ϟ

J. Prisciandaro

Here are all the papers by J. Prisciandaro that you can download and read on OA.mg.
J. Prisciandaro’s last known institution is . Download J. Prisciandaro PDFs here.

Claim this Profile →
DOI: 10.1016/j.physletb.2019.04.025
2019
Cited 199 times
Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for invisible decays of a Higgs boson is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy , corresponding to an integrated luminosity of 35.9. The search targets the production of a Higgs boson via vector boson fusion. The data are found to be in agreement with the background contributions from standard model processes. An observed (expected) upper limit of 0.33 (0.25), at 95% confidence level, is placed on the branching fraction of the Higgs boson decay to invisible particles, assuming standard model production rates and a Higgs boson mass of 125.09 GeV. Results from a combination of this analysis and other direct searches for invisible decays of the Higgs boson, performed using data collected at , 8, and 13 TeV, are presented. An observed (expected) upper limit of 0.19 (0.15), at 95% confidence level, is set on the branching fraction of invisible decays of the Higgs boson. The combined limit represents the most stringent bound on the invisible branching fraction of the Higgs boson reported to date. This result is also interpreted in the context of Higgs-portal dark matter models, in which upper bounds are placed on the spin-independent dark-matter-nucleon scattering cross section.
DOI: 10.1140/epjc/s10052-021-09538-2
2021
Cited 118 times
Precision luminosity measurement in proton–proton collisions at $$\sqrt{s} = 13\,\hbox {TeV}$$ in 2015 and 2016 at CMS
The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton-proton collisions at s=13TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb-1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.
DOI: 10.1007/jhep01(2021)148
2021
Cited 77 times
Evidence for Higgs boson decay to a pair of muons
Evidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, recorded by the CMS experiment at the CERN LHC. An excess of events over the background expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at $\sqrt{s} =$ 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb$^{-1}$, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19 $^{+0.40}_{-0.39}$ (stat) $^{+0.15}_{-0.14}$ (syst). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.
DOI: 10.1088/1748-0221/16/05/p05014
2021
Cited 75 times
Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC
The performance is presented of the reconstruction and identification algorithms for electrons and photons with the CMS experiment at the LHC. The reported results are based on proton-proton collision data collected at a center-of-mass energy of 13 TeV and recorded in 2016-2018, corresponding to an integrated luminosity of 136 fb$^{-1}$. Results obtained from lead-lead collision data collected at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are also presented. Innovative techniques are used to reconstruct the electron and photon signals in the detector and to optimize the energy resolution. Events with electrons and photons in the final state are used to measure the energy resolution and energy scale uncertainty in the recorded events. The measured energy resolution for electrons produced in Z boson decays in proton-proton collision data ranges from 2 to 5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material. The energy scale in the same range of energies is measured with an uncertainty smaller than 0.1 (0.3)% in the barrel (endcap) region in proton-proton collisions and better than 1 (3)% in the barrel (endcap) region in heavy ion collisions. The timing resolution for electrons from Z boson decays with the full 2016-2018 proton-proton collision data set is measured to be 200 ps.
DOI: 10.1007/jhep07(2021)208
2021
Cited 74 times
Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for physics beyond the standard model (SM) using electron or muon pairs with high invariant mass. A data set of proton-proton collisions collected by the CMS experiment at the LHC at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV from 2016 to 2018 corresponding to a total integrated luminosity of up to 140 fb − 1 is analyzed. No significant deviation is observed with respect to the SM background expectations. Upper limits are presented on the ratio of the product of the production cross section and the branching fraction to dileptons of a new narrow resonance to that of the Z boson. These provide the most stringent lower limits to date on the masses for various spin-1 particles, spin-2 gravitons in the Randall-Sundrum model, as well as spin-1 mediators between the SM and dark matter particles. Lower limits on the ultraviolet cutoff parameter are set both for four-fermion contact interactions and for the Arkani-Hamed, Dimopoulos, and Dvali model with large extra dimensions. Lepton flavor universality is tested at the TeV scale for the first time by comparing the dimuon and dielectron mass spectra. No significant deviation from the SM expectation of unity is observed.
DOI: 10.1088/1748-0221/15/10/p10017
2020
Cited 100 times
Performance of the CMS Level-1 trigger in proton-proton collisions at √<i>s</i> = 13 TeV
At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13 TeV. During Run 2 (years 2015-2018) the LHC eventually reached a luminosity of 2.1 $\times$ 10$^{34}$ cm$^{-2}$ s$^{-1}$, almost three times that reached during Run 1 (2009-2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016-2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals.
DOI: 10.1007/jhep05(2020)033
2020
Cited 84 times
Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for narrow and broad resonances with masses greater than 1.8 TeV decaying to a pair of jets is presented. The search uses proton-proton collision data at $\sqrt{s} =$ 13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The background arising from standard model processes is predicted with the fit method used in previous publications and with a new method. The dijet invariant mass spectrum is well described by both data-driven methods, and no significant evidence for the production of new particles is observed. Model independent upper limits are reported on the production cross sections of narrow resonances, and broad resonances with widths up to 55% of the resonance mass. Limits are presented on the masses of narrow resonances from various models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet scalars, W' and Z' bosons, Randall-Sundrum gravitons, and dark matter mediators. The limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches. The limits on dark matter mediators are presented as a function of the resonance mass and width, and on the associated coupling strength as a function of the mediator mass. These limits exclude at 95% confidence level a dark matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one with a mass of 4.8 TeV and a width 45% of its mass or higher.
DOI: 10.1016/j.physletb.2020.135425
2020
Cited 77 times
A measurement of the Higgs boson mass in the diphoton decay channel
A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.
DOI: 10.1140/epjc/s10052-019-7593-7
2020
Cited 76 times
Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at $$\sqrt{s}=13$$ $$\,\text {TeV}$$
The standard model (SM) production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) in proton-proton collision is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV. The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the $\mathrm{t\bar{t}t\bar{t}}$ signal are respectively 2.6 and 2.7 standard deviations, and the $\mathrm{t\bar{t}t\bar{t}}$ cross section is measured to be 12.6 $^{+5.8}_{-5.2}$ fb. The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, $y_{\mathrm{t}}$, yielding a limit of $|y_{\mathrm{t}}$ $/$ $y_{\mathrm{t}}^{\mathrm{SM}}|$ $<$ 1.7 at 95% confidence level, where $y_{\mathrm{t}}^{\mathrm{SM}}$ is the SM value of $y_{\mathrm{t}}$. They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework, $\hat{H}$ $<$ 0.12. Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
DOI: 10.1007/jhep10(2019)244
2019
Cited 76 times
Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum
Results are reported from a search for supersymmetric particles in the final state with multiple jets and large missing transverse momentum. The search uses a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$, representing essentially the full LHC Run 2 data sample. The analysis is performed in a four-dimensional search region defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No significant excess in the event yield is observed relative to the expected background contributions from standard model processes. Limits on the pair production of gluinos and squarks are obtained in the framework of simplified models for supersymmetric particle production and decay processes. Assuming the lightest supersymmetric particle to be a neutralino, lower limits on the gluino mass as large as 2000 to 2310 GeV are obtained at 95% confidence level, while lower limits on the squark mass as large as 1190 to 1630 GeV are obtained, depending on the production scenario.
DOI: 10.1088/1748-0221/15/06/p06005
2020
Cited 70 times
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb−1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
DOI: 10.1103/physrevlett.122.132001
2019
Cited 63 times
Observation of Two Excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msubsup><mml:mi>B</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:math> States and Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mi>B</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>S</mml:mi><mml:mo stretchy="false">)</mml:mo></…
Signals consistent with the B+c(2S) and B*+c(2S) states are observed in proton-proton collisions at √s=13 TeV, in an event sample corresponding to an integrated luminosity of 143 fb−1, collected by the CMS experiment during the 2015–2018 LHC running periods. These excited ¯bc states are observed in the B+cπ+π− invariant mass spectrum, with the ground state B+c reconstructed through its decay to J/ψπ+. The two states are reconstructed as two well-resolved peaks, separated in mass by 29.1±1.5(stat)±0.7(syst) MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the B+c(2S) meson is measured to be 6871.0±1.2(stat)±0.8(syst)±0.8(B+c) MeV, where the last term corresponds to the uncertainty in the world-average B+c mass.Received 1 February 2019Revised 18 February 2019DOI:https://doi.org/10.1103/PhysRevLett.122.132001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasParticle productionPhysical SystemsBottom quarkMesonsTechniquesHadron collidersParticles & Fields
DOI: 10.1007/jhep04(2020)188
2020
Cited 61 times
Measurement of properties of $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− decays and search for B0→ μ+μ− with the CMS experiment
Results are reported for the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− branching fraction and effective lifetime and from a search for the decay B0→ μ+μ−. The analysis uses a data sample of proton-proton collisions accumulated by the CMS experiment in 2011, 2012, and 2016, with center-of-mass energies (integrated luminosities) of 7 TeV (5 fb−1), 8 TeV (20 fb−1), and 13 TeV (36 fb−1). The branching fractions are determined by measuring event yields relative to B+→ J/ψK+ decays (with J/ψ → μ+μ−), which results in the reduction of many of the systematic uncertainties. The decay $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− is observed with a significance of 5.6 standard deviations. The branching fraction is measured to be $$ \mathrm{\mathcal{B}}\left({\mathrm{B}}_{\mathrm{s}}^0\to {\upmu}^{+}{\upmu}^{-}\right)=\left[2.9\pm 0.7\left(\exp \right)\pm 0.2\left(\mathrm{frag}\right)\right]\times {10}^{-9} $$, where the first uncertainty combines the experimental statistical and systematic contributions, and the second is due to the uncertainty in the ratio of the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ and the B+ fragmentation functions. No significant excess is observed for the decay B0→ μ+μ−, and an upper limit of ℬ(B0 → μ+μ−) < 3.6 × 10−10 is obtained at 95% confidence level. The $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− effective lifetime is measured to be $$ {\tau}_{\upmu^{+}{\upmu}^{-}}={1.70}_{-0.44}^{+0.61} $$ ps. These results are consistent with standard model predictions.
DOI: 10.1103/physrevlett.124.131802
2020
Cited 60 times
Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ proton-proton collision data recorded at the LHC. In the 45--75 and 110--200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5--45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 and $96.6\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the $\ensuremath{\sim}30--75$ and 110--200 GeV mass ranges.
DOI: 10.1088/1748-0221/15/09/p09018
2020
Cited 60 times
Pileup mitigation at CMS in 13 TeV data
With increasing instantaneous luminosity at the LHC come additional reconstruction challenges. At high luminosity, many collisions occur simultaneously within one proton-proton bunch crossing. The isolation of an interesting collision from the additional "pileup" collisions is needed for effective physics performance. In the CMS Collaboration, several techniques capable of mitigating the impact of these pileup collisions have been developed. Such methods include charged-hadron subtraction, pileup jet identification, isospin-based neutral particle "$\delta\beta$" correction, and, most recently, pileup per particle identification. This paper surveys the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation. The analysis makes use of data corresponding to 35.9 fb$^{-1}$ collected with the CMS experiment in 2016 at a center-of-mass energy of 13 TeV. The performance of each algorithm is discussed for up to 70 simultaneous collisions per bunch crossing. Significant improvements are found in the identification of pileup jets, the jet energy, mass, and angular resolution, missing transverse momentum resolution, and muon isolation when using pileup per particle identification.
DOI: 10.1140/epjc/s10052-019-7493-x
2020
Cited 57 times
Searches for physics beyond the standard model with the $$M_{\mathrm {T2}}$$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$
Abstract Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton–proton collisions at a center-of-mass energy of $$13\,\text {Te}\text {V} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>13</mml:mn><mml:mspace /><mml:mrow><mml:mtext>Te</mml:mtext><mml:mspace /></mml:mrow></mml:mrow></mml:math> , collected by the CMS experiment at the LHC in 2016–2018 and corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mspace /><mml:msup><mml:mtext>fb</mml:mtext><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> . The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $$M_{\mathrm {T2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mi>T</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving R -parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
DOI: 10.1016/j.physletb.2021.136446
2021
Cited 48 times
Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A search for leptoquarks produced singly and in pairs in proton-proton collisions is presented. We consider the leptoquark (LQ) to be a scalar particle of charge −1/3e coupling to a top quark plus a tau lepton (tτ) or a bottom quark plus a neutrino (bν), or a vector particle of charge +2/3e, coupling to tν or bτ. These choices are motivated by models that can explain a series of anomalies observed in the measurement of B meson decays. In this analysis the signatures tτνb and tτν are probed, using data recorded by the CMS experiment at the CERN LHC at s=13 TeV and that correspond to an integrated luminosity of 137 fb−1. These signatures have not been previously explored in a dedicated search. The data are found to be in agreement with the standard model prediction. Lower limits at 95% confidence level are set on the LQ mass in the range 0.98–1.73 TeV, depending on the LQ spin and its coupling λ to a lepton and a quark, and assuming equal couplings for the two LQ decay modes considered. These are the most stringent constraints to date on the existence of leptoquarks in this scenario.
DOI: 10.1007/jhep11(2021)153
2021
Cited 46 times
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.
DOI: 10.1007/jhep04(2021)123
2021
Cited 43 times
Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for phenomena beyond the standard model in final states with two oppositely charged same-flavor leptons and missing transverse momentum is presented. The search uses a data sample of proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 , collected by the CMS experiment at the LHC. Three potential signatures of physics beyond the standard model are explored: an excess of events with a lepton pair, whose invariant mass is consistent with the Z boson mass; a kinematic edge in the invariant mass distribution of the lepton pair; and the nonresonant production of two leptons. The observed event yields are consistent with those expected from standard model backgrounds. The results of the first search allow the exclusion of gluino masses up to 1870 GeV, as well as chargino (neutralino) masses up to 750 (800) GeV, while those of the searches for the other two signatures allow the exclusion of light-flavor (bottom) squark masses up to 1800 (1600) GeV and slepton masses up to 700 GeV, respectively, at 95% confidence level within certain supersymmetry scenarios.
DOI: 10.1140/epjc/s10052-021-09014-x
2021
Cited 42 times
Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $$\sqrt{s} = 13\,\text {Te}\text {V} $$
The rate for Higgs (H) bosons production in association with either one (tH) or two ($\mathrm{t\bar{t}}$H) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb$^{-1}$. The analysis is aimed at events that contain H $\to$ WW, H $\to$ $\tau\tau$, or H $\to$ ZZ decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among the tH, the $\mathrm{t\bar{t}}$H, and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the $\mathrm{t\bar{t}}$H and tH signals correspond to 0.92 $\pm$ 0.19 (stat) $^{+0.17}_{-0.13}$ (syst) and 5.7 $\pm$ 2.7 (stat) $\pm$ 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for $\mathrm{t\bar{t}}$H, and to 1.4 (0.3) for tH production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling $y_{\mathrm{t}}$ of the Higgs boson to the top quark divided by its SM expectation, $\kappa_\mathrm{t}$ = $y_\mathrm{t} / y_\mathrm{t}^\mathrm{SM}$, is constrained to be within $-$0.9 $\lt$ $\kappa_\mathrm{t}$ $\lt$ $-$0.7 or 0.7 $\lt$ $\kappa_\mathrm{t}$ $\lt$ 1.1, at 95% confidence level. This result is the most sensitive measurement of the $\mathrm{t\bar{t}}$H production rate to date.
DOI: 10.1140/epjc/s10052-021-09200-x
2021
Cited 40 times
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$
Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_\mathrm{H}$ $=$ 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.
DOI: 10.1103/physrevd.105.092007
2022
Cited 32 times
Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb$^{-1}$ of proton-proton collisions delivered by the LHC at $\sqrt{s} =$ 13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum, and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at $\sqrt{s} =$ 8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb$^{-1}$, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.
DOI: 10.1103/physrevlett.128.032001
2022
Cited 29 times
Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sNN=5.02 TeV per nucleon pair, using the decay chain X(3872)→J/ψπ+π−→μ+μ−π+π−. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb−1. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15<pT<50 GeV/c. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to ψ2S yield ratio is found to be ρPb−Pb=1.08±0.49(stat)±0.52(syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.Received 25 February 2021Revised 2 September 2021Accepted 22 December 2021DOI:https://doi.org/10.1103/PhysRevLett.128.032001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2022 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasParticle & resonance productionQuark-gluon plasmaRelativistic heavy-ion collisionsTechniquesHadron collidersParticles & FieldsNuclear Physics
DOI: 10.1007/jhep07(2023)073
2023
Cited 16 times
Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract Three searches are presented for signatures of physics beyond the standard model (SM) in ττ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ leptons and the cross sections for the production of a new boson ϕ , in addition to the H(125) boson, via gluon fusion (gg ϕ ) or in association with b quarks, ranging from $$ \mathcal{O} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>O</mml:mi> </mml:math> (10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg ϕ production with local p -values equivalent to about three standard deviations at m ϕ = 0 . 1 and 1.2 TeV. In a search for t -channel exchange of a vector leptoquark U 1 , 95% CL upper limits are set on the dimensionless U 1 leptoquark coupling to quarks and τ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $$ {M}_{\textrm{h}}^{125} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>h</mml:mi> <mml:mn>125</mml:mn> </mml:msubsup> </mml:math> and $$ {M}_{\textrm{h},\textrm{EFT}}^{125} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>,</mml:mo> <mml:mi>EFT</mml:mi> </mml:mrow> <mml:mn>125</mml:mn> </mml:msubsup> </mml:math> minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
DOI: 10.1088/1748-0221/14/04/p04013
2019
Cited 52 times
Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC
The LHCb collaboration has redesigned its trigger to enable the full offline detector reconstruction to be performed in real time. Together with the real-time alignment and calibration of the detector, and a software infrastructure to make persistent the high-level physics objects produced during real-time processing, this redesign enabled the widespread deployment of real-time analysis during Run 2. We describe the design of the Run 2 trigger and real-time reconstruction, and present data-driven performance measurements for a representative sample of LHCb's physics programme.
DOI: 10.1016/j.physletb.2020.135502
2020
Cited 52 times
Search for disappearing tracks in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this "disappearing track" signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101fb−1 recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8−2.3+2.7(stat)±8.1(syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015–2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.
DOI: 10.1007/jhep07(2020)126
2020
Cited 49 times
Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $$ \sqrt{s} $$ = 13 TeV
A search for charged Higgs bosons (H$^\pm$) decaying into a top and a bottom quark in the all-jet final states is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H$^\pm$ production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H$^\pm$ masses in the range of 0.2 to 3 TeV. Combining this with a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary $s$-channel production of an H$^\pm$ is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.
DOI: 10.1016/j.physletb.2020.135710
2020
Cited 48 times
Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at s=13TeV at the LHC are reported. The data sample corresponds to an integrated luminosity of 137fb−1, collected with the CMS detector during 2016–2018. The measurements are performed in the leptonic decay modes and , where ℓ,ℓ′=e, . Differential fiducial cross sections as functions of the invariant masses of the jet and charged lepton pairs, as well as of the leading-lepton transverse momentum, are measured for W±W± production and are consistent with the standard model predictions. The dependence of differential cross sections on the invariant mass of the jet pair is also measured for WZ production. An observation of electroweak production of WZ boson pairs is reported with an observed (expected) significance of 6.8 (5.3) standard deviations. Constraints are obtained on the structure of quartic vector boson interactions in the framework of effective field theory.
DOI: 10.1007/jhep12(2019)061
2019
Cited 46 times
Measurements of differential Z boson production cross sections in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
Measurements are presented of the differential cross sections for Z bosons produced in proton-proton collisions at $\sqrt{s} =$ 13 TeV and decaying to muons and electrons. The data analyzed were collected in 2016 with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measured fiducial inclusive product of cross section and branching fraction agrees with next-to-next-to-leading order quantum chromodynamics calculations. Differential cross sections of the transverse momentum $p_\mathrm{T}$, the optimized angular variable $\phi^*_\eta$, and the rapidity of lepton pairs are measured. The data are corrected for detector effects and compared to theoretical predictions using fixed order, resummed, and parton shower calculations. The uncertainties of the measured normalized cross sections are smaller than 0.5% for $\phi^*_\eta$ $<$ 0.5 and for $p_\mathrm{T}^\mathrm{Z}$ $<$ 50 GeV.
DOI: 10.1103/physrevlett.125.061801
2020
Cited 45 times
Measurements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover><mml:mi>H</mml:mi></mml:mrow></mml:math> Production and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> Structure of the Yukawa Interaction between the Higgs Boson and Top…
The first observation of the tt[over ¯]H process in a single Higgs boson decay channel with the full reconstruction of the final state (H→γγ) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy sqrt[s]=13 TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. The cross section times branching fraction of the tt[over ¯]H process is measured to be σ_{tt[over ¯]H}B_{γγ}=1.56_{-0.32}^{+0.34} fb, which is compatible with the standard model prediction of 1.13_{-0.11}^{+0.08} fb. The fractional contribution of the CP-odd component is measured to be f_{CP}^{Htt}=0.00±0.33.
DOI: 10.1007/jhep04(2020)171
2020
Cited 44 times
Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search is presented for additional scalar (H) or pseudoscalar (A) Higgs bosons decaying to a top quark pair in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment at the LHC. Final states with one or two charged leptons are considered. The invariant mass of the reconstructed top quark pair system and variables that are sensitive to the spin of the particles decaying into the top quark pair are used to search for signatures of the H or A bosons. The interference with the standard model top quark pair background is taken into account. A moderate signal-like deviation compatible with an A boson with a mass of 400 GeV is observed with a global significance of 1.9 standard deviations. New stringent constraints are reported on the strength of the coupling of the hypothetical bosons to the top quark, with the mass of the bosons ranging from 400 to 750 GeV and their total relative width from 0.5 to 25%. The results of the search are also interpreted in a minimal supersymmetric standard model scenario. Values of $m_\mathrm{A}$ from 400 to 700 GeV are probed, and a region with values of $\tan\beta$ below 1.0 to 1.5, depending on $m_\mathrm{A}$, is excluded at 95% confidence level.
DOI: 10.1007/jhep05(2020)032
2020
Cited 42 times
Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment
A search for direct top squark pair production is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the LHC during 2016, 2017, and 2018, corresponding to an integrated luminosity of 137 fb−1. The search is carried out using events with a single isolated electron or muon, multiple jets, and large transverse momentum imbalance. The observed data are consistent with the expectations from standard model processes. Exclusions are set in the context of simplified top squark pair production models. Depending on the model, exclusion limits at 95% confidence level for top squark masses up to 1.2 TeV are set for a massless lightest supersymmetric particle, assumed to be the neutralino. For models with top squark masses of 1 TeV, neutralino masses up to 600 GeV are excluded.
DOI: 10.1016/j.physletb.2020.135328
2020
Cited 42 times
Production of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow></mml:msubsup></mml:math> baryons in proton-proton and lead-lead collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si100.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow…
The transverse momentum (pT) spectra of inclusively produced Λc+ baryons are measured via the exclusive decay channel Λc+→pK−π+ using the CMS detector at the LHC. Spectra are measured as a function of transverse momentum in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measurement is performed within the Λc+ rapidity interval |y|<1 in the pT range of 5–20GeV/c in pp and 10–20GeV/c in PbPb collisions. The observed yields of Λc+ for pT of 10–20GeV/c suggest a suppression in central PbPb collisions compared to pp collisions scaled by the number of nucleon-nucleon (NN) interactions. The Λc+/D0 production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common pT range.
DOI: 10.1140/epjc/s10052-020-08739-5
2021
Cited 39 times
Search for dark matter produced in association with a leptonically decaying $${\mathrm{Z}} $$ boson in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$
A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton-proton collision data at a center-of-mass energy of 13 Te , collected by the CMS experiment at the LHC in 2016-2018, corresponding to an integrated luminosity of 137 fb-1 . The search uses the decay channels Z→ee and Z→μμ . No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.
DOI: 10.1007/jhep07(2021)027
2021
Cited 35 times
Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $$ \sqrt{\mathrm{s}} $$ = 13 TeV
Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12 $\pm$ 0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations.
DOI: 10.1007/jhep03(2021)257
2021
Cited 34 times
Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for nonresonant production of Higgs boson pairs via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two photons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb − 1 . No significant deviation from the background-only hypothesis is observed. An upper limit at 95% confidence level is set on the product of the Higgs boson pair production cross section and branching fraction into $$ \gamma \gamma \mathrm{b}\overline{\mathrm{b}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γγ</mml:mi> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> . The observed (expected) upper limit is determined to be 0.67 (0 . 45) fb, which corresponds to 7.7 (5.2) times the standard model prediction. This search has the highest sensitivity to Higgs boson pair production to date. Assuming all other Higgs boson couplings are equal to their values in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-coupling κ λ and the coupling between a pair of Higgs bosons and a pair of vector bosons c 2V are constrained within the ranges − 3 . 3 &lt; κ λ &lt; 8 . 5 and − 1 . 3 &lt; c 2V &lt; 3 . 5 at 95% confidence level. Constraints on κ λ are also set by combining this analysis with a search for single Higgs bosons decaying to two photons, produced in association with top quark-antiquark pairs, and by performing a simultaneous fit of κ λ and the top quark Yukawa coupling modifier κ t .
DOI: 10.1103/physrevd.104.012015
2021
Cited 34 times
Search for long-lived particles using displaced jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
An inclusive search is presented for long-lived particles using displaced jets. The search uses a data sample collected with the CMS detector at the CERN LHC in 2017 and 2018, from proton-proton collisions at a center-of-mass energy of 13 TeV. The results of this search are combined with those of a previous search using a data sample collected with the CMS detector in 2016, yielding a total integrated luminosity of $132\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. The analysis searches for the distinctive topology of displaced tracks and displaced vertices associated with a dijet system. For a simplified model, where pair-produced long-lived neutral particles decay into quark-antiquark pairs, pair production cross sections larger than 0.07 fb are excluded at 95% confidence level (C.L.) for long-lived particle masses larger than 500 GeV and mean proper decay lengths between 2 and 250 mm. For a model where the standard model-like Higgs boson decays to two long-lived scalar particles that each decays to a quark-antiquark pair, branching fractions larger than 1% are excluded at 95% C.L. for mean proper decay lengths between 1 mm and 340 mm. A group of supersymmetric models with pair-produced long-lived gluinos or top squarks decaying into various final-state topologies containing displaced jets is also tested. Gluino masses up to 2500 GeV and top squark masses up to 1600 GeV are excluded at 95% C.L. for mean proper decay lengths between 3 and 300 mm. The highest lower bounds on mass reach 2600 GeV for long-lived gluinos and 1800 GeV for long-lived top squarks. These are the most stringent limits to date on these models.
DOI: 10.1088/1748-0221/16/02/p02027
2021
Cited 33 times
The CMS Phase-1 pixel detector upgrade
The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.
DOI: 10.1140/epjc/s10052-020-08701-5
2021
Cited 30 times
Search for top squark pair production using dilepton final states in $${\text {p}}{\text {p}}$$ collision data collected at $$\sqrt{s}=13\,\text {TeV} $$
A search is presented for supersymmetric partners of the top quark (top squarks) in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum. The search uses data from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 137 fb$^{-1}$. Hypothetical signal events are efficiently separated from the dominant top quark pair production background with requirements on the significance of the missing transverse momentum and on transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced lightest top squarks. For top squarks decaying exclusively to a top quark and a lightest neutralino, lower limits are placed at 95% confidence level on the masses of the top squark and the neutralino up to 925 and 450 GeV, respectively. If the decay proceeds via an intermediate chargino, the corresponding lower limits on the mass of the lightest top squark are set up to 850 GeV for neutralino masses below 420 GeV. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1.4 TeV and 900 GeV respectively for the top squark and the lightest neutralino.
DOI: 10.1103/physrevd.104.052001
2021
Cited 30 times
Search for top squark production in fully hadronic final states in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.
DOI: 10.1103/physrevd.104.032013
2021
Cited 29 times
Search for lepton-flavor violating decays of the Higgs boson in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>μ</mml:mi><mml:mi>τ</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>e</mml:mi><mml:mi>τ</mml:mi></mml:mrow></mml:math> final states in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><…
A search is presented for lepton-flavor violating decays of the Higgs boson to μτ and eτ. The dataset corresponds to an integrated luminosity of 137 fb−1 collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, B(H→μτ)<0.15(0.15)% and B(H→eτ)<0.22(0.16)% at 95% confidence level.1 MoreReceived 6 May 2021Accepted 2 July 2021DOI:https://doi.org/10.1103/PhysRevD.104.032013Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2021 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasParticle decaysPhysical SystemsHiggs bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.1038/s41567-022-01682-0
2022
Cited 18 times
Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production
Abstract Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width—related to its lifetime—is an important parameter. One way to determine this quantity is to measure its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here we report evidence for such off-shell contributions to the production cross-section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at the 95% confidence level. The scenario with no off-shell contribution is excluded at a p -value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $${{{\varGamma }}}_{{{{{{\rm{H}}}}}}}={3.2}_{-1.7}^{+2.4}\,{{{{{\rm{MeV}}}}}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>Γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.7</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mspace /> <mml:mi>MeV</mml:mi> </mml:mrow> </mml:math> , in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.
DOI: 10.1103/physrevd.108.012011
2023
Cited 7 times
Search for direct pair production of supersymmetric partners of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> leptons in the final state with two hadronically decaying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> leptons and missing transverse momentum in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</…
A search for the direct production of a pair of $\ensuremath{\tau}$ sleptons, the supersymmetric partners of $\ensuremath{\tau}$ leptons, is presented. Each $\ensuremath{\tau}$ slepton is assumed to decay to a $\ensuremath{\tau}$ lepton and the lightest supersymmetric particle (LSP), which is assumed to be stable and to not interact in the detector, leading to an imbalance in the total reconstructed transverse momentum. The search is carried out in events identified as containing two $\ensuremath{\tau}$ leptons, each decaying to one or more hadrons and a neutrino, and significant transverse momentum imbalance. In addition to scenarios in which the $\ensuremath{\tau}$ sleptons decay promptly, the search also addresses scenarios in which the $\ensuremath{\tau}$ sleptons have sufficiently long lifetimes to give rise to nonprompt $\ensuremath{\tau}$ leptons. The data were collected in proton-proton collisions at a center-of-mass energy of $13\text{ }\text{ }\mathrm{TeV}$ at the CERN LHC with the CMS detector in 2016--2018, and correspond to an integrated luminosity of $138\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. No significant excess is seen with respect to standard model expectations. Upper limits on cross sections for the pair production of $\ensuremath{\tau}$ sleptons are obtained in the framework of simplified models. In a scenario in which the $\ensuremath{\tau}$ sleptons are superpartners of left-handed $\ensuremath{\tau}$ leptons, and each undergoes a prompt decay to a $\ensuremath{\tau}$ lepton and a nearly massless LSP, $\ensuremath{\tau}$ slepton masses between 115 and 340 GeV are excluded. In a scenario in which the lifetime of the $\ensuremath{\tau}$ sleptons corresponds to $c{\ensuremath{\tau}}_{0}=0.1\text{ }\text{ }\mathrm{mm}$, where ${\ensuremath{\tau}}_{0}$ represents the mean proper lifetime of the $\ensuremath{\tau}$ slepton, masses between 150 and 220 GeV are excluded.
DOI: 10.1103/physrevlett.131.061801
2023
Cited 7 times
Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cc[over ¯], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at sqrt[s]=13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cc[over ¯] in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cc[over ¯]) is 0.94 (0.50_{-0.15}^{+0.22})pb at 95% confidence level (C.L.), corresponding to 14 (7.6_{-2.3}^{+3.4}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κ_{c}, the observed (expected) 95% C.L. interval is 1.1<|κ_{c}|<5.5 (|κ_{c}|<3.4), the most stringent constraint to date.
DOI: 10.1103/physrevd.100.052003
2019
Cited 42 times
Search for vectorlike leptons in multilepton final states in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for vectorlike leptons in multilepton final states is presented. The data sample corresponds to an integrated luminosity of 77.4 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016 and 2017. Events are categorized by the multiplicity of electrons, muons, and hadronically decaying τ leptons. The missing transverse momentum and the scalar sum of the lepton transverse momenta are used to distinguish the signal from background. The observed results are consistent with the expectations from the standard model hypothesis. The existence of a vectorlike lepton doublet, coupling to the third-generation standard model leptons in the mass range of 120–790 GeV, is excluded at 95% confidence level. These are the most stringent limits yet on the production of a vectorlike lepton doublet, coupling to the third-generation standard model leptons.Received 26 May 2019DOI:https://doi.org/10.1103/PhysRevD.100.052003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsHypothetical fermionsTechniquesHadron collidersParticles & Fields
DOI: 10.1103/physrevd.100.072001
2019
Cited 40 times
Search for pair production of vectorlike quarks in the fully hadronic final state
The results of two searches for pair production of vectorlike T or B quarks in fully hadronic final states are presented, using data from the CMS experiment at a center-of-mass energy of 13 TeV. The data were collected at the LHC during 2016 and correspond to an integrated luminosity of 35.9 fb−1. A cut-based analysis specifically targets the bW decay mode of the T quark and allows for the reconstruction of the T quark candidates. In a second analysis, a multiclassification algorithm, the "boosted event shape tagger," is deployed to label candidate jets as originating from top quarks, and W, Z, and H. Candidate events are categorized according to the multiplicities of identified jets, and the scalar sum of all observed jet momenta is used to discriminate signal events from the quantum chromodynamics multijet background. Both analyses probe all possible branching fraction combinations of the T and B quarks and set limits at 95% confidence level on their masses, ranging from 740 to 1370 GeV. These results represent a significant improvement relative to existing searches in the fully hadronic final state.1 MoreReceived 27 June 2019DOI:https://doi.org/10.1103/PhysRevD.100.072001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasHypothetical particle physics modelsPhysical SystemsQuarksTechniquesHadron collidersParticles & Fields
DOI: 10.1007/jhep05(2019)048
2019
Cited 39 times
Prospects for measurements with strange hadrons at LHCb
This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons. The analyses performed so far are reviewed, elaborating on the prospects for some key decay channels, while proposing some new measurements in LHCb to expand its strangeness research program.
DOI: 10.1088/2632-2153/ab9023
2020
Cited 37 times
A deep neural network to search for new long-lived particles decaying to jets
A tagging algorithm to identify jets that are significantly displaced from the proton-proton (pp) collision region in the CMS detector at the LHC is presented. Displaced jets can arise from the decays of long-lived particles (LLPs), which are predicted by several theoretical extensions of the standard model. The tagger is a multiclass classifier based on a deep neural network, which is parameterised according to the proper decay length $\mathrm{c}\tau_0$ of the LLP. A novel scheme is defined to reliably label jets from LLP decays for supervised learning. Samples of pp collision data, recorded by the CMS detector at a centre-of-mass energy of 13 TeV, and simulated events are used to train the neural network. Domain adaptation by backward propagation is performed to improve the simulation modelling of the jet class probability distributions observed in pp collision data. The potential performance of the tagger is demonstrated with a search for long-lived gluinos, a manifestation of split supersymmetric models. The tagger provides a rejection factor of 10 000 for jets from standard model processes, while maintaining an LLP jet tagging efficiency of 30-80% for gluinos with 1 mm $\leq$ $c\tau_0$ $\leq$ 10 m. The expected coverage of the parameter space for split supersymmetry is presented.
DOI: 10.1088/1748-0221/15/02/p02027
2020
Cited 35 times
Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at √<i>s</i> = 13 TeV
The CMS detector at the LHC has recorded events from proton-proton collisions, with muon momenta reaching up to 1.8 TeV in the collected dimuon samples. These high-momentum muons allow direct access to new regimes in physics beyond the standard model. Because the physics and reconstruction of these muons are different from those of their lower-momentum counterparts, this paper presents for the first time dedicated studies of efficiencies, momentum assignment, resolution, scale, and showering of very high momentum muons produced at the LHC. These studies are performed using the 2016 and 2017 data sets of proton-proton collisions at $\sqrt{s} =$ 13 TeV with integrated luminosities of 36.3 and 42.1 fb$^{-1}$, respectively.
DOI: 10.1016/j.physletb.2019.134876
2019
Cited 34 times
Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2016–2018. Candidate signal events containing nonprompt jets are identified using the timing capabilities of the CMS electromagnetic calorimeter. The results of the search are consistent with the background prediction and are interpreted using a gauge-mediated supersymmetry breaking reference model with a gluino next-to-lightest supersymmetric particle. In this model, gluino masses up to 2100, 2500, and 1900 GeV are excluded at 95% confidence level for proper decay lengths of 0.3, 1, and 100 m, respectively. These are the best limits to date for such massive gluinos with proper decay lengths greater than ∼0.5 m.
DOI: 10.1007/jhep03(2020)056
2020
Cited 34 times
Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV
A bstract A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb − 1 , collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be σ ( $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>Z</mml:mi> </mml:math> ) = 0 . 95 ± 0 . 05 (stat) ± 0 . 06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.
DOI: 10.1016/j.physletb.2020.135578
2020
Cited 34 times
Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ+μ− in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb−1. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+μ− in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b¯ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass.
DOI: 10.1007/jhep01(2020)096
2020
Cited 31 times
Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV
A search is presented for a charged Higgs boson heavier than the top quark, produced in association with a top quark, or with a top and a bottom quark, and decaying into a top-bottom quark-antiquark pair. The search is performed using proton-proton collision data collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. Events are selected by the presence of a single isolated charged lepton (electron or muon) or an opposite-sign dilepton (electron or muon) pair, categorized according to the jet multiplicity and the number of jets identified as originating from b quarks. Multivariate analysis techniques are used to enhance the discrimination between signal and background in each category. The data are compatible with the standard model, and 95% confidence level upper limits of 9.6–0.01 pb are set on the charged Higgs boson production cross section times branching fraction to a top-bottom quark-antiquark pair, for charged Higgs boson mass hypotheses ranging from 200 GeV to 3 TeV. The upper limits are interpreted in different minimal supersymmetric extensions of the standard model.
DOI: 10.1103/physrevlett.126.252003
2021
Cited 28 times
Observation of a New Excited Beauty Strange Baryon Decaying to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msubsup><mml:mi mathvariant="normal">Ξ</mml:mi><mml:mi>b</mml:mi><mml:mo>−</mml:mo></mml:msubsup><mml:msup><mml:mi>π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>π</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>
The $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass spectrum is investigated with an event sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb$^{-1}$. The ground state $\Xi^-_\mathrm{b}$ is reconstructed via its decays to J$/\psi$ $\Xi^-$ and J$/\psi$ $\Xi^-$ $\Lambda$ K$^-$. A narrow resonance, labeled $\Xi_\mathrm{b}$(6100)$^-$, is observed at a $\Xi^-_\mathrm{b} \pi^+ \pi^-$ invariant mass of 6100.3 $\pm$ 0.2 (stat) $\pm$ 0.1 (syst) $\pm$ 0.6 ($\Xi^-_\mathrm{b}$) MeV, where the last uncertainty reflects the precision of the $\Xi^-_\mathrm{b}$ baryon mass. The upper limit on the $\Xi_\mathrm{b}$(6100)$^-$ natural width is determined to be 1.9 MeV at 95% confidence level. Following analogies with the established excited $\Xi_\mathrm{c}$ baryon states, the new $\Xi_\mathrm{b}$(6100)$^-$ resonance and its decay sequence are consistent with the orbitally excited $\Xi^-_\mathrm{b}$ baryon, with spin and parity quantum numbers $J^P$ $=$ 3/2$^-$.
DOI: 10.1007/jhep03(2021)003
2021
Cited 26 times
Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $$ \sqrt{s} $$ = 13 TeV
Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.
DOI: 10.1016/j.physletb.2020.135992
2021
Cited 24 times
Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10+0.11(stat)−0.03+0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.
DOI: 10.1016/j.physletb.2020.136036
2021
Cited 23 times
Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies
Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.
DOI: 10.1103/physrevd.104.052004
2021
Cited 23 times
Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state
Studies of $CP$ violation and anomalous couplings of the Higgs boson to vector bosons and fermions are presented. The data were acquired by the CMS experiment at the LHC and correspond to an integrated luminosity of $137\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ at a proton-proton collision energy of 13 TeV. The kinematic effects in the Higgs boson's four-lepton decay $H\ensuremath{\rightarrow}4\ensuremath{\ell}$ and its production in association with two jets, a vector boson, or top quarks are analyzed, using a full detector simulation and matrix element techniques to identify the production mechanisms and to increase sensitivity to the tensor structure of the Higgs boson interactions. A simultaneous measurement is performed of up to five Higgs boson couplings to electroweak vector bosons ($HVV$), two couplings to gluons ($Hgg$), and two couplings to top quarks ($Htt$). The $CP$ measurement in the $Htt$ interaction is combined with the recent measurement in the $H\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}$ channel. The results are presented in the framework of anomalous couplings and are also interpreted in the framework of effective field theory, including the first study of $CP$ properties of the $Htt$ and effective $Hgg$ couplings from a simultaneous analysis of the gluon fusion and top-associated processes. The results are consistent with the standard model of particle physics.
DOI: 10.1007/jhep06(2022)012
2022
Cited 16 times
Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
The first measurement of the CP structure of the Yukawa coupling between the Higgs boson and $τ$ leptons is presented. The measurement is based on data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The analysis uses the angular correlation between the decay planes of $τ$ leptons produced in Higgs boson decays. The effective mixing angle between CP-even and CP-odd $τ$ Yukawa couplings is found to be $-$1 $\pm$ 19$^\circ$, compared to an expected value of 0 $\pm$ 21$^\circ$ at the 68.3% confidence level. The data disfavour the pure CP-odd scenario at 3.0 standard deviations. The results are compatible with predictions for the standard model Higgs boson.
DOI: 10.1088/1748-0221/17/07/p07023
2022
Cited 15 times
Identification of hadronic tau lepton decays using a deep neural network
Abstract A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ( τ h ) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10–30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at √ s = 13 TeV.
DOI: 10.1007/jhep04(2022)091
2022
Cited 15 times
Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV collected in the three-year period 2016–2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb − 1 . The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $$ {\overset{\sim }{\upchi}}_2^0/{\overset{\sim }{\upchi}}_1^{\pm } $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mover> <mml:mi>χ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>2</mml:mn> <mml:mn>0</mml:mn> </mml:msubsup> <mml:mo>/</mml:mo> <mml:msubsup> <mml:mover> <mml:mi>χ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> <mml:mo>±</mml:mo> </mml:msubsup> </mml:math> masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205(150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter μ up to 180 GeV with the bino mass parameter M 1 at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.
DOI: 10.1103/physrevd.105.112007
2022
Cited 14 times
Inclusive nonresonant multilepton probes of new phenomena at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.
DOI: 10.1103/physrevlett.129.081802
2022
Cited 14 times
Search for Higgs Boson Pair Production in the Four <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>b</mml:mi></mml:math> Quark Final State in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of 138 fb^{-1}. No deviation from the background-only hypothesis is observed. A 95% confidence level upper limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-coupling, κ_{λ}, and of the coupling of two Higgs bosons to two vector bosons, κ_{2 V}. The observed (expected) allowed intervals at the 95% confidence level are -2.3<κ_{λ}<9.4 (-5.0<κ_{λ}<12.0) and -0.1<κ_{2 V}<2.2 (-0.4<κ_{2 V}<2.5). These are the most stringent observed constraints to date on the HH production cross section and on the κ_{2 V } coupling.
DOI: 10.1038/s41567-022-01838-y
2023
Cited 6 times
Observation of triple J/ψ meson production in proton-proton collisions
Abstract Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be $$27{2}_{-104}^{+141}\,{{{\rm{(stat)}}}}\,\pm 17\,{{{\rm{(syst)}}}}\,{{{\rm{fb}}}}\,$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>27</mml:mn> <mml:msubsup> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>104</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>141</mml:mn> </mml:mrow> </mml:msubsup> <mml:mspace /> <mml:mi>(stat)</mml:mi> <mml:mspace /> <mml:mo>±</mml:mo> <mml:mn>17</mml:mn> <mml:mspace /> <mml:mi>(syst)</mml:mi> <mml:mspace /> <mml:mi>fb</mml:mi> </mml:mrow> </mml:math> , and compared it to theoretical expectations for triple-J/ ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.
DOI: 10.1007/jhep05(2023)233
2023
Cited 5 times
Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract Results are presented from a search for the Higgs boson decay H → Zγ, where Z → ℓ + ℓ − with ℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb − 1 . Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ , defined as the product of the cross section and the branching fraction $$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>pp</mml:mi> <mml:mo>→</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math> relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ + ℓ − γ invariant mass distributions in all categories and is measured to be μ = 2 . 4 ± 0 . 9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to $$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>pp</mml:mi> <mml:mo>→</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0.21</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> </mml:math> pb. The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions $$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> <mml:mo>/</mml:mo> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>γγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:math> is measured to be $$ {1.5}_{-0.6}^{+0.7} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mn>1.5</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.7</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , which agrees with the standard model prediction of 0 . 69 ± 0 . 04 at the 1.5 standard deviation level.
DOI: 10.1140/epjc/s10052-023-11632-6
2023
Cited 5 times
Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at $$\sqrt{s}=13\,\text {Te\hspace{-.08em}V} $$
Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal strength modifier $\mu$, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be $\mu$ = 0.95 $^{+0.10}_{-0.09}$. All results are found to be compatible with the standard model within the uncertainties.
DOI: 10.1007/jhep03(2020)034
2020
Cited 29 times
Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for a heavy Higgs boson in the mass range from 0.2 to 3.0 TeV, decaying to a pair of W bosons, is presented. The analysis is based on proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The W boson pair decays are reconstructed in the 2$\ell$2$\nu$ and $\ell\nu$2q final states (with $\ell =$ e or $\mu$). Both gluon fusion and vector boson fusion production of the signal are considered. Interference effects between the signal and background are also taken into account. The observed data are consistent with the standard model (SM) expectation. Combined upper limits at 95% confidence level on the product of the cross section and branching fraction exclude a heavy Higgs boson with SM-like couplings and decays up to 1870 GeV. Exclusion limits are also set in the context of a number of two-Higgs-doublet model formulations, further reducing the allowed parameter space for SM extensions.
DOI: 10.1007/jhep08(2020)139
2020
Cited 29 times
Search for a light pseudoscalar Higgs boson in the boosted μμττ final state in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H $\to$ aa $\to$ $\mu\mu\tau\tau$, and considers pseudoscalar masses in the range 3.6 $\lt$ $m_\mathrm{a}$ $\lt$ 21 GeV. Because of the large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the $\mu\mu$ and the $\tau\tau$ pairs have high Lorentz boost and are collimated. The $\tau\tau$ reconstruction efficiency is increased by modifying the standard technique for hadronic $\tau$ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of $m_\mathrm{a}$, on the branching fraction ($\mathcal{B}$) for H $\to$ aa $\to$ $\mu\mu\tau\tau$, down to 1.5 (2.0) $\times$ 10$^{-4}$ for $m_\mathrm{H} =$ 125 (300) GeV. Model-dependent limits on $\mathcal{B}$(H $\to$ aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV.
DOI: 10.1016/j.physletb.2020.135345
2020
Cited 28 times
Study of excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:math> states decaying to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">b</…
A study of excited $\Lambda_\mathrm{b}^0$ baryons is reported, based on a data sample collected in 2016-2018 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. The existence of four excited $\Lambda_\mathrm{b}^0$ states: $\Lambda_\mathrm{b}$(5912)$^0$, $\Lambda_\mathrm{b}$(5920)$^0$, $\Lambda_\mathrm{b}$(6146)$^0$, and $\Lambda_\mathrm{b}$(6152)$^0$ in the $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass spectrum is confirmed, and their masses are measured. The $\Lambda_\mathrm{b}^0\pi^+\pi^-$ mass distribution exhibits a broad excess of events in the region of 6040-6100 MeV, whose origin cannot be discerned with the present data.
DOI: 10.1016/j.physletb.2020.135263
2020
Cited 27 times
Running of the top quark mass from proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
The running of the top quark mass is experimentally investigated for the first time. The mass of the top quark in the modified minimal subtraction (MS‾) renormalization scheme is extracted from a comparison of the differential top quark-antiquark (tt¯) cross section as a function of the invariant mass of the tt¯ system to next-to-leading-order theoretical predictions. The differential cross section is determined at the parton level by means of a maximum-likelihood fit to distributions of final-state observables. The analysis is performed using tt¯ candidate events in the e± μ∓ channel in proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9fb−1. The extracted running is found to be compatible with the scale dependence predicted by the corresponding renormalization group equation. In this analysis, the running is probed up to a scale of the order of 1 TeV.
DOI: 10.1007/jhep03(2020)051
2020
Cited 27 times
Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb − 1 of proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, collected with the CMS detector at the LHC in 2016–2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15–75 and 108–340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.
DOI: 10.1007/jhep03(2020)131
2020
Cited 27 times
A search for the standard model Higgs boson decaying to charm quarks
A bstract A direct search for the standard model Higgs boson, H, produced in association with a vector boson, V (W or Z), and decaying to a charm quark pair is presented. The search uses a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb − 1 , collected by the CMS experiment at the LHC in 2016, at a centre-of-mass energy of 13 TeV. The search is carried out in mutually exclusive channels targeting specific decays of the vector bosons: W → ℓ ν , Z → ℓℓ, and Z → νν , where ℓ is an electron or a muon. To fully exploit the topology of the H boson decay, two strategies are followed. In the first one, targeting lower vector boson transverse momentum, the H boson candidate is reconstructed via two resolved jets arising from the two charm quarks from the H boson decay. A second strategy identifies the case where the two charm quark jets from the H boson decay merge to form a single jet, which generally only occurs when the vector boson has higher transverse momentum. Both strategies make use of novel methods for charm jet identification, while jet substructure techniques are also exploited to suppress the background in the merged-jet topology. The two analyses are combined to yield a 95% confidence level observed (expected) upper limit on the cross section $$ \sigma \left(\mathrm{VH}\right)\mathrm{\mathcal{B}}\left(\mathrm{H}\to \mathrm{c}\overline{\mathrm{c}}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mi>VH</mml:mi> </mml:mfenced> <mml:mi>ℬ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>c</mml:mi> <mml:mover> <mml:mi>c</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:mfenced> </mml:math> of 4.5 $$ \left({2.4}_{-0.7}^{+1.0}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:msubsup> <mml:mn>2.4</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.7</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> </mml:msubsup> </mml:mfenced> </mml:math> pb, corresponding to 70 (37) times the standard model prediction.
DOI: 10.1140/epjc/s10052-020-7739-7
2020
Cited 27 times
Search for direct pair production of supersymmetric partners to the $${\uptau }_{}^{}$$ lepton in proton–proton collisions at $$\sqrt{s}=13\,\text {TeV} $$
A search is presented for τ slepton pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV . The search is carried out in events containing two τ leptons in the final state, on the assumption that each τ slepton decays primarily to a τ lepton and a neutralino. Events are considered in which each τ lepton decays to one or more hadrons and a neutrino, or in which one of the τ leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2 fb-1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for τ slepton pair production in various models for τ slepton masses between 90 and 200 GeV and neutralino masses of 1, 10, and 20 GeV . In the case of purely left-handed τ slepton production and decay to a τ lepton and a neutralino with a mass of 1 GeV , the strongest limit is obtained for a τ slepton mass of 125 GeV at a factor of 1.14 larger than the theoretical cross section.
DOI: 10.1007/jhep03(2020)055
2020
Cited 27 times
Search for new neutral Higgs bosons through the $$ \mathrm{H}\to \mathrm{ZA}\to {\ell}^{+}{\ell}^{-}\mathrm{b}\overline{\mathrm{b}} $$ process in pp collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb − 1 . Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.
DOI: 10.1016/j.physletb.2020.135285
2020
Cited 26 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="normal">t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">t</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover><mml:mi mathvariant="normal">b</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover></mml:math> production cross section in the all-jet final state in pp collisions at <mml:math …
A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat) ${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.
DOI: 10.1007/jhep06(2020)076
2020
Cited 25 times
Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV and constraints on anomalous quartic couplings
A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.
DOI: 10.1016/j.physletb.2020.135988
2020
Cited 25 times
Observation of electroweak production of Wγ with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV
A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj production in a restricted fiducial region is measured as 20.4±4.5fb and the total cross section for Wγ production in association with 2 jets in the same fiducial region is 108±16fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.
DOI: 10.1103/physrevd.102.112004
2020
Cited 24 times
Search for bottom-type, vectorlike quark pair production in a fully hadronic final state in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search is described for the production of a pair of bottom-type vectorlike quarks (VLQs), each decaying into a b or ¯b quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb−1. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.4 MoreReceived 22 August 2020Accepted 9 October 2020DOI:https://doi.org/10.1103/PhysRevD.102.112004Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2020 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsBottom quarkHypothetical particlesTechniquesHadron collidersParticles & Fields
DOI: 10.1016/j.physletb.2020.136018
2021
Cited 22 times
Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV
The first measurements of production cross sections of polarized same-sign W$^\pm$W$^\pm$ boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W$^\pm$W$^\pm$ scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on the production cross section for longitudinally polarized same-sign W$^\pm$W$^\pm$ boson pairs. The electroweak production of same-sign W$^\pm$W$^\pm$ boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.
DOI: 10.1140/epjc/s10052-020-08817-8
2021
Cited 20 times
Measurements of $${\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} $$ production cross sections and constraints on anomalous triple gauge couplings at $$\sqrt{s} = 13\,\text {TeV} $$
The production of Z boson pairs in proton-proton ( pp ) collisions, pp→(Z/γ∗)(Z/γ∗)→2ℓ2ℓ' , where ℓ,ℓ'=e or μ , is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 fb-1 , collected during 2016-2018. The ZZ production cross section, σtot(pp→ZZ)=17.4±0.3(stat)±0.5(syst)±0.4(theo)±0.3(lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60<mℓ+ℓ-<120GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZγ couplings.
DOI: 10.1007/jhep03(2021)095
2021
Cited 20 times
Search for new physics in top quark production with additional leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV using effective field theory
A bstract Events containing one or more top quarks produced with additional prompt leptons are used to search for new physics within the framework of an effective field theory (EFT). The data correspond to an integrated luminosity of 41.5 fb − 1 of proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, collected by the CMS experiment in 2017. The selected events are required to have either two leptons with the same charge or more than two leptons; jets, including identified bottom quark jets, are also required, and the selected events are divided into categories based on the multiplicities of these objects. Sixteen dimension-six operators that can affect processes involving top quarks produced with additional charged leptons are considered in this analysis. Constructed to target EFT effects directly, the analysis applies a novel approach in which the observed yields are parameterized in terms of the Wilson coefficients (WCs) of the EFT operators. A simultaneous fit of the 16 WCs to the data is performed and two standard deviation confidence intervals for the WCs are extracted; the standard model expectations for the WC values are within these intervals for all of the WCs probed.
DOI: 10.1016/j.physletb.2021.136385
2021
Cited 19 times
Measurement of the azimuthal anisotropy of and mesons in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</…
The second-order Fourier coefficients ($v_2$) characterizing the azimuthal distribution of $\Upsilon$(1S) and $\Upsilon$(2S) mesons arising from PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the $v_2$ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y|$ $\lt$ 2.4, with the transverse momentum 0 $\lt$ $p_\mathrm{T}$ $\lt$ 50 GeV/$c$, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/$\psi$ mesons, the measured $v_2$ values for the $\Upsilon$ mesons are found to be consistent with zero.
DOI: 10.1016/j.physletb.2021.136188
2021
Cited 19 times
Measurement of the CP-violating phase ϕs in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">s</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">→</mml:mo><mml:mi mathvariant="normal">J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi mathvariant="normal">ψ</mml:mi><mml:mspace width="0.2em" /><mml:mi …
The CP -violating weak phase ϕs and the decay width difference ΔΓs between the light and heavy Bs0 mass eigenstates are measured with the CMS detector at the LHC in a sample of 48500 reconstructed Bs0→J/ψϕ(1020)→μ+μ−K+K− events. The measurement is based on a data sample corresponding to an integrated luminosity of 96.4fb−1, collected in proton-proton collisions at s=13TeV in 2017–2018. To extract the values of ϕs and ΔΓs, a time-dependent and flavor-tagged angular analysis of the μ+μ−K+K− final state is performed. The analysis employs a dedicated tagging trigger and a novel opposite-side muon flavor tagger based on machine learning techniques. The measurement yields ϕs=−11±50(stat)±10(syst)mrad and ΔΓs=0.114±0.014(stat)±0.007(syst)ps−1, in agreement with the standard model predictions. When combined with the previous CMS measurement at s=8TeV, the following values are obtained: ϕs=−21±44(stat)±10(syst)mrad, ΔΓs=0.1032±0.0095(stat)±0.0048(syst)ps−1, a significant improvement over the 8 TeV result.
DOI: 10.1140/epjc/s10052-021-09721-5
2021
Cited 19 times
Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at $$\sqrt{s} = 13\,\text {Te}\text {V} $$
Abstract A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Te</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> at the CERN LHC, corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> for a massless neutralino, and a neutralino mass up to 700 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> for a top squark mass of 1150 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> . Top squarks with masses from 145 to 295 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> , for neutralino masses from 0 to 100 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> , with a mass difference between the top squark and the neutralino in a window of 30 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> .
DOI: 10.1140/epjc/s10052-022-10127-0
2022
Cited 13 times
Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at $$\sqrt{s}=13\,\text {TeV} $$
A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton-proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$, at a center-of-mass energy $\sqrt{s} =$ 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.
DOI: 10.1007/jhep07(2022)032
2022
Cited 13 times
Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at $$ \sqrt{s} $$ = 13 TeV
The associated production of a W and a Z boson is studied in final states with multiple leptons produced in proton-proton (pp) collisions at a centre-of-mass energy of 13 TeV using 137 fb$^{-1}$ of data collected with the CMS detector at the LHC. A measurement of the total inclusive production cross section yields $\sigma_{\text{tot}}$(pp $\to$ WZ) = 50.6 $\pm$ 0.8 (stat) $\pm$ 1.5 (syst) $\pm$ 1.1 (lumi) $\pm$ 0.5 (theo) pb. Measurements of the fiducial and differential cross sections for several key observables are also performed in all the final-state lepton flavour and charge compositions with a total of three charged leptons, which can be electrons or muons. All results are compared with theoretical predictions computed up to next-to-next-to-leading order in quantum chromodynamics plus next-to-leading order in electroweak theory and for various sets of parton distribution functions. The results include direct measurements of the charge asymmetry and the W and Z vector boson polarization. The first observation of longitudinally polarized W bosons in WZ production is reported. Anomalous gauge couplings are searched for, leading to new constraints on beyond-the-standard-model contributions to the WZ triple gauge coupling.
DOI: 10.1007/jhep07(2022)081
2022
Cited 13 times
Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ =13 TeV
A bstract A search for heavy neutral leptons (HNLs), the right-handed Dirac or Majorana neutrinos, is performed in final states with three charged leptons (electrons or muons) using proton-proton collision data collected by the CMS experiment at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV at the CERN LHC. The data correspond to an integrated luminosity of 138 fb − 1 . The HNLs could be produced through mixing with standard model neutrinos ν . For small values of the HNL mass ( &lt; 20 GeV) and the square of the HNL- ν mixing parameter (10 − 7 –10 − 2 ), the decay length of these particles can be large enough so that the secondary vertex of the HNL decay can be resolved with the CMS silicon tracker. The selected final state consists of one lepton emerging from the primary proton-proton collision vertex, and two leptons forming a displaced, secondary vertex. No significant deviations from the standard model expectations are observed, and constraints are obtained on the HNL mass and coupling strength parameters, excluding previously unexplored regions of parameter space in the mass range 1–20 GeV and squared mixing parameter values as low as 10 − 7 .
DOI: 10.1007/jhep04(2022)047
2022
Cited 12 times
Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for a right-handed W boson (W R ) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or μμ) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb − 1 . The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of W R production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses m N equal to half the W R mass $$ {m}_{{\mathrm{W}}_{\mathrm{R}}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>R</mml:mi> </mml:msub> </mml:msub> </mml:math> ( m N = 0 . 2 TeV), $$ {m}_{{\mathrm{W}}_{\mathrm{R}}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>R</mml:mi> </mml:msub> </mml:msub> </mml:math> is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the W R mass to date.
DOI: 10.1007/jhep06(2022)156
2022
Cited 12 times
Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV
A bstract The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb −1 , collected with the CMS detector at the CERN LHC, at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z′ mediator produced as a resonance in proton-proton collisions. The mediator decay results in two “semivisible” jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z′ boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5–4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.
DOI: 10.1103/physrevlett.128.122301
2022
Cited 12 times
Using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi></mml:math> Boson Events to Study Parton-Medium Interactions in Pb-Pb Collisions
The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson are reported in lead-lead nuclei (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both Pb-Pb and pp data sets are recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 1.7 nb^{-1} and 320 pb^{-1}, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum p_{T}>30 GeV/c are analyzed. The Z boson constrains the initial energy and direction of the associated parton. In heavy ion events, azimuthal angular distributions of charged hadrons with respect to the direction of a Z boson are sensitive to modifications of the in-medium parton shower and medium response. compared to reference data from pp interactions, the results for central Pb-Pb collisions indicate a modification of the angular correlations. The measurements of the fragmentation functions and p_{T} spectra of charged particles in Z boson events, which are sensitive to medium modifications of the parton shower longitudinal structure, are also reported. Significant modifications in central Pb-Pb events compared to the pp reference data are also found for these observables.
DOI: 10.1140/epjc/s10052-022-10027-3
2022
Cited 11 times
Search for long-lived particles decaying to leptons with large impact parameter in proton–proton collisions at $$\sqrt{s} = 13\,\text {Te}\text {V} $$
A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.
DOI: 10.1007/jhep02(2022)142
2022
Cited 11 times
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A measurement of the inclusive jet production in proton-proton collisions at the LHC at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum p T and the absolute jet rapidity |y| . The anti- k T clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet p T from 97 GeV up to 3.1 TeV and |y| &lt; 2 . 0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb − 1 (33.5 fb − 1 ). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as α S ( m Z ) = 0 . 1170 ± 0 . 0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient c 1 of 4-quark contact interactions.
DOI: 10.1103/physrevlett.129.011801
2022
Cited 11 times
First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp→pγγp with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb^{-1} collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons match the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% confidence level are |ζ_{1}|<2.9×10^{-13} GeV^{-4} and |ζ_{2}|<6.0×10^{-13} GeV^{-4}.
DOI: 10.1103/physrevlett.129.032001
2022
Cited 11 times
Search for Flavor-Changing Neutral Current Interactions of the Top Quark and Higgs Boson in Final States with Two Photons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. No significant excess above the background prediction is observed. Upper limits on the branching fractions (B) of the top quark decaying to a Higgs boson and an up (u) or charm (c) quark are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019% (0.031%) for B(t→Hu) and 0.073% (0.051%) for B(t→Hc). These are the strictest upper limits yet determined.
DOI: 10.1140/epjc/s10052-023-11452-8
2023
Cited 4 times
Measurements of Higgs boson production in the decay channel with a pair of $$\uptau $$ leptons in proton–proton collisions at $$\sqrt{s}=13$$ TeV
Abstract Measurements of Higgs boson production, where the Higgs boson decays into a pair of $$\uptau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of "Equation missing"<!-- image only, no MathML or LaTex -->, corresponding to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $$\uptau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be $$0.82\pm 0.11$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.82</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.11</mml:mn> </mml:mrow> </mml:math> for inclusive Higgs boson production, $$0.67\pm 0.19$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.67</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.19</mml:mn> </mml:mrow> </mml:math> ( $$0.81\pm 0.17$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.81</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.17</mml:mn> </mml:mrow> </mml:math> ) for the production mainly via gluon fusion (vector boson fusion), and $$1.79\pm 0.45$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1.79</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:math> for vector boson associated Higgs boson production.
DOI: 10.1007/jhep07(2023)095
2023
Cited 4 times
Search for Higgs boson pairs decaying to WW*WW*, WW*ττ, and ττττ in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.
DOI: 10.1007/jhep07(2023)161
2023
Cited 4 times
Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric $R$-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.
DOI: 10.1007/jhep07(2023)219
2023
Cited 4 times
Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
The production of a top quark-antiquark pair in association with a W boson ($\mathrm{t\bar{t}}$W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive $\mathrm{t\bar{t}}$W production cross section in the full phase space is measured to be 868 $\pm$ 40 (stat) $\pm$ 51 (syst) fb. The $\mathrm{t\bar{t}}$W$^+$ and $\mathrm{t\bar{t}}$W$^-$ cross sections are also measured as 553 $\pm$ 30 (stat) $\pm$ 30 (syst) and 343 $\pm$ 26 (stat) $\pm$ 25 (syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61 $\pm$ 0.15 (stat) $^{+0.07}_{-0.05}$ (syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date.
DOI: 10.1140/epjc/s10052-020-7773-5
2020
Cited 23 times
A multi-dimensional search for new heavy resonances decaying to boosted $$\text{ W }{}{}$$ $$\text{ W }{}{}$$ , $$\text{ W }{}{}$$ $$\text{ Z }{}{}$$ , or $$\text{ Z }{}{}$$ $$\text{ Z }{}{}$$ boson pairs in the dijet final state at 13 $$\text {Te}\text {V}$$
A search in an all-jet final state for new massive resonances decaying to WW, WZ, or ZZ boson pairs using a novel analysis method is presented. The analysis is performed on data corresponding to an integrated luminosity of 77.3 fb$^{-1}$ recorded with the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV. The search is focussed on potential resonances with masses above 1.2 TeV, where the decay products of each W or Z boson are expected to be collimated into a single, large-radius jet. The signal is extracted using a three-dimensional maximum likelihood fit of the two jet masses and the dijet invariant mass, yielding an improvement in sensitivity of up to 30% relative to previous search methods. No excess is observed above the estimated standard model background. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 3.5 and 3.8 TeV, respectively, are excluded at 95% confidence level. In a narrow-width bulk graviton model, upper limits on cross sections are set between 27 and 0.2 fb for resonance masses between 1.2 and 5.2 TeV, respectively. The limits presented in this paper are the best to date in the dijet final state.
DOI: 10.1007/jhep05(2021)284
2021
Cited 17 times
First measurement of large area jet transverse momentum spectra in heavy-ion collisions
Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 $\mu$b$^{-1}$ and 27.4 pb$^{-1}$, respectively. Jets with different areas are reconstructed using the anti-$k_\mathrm{T}$ algorithm by varying the distance parameter $R$. The measurements are performed using jets with transverse momenta ($p_\mathrm{T}$) greater than 200 GeV and in a pseudorapidity range of $|\eta|$ $\lt$ 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, $p_\mathrm{T}$ and, for the first time, as a function of $R$ up to 1.0. For the most central collisions, a strong suppression is observed for high-$p_\mathrm{T}$ jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on $R$ is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.