops in a genetically isolated population. Homozygosity mapping resulted in significant evidence for linkage on chromosome 1p36. Multipoint linkage analysis using MAPMAKER-HOMOZ generated a maximum LOD-score of 4.3, with nine markers spanning a disease haplotype of 16 cM. On the basis of several recombination events, the region defining the disease haplotype can be clearly separated, by > or =25 cM, from the more centromeric PARK6 locus on chromosome 1p35-36. Therefore, we conclude that we have identified on chromosome 1 a second locus, PARK7, involved in autosomal recessive, early-onset parkinsonism.
DOI: 10.1016/j.neuroimage.2015.01.048
2015
Cited 283 times
Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.
DOI: 10.1038/s41467-021-23620-z
2021
Cited 251 times
A multicentre validation study of the diagnostic value of plasma neurofilament light
Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
DOI: 10.1007/s00401-020-02158-2
2020
Cited 225 times
Distribution patterns of tau pathology in progressive supranuclear palsy
Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (n = 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
DOI: 10.1038/ng.2237
2012
Cited 221 times
Common variants at 12q14 and 12q24 are associated with hippocampal volume
Sudha Seshadri and colleagues report a genome-wide association study for hippocampal volume. The authors identify loci at 12q14 and 12q24 associated with this phenotype. Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10−7. In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10−11) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10−11). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10−7) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10−7); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.
DOI: 10.1016/s1474-4422(19)30394-1
2020
Cited 188 times
Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study
Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72.In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried.Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death.Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates.UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.
DOI: 10.1126/scitranslmed.aai7866
2017
Cited 179 times
Poly(GP) proteins are a useful pharmacodynamic marker for <i>C9ORF72</i> -associated amyotrophic lateral sclerosis
Poly(GP) proteins are a promising pharmacodynamic marker for developing and testing therapeutics for treating C9ORF72 -associated amyotrophic lateral sclerosis.
DOI: 10.1038/nrneurol.2017.75
2017
Cited 167 times
Imaging and fluid biomarkers in frontotemporal dementia
Reliable biomarkers for frontotemporal dementia (FTD) are required for accurate discrimination between dementia types, prediction of clinical progression and tailoring of pharmacological interventions. This Review discusses the increasing number of available biomarkers for FTD — including novel imaging modalities and fluid biomarkers — and the future challenges in their implementation. Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities — such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling — in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
DOI: 10.1161/circgenetics.114.000858
2015
Cited 155 times
Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI
Background— The burden of cerebral white matter hyperintensities (WMH) is associated with an increased risk of stroke, dementia, and death. WMH are highly heritable, but their genetic underpinnings are incompletely characterized. To identify novel genetic variants influencing WMH burden, we conducted a meta-analysis of multiethnic genome-wide association studies. Methods and Results— We included 21 079 middle-aged to elderly individuals from 29 population-based cohorts, who were free of dementia and stroke and were of European (n=17 936), African (n=1943), Hispanic (n=795), and Asian (n=405) descent. WMH burden was quantified on MRI either by a validated automated segmentation method or a validated visual grading scale. Genotype data in each study were imputed to the 1000 Genomes reference. Within each ethnic group, we investigated the relationship between each single-nucleotide polymorphism and WMH burden using a linear regression model adjusted for age, sex, intracranial volume, and principal components of ancestry. A meta-analysis was conducted for each ethnicity separately and for the combined sample. In the European descent samples, we confirmed a previously known locus on chr17q25 ( P =2.7×10 −19 ) and identified novel loci on chr10q24 ( P =1.6×10 −9 ) and chr2p21 ( P =4.4×10 −8 ). In the multiethnic meta-analysis, we identified 2 additional loci, on chr1q22 ( P =2.0×10 −8 ) and chr2p16 ( P =1.5×10 −8 ). The novel loci contained genes that have been implicated in Alzheimer disease (chr2p21 and chr10q24), intracerebral hemorrhage (chr1q22), neuroinflammatory diseases (chr2p21), and glioma (chr10q24 and chr2p16). Conclusions— We identified 4 novel genetic loci that implicate inflammatory and glial proliferative pathways in the development of WMH in addition to previously proposed ischemic mechanisms.
DOI: 10.1093/brain/aww339
2017
Cited 148 times
Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies
Diverse neurodegenerative disorders are characterized by deposition of tau fibrils composed of conformers (i.e. strains) unique to each illness. The development of tau imaging agents has enabled visualization of tau lesions in tauopathy patients, but the modes of their binding to different tau strains remain elusive. Here we compared binding of tau positron emission tomography ligands, PBB3 and AV-1451, by fluorescence, autoradiography and homogenate binding assays with homologous and heterologous blockades using tauopathy brain samples. Fluorescence microscopy demonstrated intense labelling of non-ghost and ghost tangles with PBB3 and AV-1451, while dystrophic neurites were more clearly detected by PBB3 in brains of Alzheimer's disease and diffuse neurofibrillary tangles with calcification, characterized by accumulation of all six tau isoforms. Correspondingly, partially distinct distributions of autoradiographic labelling of Alzheimer's disease slices with 11C-PBB3 and 18F-AV-1451 were noted. Neuronal and glial tau lesions comprised of 4-repeat isoforms in brains of progressive supranuclear palsy, corticobasal degeneration and familial tauopathy due to N279K tau mutation and 3-repeat isoforms in brains of Pick's disease and familial tauopathy due to G272V tau mutation were sensitively detected by PBB3 fluorescence in contrast to very weak AV-1451 signals. This was in line with moderate 11C-PBB3 versus faint 18F-AV-1451 autoradiographic labelling of these tissues. Radioligand binding to brain homogenates revealed multiple binding components with differential affinities for 11C-PBB3 and 18F-AV-1451, and higher availability of binding sites on progressive supranuclear palsy tau deposits for 11C-PBB3 than 18F-AV-1451. Our data indicate distinct selectivity of PBB3 compared to AV-1451 for diverse tau fibril strains. This highlights the more robust ability of PBB3 to capture wide-range tau pathologies.
DOI: 10.1016/j.neurobiolaging.2017.10.008
2018
Cited 148 times
Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study
Frontotemporal dementia (FTD) is a highly heritable condition with multiple genetic causes. In this study, similarities and differences of gray matter (GM) atrophy patterns were assessed among 3 common forms of genetic FTD (mutations in C9orf72, GRN, and MAPT). Participants from the Genetic FTD Initiative (GENFI) cohort with a suitable volumetric T1 magnetic resonance imaging scan were included (319): 144 nonmutation carriers, 128 presymptomatic mutation carriers, and 47 clinically affected mutation carriers. Cross-sectional differences in GM volume between noncarriers and carriers were analyzed using voxel-based morphometry. In the affected carriers, each genetic mutation group exhibited unique areas of atrophy but also a shared network involving the insula, orbitofrontal lobe, and anterior cingulate. Presymptomatic GM atrophy was observed particularly in the thalamus and cerebellum in the C9orf72 group, the anterior and medial temporal lobes in MAPT, and the posterior frontal and parietal lobes as well as striatum in GRN. Across all presymptomatic carriers, there were significant decreases in the anterior insula. These results suggest that although there are important differences in atrophy patterns for each group (which can be seen presymptomatically), there are also similarities (a fronto-insula-anterior cingulate network) that help explain the clinical commonalities of the disease.
DOI: 10.1016/s1474-4422(19)30354-0
2019
Cited 131 times
Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study
Neurofilament light chain (NfL) is a promising blood biomarker in genetic frontotemporal dementia, with elevated concentrations in symptomatic carriers of mutations in GRN, C9orf72, and MAPT. A better understanding of NfL dynamics is essential for upcoming therapeutic trials. We aimed to study longitudinal NfL trajectories in people with presymptomatic and symptomatic genetic frontotemporal dementia.We recruited participants from 14 centres collaborating in the Genetic Frontotemporal Dementia Initiative (GENFI), which is a multicentre cohort study of families with genetic frontotemporal dementia done across Europe and Canada. Eligible participants (aged ≥18 years) either had frontotemporal dementia due to a pathogenic mutation in GRN, C9orf72, or MAPT (symptomatic mutation carriers) or were healthy at-risk first-degree relatives (either presymptomatic mutation carriers or non-carriers), and had at least two serum samples with a time interval of 6 months or more. Participants were excluded if they had neurological comorbidities that were likely to affect NfL, including cerebrovascular events. We measured NfL longitudinally in serum samples collected between June 8, 2012, and Dec 8, 2017, through follow-up visits annually or every 2 years, which also included MRI and neuropsychological assessments. Using mixed-effects models, we analysed NfL changes over time and correlated them with longitudinal imaging and clinical parameters, controlling for age, sex, and study site. The primary outcome was the course of NfL over time in the various stages of genetic frontotemporal dementia.We included 59 symptomatic carriers and 149 presymptomatic carriers of a mutation in GRN, C9orf72, or MAPT, and 127 non-carriers. Nine presymptomatic carriers became symptomatic during follow-up (so-called converters). Baseline NfL was elevated in symptomatic carriers (median 52 pg/mL [IQR 24-69]) compared with presymptomatic carriers (9 pg/mL [6-13]; p<0·0001) and non-carriers (8 pg/mL [6-11]; p<0·0001), and was higher in converters than in non-converting carriers (19 pg/mL [17-28] vs 8 pg/mL [6-11]; p=0·0007; adjusted for age). During follow-up, NfL increased in converters (b=0·097 [SE 0·018]; p<0·0001). In symptomatic mutation carriers overall, NfL did not change during follow-up (b=0·017 [SE 0·010]; p=0·101) and remained elevated. Rates of NfL change over time were associated with rate of decline in Mini Mental State Examination (b=-94·7 [SE 33·9]; p=0·003) and atrophy rate in several grey matter regions, but not with change in Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale score (b=-3·46 [SE 46·3]; p=0·941).Our findings show the value of blood NfL as a disease progression biomarker in genetic frontotemporal dementia and suggest that longitudinal NfL measurements could identify mutation carriers approaching symptom onset and capture rates of brain atrophy. The characterisation of NfL over the course of disease provides valuable information for its use as a treatment effect marker.ZonMw and the Bluefield project.
DOI: 10.1136/jnnp-2019-321954
2020
Cited 116 times
Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia
Background There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. Methods Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman’s correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. Results Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, –61.3 to 54.6), MAPT mutations (12.7, –33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. Conclusions Raised GFAP concentrations appear to be unique to GRN -related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
DOI: 10.1038/s41588-022-01208-7
2022
Cited 64 times
Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease
Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism and microglial function in AD.
DOI: 10.1038/s41467-022-28896-3
2022
Cited 44 times
Tau deposition patterns are associated with functional connectivity in primary tauopathies
Abstract Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2 nd generation 18 F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples ( n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.
DOI: 10.1038/s41593-022-01124-3
2022
Cited 43 times
Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex
Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.
DOI: 10.1126/scitranslmed.adf0141
2023
Cited 31 times
The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration
Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)–mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.
DOI: 10.1001/jamaneurol.2022.5128
2023
Cited 23 times
Incidence of Syndromes Associated With Frontotemporal Lobar Degeneration in 9 European Countries
Diagnostic incidence data for syndromes associated with frontotemporal lobar degeneration (FTLD) in multinational studies are urgent in light of upcoming therapeutic approaches.To assess the incidence of FTLD across Europe.The Frontotemporal Dementia Incidence European Research Study (FRONTIERS) was a retrospective cohort study conducted from June 1, 2018, to May 31, 2019, using a population-based registry from 13 tertiary FTLD research clinics from the UK, the Netherlands, Finland, Sweden, Spain, Bulgaria, Serbia, Germany, and Italy and including all new FTLD-associated cases during the study period, with a combined catchment population of 11 023 643 person-years. Included patients fulfilled criteria for the behavioral variant of frontotemporal dementia (BVFTD), the nonfluent variant or semantic variant of primary progressive aphasia (PPA), unspecified PPA, progressive supranuclear palsy, corticobasal syndrome, or frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS). Data were analyzed from July 19 to December 7, 2021.Random-intercept Poisson models were used to obtain estimates of the European FTLD incidence rate accounting for geographic heterogeneity.Based on 267 identified cases (mean [SD] patient age, 66.70 [9.02] years; 156 males [58.43%]), the estimated annual incidence rate for FTLD in Europe was 2.36 cases per 100 000 person-years (95% CI, 1.59-3.51 cases per 100 000 person-years). There was a progressive increase in FTLD incidence across age, reaching its peak at the age of 71 years, with 13.09 cases per 100 000 person-years (95% CI, 8.46-18.93 cases per 100 000 person-years) among men and 7.88 cases per 100 000 person-years (95% CI, 5.39-11.60 cases per 100 000 person-years) among women. Overall, the incidence was higher among men (2.84 cases per 100 000 person-years; 95% CI, 1.88-4.27 cases per 100 000 person-years) than among women (1.91 cases per 100 000 person-years; 95% CI, 1.26-2.91 cases per 100 000 person-years). BVFTD was the most common phenotype (107 cases [40.07%]), followed by PPA (76 [28.46%]) and extrapyramidal phenotypes (69 [25.84%]). FTD-ALS was the rarest phenotype (15 cases [5.62%]). A total of 95 patients with FTLD (35.58%) had a family history of dementia. The estimated number of new FTLD cases per year in Europe was 12 057.The findings suggest that FTLD-associated syndromes are more common than previously recognized, and diagnosis should be considered at any age. Improved knowledge of FTLD incidence may contribute to appropriate health and social care planning and in the design of future clinical trials.
DOI: 10.1007/s00401-010-0698-6
2010
Cited 217 times
FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
DOI: 10.1002/ana.25333
2018
Cited 130 times
Prevalence of amyloid‐β pathology in distinct variants of primary progressive aphasia
Objective To estimate the prevalence of amyloid positivity, defined by positron emission tomography (PET)/cerebrospinal fluid (CSF) biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants. Methods We conducted a meta‐analysis with individual participant data from 1,251 patients diagnosed with PPA (including logopenic [lvPPA, n = 443], nonfluent [nfvPPA, n = 333], semantic [svPPA, n = 401], and mixed/unclassifiable [n = 74] variants of PPA) from 36 centers, with a measure of amyloid‐β pathology (CSF [n = 600], PET [n = 366], and/or autopsy [n = 378]) available. The estimated prevalence of amyloid positivity according to PPA variant, age, and apolipoprotein E (ApoE) ε4 status was determined using generalized estimating equation models. Results Amyloid‐β positivity was more prevalent in lvPPA (86%) than in nfvPPA (20%) or svPPA (16%; p &lt; 0.001). Prevalence of amyloid‐β positivity increased with age in nfvPPA (from 10% at age 50 years to 27% at age 80 years, p &lt; 0.01) and svPPA (from 6% at age 50 years to 32% at age 80 years, p &lt; 0.001), but not in lvPPA ( p = 0.94). Across PPA variants, ApoE ε4 carriers were more often amyloid‐β positive (58.0%) than noncarriers (35.0%, p &lt; 0.001). Autopsy data revealed Alzheimer disease pathology as the most common pathologic diagnosis in lvPPA (76%), frontotemporal lobar degeneration–TDP‐43 in svPPA (80%), and frontotemporal lobar degeneration–TDP‐43/tau in nfvPPA (64%). Interpretation This study shows that the current PPA classification system helps to predict underlying pathology across different cohorts and clinical settings, and suggests that age and ApoE genotype should be considered when interpreting amyloid‐β biomarkers in PPA patients. Ann Neurol 2018;84:737–748
DOI: 10.1002/mds.27034
2017
Cited 127 times
Which ante mortem clinical features predict progressive supranuclear palsy pathology?
Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes.To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP.We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort.Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity.Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society.
DOI: 10.1007/s00401-013-1239-x
2014
Cited 124 times
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
DOI: 10.1212/wnl.0000000000000583
2014
Cited 121 times
Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia
We aimed to investigate whether cognitive deficits and structural and functional connectivity changes can be detected before symptom onset in a large cohort of carriers of MAPT (microtubule-associated protein tau) or GRN (progranulin) mutations.In this case-control study, 75 healthy individuals (aged 20-70 years) with 50% risk of frontotemporal dementia (FTD) underwent DNA screening, neuropsychological assessment, structural MRI, and fMRI. We used voxel-based morphometry and tract-based spatial statistics for voxel-wise analyses of gray matter volume and diffusion tensor imaging measures. Using resting-state fMRI scans, we assessed whole-brain functional connectivity to frontoinsular, anterior midcingulate, and posterior cingulate cortices.Carriers (n = 39) and noncarriers (n = 36) had similar neuropsychological performance, except for lower Letter Digit Substitution Test scores in carriers. Worse performance on Stroop III, Rivermead Behavioral Memory Test, and Happé Cartoons correlated with higher age in carriers, but not controls. Reduced fractional anisotropy in the right uncinate fasciculus was found in carriers compared with controls. Reductions in functional connectivity between anterior midcingulate cortex and frontoinsula and several other brain regions were found in carriers compared with controls and correlated with higher age in carriers, but not controls. We found no significant differences or age correlations in posterior cingulate cortex connectivity. No differences in regional gray matter volume were found, except for a small cluster of higher volume in the precentral gyrus in carriers.This study demonstrates that alterations in structural and functional connectivity develop before the first symptoms of FTD arise. These findings suggest that diffusion tensor imaging and resting-state fMRI may have the potential to become sensitive biomarkers for early FTD in future clinical trials.
DOI: 10.1007/s00401-009-0609-x
2009
Cited 120 times
Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP
Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrP(Sc)) characteristics of two Dutch patients carrying novel adjacent stop codon mutations in the C-terminal part of PRNP, resulting in either case in hereditary prion protein amyloidoses, but with strikingly different clinicopathological phenotypes. The patient with the shortest disease duration (27 months) carried a Y226X mutation and showed PrP-CAA without any neurofibrillary lesions, whereas the patient with the longest disease duration (72 months) had a Q227X mutation and showed an unusual Gerstmann-Sträussler-Scheinker disease phenotype with numerous cerebral multicentric amyloid plaques and severe neurofibrillary lesions without PrP-CAA. Western blot analysis in the patient with the Q227X mutation demonstrated the presence of a 7 kDa unglycosylated PrP(Sc) fragment truncated at both the N- and C-terminal ends. Our observations expand the spectrum of clinicopathological phenotypes associated with PRNP mutations and show that a single tyrosine residue difference in the PrP C-terminus may significantly affect the site of amyloid deposition and the overall phenotypic expression of the prion disease. Furthermore, it confirms that the absence of the glycosylphosphatidylinositol anchor in PrP predisposes to amyloid plaque formation.
DOI: 10.1016/j.celrep.2018.06.113
2018
Cited 115 times
Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation In Vivo
Microglia are brain-resident macrophages with trophic and phagocytic functions. Dominant loss-of-function mutations in a key microglia regulator, colony-stimulating factor 1 receptor (CSF1R), cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a progressive white matter disorder. Because it remains unclear precisely how CSF1R mutations affect microglia, we generated an allelic series of csf1r mutants in zebrafish to identify csf1r-dependent microglia changes. We found that csf1r mutations led to aberrant microglia density and distribution and regional loss of microglia. The remaining microglia still had a microglia-specific gene expression signature, indicating that they had differentiated normally. Strikingly, we also observed lower microglia numbers and widespread microglia depletion in postmortem brain tissue of ALSP patients. Both in zebrafish and in human disease, local microglia loss also presented in regions without obvious pathology. Together, this implies that CSF1R mainly regulates microglia density and that early loss of microglia may contribute to ALSP pathogenesis.
DOI: 10.1016/j.neurobiolaging.2011.08.005
2012
Cited 114 times
The chromosome 9 ALS and FTD locus is probably derived from a single founder
We and others have recently reported an association between amyotrophic lateral sclerosis (ALS) and single nucleotide polymorphisms on chromosome 9p21 in several populations. Here we show that the associated haplotype is the same in all populations and that several families previously shown to have genetic linkage to this region also share this haplotype. The most parsimonious explanation of these data are that there is a single founder for this form of disease.
DOI: 10.1001/archneurol.2011.53
2011
Cited 107 times
Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration
To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD).A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)-positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN- FTLD-TDP). No patients were known to be related. Neuropathologic characteristics were confirmed as FTLD-TDP in 79 of the 97 GRN+ FTLD-TDP cases and all of the GRN- FTLD-TDP cases.Age at onset of FTLD was younger in patients with GRN+ FTLD-TDP vs GRN- FTLD-TDP (median, 58.0 vs 61.0 years; P < .001), as was age at death (median, 65.5 vs 69.0 years; P < .001). Concomitant motor neuron disease was much less common in GRN+ FTLD-TDP vs GRN- FTLD-TDP (5.4% vs 26.3%; P < .001). Fifty different GRN mutations were observed, including 2 novel mutations: c.139delG (p.D47TfsX7) and c.378C>A (p.C126X). The 2 most common GRN mutations were c.1477C>T (p.R493X, found in 18 patients, representing 18.6% of GRN cases) and c.26C>A (p.A9D, found in 6 patients, representing 6.2% of cases). Patients with the c.1477C>T mutation shared a haplotype on chromosome 17; clinically, they resembled patients with other GRN mutations. Patients with the c.26C>A mutation appeared to have a younger age at onset of FTLD and at death and more parkinsonian features than those with other GRN mutations.GRN+ FTLD-TDP differs in key features from GRN- FTLD-TDP.
DOI: 10.1016/s1474-4422(18)30179-0
2018
Cited 104 times
LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies: a genome-wide linkage and sequencing study
Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders.Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells.Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent-albeit limited-evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism.Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets.Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
DOI: 10.1038/ejhg.2017.87
2017
Cited 102 times
Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy
Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10−5) increased AD risk by 12-fold (95% CI 4.2–34.3; P=5 × 10−9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10−5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-ɛ4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice.
DOI: 10.1212/wnl.0000000000005261
2018
Cited 96 times
Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum
To examine the clinical value of neurofilament light chain (NfL) and the phospho-tau/total tau ratio (p/t-tau) across the entire frontotemporal dementia (FTD) spectrum in a large, well-defined cohort.CSF NfL and p/t-tau levels were studied in 361 patients with FTD: 179 behavioral variant FTD, 17 FTD with motor neuron disease (FTD-MND), 36 semantic variant primary progressive aphasia (PPA), 19 nonfluent variant PPA, 4 logopenic variant PPA (lvPPA), 42 corticobasal syndrome, and 64 progressive supranuclear palsy. Forty-five cognitively healthy controls were also included. Definite pathology was known in 68 patients (49 frontotemporal lobar degeneration [FTLD]-TDP, 18 FTLD-tau, 1 FTLD-FUS).NfL was higher in all diagnoses, except lvPPA (n = 4), than in controls, equally elevated in behavioral variant FTD, semantic variant PPA, nonfluent variant PPA, and corticobasal syndrome, and highest in FTD-MND. The p/t-tau was lower in all clinical groups, except lvPPA, than in controls and lowest in FTD-MND. NfL did not discriminate between TDP and tau pathology, while the p/t-tau ratio had a good specificity (76%) and moderate sensitivity (67%). Both high NfL and low p/t-tau were associated with poor survival (hazard ratio on tertiles 1.7 for NfL, 0.7 for p/t-tau).NfL and p/t-tau similarly discriminated FTD from controls, but not between clinical subtypes, apart from FTD-MND. Both markers predicted survival and are promising monitoring biomarkers for clinical trials. Of note, p/t-tau, but not NfL, was specific to discriminate TDP from tau pathology in vivo.This study provides Class III evidence that for patients with cognitive issues, CSF NfL and p/t-tau levels discriminate between those with and without FTD spectrum disorders.
DOI: 10.1212/wnl.0b013e31826c1aa1
2012
Cited 95 times
The ALS-FTD-Q: A new screening tool for behavioral disturbances in ALS
The assessment of behavioral disturbances in amyotrophic lateral sclerosis (ALS) is important because of the overlap with the behavioral variant of frontotemporal dementia (ALS-bvFTD). Motor symptoms and dysarthria are not taken into account in currently used behavioral questionnaires. We examined the clinimetric properties of a new behavioral questionnaire for patients with ALS (Amyotrophic Lateral Sclerosis-Frontotemporal Dementia-Questionnaire [ALS-FTD-Q]).In addition to other clinimetric properties, we examined reliability, clinical validity, and construct validity of the ALS-FTD-Q, using data from patients with ALS (n = 103), ALS-bvFTD (n = 10), bvFTD (n = 25), muscle disease control subjects (n = 39), and control subjects (n = 31). Construct validity of the ALS-FTD-Q was assessed using the Frontal Systems Behavior scale (FrSBe), Frontal Behavioral Inventory (FBI), Hospital Anxiety and Depression Scale, ALS Functional Rating Scale-Revised, Frontal Assessment Battery, Mini-Mental State Examination, and a fluency index. In addition, the point prevalence of behavioral disturbances according to the ALS-FTD-Q was compared with those obtained with the FrSBe and FBI.The internal consistency of the ALS-FTD-Q was good (Cronbach α = 0.92). The ALS-FTD-Q showed construct validity because it correlated highly with other behavioral measures (r = 0.80 and 0.79), moderately with measures of frontal functions and global cognitive functioning (r = 0.37; r = 0.32), and poorly with anxiety/depression and motor impairment (r = 0.18 for both). The ALS-FTD-Q discriminated between patients with ALS-bvFTD, patients with ALS, and control subjects. The point prevalence of behavioral disturbances in patients with ALS measured with the ALS-FTD-Q was lower than that for the FrSBe and FBI.The ALS-FTD-Q is a feasible and clinimetrically validated instrument for the screening of behavioral disturbances in ALS.
DOI: 10.1002/hbm.22522
2014
Cited 84 times
Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia
Because hypoperfusion of brain tissue precedes atrophy in dementia, the detection of dementia may be advanced by the use of perfusion information. Such information can be obtained noninvasively with arterial spin labeling (ASL), a relatively new MR technique quantifying cerebral blood flow (CBF). Using ASL and structural MRI, we evaluated diagnostic classification in 32 prospectively included presenile early stage dementia patients and 32 healthy controls. Patients were suspected of Alzheimer's disease (AD) or frontotemporal dementia. Classification was based on CBF as perfusion marker, gray matter (GM) volume as atrophy marker, and their combination. These markers were each examined using six feature extraction methods: a voxel-wise method and a region of interest (ROI)-wise approach using five ROI-sets in the GM. These ROI-sets ranged in number from 72 brain regions to a single ROI for the entire supratentorial brain. Classification was performed with a linear support vector machine classifier. For validation of the classification method on the basis of GM features, a reference dataset from the AD Neuroimaging Initiative database was used consisting of AD patients and healthy controls. In our early stage dementia population, the voxelwise feature-extraction approach achieved more accurate results (area under the curve (AUC) range = 86 - 91%) than all other approaches (AUC = 57 - 84%). Used in isolation, CBF quantified with ASL was a good diagnostic marker for dementia. However, our findings indicated only little added diagnostic value when combining ASL with the structural MRI data (AUC = 91%), which did not significantly improve over accuracy of structural MRI atrophy marker by itself.
DOI: 10.1212/wnl.0000000000004393
2017
Cited 75 times
Cognition and gray and white matter characteristics of presymptomatic <i>C9orf72</i> repeat expansion
To investigate cognitive function, gray matter volume, and white matter integrity in the presymptomatic stage of chromosome 9 open reading frame 72 repeat expansion (C9orf72RE).Presymptomatic C9orf72RE carriers (n = 18) and first-degree family members without a pathogenic expansion (healthy controls [HC], n = 15) underwent a standardized protocol of neuropsychological tests, T1-weighted MRI, and diffusion tensor imaging within our cohort study of autosomal dominant frontotemporal dementia (FTD). We investigated group differences in cognitive function, gray matter volume through voxel-based morphometry, and white matter integrity by means of tract-based spatial statistics. We correlated cognitive change with underlying gray or white matter.Our data demonstrate lower scores on letter fluency, Stroop card I, and Stroop card III, accompanied by white matter integrity loss in tracts connecting the frontal lobe, the thalamic radiation, and tracts associated with motor functioning in presymptomatic C9orf72RE compared with HC. In a subgroup of C9orf72RE carriers above 40 years of age, we found gray matter volume loss in the thalamus, cerebellum, and parietal and temporal cortex. We found no significant relationship between subtle cognitive decline and underlying gray or white matter.This study demonstrates that a decline in cognitive functioning, white matter integrity, and gray matter volumes are present in presymptomatic C9orf72RE carriers. These findings suggest that neuropsychological assessment, T1-weighted MRI, and diffusion tensor imaging might be useful to identify early biomarkers in the presymptomatic stage of FTD or amyotrophic lateral sclerosis.
DOI: 10.1093/brain/awy288
2018
Cited 73 times
Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia
Developing and validating sensitive biomarkers for the presymptomatic stage of familial frontotemporal dementia is an important step in early diagnosis and for the design of future therapeutic trials. In the longitudinal Frontotemporal Dementia Risk Cohort, presymptomatic mutation carriers and non-carriers from families with familial frontotemporal dementia due to microtubule-associated protein tau (MAPT) and progranulin (GRN) mutations underwent a clinical assessment and multimodal MRI at baseline, 2-, and 4-year follow-up. Of the cohort of 73 participants, eight mutation carriers (three GRN, five MAPT) developed clinical features of frontotemporal dementia ('converters'). Longitudinal whole-brain measures of white matter integrity (fractional anisotropy) and grey matter volume in these converters (n = 8) were compared with healthy mutation carriers ('non-converters'; n = 35) and non-carriers (n = 30) from the same families. We also assessed the prognostic performance of decline within white matter and grey matter regions of interest by means of receiver operating characteristic analyses followed by stepwise logistic regression. Longitudinal whole-brain analyses demonstrated lower fractional anisotropy values in extensive white matter regions (genu corpus callosum, forceps minor, uncinate fasciculus, and superior longitudinal fasciculus) and smaller grey matter volumes (prefrontal, temporal, cingulate, and insular cortex) over time in converters, present from 2 years before symptom onset. White matter integrity loss of the right uncinate fasciculus and genu corpus callosum provided significant classifiers between converters, non-converters, and non-carriers. Converters' within-individual disease trajectories showed a relatively gradual onset of clinical features in MAPT, whereas GRN mutations had more rapid changes around symptom onset. MAPT converters showed more decline in the uncinate fasciculus than GRN converters, and more decline in the genu corpus callosum in GRN than MAPT converters. Our study confirms the presence of spreading predominant frontotemporal pathology towards symptom onset and highlights the value of multimodal MRI as a prognostic biomarker in familial frontotemporal dementia.
DOI: 10.1016/s1474-4422(20)30394-x
2021
Cited 68 times
Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study
The genetic basis of variation in the progression of primary tauopathies has not been determined. We aimed to identify genetic determinants of survival in progressive supranuclear palsy (PSP).In stage one of this two stage genome-wide association study (GWAS), we included individuals with PSP, diagnosed according to pathological and clinical criteria, from two separate cohorts: the 2011 PSP GWAS cohort, from brain banks based at the Mayo Clinic (Jacksonville, FL, USA) and in Munich (Germany), and the University College London PSP cohort, from brain banks and the PROSPECT study, a UK-wide longitudinal study of patients with atypical parkinsonian syndromes. Individuals were included if they had clinical data available on sex, age at motor symptom onset, disease duration (from motor symptom onset to death or to the date of censoring, Dec 1, 2019, if individuals were alive), and PSP phenotype (with reference to the 2017 Movement Disorder Society criteria). Genotype data were used to do a survival GWAS using a Cox proportional hazards model. In stage two, data from additional individuals from the Mayo Clinic brain bank, which were obtained after the 2011 PSP GWAS, were used for a pooled analysis. We assessed the expression quantitative trait loci (eQTL) profile of variants that passed genome-wide significance in our GWAS using the Functional Mapping and Annotation of GWAS platform, and did colocalisation analyses using the eQTLGen and PsychENCODE datasets.Data were collected and analysed between Aug 1, 2016, and Feb 1, 2020. Data were available for 1001 individuals of white European ancestry with PSP in stage one. We found a genome-wide significant association with survival at chromosome 12 (lead single nucleotide polymorphism rs2242367, p=7·5 × 10-10, hazard ratio 1·42 [95% CI 1·22-1·67]). rs2242367 was associated with survival in the individuals added in stage two (n=238; p=0·049, 1·22 [1·00-1·48]) and in the pooled analysis of both stages (n=1239; p=1·3 × 10-10, 1·37 [1·25-1·51]). An eQTL database screen revealed that rs2242367 is associated with increased expression of LRRK2 and two long intergenic non-coding RNAs (lncRNAs), LINC02555 and AC079630.4, in whole blood. Although we did not detect a colocalisation signal for LRRK2, analysis of the PSP survival signal and eQTLs for LINC02555 in the eQTLGen blood dataset revealed a posterior probability of hypothesis 4 of 0·77, suggesting colocalisation due to a single shared causal variant.Genetic variation at the LRRK2 locus was associated with survival in PSP. The mechanism of this association might be through a lncRNA-regulated effect on LRRK2 expression because LINC02555 has previously been shown to regulate LRRK2 expression. LRRK2 has been associated with sporadic and familial forms of Parkinson's disease, and our finding suggests a genetic overlap with PSP. Further functional studies will be important to assess the potential of LRRK2 modulation as a disease-modifying therapy for PSP and related tauopathies.PSP Association, CBD Solutions, Medical Research Council (UK).
DOI: 10.1136/jnnp-2020-323520
2020
Cited 64 times
Fluid biomarkers in frontotemporal dementia: past, present and future
The frontotemporal dementia (FTD) spectrum of neurodegenerative disorders includes a heterogeneous group of conditions. However, following on from a series of important molecular studies in the early 2000s, major advances have now been made in the understanding of the pathological and genetic underpinnings of the disease. In turn, alongside the development of novel methodologies for measuring proteins and other molecules in biological fluids, the last 10 years have seen a huge increase in biomarker studies within FTD. This recent past has focused on attempting to develop markers that will help differentiate FTD from other dementias (particularly Alzheimer’s disease (AD)), as well as from non-neurodegenerative conditions such as primary psychiatric disorders. While cerebrospinal fluid, and more recently blood, markers of AD have been successfully developed, specific markers identifying primary tauopathies or TDP-43 proteinopathies are still lacking. More focus at the moment has been on non-specific markers of neurodegeneration, and in particular, multiple studies of neurofilament light chain have highlighted its importance as a diagnostic, prognostic and staging marker of FTD. As clinical trials get under way in specific genetic forms of FTD, measures of progranulin and dipeptide repeat proteins in biofluids have become important potential measures of therapeutic response. However, understanding of whether drugs restore cellular function will also be important, and studies of key pathophysiological processes, including neuroinflammation, lysosomal function and synaptic health, are also now becoming more common. There is much still to learn in the fluid biomarker field in FTD, but the creation of large multinational cohorts is facilitating better powered studies and will pave the way for larger omics studies, including proteomics, metabolomics and lipidomics, as well as investigations of multimodal biomarker combinations across fluids, brain imaging and other domains. Here we provide an overview of the past, present and future of fluid biomarkers within the FTD field.
DOI: 10.1212/wnl.0000000000011848
2021
Cited 60 times
Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration
We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression.Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables.In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers.Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials.ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922.This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.
DOI: 10.1136/jnnp-2019-322493
2020
Cited 59 times
Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia
Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD.We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses.Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage.We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.
DOI: 10.1016/j.nicl.2021.102712
2021
Cited 51 times
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI). We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia. AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; 95%CI: 0.720-0.788) than for CNN (AUC = 0.742; 95%CI: 0.709-0.776) (p<0.01 for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; 95%CI: 0.576-0.760) and CNN (AUC = 0.702; 95%CI: 0.624-0.786). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images (p=0.01). Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice.
DOI: 10.1001/jamanetworkopen.2020.30194
2021
Cited 47 times
Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia
<h3>Importance</h3> Behavioral disturbances are core features of frontotemporal dementia (FTD); however, symptom progression across the course of disease is not well characterized in genetic FTD. <h3>Objective</h3> To investigate behavioral symptom frequency and severity and their evolution and progression in different forms of genetic FTD. <h3>Design, Setting, and Participants</h3> This longitudinal cohort study, the international Genetic FTD Initiative (GENFI), was conducted from January 30, 2012, to May 31, 2019, at 23 multicenter specialist tertiary FTD research clinics in the United Kingdom, the Netherlands, Belgium, France, Spain, Portugal, Italy, Germany, Sweden, Finland, and Canada. Participants included a consecutive sample of 232 symptomatic FTD gene variation carriers comprising 115 with variations in<i>C9orf72</i>, 78 in<i>GRN</i>, and 39 in<i>MAPT</i>. A total of 101 carriers had at least 1 follow-up evaluation (for a total of 400 assessments). Gene variations were included only if considered pathogenetic. <h3>Main Outcomes and Measures</h3> Behavioral and neuropsychiatric symptoms were assessed across disease duration and evaluated from symptom onset. Hierarchical generalized linear mixed models were used to model behavioral and neuropsychiatric measures as a function of disease duration and variation. <h3>Results</h3> Of 232 patients with FTD, 115 (49.6%) had a<i>C9orf72</i>expansion (median [interquartile range (IQR)] age at evaluation, 64.3 [57.5-69.7] years; 72 men [62.6%]; 115 White patients [100%]), 78 (33.6%) had a<i>GRN</i>variant (median [IQR] age, 63.4 [58.3-68.8] years; 40 women [51.3%]; 77 White patients [98.7%]), and 39 (16.8%) had a<i>MAPT</i>variant (median [IQR] age, 56.3 [49.9-62.4] years; 25 men [64.1%]; 37 White patients [94.9%]). All core behavioral symptoms, including disinhibition, apathy, loss of empathy, perseverative behavior, and hyperorality, were highly expressed in all gene variant carriers (&gt;50% patients), with apathy being one of the most common and severe symptoms throughout the disease course (51.7%-100% of patients). Patients with<i>MAPT</i>variants showed the highest frequency and severity of most behavioral symptoms, particularly disinhibition (79.3%-100% of patients) and compulsive behavior (64.3%-100% of patients), compared with<i>C9orf72</i>carriers (51.7%-95.8% of patients with disinhibition and 34.5%-75.0% with compulsive behavior) and<i>GRN</i>carriers (38.2%-100% with disinhibition and 20.6%-100% with compulsive behavior). Alongside behavioral symptoms, neuropsychiatric symptoms were very frequently reported in patients with genetic FTD: anxiety and depression were most common in<i>GRN</i>carriers (23.8%-100% of patients) and<i>MAPT</i>carriers (26.1%-77.8% of patients); hallucinations, particularly auditory and visual, were most common in<i>C9orf72</i>carriers (10.3%-54.5% of patients). Most behavioral and neuropsychiatric symptoms increased in the early-intermediate phases and plateaued in the late stages of disease, except for depression, which steadily declined in<i>C9orf72</i>carriers, and depression and anxiety, which surged only in the late stages in<i>GRN</i>carriers. <h3>Conclusions and Relevance</h3> This cohort study suggests that behavioral and neuropsychiatric disturbances differ between the common FTD gene variants and have different trajectories throughout the course of disease. These findings have crucial implications for counseling patients and caregivers and for the design of disease-modifying treatment trials in genetic FTD.
DOI: 10.1038/s41591-022-01942-9
2022
Cited 42 times
Temporal order of clinical and biomarker changes in familial frontotemporal dementia
Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.
DOI: 10.1093/brain/awac069
2022
Cited 29 times
Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia
Abstract Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
DOI: 10.1093/brain/124.10.1948
2001
Cited 151 times
Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21-22
Hereditary frontotemporal dementia (FTD) is an autosomal dominant neurodegenerative disorder that is associated with mutations in the tau gene and with the pathological accumulation of hyperphosphorylated tau protein in affected brain cells in about a quarter of cases. However, most FTD families have no demonstrable tau mutations. Here we describe the clinical and neuropathological features of a large family with hereditary FTD. Genetic analysis showed strong evidence for linkage to chromosome 17q21-22 (maximum lod score 3.46, theta = 0 for marker D17S950), but mutations in the tau gene were not found. Clinical symptoms, neuropsychological deficits and neuroimaging findings of affected family members were similar to sporadic and tau-related FTD. The mean age at onset was 61.2 years, with loss of initiative and decreased spontaneous speech as the most prominent presenting symptoms. Pathological examination of the brains of two affected family members showed non-specific neuronal degeneration with dense cytoplasmic ubiquitin-positive inclusions in neurones of the second layer of the frontotemporal cortex and dentate gyrus of the hippocampus. In a number of neurones these inclusions appeared to be located inside the nucleus, although due to the small number of these inclusions this localization could not be confirmed by electron microscopy. The inclusions were not stained by tau, alpha-synuclein or polyglutamine antibodies. Biochemical analysis of soluble tau did not reveal abnormalities in tau isoform distribution and analysis of mRNA showed the presence of both three- and four-repeat transcripts. This is the first report of ubiquitin-positive, tau-negative inclusions in an FTD family with significant linkage to chromosome 17q21-22. Further characterization of the ubiquitin-positive inclusions may clarify the neurodegenerative pathways involved in this subtype of FTD.
DOI: 10.1002/ana.410320209
1992
Cited 115 times
Hypodensity of the cerebral white matter in patients with transient ischemic attack or minor stroke: Influence on the rate of subsequent stroke
Abstract In a prospective study of 3,017 patients with transient ischemic attack or minor ischemic stroke from the Dutch Transient Ischemic Attack Trial, the presence or absence of diffuse hypodensity of the white matter on a baseline computed tomography (CT) scan of the brain was related to the occurrence of subsequent stroke. On entry, 337 patients were judged to have diffuse hypodensity of the white matter on CT; they were older (71.4 ± 7.4 years versus 64.4 ± 9.9 years), more often had hypertension (50% versus 41%), and more often had lacunar infarcts on CT scan (40% versus 26%) than did patients with normal white matter. Strokes, fatal or nonfatal, occurred in 51 (15%) of the patients with diffuse hypodensity of the cerebral white matter, compared to 217 (8%) in the group with normal white matter (crude hazard ratio, 2.0; 95% confidence interval, 1.4–2.7). After adjustment for age and other relevant entry variables, the hazard ratio was 1.6 (95% confidence interval, 1.2–2.2). In patients younger than 70 years the crude hazard ratio was 2.7 (95% confidence interval, 1.7–4.2). The distribution between the main subtypes of stroke was similar for patients with and those without diffuse hypodensity of the cerebral white matter: Intracerebral hemorrhage occurred in 6 and 9%, cortical infarction in 47 and 45%, and lacunar infarction in 34 and 29%, respectively. We conclude that hypodensity of the cerebral white matter in patients with transient ischemic attack or minor stroke is associated with an extra risk of future stroke, from large as well as from small vessels, and particularly in patients under 70 years old; this increase of risk is independent of other risk factors for stroke.
DOI: 10.1007/s00330-016-4691-x
2016
Cited 67 times
Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and frontotemporal dementia using structural and advanced MRI
To investigate the added diagnostic value of arterial spin labelling (ASL) and diffusion tensor imaging (DTI) to structural MRI for computer-aided classification of Alzheimer's disease (AD), frontotemporal dementia (FTD), and controls.This retrospective study used MRI data from 24 early-onset AD and 33 early-onset FTD patients and 34 controls (CN). Classification was based on voxel-wise feature maps derived from structural MRI, ASL, and DTI. Support vector machines (SVMs) were trained to classify AD versus CN (AD-CN), FTD-CN, AD-FTD, and AD-FTD-CN (multi-class). Classification performance was assessed by the area under the receiver-operating-characteristic curve (AUC) and accuracy. Using SVM significance maps, we analysed contributions of brain regions.Combining ASL and DTI with structural MRI resulted in higher classification performance for differential diagnosis of AD and FTD (AUC = 84%; p = 0.05) than using structural MRI by itself (AUC = 72%). The performance of ASL and DTI themselves did not improve over structural MRI. The classifications were driven by different brain regions for ASL and DTI than for structural MRI, suggesting complementary information.ASL and DTI are promising additions to structural MRI for classification of early-onset AD, early-onset FTD, and controls, and may improve the computer-aided differential diagnosis on a single-subject level.• Multiparametric MRI is promising for computer-aided diagnosis of early-onset AD and FTD. • Diagnosis is driven by different brain regions when using different MRI methods. • Combining structural MRI, ASL, and DTI may improve differential diagnosis of dementia.
DOI: 10.1159/000447738
2016
Cited 64 times
Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers
Pathogenic mutations in the granulin gene (GRN) are causative in 5-10% of patients with frontotemporal dementia (FTD), mostly leading to reduced progranulin protein (PGRN) levels. Upcoming therapeutic trials focus on enhancing PGRN levels.Fluctuations in plasma PGRN (n = 41) and its relationship with cerebrospinal fluid (CSF, n = 32) and specific single nucleotide polymorphisms were investigated in pre- and symptomatic GRN mutation carriers and controls.Plasma PGRN levels were lower in carriers than in controls and showed a mean coefficient of variation of 5.3% in carriers over 1 week. Although plasma PGRN correlated with CSF PGRN in carriers (r = 0.54, p = 0.02), plasma only explained 29% of the variability in CSF PGRN. rs5848, rs646776 and rs1990622 genotypes only partly explained the variability of PGRN levels between subjects.Plasma PGRN is relatively stable over 1 week and therefore seems suitable for treatment monitoring of PGRN-enhancing agents. Since plasma PGRN only moderately correlated with CSF PGRN, CSF sampling will additionally be needed in therapeutic trials.
DOI: 10.1016/j.neurobiolaging.2018.12.017
2019
Cited 59 times
Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study
In genetic frontotemporal dementia, cross-sectional studies have identified profiles of presymptomatic neuroanatomical loss for C9orf72 repeat expansion, MAPT, and GRN mutations. In this study, we characterize longitudinal gray matter (GM) and white matter (WM) brain changes in presymptomatic frontotemporal dementia. We included healthy carriers of C9orf72 repeat expansion (n = 12), MAPT (n = 15), GRN (n = 33) mutations, and related noncarriers (n = 53), that underwent magnetic resonance imaging at baseline and 2-year follow-up. We analyzed cross-sectional baseline, follow-up, and longitudinal GM and WM changes using voxel-based morphometry and cortical thickness analysis in SPM and tract-based spatial statistics in FSL. Compared with noncarriers, C9orf72 repeat expansion carriers showed lower GM volume in the cerebellum and insula, and WM differences in the anterior thalamic radiation, at baseline and follow-up. MAPT mutation carriers showed emerging GM temporal lobe changes and longitudinal WM degeneration of the uncinate fasciculus. GRN mutation carriers did not show presymptomatic neurodegeneration. This study shows distinct presymptomatic cross-sectional and longitudinal patterns of GM and WM changes across C9orf72 repeat expansion, MAPT, and GRN mutation carriers compared with noncarriers.
DOI: 10.1007/s00415-018-8850-7
2018
Cited 50 times
Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia
We performed 4-year follow-up neuropsychological assessment to investigate cognitive decline and the prognostic abilities from presymptomatic to symptomatic familial frontotemporal dementia (FTD). Presymptomatic MAPT (n = 15) and GRN mutation carriers (n = 31), and healthy controls (n = 39) underwent neuropsychological assessment every 2 years. Eight mutation carriers (5 MAPT, 3 GRN) became symptomatic. We investigated cognitive decline with multilevel regression modeling; the prognostic performance was assessed with ROC analyses and stepwise logistic regression. MAPT converters declined on language, attention, executive function, social cognition, and memory, and GRN converters declined on attention and executive function (p < 0.05). Cognitive decline in ScreeLing phonology (p = 0.046) and letter fluency (p = 0.046) were predictive for conversion to non-fluent variant PPA, and decline on categorical fluency (p = 0.025) for an underlying MAPT mutation. Using longitudinal neuropsychological assessment, we detected a mutation-specific pattern of cognitive decline, potentially suggesting prognostic value of neuropsychological trajectories in conversion to symptomatic FTD.
DOI: 10.1002/mds.28011
2020
Cited 50 times
Copathology in Progressive Supranuclear Palsy: Does It Matter?
Abstract Background The influence of concomitant brain pathologies on the progression rate in PSP is unclear. Objectives To analyze the frequency and severity of copathologies and their impact on the progression in PSP. Methods We analyzed clinic‐pathological features of 101 PSP patients. Diagnoses and stages of copathologies were established according to standardized criteria, including Alzheimer's disease–related pathology, argyrophilic grains, Lewy‐related pathology, transactive response DNA‐binding protein 43 pathology, fused in sarcoma pathology, cerebral amyloid angiopathy, and small vessel disease. Demographic data and major clinical milestones (frequency and latency to onset) were extracted from patients’ files. Results Only 8% of 101 patients presented with pure PSP pathology without any copathology. Alzheimer's disease–related pathology was the most frequent (84%), followed by argyrophilic grains (58%), both occurring as single copathology or in combination with other proteinopathies or cerebrovascular disease. Lewy‐related and transactive response DNA‐binding protein 43 copathology occurred rarely (8% and 6%, respectively). Fused in sarcoma–positive cases were not found. While being common, copathology was mostly mild in severity, with the exception of frequently widespread argyrophilic grains. Small vessel disease was also frequent (65%). Cerebral amyloid angiopathy occurred only in the presence of Alzheimer's disease–related changes (25%). The copathologies did not have major impact on prevalence and time frame of major disease milestones. Conclusions In PSP, concomitant neurodegenerative proteinopathies or cerebrovascular diseases are frequent, but generally mild in severity. Our data confirmed that four repeat tau is still the most relevant target for PSP, whereas the impact of copathologies on progression rate appears to be of less importance. This is relevant information for the development of disease‐modifying therapies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
DOI: 10.1002/acn3.745
2019
Cited 43 times
Novel <scp>CSF</scp> biomarkers in genetic frontotemporal dementia identified by proteomics
To identify novel CSF biomarkers in GRN-associated frontotemporal dementia (FTD) by proteomics using mass spectrometry (MS).Unbiased MS was applied to CSF samples from 19 presymptomatic and 9 symptomatic GRN mutation carriers and 24 noncarriers. Protein abundances were compared between these groups. Proteins were then selected for validation if identified by ≥4 peptides and if fold change was ≤0.5 or ≥2.0. Validation and absolute quantification by parallel reaction monitoring (PRM), a high-resolution targeted MS method, was performed on an international cohort (n = 210) of presymptomatic and symptomatic GRN, C9orf72 and MAPT mutation carriers.Unbiased MS revealed 20 differentially abundant proteins between symptomatic mutation carriers and noncarriers and nine between symptomatic and presymptomatic carriers. Seven of these proteins fulfilled our criteria for validation. PRM analyses revealed that symptomatic GRN mutation carriers had significantly lower levels of neuronal pentraxin receptor (NPTXR), receptor-type tyrosine-protein phosphatase N2 (PTPRN2), neurosecretory protein VGF, chromogranin-A (CHGA), and V-set and transmembrane domain-containing protein 2B (VSTM2B) than presymptomatic carriers and noncarriers. Symptomatic C9orf72 mutation carriers had lower levels of NPTXR, PTPRN2, CHGA, and VSTM2B than noncarriers, while symptomatic MAPT mutation carriers had lower levels of NPTXR and CHGA than noncarriers.We identified and validated five novel CSF biomarkers in GRN-associated FTD. Our results show that synaptic, secretory vesicle, and inflammatory proteins are dysregulated in the symptomatic stage and may provide new insights into the pathophysiology of genetic FTD. Further validation is needed to investigate their clinical applicability as diagnostic or monitoring biomarkers.
DOI: 10.1136/jnnp-2020-325377
2021
Cited 33 times
Unravelling the clinical spectrum and the role of repeat length in <i>C9ORF72</i> repeat expansions
Since the discovery of the C9orf72 repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with C9orf72-associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with C9orf72 repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with C9orf72-associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of C9orf72-related diseases.
DOI: 10.1016/j.nicl.2021.102646
2021
Cited 33 times
Differential early subcortical involvement in genetic FTD within the GENFI cohort
Studies have previously shown evidence for presymptomatic cortical atrophy in genetic FTD. Whilst initial investigations have also identified early deep grey matter volume loss, little is known about the extent of subcortical involvement, particularly within subregions, and how this differs between genetic groups.480 mutation carriers from the Genetic FTD Initiative (GENFI) were included (198 GRN, 202 C9orf72, 80 MAPT), together with 298 non-carrier cognitively normal controls. Cortical and subcortical volumes of interest were generated using automated parcellation methods on volumetric 3 T T1-weighted MRI scans. Mutation carriers were divided into three disease stages based on their global CDR® plus NACC FTLD score: asymptomatic (0), possibly or mildly symptomatic (0.5) and fully symptomatic (1 or more).In all three groups, subcortical involvement was seen at the CDR 0.5 stage prior to phenoconversion, whereas in the C9orf72 and MAPT mutation carriers there was also involvement at the CDR 0 stage. In the C9orf72 expansion carriers the earliest volume changes were in thalamic subnuclei (particularly pulvinar and lateral geniculate, 9-10%) cerebellum (lobules VIIa-Crus II and VIIIb, 2-3%), hippocampus (particularly presubiculum and CA1, 2-3%), amygdala (all subregions, 2-6%) and hypothalamus (superior tuberal region, 1%). In MAPT mutation carriers changes were seen at CDR 0 in the hippocampus (subiculum, presubiculum and tail, 3-4%) and amygdala (accessory basal and superficial nuclei, 2-4%). GRN mutation carriers showed subcortical differences at CDR 0.5 in the presubiculum of the hippocampus (8%).C9orf72 expansion carriers show the earliest and most widespread changes including the thalamus, basal ganglia and medial temporal lobe. By investigating individual subregions, changes can also be seen at CDR 0 in MAPT mutation carriers within the limbic system. Our results suggest that subcortical brain volumes may be used as markers of neurodegeneration even prior to the onset of prodromal symptoms.
DOI: 10.1093/brain/awab382
2021
Cited 30 times
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Abstract Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80–0.89) and 0.90 (0.86–0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75–0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model’s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
DOI: 10.1186/s12974-022-02573-0
2022
Cited 17 times
Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study
Abstract Background Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. Methods We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Results CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. Conclusions Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.
DOI: 10.1038/s41467-023-37274-6
2023
Cited 8 times
FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation
Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.
DOI: 10.1007/s10654-010-9476-y
2010
Cited 71 times
Insulin-resistance and metabolic syndrome are related to executive function in women in a large family-based study
While type 2 diabetes is well-known to be associated with poorer cognitive performance, few studies have reported on the association of metabolic syndrome (MetS) and contributing factors, such as insulin-resistance (HOMA-IR), low adiponectin-, and high C-reactive protein (CRP)-levels. We studied whether these factors are related to cognitive function and which of the MetS components are independently associated. The study was embedded in an ongoing family-based cohort study in a Dutch population. All participants underwent physical examinations, biomedical measurements, and neuropsychological testing. Linear regression models were used to determine the association between MetS, HOMA-IR, adiponectin levels, CRP, and cognitive test scores. Cross-sectional analyses were performed in 1,898 subjects (mean age 48 years, 43% men). People with MetS had significantly higher HOMA-IR scores, lower adiponectin levels, and higher CRP levels. MetS and high HOMA-IR were associated with poorer executive function in women (P = 0.03 and P = 0.009). MetS and HOMA-IR are associated with poorer executive function in women.
DOI: 10.1002/acn3.559
2018
Cited 47 times
Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers
To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume.We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses.Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus.This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression.
DOI: 10.1016/j.parkreldis.2018.06.018
2018
Cited 44 times
Serum neurofilament light chain in progressive supranuclear palsy
Introduction Neurofilament light chain (NfL) is a promising biomarker in neurodegenerative diseases. Elevated NfL levels in CSF and blood have been observed in a growing number of neurodegenerative disorders, including frontotemporal dementia and Alzheimer's disease. We studied serum NfL levels in patients with progressive supranuclear palsy (PSP) in relation to disease severity and survival. Methods Serum NfL levels were determined cross-sectionally in a retrospective cohort of 131 patients with PSP and 95 healthy controls. Detailed clinical examination was performed and disease severity was assessed by several rating scales. Results We found that serum NfL levels in PSP were twice as high as those in controls, and that NfL levels correlated with worse functional, motor and cognitive functioning. During follow-up, 119 PSP patients had died, and higher NfL levels were associated with a shorter survival. Conclusion This study provides evidence that serum NfL is a relevant and promising biomarker in PSP for disease severity, and may be used as a prognostic tool to predict survival in clinical practice.
DOI: 10.3233/jad-150695
2016
Cited 43 times
A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer’s Disease
Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy.We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups.At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls.We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.
DOI: 10.1016/j.neurobiolaging.2016.04.004
2016
Cited 40 times
ABCA7 p.G215S as potential protective factor for Alzheimer's disease
Genome-wide association studies (GWASs) have been effective approaches to dissect common genetic variability underlying complex diseases in a systematic and unbiased way. Recently, GWASs have led to the discovery of over 20 susceptibility loci for Alzheimer's disease (AD). Despite the evidence showing the contribution of these loci to AD pathogenesis, their genetic architecture has not been extensively investigated, leaving the possibility that low frequency and rare coding variants may also occur and contribute to the risk of disease. We have used exome and genome sequencing data to analyze the single independent and joint effect of rare and low-frequency protein coding variants in 9 AD GWAS loci with the strongest effect sizes after APOE (BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, and CD2AP) in a cohort of 332 sporadic AD cases and 676 elderly controls of British and North-American ancestry. We identified coding variability in ABCA7 as contributing to AD risk. This locus harbors a low-frequency coding variant (p.G215S, rs72973581, minor allele frequency = 4.3%) conferring a modest but statistically significant protection against AD (p-value = 0.024, odds ratio = 0.57, 95% confidence interval = 0.41-0.80). Notably, our results are not driven by an enrichment of loss of function variants in ABCA7, recently reported as main pathogenic factor underlying AD risk at this locus. In summary, our study confirms the role of ABCA7 in AD and provides new insights that should address functional studies.
DOI: 10.1136/jnnp-2017-317492
2018
Cited 40 times
Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study
Objective To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. Methods GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer’s disease (AD) and 10 healthy controls (HCs) of similar age. Results In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). Conclusions Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD.
DOI: 10.3233/jad-170893
2018
Cited 39 times
Single Subject Classification of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging
Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known.Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC).Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41).Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.
DOI: 10.1002/acn3.601
2018
Cited 39 times
Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A cross‐sectional diffusion tensor imaging study
Abstract Objective We aimed to investigate mutation‐specific white matter ( WM ) integrity changes in presymptomatic and symptomatic mutation carriers of the C9orf72 , MAPT , and GRN mutations by use of diffusion‐weighted imaging within the Genetic Frontotemporal dementia Initiative ( GENFI ) study. Methods One hundred and forty mutation carriers (54 C9orf72 , 30 MAPT , 56 GRN ), 104 presymptomatic and 36 symptomatic, and 115 noncarriers underwent 3T diffusion tensor imaging. Linear mixed effects models were used to examine the association between diffusion parameters and years from estimated symptom onset in C9orf72 , MAPT , and GRN mutation carriers versus noncarriers. Post hoc analyses were performed on presymptomatic mutation carriers only, as well as left–right asymmetry analyses on GRN mutation carriers versus noncarriers. Results Diffusion changes in C9orf72 mutation carriers are present significantly earlier than both MAPT and GRN mutation carriers – characteristically in the posterior thalamic radiation and more posteriorly located tracts (e.g., splenium of the corpus callosum, posterior corona radiata), as early as 30 years before estimated symptom onset. MAPT mutation carriers showed early involvement of the uncinate fasciculus and cingulum, sparing the internal capsule, whereas involvement of the anterior and posterior internal capsule was found in GRN . Restricting analyses to presymptomatic mutation carriers only, similar – albeit less extensive – patterns were found: posteriorly located WM tracts (e.g., posterior thalamic radiation, splenium of the corpus callosum, posterior corona radiata) in presymptomatic C9orf72 , the uncinate fasciculus in presymptomatic MAPT , and the internal capsule (anterior and posterior limbs) in presymptomatic GRN mutation carriers. In GRN , most tracts showed significant left–right differences in one or more diffusion parameter, with the most consistent results being found in the UF , EC , RPIC , and ALIC . Interpretation This study demonstrates the presence of early and widespread WM integrity loss in presymptomatic FTD , and suggests a clear genotypic “fingerprint.” Our findings corroborate the notion of FTD as a network‐based disease, where changes in connectivity are some of the earliest detectable features, and identify diffusion tensor imaging as a potential neuroimaging biomarker for disease‐tracking and ‐staging in presymptomatic to early‐stage familial FTD .
DOI: 10.1002/mds.27872
2019
Cited 38 times
Validation of the Movement Disorder Society Criteria for the Diagnosis of 4‐Repeat Tauopathies
Abstract Background The Movement Disorder Society criteria for progressive supranuclear palsy introduced the category “probable 4‐repeat (4R)‐tauopathy” for joint clinical diagnosis of progressive supranuclear palsy and corticobasal degeneration. Objectives To validate the accuracy of these clinical criteria for “probable 4R‐tauopathy” to predict underlying 4R‐tauopathy pathology. Methods Diagnostic accuracy for 4R‐tauopathies according to the established criteria was estimated retrospectively in autopsy‐confirmed patients with progressive supranuclear palsy and corticobasal degeneration (grouped as 4R‐tauopathies), and Parkinson's disease, multiple system atrophy, and frontotemporal lobar degeneration (grouped as non‐4R‐tauopathies). Results We identified 250 cases with progressive supranuclear palsy (N = 195) and corticobasal degeneration (N = 55) and with and non‐4R‐tauopathies (N = 161). Sensitivity and specificity of “probable 4R‐tauopathy” was 10% and 99% in the first year and 59% and 88% at final record. Conclusions The new diagnostic category “probable 4R‐tauopathy” showed high specificity and may be suitable for the recruitment of patients with progressive supranuclear palsy and corticobasal degeneration into therapeutic trials targeting 4R‐tauopathy. The low sensitivity underpins the need for diagnostic biomarkers. © 2019 International Parkinson and Movement Disorder Society
DOI: 10.1002/alz.12252
2020
Cited 35 times
Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes
Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy.Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling.Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions.Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD.
DOI: 10.1007/s00401-019-01976-3
2019
Cited 34 times
Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability
Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.
DOI: 10.1136/jnnp-2019-322476
2020
Cited 34 times
Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with <i>C9orf72</i> hexanucleotide repeat expansion
Objectives The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation. Methods We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156). Results In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR. Conclusions This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes.
DOI: 10.1136/jnnp-2020-323541
2021
Cited 28 times
Modelling the cascade of biomarker changes in <i>GRN</i>-related frontotemporal dementia
Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.
DOI: 10.1093/braincomms/fcad036
2023
Cited 6 times
Genetic forms of primary progressive aphasia within the GENetic Frontotemporal dementia Initiative (GENFI) cohort: comparison with sporadic primary progressive aphasia
Primary progressive aphasia is most commonly a sporadic disorder, but in some cases, it can be genetic. This study aimed to understand the clinical, cognitive and imaging phenotype of the genetic forms of primary progressive aphasia in comparison to the canonical nonfluent, semantic and logopenic subtypes seen in sporadic disease. Participants with genetic primary progressive aphasia were recruited from the international multicentre GENetic Frontotemporal dementia Initiative study and compared with healthy controls as well as a cohort of people with sporadic primary progressive aphasia. Symptoms were assessed using the GENetic Frontotemporal dementia Initiative language, behavioural, neuropsychiatric and motor scales. Participants also underwent a cognitive assessment and 3 T volumetric T1-weighted MRI. One C9orf72 (2%), 1 MAPT (6%) and 17 GRN (44%) symptomatic mutation carriers had a diagnosis of primary progressive aphasia. In the GRN cohort, 47% had a diagnosis of nonfluent variant primary progressive aphasia, and 53% had a primary progressive aphasia syndrome that did not fit diagnostic criteria for any of the three subtypes, called primary progressive aphasia-not otherwise specified here. The phenotype of the genetic nonfluent variant primary progressive aphasia group largely overlapped with that of sporadic nonfluent variant primary progressive aphasia, although the presence of an associated atypical parkinsonian syndrome was characteristic of sporadic and not genetic disease. The primary progressive aphasia -not otherwise specified group however was distinct from the sporadic subtypes with impaired grammar/syntax in the presence of relatively intact articulation, alongside other linguistic deficits. The pattern of atrophy seen on MRI in the genetic nonfluent variant primary progressive aphasia group overlapped with that of the sporadic nonfluent variant primary progressive aphasia cohort, although with more posterior cortical involvement, whilst the primary progressive aphasia-not otherwise specified group was strikingly asymmetrical with involvement particularly of the insula and dorsolateral prefrontal cortex but also atrophy of the orbitofrontal cortex and the medial temporal lobes. Whilst there are overlapping symptoms between genetic and sporadic primary progressive aphasia syndromes, there are also distinct features. Future iterations of the primary progressive aphasia consensus criteria should encompass such information with further research needed to understand the earliest features of these disorders, particularly during the prodromal period of genetic disease.
DOI: 10.1016/j.nbd.2023.106068
2023
Cited 6 times
Early neurotransmitters changes in prodromal frontotemporal dementia: A GENFI study
Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches.In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD.In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01).This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.
DOI: 10.1212/wnl.0000000000207581
2023
Cited 5 times
Clinical Value of Longitudinal Serum Neurofilament Light Chain in Prodromal Genetic Frontotemporal Dementia
<h3>Background and Objectives:</h3> Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. <h3>Methods:</h3> In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (&gt;3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared to values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline. <h3>Results:</h3> We included 21 participants who converted (5 <i>C9orf72</i>, 10 <i>GRN</i>, 5 <i>MAPT</i>, 1 <i>TARDBP</i>) and 61 who did not (20 <i>C9orf72</i>, 30 <i>GRN</i>, 11 <i>MAPT</i>). Participants who converted had higher NfL levels at all examined time periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas=0.4-0.7, standard error [SE]=0.1, p&lt;0.046) than those who did not (6.5 pg/mL), and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta=1.0, SE=0.1, p&lt;0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta=1.2, SE=0.3, p=0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. non-conversion) was good-to-excellent at time periods before conversion (AUC range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change, and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional=6.7 [95%CI 3.3-13.7]; longitudinal=13.0 [95%CI 4.0-42.8]; p&lt;0.001), but conversion-free follow-up time varied greatly across participants. <h3>Discussion:</h3> NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.
DOI: 10.1002/dad2.12571
2024
Extending the phenotypic spectrum assessed by the CDR plus NACC FTLD in genetic frontotemporal dementia
Abstract INTRODUCTION We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD‐NM scale. This was assessed in 522 mutation carriers and 310 mutation‐negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD‐NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS). No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD‐NM rating scale. Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains. A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.
DOI: 10.1002/ana.10521
2003
Cited 80 times
Endogenous estradiol and risk of dementia in women and men: The Rotterdam Study
Abstract We determined whether higher endogenous estradiol levels were associated with lower risk of dementia in older men and women not using hormonal replacement therapy, using a case‐cohort design within the Rotterdam Study, a population‐based follow‐up study on chronic diseases, including dementia, in 7,983 subjects aged 55 years or older, and ongoing since 1990. The analyses were based on a random subcohort of 508 women and 438 men, and on 76 women and 53 men with incident dementia. Cox proportional hazards models with robustly estimated standard errors showed that in women higher levels of total estradiol were associated with higher risk of dementia (age‐adjusted hazard ratio per standard deviation increase 1.38; 95% CI 1.04–1.84). Age‐adjusted HR's of Alzheimer's disease and vascular dementia associated with higher levels of total estradiol (per SD increase) were 1.24 (95% CI 0.87–1.76) and 2.19 (95% CI 1.22–3.92), respectively. Similar results were observed for bioavailable estradiol. Additional adjustments for potential confounders did not change the results substantially. In men, no clear association was observed between estradiol levels and risk of dementia or its subtypes. The findings do not support the hypothesis that higher levels of endogenous estradiol reduce risk of dementia, neither in women nor in men. Ann Neurol 2003
DOI: 10.1093/brain/awy238
2018
Cited 37 times
A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers
The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
DOI: 10.1111/nan.12530
2018
Cited 35 times
Review: Fluid biomarkers for frontotemporal dementias
Frontotemporal dementias ( FTD s) are clinically, genetically and pathologically heterogeneous neurodegenerative disorders that affect the frontal and anterior temporal lobes of the brain. They are relatively common causes of young‐onset dementia and usually present with behavioural disturbance (behavioural variant FTD ) or language impairment (primary progressive aphasia), but there is also overlap with motor neurone disease and the atypical parkinsonian disorders, corticobasal syndrome and progressive supranuclear palsy. At post mortem , neuronal inclusions containing tau, TDP ‐43 or infrequently FUS protein are seen in most cases. However, a poor correlation between clinical syndrome and underlying pathology means that it is difficult to diagnose the underlying molecular basis using clinical criteria. At this point, biomarkers for the underlying pathology come into play. This paper provides a brief update on fluid biomarkers for FTD s that may be useful to dissect the underlying molecular changes in patients presenting with signs of frontal and/or temporal lobe dysfunction. The hope is that such biomarkers, together with genetics and imaging, would be useful in clinical trials of novel drug candidates directed against specific pathologies and, in the long run, helpful in clinical practice to select the most appropriate treatment at the right dose for individual patients.
DOI: 10.3233/jad-160091
2017
Cited 32 times
Rare Genetic Variant in SORL1 May Increase Penetrance of Alzheimer’s Disease in a Family with Several Generations of APOE-ɛ4 Homozygosity
The major genetic risk factor for late onset Alzheimer's disease (AD) is the APOE-ɛ4 allele. However, APOE-ɛ4 homozygosity is not fully penetrant, suggesting co-occurrence of additional genetic variants.To identify genetic factors that, next to APOE-ɛ4 homozygosity, contribute to the development of AD.We identified a family with nine AD patients spanning four generations, with an inheritance pattern suggestive of autosomal dominant AD, with no variants in PSEN1, PSEN2, or APP. We collected DNA from four affected and seven unaffected family members and performed exome sequencing on DNA from three affected and one unaffected family members.All affected family members were homozygous for the APOE-ɛ4 allele. Statistical analysis revealed that AD onset in this family was significantly earlier than could be expected based on APOE genotype and gender. Next to APOE-ɛ4 homozygosity, we found that all four affected family members carried a rare variant in the VPS10 domain of the SORL1 gene, associated with AβPP processing and AD risk. Furthermore, three of four affected family members carried a rare variant in the TSHZ3 gene, also associated with AβPP processing. Affected family members presented between 61 and 74 years, with variable presence of microbleeds/cerebral amyloid angiopathy and electroencephalographic abnormalities.We hypothesize that next to APOE-ɛ4 homozygosity, impaired SORL1 protein function, and possibly impaired TSHZ3 function, further disturbed Aβ processing. The convergence of these genetic factors over several generations might clarify the increased AD penetrance and the autosomal dominant-like inheritance pattern of AD as observed in this family.
DOI: 10.1016/j.neurobiolaging.2018.10.023
2019
Cited 30 times
Hippocampal transcriptome profiling combined with protein-protein interaction analysis elucidates Alzheimer's disease pathways and genes
Knowledge about the molecular mechanisms driving Alzheimer's disease (AD) is still limited. To learn more about AD biology, we performed whole transcriptome sequencing on the hippocampus of 20 AD cases and 10 age- and sex-matched cognitively healthy controls. We observed 2716 differentially expressed genes, of which 48% replicated in a second data set of 84 AD cases and 33 controls. We used an integrative network-based approach for combining transcriptomic and protein-protein interaction data to find differentially expressed gene modules that may reflect key processes in AD biology. A total of 735 differentially expressed genes were clustered into 33 modules, of which 82% replicated in a second data set, highlighting the robustness of this approach. These 27 modules were enriched for signal transduction, transport, response to stimulus, and several organic and cellular metabolic pathways. Ten modules interacted with previously described AD genes. Our study indicates that analyzing RNA-expression data based on annotated gene modules is more robust than on individual genes. We provide a comprehensive overview of the biological processes involved in AD, and the detected differentially expressed gene modules may provide a molecular basis for future research into mechanisms underlying AD.
DOI: 10.3389/fnins.2019.00729
2019
Cited 30 times
Bias Introduced by Multiple Head Coils in MRI Research: An 8 Channel and 32 Channel Coil Comparison
Neuroimaging MRI data in scientific research is increasingly pooled, but the reliability of such studies may be hampered by the use of different hardware elements. This might introduce bias, for example when cross-sectional studies pool data acquired with different head coils, or when longitudinal clinical studies change head coils halfway. In the present study, we aimed to estimate this possible bias introduced by using different head coils to create awareness and to avoid misinterpretation of results. We acquired, with both an 8 channel and 32 channel head coil, T1-weighted, diffusion tensor imaging and resting state fMRI images at 3T MRI (Philips Achieva) with stable acquisition parameters in a large group of cognitively healthy participants (n = 77). Standard analysis methods, i.e., voxel-based morphometry, tract-based spatial statistics and resting state functional network analyses, were used in a within-subject design to compare 8 and 32 channel head coil data. Signal-to-noise ratios (SNR) for both head coils showed similar ranges, although the 32 channel SNR profile was more homogeneous. Our data demonstrates specific patterns of gray and white matter volume differences between head coils (relative volume change of 6 to 9%), related to altered image contrast and therefore, altered tissue segmentation. White matter connectivity (fractional anisotropy and diffusivity measures) showed hemispherical dependent differences between head coils (relative connectivity change of 4 to 6%), and functional connectivity in resting state networks was higher using the 32 channel head coil in posterior cortical areas (relative change up to 27.5%). This study shows that, even when acquisition protocols are harmonized, the results of standardized analysis models can be severely affected by the use of different head coils. Researchers should be aware of this when combining multiple neuroimaging MRI datasets, to prevent coil-related bias and avoid misinterpretation of their findings.
DOI: 10.1136/jnnp-2020-322987
2020
Cited 27 times
Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration
The clinical heterogeneity of frontotemporal dementia (FTD) complicates identification of biomarkers for clinical trials that may be sensitive during the prediagnostic stage. It is not known whether cognitive or behavioural changes during the preclinical period are predictive of genetic status or conversion to clinical FTD. The first objective was to evaluate the most frequent initial symptoms in patients with genetic FTD. The second objective was to evaluate whether preclinical mutation carriers demonstrate unique FTD-related symptoms relative to familial mutation non-carriers.The current study used data from the Genetic Frontotemporal Dementia Initiative multicentre cohort study collected between 2012 and 2018. Participants included symptomatic carriers (n=185) of a pathogenic mutation in chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN) or microtubule-associated protein tau (MAPT) and their first-degree biological family members (n=588). Symptom endorsement was documented using informant and clinician-rated scales.The most frequently endorsed initial symptoms among symptomatic patients were apathy (23%), disinhibition (18%), memory impairments (12%), decreased fluency (8%) and impaired articulation (5%). Predominant first symptoms were usually discordant between family members. Relative to biologically related non-carriers, preclinical MAPT carriers endorsed worse mood and sleep symptoms, and C9orf72 carriers endorsed marginally greater abnormal behaviours. Preclinical GRN carriers endorsed less mood symptoms compared with non-carriers, and worse everyday skills.Preclinical mutation carriers exhibited neuropsychiatric symptoms compared with non-carriers that may be considered as future clinical trial outcomes. Given the heterogeneity in symptoms, the detection of clinical transition to symptomatic FTD may be best captured by composite indices integrating the most common initial symptoms for each genetic group.
DOI: 10.1002/ana.26265
2021
Cited 21 times
Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp>: A Longitudinal Multicentre Study
Although the presymptomatic stages of frontotemporal dementia (FTD) provide a unique chance to delay or even prevent neurodegeneration by early intervention, they remain poorly defined. Leveraging a large multicenter cohort of genetic FTD mutation carriers, we provide a biomarker-based stratification and biomarker cascade of the likely most treatment-relevant stage within the presymptomatic phase: the conversion stage.We longitudinally assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in the Genetic FTD Initiative (GENFI) cohort (n = 444), using single-molecule array technique. Subjects comprised 91 symptomatic and 179 presymptomatic subjects with mutations in the FTD genes C9orf72, GRN, or MAPT, and 174 mutation-negative within-family controls.In a biomarker cascade, NfL increase preceded the hypothetical clinical onset by 15 years and concurred with brain atrophy onset, whereas pNfH increase started close to clinical onset. The conversion stage was marked by increased NfL, but still normal pNfH levels, while both were increased at the symptomatic stage. Intra-individual change rates were increased for NfL at the conversion stage and for pNfH at the symptomatic stage, highlighting their respective potential as stage-dependent dynamic biomarkers within the biomarker cascade. Increased NfL levels and NfL change rates allowed identification of presymptomatic subjects converting to symptomatic disease and capture of proximity-to-onset. We estimate stage-dependent sample sizes for trials aiming to decrease neurofilament levels or change rates.Blood NfL and pNfH provide dynamic stage-dependent stratification and, potentially, treatment response biomarkers in presymptomatic FTD, allowing demarcation of the conversion stage. The proposed biomarker cascade might pave the way towards a biomarker-based precision medicine approach to genetic FTD. ANN NEUROL 2022;91:33-47.
DOI: 10.1002/ana.26455
2022
Cited 13 times
Long‐Duration Progressive Supranuclear Palsy: Clinical Course and Pathological Underpinnings
To identify the clinical characteristics of the subgroup of benign progressive supranuclear palsy with particularly long disease duration; to define neuropathological determinants underlying variability in disease duration in progressive supranuclear palsy.Clinical and pathological features were compared among 186 autopsy-confirmed cases with progressive supranuclear palsy with ≥10 years and shorter survival times.The 45 cases (24.2%) had a disease duration of ≥10 years. The absence of ocular motor abnormalities within the first 3 years from disease onset was the only significant independent clinical predictor of longer survival. Histopathologically, the neurodegeneration parameters in each survival group were paralleled anatomically by the distribution of neuronal cytoplasmic inclusions, whereas the tufted astrocytes displayed anatomically an opposite severity pattern. Most interestingly, we found significantly less coiled bodies in those who survive longer, in contrast to patients with less favorable course.A considerable proportion of patients had a more "benign" disease course with ≥10 years survival. They had a distinct pattern and evolution of core symptoms compared to patients with short survival. The inverted anatomical patterns of astrocytic tau distribution suggest distinct implications of these cell types in trans-cellular propagation. The tempo of disease progression appeared to be determined mostly by oligodendroglial tau, where the high degree of oligodendroglial tau pathology might affect neuronal integrity and function on top of neuronal tau pathology. The relative contribution of glial tau should be further explored in cellular and animal models. ANN NEUROL 2022;92:637-649.
DOI: 10.1111/nan.12798
2022
Cited 12 times
The severity of behavioural symptoms in FTD is linked to the loss of GABRQ‐expressing VENs and pyramidal neurons
The loss of von Economo neurons (VENs) and GABA receptor subunit theta (GABRQ) containing neurons is linked to early changes in social-emotional cognition and is seen in frontotemporal dementia (FTD) due to C9orf72 repeat expansion. We investigate the vulnerability of VENs and GABRQ-expressing neurons in sporadic and genetic forms of FTD with different underlying molecular pathology and their association with the presence and severity of behavioural symptoms.We quantified VENs and GABRQ-immunopositive neurons in the anterior cingulate cortex (ACC) in FTD with underlying TDP43 (FTLD-TDP) (n = 34), tau (FTLD-tau) (n = 24) or FUS (FTLD-FUS) (n = 8) pathology, neurologically healthy controls (n = 12) and Alzheimer's disease (AD) (n = 7). Second, we quantified VENs and the GABRQ-expressing population in relation to presence of behavioural symptoms in the first years of disease onset.The number of VENs and GABRQ-expressing neurons and the ratio of VENs and GABRQ-expressing neurons over total Layer 5 neuronal population decreased in FTLD-TDP and FTLD-FUS, but not in FTLD-tau, compared to control and AD. The severity of early behavioural symptoms in all donors correlated with a lower VEN and GABRQ neuronal count.We show that in FTD, a loss of VENs together with GABRQ-expressing pyramidal neurons is associated with TDP43 and FUS pathology. No significant loss was found in donors with FTLD-tau pathology; however, this could be due to the specific MAPT mutation studied and small sporadic FTLD-tau sample size. Overall, we show the GABRQ-expressing population correlates with behavioural changes and suggest they are key in modulating behaviour in FTD.
DOI: 10.1186/s13195-022-01042-3
2022
Cited 12 times
Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia
Abstract Background Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72 , GRN , and MAPT . Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. Methods A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72 , 23 GRN , 23 MAPT ) and 55 symptomatic (26 C9orf72 , 17 GRN , 12 MAPT ) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14–3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. Results CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14–3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14–3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. Conclusions Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.
DOI: 10.1016/j.parkreldis.2017.07.009
2017
Cited 31 times
An update on the genetics of dementia with Lewy bodies
The genetic architecture of dementia with Lewy bodies (DLB) is increasingly taking shape. Initially, genetic research focused mainly on linkage and candidate gene studies in small series of DLB patients. More recently, association and exome sequencing studies in larger groups have been conducted, and have shown that several variants in GBA and the APOE ε4 allele are important genetic risk factors for DLB. However, genetic research in DLB is still in its infancy. So far, many genetic studies have been biased and performed in clinically and pathologically heterogeneous populations. Therefore, it is likely that multiple DLB-specific genetic determinants still have to be identified. To further our understanding of the role of genetics in DLB, future genetic studies should be unbiased and performed in large series of DLB patients, ideally with both a clinical diagnosis and pathological confirmation. The combination of genomic techniques with other research modalities, such as proteomic research, is a promising approach to identify novel genetic determinants. More knowledge about the genetics of DLB will increase our understanding of the pathophysiology of the disease and its relation with Parkinson's Disease and Alzheimer's Disease, and may eventually lead to the development of disease modifying treatments.
DOI: 10.1016/j.neurobiolaging.2014.12.007
2015
Cited 28 times
The influence of genetic variants in SORL1 gene on the manifestation of Alzheimer's disease
We studied the association of SORL1 single-nucleotide polymorphisms genotypes with measures of pathology in patients with probable Alzheimer's disease (AD) using an endophenotype approach. We included (1) 133 patients from the German Dementia Competence Network (71 ± 8 years; 50% females; Mini Mental State Examination [MMSE], 24 ± 3); (2) 83 patients from the Alzheimer's Disease Neuroimaging Initiative (75 ± 8 years; 45% females; MMSE, 24 ± 2); and (3) 452 patients from the Amsterdam Dementia Cohort 66 ± 8 years; 47% females; MMSE, 20 ± 5). As endophenotype markers we used cognitive tests, cerebrospinal fluid (CSF) biomarkers amyloid-beta, total tau (tau), tau phosphorylated at threonine 181, and hippocampal atrophy. We measured 19 SORL1 SNP alleles. Genotype-endophenotype associations were determined by linear regression analyses. There was an association between rs2070045-G allele and increased CSF-tau and more hippocampal atrophy. Additionally, haplotype-based analyses revealed an association between haplotype rs11218340-A/rs3824966-G/rs3824968-A and higher CSF-tau and CSF-tau phosphorylated at threonine 181. In conclusion, we found that SORL1 SNP rs2070045-G allele was related to CSF-tau and hippocampal atrophy, 2 endophenotype markers of AD, suggesting that SORL1 may be implicated in the downstream pathology in AD.
DOI: 10.1007/s00330-017-4768-1
2017
Cited 28 times
The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI).MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus.We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors.Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI.• PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.
DOI: 10.1017/s1355617718000115
2018
Cited 27 times
Meta-analytic Review of Memory Impairment in Behavioral Variant Frontotemporal Dementia
Abstract Objectives: A meta-analysis of the extent, nature and pattern of memory performance in behavioral variant frontotemporal dementia (bvFTD). Multiple observational studies have challenged the relative sparing of memory in bvFTD as stated in the current diagnostic criteria. Methods: We performed a meta-analytic review covering the period 1967 to February 2017 of case-control studies on episodic memory in bvFTD versus control participants (16 studies, 383 patients, 603 control participants), and patients with bvFTD versus those with Alzheimer’s disease (AD) (20 studies, 452 bvFTD, 874 AD). Differences between both verbal and non-verbal working memory, episodic memory learning and recall, and recognition memory were examined. Data were extracted from the papers and combined into a common metric measure of effect, Hedges’ d . Results: Patients with bvFTD show large deficits in memory performance compared to controls (Hedges’ d –1.10; 95% confidence interval [CI] [–1.23, –0.95]), but perform significantly better than patients with AD (Hedges’ d 0.85; 95% CI [0.69, 1.03]). Learning and recall tests differentiate best between patients with bvFTD and AD ( p &lt;.01). There is 37–62% overlap in test scores between the two groups. Conclusions: This study points to memory disorders in patients with bvFTD, with performance at an intermediate level between controls and patients with AD. This indicates that, instead of being an exclusion criterion for bvFTD diagnosis, memory deficits should be regarded as a potential integral part of the clinical spectrum. ( JINS , 2018, 24 , 593–605)
DOI: 10.1002/acn3.51249
2020
Cited 23 times
Brain volumetric deficits in <i>MAPT</i> mutation carriers: a multisite study
MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach.We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype.Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers.A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.
DOI: 10.1093/braincomms/fcaa122
2020
Cited 22 times
Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia
Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between C9orf72, GRN and MAPT expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being TREM2, SSBP3 and GPR158 (negative association in C9orf72, GRN and MAPT respectively) and RELN, MXRA8 and LPA (positive association in C9orf72, GRN and MAPT respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively.
DOI: 10.1002/mds.28263
2020
Cited 22 times
Clinical Conditions “Suggestive of Progressive Supranuclear Palsy”—Diagnostic Performance
The Movement Disorder Society diagnostic criteria for progressive supranuclear palsy introduced the diagnostic certainty level "suggestive of progressive supranuclear palsy" for clinical conditions with subtle signs, suggestive of the disease. This category aims at the early identification of patients, in whom the diagnosis may be confirmed as the disease evolves.To assess the diagnostic performance of the defined clinical conditions suggestive of progressive supranuclear palsy in an autopsy-confirmed cohort.Diagnostic performance of the criteria was analyzed based on retrospective clinical data of 204 autopsy-confirmed patients with progressive supranuclear palsy and 216 patients with other neurological diseases.The conditions suggestive of progressive supranuclear palsy strongly increased the sensitivity compared to the National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy criteria. Within the first year after symptom onset, 40% of patients with definite progressive supranuclear palsy fulfilled criteria for suggestive of progressive supranuclear palsy. Two-thirds of patients suggestive of progressive supranuclear palsy evolved into probable progressive supranuclear palsy after an average of 3.6 years. Application of the criteria for suggestive of progressive supranuclear palsy reduced the average time to diagnosis from 3.8 to 2.2 years.Clinical conditions suggestive of progressive supranuclear palsy allow earlier identification of patients likely to evolve into clinically possible or probable progressive supranuclear and to have underlying progressive supranuclear palsy pathology. Further work needs to establish the specificity and positive predictive value of this category in real-life clinical settings, and to develop specific biomarkers that enhance their diagnostic accuracy in early disease stages. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
DOI: 10.1016/j.neurobiolaging.2020.07.014
2021
Cited 18 times
Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients
Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.
DOI: 10.1136/jnnp-2020-325497
2021
Cited 18 times
Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer’s disease
The clinical phenotype of the rare behavioural variant of Alzheimer's disease (bvAD) is insufficiently understood. Given the strong clinico-anatomical correlations of tau pathology in AD, we investigated the distribution of tau deposits in bvAD, in-vivo and ex-vivo, using positron emission tomography (PET) and postmortem examination.For the tau PET study, seven amyloid-β positive bvAD patients underwent [18F]flortaucipir or [18F]RO948 PET. We converted tau PET uptake values into standardised (W-)scores, adjusting for age, sex and mini mental state examination in a 'typical' memory-predominant AD (n=205) group. W-scores were computed within entorhinal, temporoparietal, medial and lateral prefrontal, insular and whole-brain regions-of-interest, frontal-to-entorhinal and frontal-to-parietal ratios and within intrinsic functional connectivity network templates. For the postmortem study, the percentage of AT8 (tau)-positive area in hippocampus CA1, temporal, parietal, frontal and insular cortices were compared between autopsy-confirmed patients with bvAD (n=8) and typical AD (tAD;n=7).Individual regional W-scores ≥1.96 (corresponding to p<0.05) were observed in three cases, that is, case #5: medial prefrontal cortex (W=2.13) and anterior default mode network (W=3.79), case #2: lateral prefrontal cortex (W=2.79) and salience network (W=2.77), and case #7: frontal-to-entorhinal ratio (W=2.04). The remaining four cases fell within the normal distributions of the tAD group. Postmortem AT8 staining indicated no group-level regional differences in phosphorylated tau levels between bvAD and tAD (all p>0.05).Both in-vivo and ex-vivo, patients with bvAD showed heterogeneous distributions of tau pathology. Since key regions involved in behavioural regulation were not consistently disproportionally affected by tau pathology, other factors are more likely driving the clinical phenotype in bvAD.
DOI: 10.1212/nxg.0000000000000596
2021
Cited 18 times
Novel <i>TUBA4A</i> Variant Associated With Familial Frontotemporal Dementia
Despite the strong genetic component of frontotemporal dementia (FTD), a substantial proportion of patients remain genetically unresolved. We performed an in-depth study of a family with an autosomal dominant form of FTD to investigate the underlying genetic cause.Following clinical and pathologic characterization of the family, genetic studies included haplotype sharing analysis and exome sequencing. Subsequently, we performed immunohistochemistry, immunoblotting, and a microtubule repolymerization assay to investigate the potential impact of the candidate variant in tubulin alpha 4a (TUBA4A).The clinical presentation in this family is heterogeneous, including behavioral changes, parkinsonian features, and uncharacterized dementia. Neuropathologic examination of 2 patients revealed TAR DNA binding protein 43 (TDP-43) pathology with abundant dystrophic neurites and neuronal intranuclear inclusions, consistent with frontotemporal lobar degeneration-TDP type A. We identified a likely pathogenic variant in TUBA4A segregating with disease. TUBA4A encodes for α-tubulin, which is a major component of the microtubule network. Variants in TUBA4A have been suggested as a rare genetic cause of amyotrophic lateral sclerosis (ALS) and have sporadically been reported in patients with FTD without supporting genetic segregation. A decreased trend of TUBA4A protein abundance was observed in patients compared with controls, and a microtubule repolymerization assay demonstrated disrupted α-tubulin function. As opposed to variants found in ALS, TUBA4A variants associated with FTD appear more localized to the N-terminus, indicating different pathogenic mechanisms.Our findings support the role of TUBA4A variants as rare genetic cause of familial FTD.