ϟ

Jan Kašpar

Here are all the papers by Jan Kašpar that you can download and read on OA.mg.
Jan Kašpar’s last known institution is . Download Jan Kašpar PDFs here.

Claim this Profile →
DOI: 10.1209/0295-5075/96/21002
2011
Cited 240 times
First measurement of the total proton-proton cross-section at the LHC energy of \chem{\sqrt{s} = 7\,TeV}
TOTEM has measured the differential cross-section for elastic proton-proton scattering at the LHC energy of analysing data from a short run with dedicated large-β* optics. A single exponential fit with a slope B=(20.1±0.2stat±0.3syst) GeV−2 describes the range of the four-momentum transfer squared |t| from 0.02 to 0.33 GeV2. After the extrapolation to |t|=0, a total elastic scattering cross-section of (24.8±0.2stat±1.2syst) mb was obtained. Applying the optical theorem and using the luminosity measurement from CMS, a total proton-proton cross-section of (98.3±0.2stat±2.8syst) mb was deduced which is in good agreement with the expectation from the overall fit of previously measured data over a large range of center-of-mass energies. From the total and elastic pp cross-section measurements, an inelastic pp cross-section of was inferred.
DOI: 10.1209/0295-5075/101/21002
2013
Cited 223 times
Measurement of proton-proton elastic scattering and total cross-section at \chem{\sqrt {s} = 7\,TeV}
At the LHC energy of , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σbeam) in a dedicated run with β* = 90 m, |t|-values down to 5·10−3 GeV2 were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV−2 over the large |t|-range from 0.005 to 0.2 GeV2 describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).
DOI: 10.1155/2016/6194250
2016
Cited 214 times
Current Status and Future Prospects of the SNO+ Experiment
SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.
DOI: 10.1103/physrevlett.111.012001
2013
Cited 200 times
Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
The TOTEM collaboration has measured the proton-proton total cross section at √s=8 TeV using a luminosity-independent method. In LHC fills with dedicated beam optics, the Roman pots have been inserted very close to the beam allowing the detection of ~90% of the nuclear elastic scattering events. Simultaneously the inelastic scattering rate has been measured by the T1 and T2 telescopes. By applying the optical theorem, the total proton-proton cross section of (101.7±2.9) mb has been determined, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: σ(el)=(27.1±1.4) mb; σ(inel)=(74.7±1.7) mb.
DOI: 10.1209/0295-5075/101/21004
2013
Cited 174 times
Luminosity-independent measurements of total, elastic and inelastic cross-sections at \chem{\sqrt {s} = 7\,TeV}
The TOTEM experiment at the LHC has performed the first luminosity-independent determination of the total proton-proton cross-section at . This technique is based on the optical theorem and requires simultaneous measurements of the inelastic rate – accomplished with the forward charged-particle telescopes T1 and T2 in the range 3.1 < |η| < 6.5 – and of the elastic rate by detecting the outcoming protons with Roman Pot detectors. The data presented here were collected in a dedicated run in 2011 with special beam optics (β* = 90 m) and Roman Pots approaching the beam close enough to register elastic events with squared four-momentum transfers |t| as low as 5·10−3 GeV2. The luminosity-independent results for the elastic, inelastic and total cross-sections are σel = (25.1 ± 1.1) mb, σinel = (72.9 ± 1.5) mb and σtot = (98.0 ± 2.5) mb, respectively. At the same time this method yields the integrated luminosity, in agreement with measurements by CMS. TOTEM has also determined the total cross-section in two complementary ways, both using the CMS luminosity measurement as an input. The first method sums the elastic and inelastic cross-sections and thus does not depend on the ρ parameter. The second applies the optical theorem to the elastic-scattering measurements only and therefore is free of the T1 and T2 measurement uncertainties. The methods, having very different systematic dependences, give results in excellent agreement. Moreover, the ρ-independent measurement makes a first estimate for the ρ parameter at possible: |ρ| = 0.145 ± 0.091.
DOI: 10.1016/j.nuclphysb.2015.08.010
2015
Cited 154 times
Evidence for non-exponential elastic proton–proton differential cross-section at low |t| and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math> by TOTEM
The TOTEM experiment has made a precise measurement of the elastic proton–proton differential cross-section at the centre-of-mass energy s=8TeV based on a high-statistics data sample obtained with the β⁎=90m optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027<|t|<0.2GeV2 with a significance greater than 7σ. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t=0, and further applying the optical theorem, yields total cross-section estimates of (101.5±2.1)mb and (101.9±2.1)mb, respectively, in agreement with previous TOTEM measurements.
DOI: 10.1103/physrevd.103.072002
2021
Cited 127 times
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:math> Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result.
DOI: 10.1103/physrevlett.131.161802
2023
Cited 54 times
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.
DOI: 10.1088/1748-0221/3/08/s08007
2008
Cited 153 times
The TOTEM Experiment at the CERN Large Hadron Collider
The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 ⩽ |η| ⩽ 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.
DOI: 10.1209/0295-5075/95/41001
2011
Cited 139 times
Proton-proton elastic scattering at the LHC energy of \chem{\sqrt{s} = 7\,TeV}
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of . In this letter, first results of the differential cross-section are presented covering a |t|-range from 0.36 to 2.5 GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6 ± 0.5stat ± 0.4syst) GeV−2, followed by a significant diffractive minimum at |t| = (0.53 ± 0.01stat ± 0.01syst) GeV2. For |t|-values larger than ∼1.5 GeV2, the cross-section exhibits a power law behaviour with an exponent of −7.8 ± 0.3stat ± 0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.
DOI: 10.1016/j.jenvrad.2011.06.005
2011
Cited 129 times
Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA
We report results of air monitoring started due to the recent natural catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. We measured the evolution of the activities over a period of 23 days at the end of which the activities had mostly fallen below our detection limit. The highest detected activity amounted to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.
DOI: 10.1140/epjc/s10052-016-4399-8
2016
Cited 98 times
Measurement of elastic pp scattering at $$\sqrt{\hbox {s}} = \hbox {8}$$ s = 8 TeV in the Coulomb–nuclear interference region: determination of the $$\mathbf {\rho }$$ ρ -parameter and the total cross-section
The TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy $$\sqrt{s}=8\,$$ TeV and four-momentum transfers squared, |t|, from $$6\times 10^{-4}$$ to 0.2 GeV $$^{2}$$ . Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the $$\rho $$ -parameter is found to be $$0.12 \pm 0.03$$ . The results for the total hadronic cross-section are $$\sigma _\mathrm{tot} = (102.9 \pm 2.3)$$ mb and $$(103.0 \pm 2.3)$$ mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.
DOI: 10.1140/epjc/s10052-019-6567-0
2019
Cited 88 times
First measurement of elastic, inelastic and total cross-section at $$\sqrt{s}=13$$ s = 13 TeV by TOTEM and overview of cross-section data at LHC energies
The TOTEM collaboration has measured the proton–proton total cross section at $$\sqrt{s}=13~\hbox {TeV}$$ with a luminosity-independent method. Using dedicated $$\beta ^{*}=90~\hbox {m}$$ beam optics, the Roman Pots were inserted very close to the beam. The inelastic scattering rate has been measured by the T1 and T2 telescopes during the same LHC fill. After applying the optical theorem the total proton–proton cross section is $$\sigma _\mathrm{tot}=(110.6~\pm ~3.4$$ ) mb, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: $$\sigma _\mathrm{el}=(31.0~\pm ~1.7)~\hbox {mb}$$ and $$\sigma _\mathrm{inel}=(79.5~\pm ~1.8)~\hbox {mb}$$ .
DOI: 10.1140/epjc/s10052-019-7223-4
2019
Cited 82 times
First determination of the $${\rho }$$ parameter at $${\sqrt{s} = 13}$$ TeV: probing the existence of a colourless C-odd three-gluon compound state
Abstract The TOTEM experiment at the LHC has performed the first measurement at $$\sqrt{s} = 13\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> of the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $$t=0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> , obtaining the following results: $$\rho = 0.09 \pm 0.01$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.09</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:math> and $$\rho = 0.10 \pm 0.01$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.10</mml:mn><mml:mo>±</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:math> , depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> measurement, combined with the TOTEM total cross-section measurements in an energy range larger than $$10\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>10</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> (from 2.76 to $$13\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>13</mml:mn><mml:mspace /><mml:mi>TeV</mml:mi></mml:mrow></mml:math> ), has implied the exclusion of all the models classified and published by COMPETE. The $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> results obtained by TOTEM are compatible with the predictions, from other theoretical models both in the Regge-like framework and in the QCD framework, of a crossing-odd colourless 3-gluon compound state exchange in the t -channel of the proton–proton elastic scattering. On the contrary, if shown that the crossing-odd 3-gluon compound state t -channel exchange is not of importance for the description of elastic scattering, the $$\rho $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ρ</mml:mi></mml:math> value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-| t | reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton–proton cross-section measurement $$\sigma _{\mathrm{tot}} = (110.3 \pm 3.5)\,\mathrm{mb}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>tot</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>110.3</mml:mn><mml:mo>±</mml:mo><mml:mn>3.5</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /><mml:mi>mb</mml:mi></mml:mrow></mml:math> , completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $$\sigma _{\mathrm{tot}} = (110.5 \pm 2.4)\,\mathrm{mb}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>tot</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>110.5</mml:mn><mml:mo>±</mml:mo><mml:mn>2.4</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /><mml:mi>mb</mml:mi></mml:mrow></mml:math> .
DOI: 10.1103/physreva.103.042208
2021
Cited 70 times
Magnetic-field measurement and analysis for the Muon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> Experiment at Fermilab
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^\circ$C. The measured field is weighted by the muon distribution resulting in $\tilde{\omega}'^{}_p$, the denominator in the ratio $\omega^{}_a$/$\tilde{\omega}'^{}_p$ that together with known fundamental constants yields $a^{}_\mu$. The reported uncertainty on $\tilde{\omega}'^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb.
DOI: 10.48550/arxiv.2308.06230
2023
Cited 14 times
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from the Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, $\tilde{\omega}'^{}_p$, and of the anomalous precession frequency corrected for beam dynamics effects, $\omega_a$. From the ratio $\omega_a / \tilde{\omega}'^{}_p$, together with precisely determined external parameters, we determine $a_\mu = 116\,592\,057(25) \times 10^{-11}$ (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain $a_\mu\text{(FNAL)} = 116\,592\,055(24) \times 10^{-11}$ (0.20 ppm). The new experimental world average is $a_\mu (\text{Exp}) = 116\,592\,059(22)\times 10^{-11}$ (0.19 ppm), which represents a factor of 2 improvement in precision.
DOI: 10.1209/0295-5075/101/21003
2013
Cited 67 times
Measurement of proton-proton inelastic scattering cross-section at \chem{\sqrt {s} = 7\,{\mathrm {TeV}}}
The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle was determined to be (70.5 ± 2.9) mb. This cross-section includes all central diffractive events of which maximally 0.25 mb is estimated to escape the detection of the telescopes. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be (73.7 ± 3.4) mb. An upper limit of 6.31 mb at 95% confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle.
DOI: 10.1140/epjc/s10052-019-7346-7
2019
Cited 51 times
Elastic differential cross-section measurement at $$\sqrt{s}=13$$ TeV by TOTEM
Abstract The TOTEM collaboration has measured the elastic proton-proton differential cross section $$\mathrm{d}\sigma /\mathrm{d}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> at $$\sqrt{s}=13$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV LHC energy using dedicated $$\beta ^{*}=90$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>β</mml:mi><mml:mrow><mml:mrow /><mml:mo>∗</mml:mo></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>90</mml:mn></mml:mrow></mml:math> m beam optics. The Roman Pot detectors were inserted to 10 $$\sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>σ</mml:mi></mml:math> distance from the LHC beam, which allowed the measurement of the range [0.04 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> ; 4 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> $$]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>]</mml:mo></mml:math> in four-momentum transfer squared | t |. The efficient data acquisition allowed to collect about 10 $$^{9}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>9</mml:mn></mml:msup></mml:math> elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-| t | tail. The average nuclear slope has been found to be $$B=(20.40 \pm 0.002^{\mathrm{stat}} \pm 0.01^{\mathrm{syst}})~$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>B</mml:mi><mml:mo>=</mml:mo><mml:mo>(</mml:mo><mml:mn>20.40</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>002</mml:mn><mml:mi>stat</mml:mi></mml:msup><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>syst</mml:mi></mml:msup><mml:mo>)</mml:mo><mml:mspace /></mml:mrow></mml:math> GeV $$^{-2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mrow><mml:mo>-</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> in the | t |-range 0.04–0.2 GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> . The dip position is $$|t_{\mathrm{dip}}|=(0.47 \pm 0.004^{\mathrm{stat}} \pm 0.01^{\mathrm{syst}})~$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mi>dip</mml:mi></mml:msub><mml:mrow><mml:mo>|</mml:mo><mml:mo>=</mml:mo></mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>0.47</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>004</mml:mn><mml:mi>stat</mml:mi></mml:msup><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>syst</mml:mi></mml:msup><mml:mo>)</mml:mo></mml:mrow><mml:mspace /></mml:mrow></mml:math> GeV $$^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math> . The differential cross section ratio at the bump vs. at the dip $$R=1.77\pm 0.01^{\mathrm{stat}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:mn>1.77</mml:mn><mml:mo>±</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:msup><mml:mn>01</mml:mn><mml:mi>stat</mml:mi></mml:msup></mml:mrow></mml:math> has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.
DOI: 10.1140/epjc/s10052-020-7654-y
2020
Cited 38 times
Elastic differential cross-section $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ at $$\sqrt{s}=2.76\hbox { TeV}$$ and implications on the existence of a colourless C-odd three-gluon compound state
Abstract The proton–proton elastic differential cross section $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> has been measured by the TOTEM experiment at $$\sqrt{s}=2.76\hbox { TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mspace /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math> energy with $$\beta ^{*}=11\hbox { m}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>β</mml:mi><mml:mrow><mml:mrow /><mml:mo>∗</mml:mo></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>11</mml:mn><mml:mspace /><mml:mtext>m</mml:mtext></mml:mrow></mml:math> beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (| t |) from 0.36 to $$0.74\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.74</mml:mn><mml:mspace /><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> . The differential cross-section can be described with an exponential in the | t |-range between 0.36 and $$0.54\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.54</mml:mn><mml:mspace /><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> , followed by a diffractive minimum (dip) at $$|t_{\mathrm{dip}}|=(0.61\pm 0.03)\hbox { GeV}^{2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mi>dip</mml:mi></mml:msub><mml:mrow><mml:mo>|</mml:mo><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>0.61</mml:mn><mml:mo>±</mml:mo><mml:mn>0.03</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mspace /></mml:mrow><mml:msup><mml:mtext>GeV</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> and a subsequent maximum (bump). The ratio of the $${\mathrm{d}}\sigma /{\mathrm{d}}t$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mi>σ</mml:mi><mml:mo>/</mml:mo><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math> at the bump and at the dip is $$1.7\pm 0.2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.7</mml:mn><mml:mo>±</mml:mo><mml:mn>0.2</mml:mn></mml:mrow></mml:math> . When compared to the proton–antiproton measurement of the D0 experiment at $$\sqrt{s} = 1.96\hbox { TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>1.96</mml:mn><mml:mspace /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math> , a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t -channel of the proton–proton and proton–antiproton elastic scattering.
DOI: 10.1103/physrevaccelbeams.24.044002
2021
Cited 38 times
Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $\omega_a^m$ is 0.50 $\pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $\omega_a^m$.
DOI: 10.5751/es-13509-270420
2022
Cited 21 times
Exploring evolving spiritual values of forests in Europe and Asia: a transition hypothesis toward re-spiritualizing forests
The development of societies, including spiritual development, is closely connected to forests.The larger interrelations among changing societies, transforming forest landscapes, and evolving spiritual values related to forests have yet to be extensively considered.Addressing this research gap is important to avoid the neglect of spiritual values in forest policy and management.Our exploratory study investigates spiritual values of forests from European and Asian perspectives, assessing 13 countries.Based on expert knowledge from 18 interdisciplinary experts, we first define forest spiritual values (forest spirituality).We then elaborate on the idea that forest spirituality evolves as societies and landscapes change, and propose a transition hypothesis for forest spirituality.We identify indicators and drivers and portray four stages of such a transition using country-specific examples.We find that during a first stage ("nature is powerful"), forest spirituality is omnipresent through the abundance of sacred natural sites and practices of people who often directly depend on forests for their livelihoods.An alternative form of spirituality is observed in the second stage ("taming of nature").Connected to increasing transformation of forest landscapes and intensifying land-use practices, "modern" religions guide human-nature interrelations.In a third stage ("rational management of nature"), forest spirituality is overshadowed by planned rational forest management transforming forests into commodities for the economy, often focusing on provisioning ecosystem services.During a fourth stage ("reconnecting with nature"), a revival of forest spirituality (re-spiritualization) can be observed due to factors such as urbanization and individualizing spirituality.Our core contribution is in showing the connections among changing forest perceptions, changing land-use governance and practices, and changing forest spirituality.Increasing the understanding of this relationship holds promise for supporting forest policy-making and management in addressing trade-offs between spiritual values and other aspects of forests.
DOI: 10.1016/j.nima.2015.02.028
2015
Cited 43 times
Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout
The electromagnetic calorimeter for the new muon (g−2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0–4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes vs. energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 10−4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution σ/E of (3.4±0.1)%/E/GeV, while those wrapped in a black, absorptive wrapping had (4.6±0.3)%/E/GeV. The white-wrapped crystals—having nearly twice the total light collection—display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.
DOI: 10.1088/1748-0221/16/05/p05009
2021
Cited 24 times
Development, characterisation, and deployment of the SNO+ liquid scintillator
A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity, ease of handling, and logistical availability. Its properties have been extensively characterized and are presented here. This liquid scintillator is now used in several neutrino physics experiments in addition to SNO+.
DOI: 10.1103/physrevlett.111.262001
2013
Cited 38 times
Double Diffractive Cross-Section Measurement in the Forward Region at the LHC
The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .
DOI: 10.1209/0295-5075/98/31002
2012
Cited 34 times
Measurement of the forward charged-particle pseudorapidity density in <i>pp</i> collisions at √s = 7 TeV with the TOTEM experiment
The TOTEM experiment has measured the charged-particle pseudorapidity density dNch/dη in pp collisions at for 5.3<|η|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward η region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ∼3.4 GeV/c2, corresponding to about 95% of the total inelastic cross-section. The dNch/dη has been found to decrease with |η|, from 3.84 ± 0.01(stat) ± 0.37(syst) at |η|=5.375 to 2.38±0.01(stat)±0.21(syst) at |η|=6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.
DOI: 10.1088/1748-0221/12/01/p01009
2017
Cited 26 times
Design and performance of SiPM-based readout of <i>PbF</i><sub>2</sub> crystals for high-rate, precision timing applications
We have developed a custom amplifier board coupled to a large-format 16-channel Hamamatsu silicon photomultiplier device for use as the light sensor for the electromagnetic calorimeters in the Muon g - 2 experiment at Fermilab. The calorimeter absorber is an array of lead-fluoride crystals, which produces short-duration Cherenkov light. The detector sits in the high magnetic field of the muon storage ring. The SiPMs selected, and their accompanying custom electronics, must preserve the short pulse shape, have high quantum efficiency, be non-magnetic, exhibit gain stability under varying rate conditions, and cover a fairly large fraction of the crystal exit surface area. We describe an optimized design that employs the new-generation of thru-silicon via devices. The performance is documented in a series of bench and beam tests.
DOI: 10.1103/physrevd.99.032008
2019
Cited 22 times
Search for invisible modes of nucleon decay in water with the SNO+ detector
This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of $\mathrm{SNO}+$. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of $2.5\ifmmode\times\else\texttimes\fi{}{10}^{29}\text{ }\text{ }\mathrm{y}$ at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and $3.6\ifmmode\times\else\texttimes\fi{}{10}^{29}\text{ }\text{ }\mathrm{y}$ for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of $1.3\ifmmode\times\else\texttimes\fi{}{10}^{28}\text{ }\text{ }\mathrm{y}$ for $nn$, $2.6\ifmmode\times\else\texttimes\fi{}{10}^{28}\text{ }\text{ }\mathrm{y}$ for $pn$ and $4.7\ifmmode\times\else\texttimes\fi{}{10}^{28}\text{ }\text{ }\mathrm{y}$ for $pp$, an improvement over existing limits by close to 3 orders of magnitude for the latter two.
DOI: 10.1143/ptps.193.180
2012
Cited 24 times
Elastic Scattering and Total Cross-Section in p+p Reactions
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √s = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV2. Extending the range of data to low t values from 0.02 to 0.33 GeV2, and utilizing the luminosity measurements of CMS, the total proton-proton cross section at √s = 7 TeV is measured to be (98.3 ±0.2stat ±2.8syst) mb.
DOI: 10.1142/s0217751x13300469
2013
Cited 23 times
PERFORMANCE OF THE TOTEM DETECTORS AT THE LHC
The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.
DOI: 10.1088/1748-0221/12/03/p03007
2017
Cited 22 times
Diamond detectors for the TOTEM timing upgrade
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.
DOI: 10.1016/j.nuclphysb.2010.09.020
2011
Cited 22 times
Phenomenological models of elastic nucleon scattering and predictions for LHC
The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering.
DOI: 10.1140/epjc/s10052-015-3343-7
2015
Cited 17 times
Measurement of the forward charged particle pseudorapidity density in pp collisions at $$\sqrt{s} = 8$$ s = 8 TeV using a displaced interaction point
The pseudorapidity density of charged particles dN $$_{ ch }$$ /d $$\eta $$ is measured by the TOTEM experiment in proton–proton collisions at $$\sqrt{s} = 8$$ TeV within the range $$3.9<\eta <4.7$$ and $$-6.95<\eta <-6.9$$ . Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with $$p_T>0$$ MeV/c, produced in inelastic interactions with at least one charged particle in $$-7<\eta <-6$$ or $$3.7<\eta <4.8$$ . The dN $$_{ ch }$$ /d $$\eta $$ has been found to decrease with $$|\eta |$$ , from 5.11 $$\pm $$ 0.73 at $$\eta =3.95$$ to 1.81 $$\pm $$ 0.56 at $$\eta =-$$ 6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement.
DOI: 10.1088/1748-0221/14/11/p11025
2019
Cited 15 times
The laser-based gain monitoring system of the calorimeters in the Muon <i>g</i>−2 experiment at Fermilab
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central component of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04\% precision on the short-term ($\sim 1\,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met.
2024
Detailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based on positive muon data taken at Fermilab's Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses $3.1$ GeV$/c$ polarized muons stored in a $7.1$-m-radius storage ring with a $1.45$ T uniform magnetic field. The value of $ a_{\mu}$ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using Nuclear Magnetic Resonance (NMR). The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure $a_\mu = 116 592 057 (25) \times 10^{-11}$ (0.21 ppm). This is the world's most precise measurement of this quantity and represents a factor of $2.2$ improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield $a_\mu(\text{FNAL}) = 116 592 055 (24) \times 10^{-11}$ (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is $a_\mu$(exp) $ = 116 592 059 (22) \times 10^{-11}$ (0.19 ppm).
DOI: 10.1109/tps.2006.878435
2006
Cited 26 times
Generation of Two Successive Shock Waves Focused to a Common Focal Point
A generator of two successive shock waves focused on a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector-cathode. Near the common focus, the waves are transformed into strong shock waves. The anodes are energized from separate power supplies. This allows us to vary the time interval between the discharges and stagger the waves' arrival to the focal point. Schlieren photographs of the focal region show that mutual interaction of the two waves results in generation of a large number of secondary short wavelength shocks. Measurements of the shock waveforms at the focus demonstrate that the second (i.e., later arriving) wave is strongly attenuate due to the medium inhomogeneity produced by the first wave. Localized injury of a rabbit's liver induced by the shock waves has been demonstrated by the method of magnetic resonance imaging. Histological examination of the liver samples taken from the injured region revealed a very sharp boundary between the injured and healthy tissues
DOI: 10.1016/j.nima.2011.06.095
2011
Cited 18 times
Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy
An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09–3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ∼0.4MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
DOI: 10.1088/1367-2630/16/10/103041
2014
Cited 16 times
LHC optics measurement with proton tracks detected by the Roman pots of the TOTEM experiment
Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.
DOI: 10.1016/j.nima.2015.03.071
2015
Cited 15 times
Test of candidate light distributors for the muon<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0009.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>laser calibration system
The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.
DOI: 10.1140/epjc/s10052-022-10065-x
2022
Cited 6 times
Characterisation of the dip-bump structure observed in proton–proton elastic scattering at $$\sqrt{s}$$ = 8 TeV
Abstract The TOTEM collaboration at the CERN LHC has measured the differential cross-section of elastic proton–proton scattering at $$\sqrt{s} = 8\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>8</mml:mn> <mml:mspace /> <mml:mi>TeV</mml:mi> </mml:mrow> </mml:math> in the squared four-momentum transfer range $$0.2\,\mathrm{GeV^{2}}&lt; |t| &lt; 1.9\,\mathrm{GeV^{2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.2</mml:mn> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>&lt;</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>&lt;</mml:mo> <mml:mn>1.9</mml:mn> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> . This interval includes the structure with a diffractive minimum (“dip”) and a secondary maximum (“bump”) that has also been observed at all other LHC energies, where measurements were made. A detailed characterisation of this structure for $$\sqrt{s} = 8\,\mathrm{TeV}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>8</mml:mn> <mml:mspace /> <mml:mi>TeV</mml:mi> </mml:mrow> </mml:math> yields the positions, $$|t|_{\mathrm{dip}} = (0.521 \pm 0.007)\,\mathrm{GeV^2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>dip</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0.521</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.007</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|t|_{\mathrm{bump}} = (0.695 \pm 0.026)\,\mathrm{GeV^2}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>t</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>bump</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0.695</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.026</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> , as well as the cross-section values, $$\left. {\mathrm{d}\sigma /\mathrm{d}t}\right| _{\mathrm{dip}} = (15.1 \pm 2.5)\,\mathrm{{\mu b/GeV^2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mfenced> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>σ</mml:mi> <mml:mo>/</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>dip</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>15.1</mml:mn> <mml:mo>±</mml:mo> <mml:mn>2.5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mi>b</mml:mi> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> and $$\left. {\mathrm{d}\sigma /\mathrm{d}t}\right| _{\mathrm{bump}} = (29.7 \pm 1.8)\,\mathrm{{\mu b/GeV^2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mfenced> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>σ</mml:mi> <mml:mo>/</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>bump</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>29.7</mml:mn> <mml:mo>±</mml:mo> <mml:mn>1.8</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mspace /> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mi>b</mml:mi> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>GeV</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> , for the dip and the bump, respectively.
DOI: 10.1016/j.nima.2009.01.056
2009
Cited 19 times
Characteristics of edgeless silicon detectors for the Roman Pots of the TOTEM experiment at the LHC
TOTEM Roman Pot (RP) microstrip edgeless silicon detectors, fabricated with standard planar technology, reach full sensitivity within 50 μm from the cut edge and can operate with high bias voltage at room temperature. These detectors use a newly developed terminating structure, which prevents breakdown and surface current injection at high bias, while simultaneously providing extremely reduced dead zones at the edges. Moreover, radiation hardness studies indicate that when operated under moderate cooling, the detectors remain fully efficient up to a fluence of about 1.5×1014 p cm−2. The mass production of these detectors for the TOTEM Experiment is being completed and their installation in the Roman Pots is ongoing. When the installation is complete and the LHC will be operational, these detectors will allow the TOTEM Experiment to detect leading protons at distance of ∼1 mm from the beam centre at the LHC. This work presented here is a survey of this recently developed device and its most up-to-date characterisations.
DOI: 10.1142/s0217732309030266
2009
Cited 17 times
DEEP-ELASTIC pp SCATTERING AT LHC FROM LOW-x GLUONS
Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ~0.3 F. Our prediction is that pp differential cross section in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp differential cross section with visible oscillations and smaller cross sections by a large number of other models.
DOI: 10.1007/s11018-010-9545-3
2010
Cited 16 times
Erratum to: “Development of a Super-Stable Datum Point for Monitoring the Energy Scale of Electron Spectrometers in the Energy Range up to 20 keV” by D. Vénos, M. Zbořil, J. Kašpar, O. Dragoun, J. Bonn, A. Kovalík, O. Lebeda, N. A. Lebedev, M. Ryšavý, K. Schlösser, A. Špalek, and Ch. Weinheimer, Vol. 53, No. 3, pp. 305–312, July, 2010
DOI: 10.1109/miltechs.2015.7153712
2015
Cited 14 times
FlexiGuard: Modular biotelemetry system for military applications
The article presents a FlexiGuard modular biotelemetric system for real-time monitoring of special military units. The main focus of the system is on automated monitoring of special forces via parallel monitoring of each member of the special team individually, witch includes collecting sets of physiologic (or environmental) parameters. The systems consists of a set of sensors (for monitoring temperature, heart rate, acceleration, humidity etc.) and modular sensing unit, which records the measured data and sends them to the visualization unit. The measured values (i.e. heart rate, surface temperature of the body and so on) are then visualized in the graphic user interface of the visualization unit. Testing of the functionality of the system took place in both laboratory and real environment. In the case of carrying out the measurements on 34 soldiers at series of 4 probands at the same time, the sensor networks worked without any loss of signal. During the data transfer to the visualization unit, a loss of approx 0.2% of packets occurred. The system thus can offer information to the commander, which may prove essential for the optimalization of operational strategies, taking the state of wellbeing of the team members into account.
DOI: 10.1016/j.nima.2016.10.047
2017
Cited 14 times
Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.
DOI: 10.1016/j.nima.2006.01.111
2006
Cited 21 times
Final size planar edgeless silicon detectors for the TOTEM experiment
The TOTEM experiment will detect leading protons scattered in angles of microradians from the interaction point at the large hadron collider. This will be achieved using detectors with a minimized dead area at the edge. The collaboration has developed an innovative structure at the detector edge reducing the conventional dead width to less than 100 μm, still using standard planar fabrication technology. In this new development, the current of the surface is decoupled from the sensitive volume current within a few tens of micrometers. The basic working principle is explained in this paper. Final size detectors have been produced using this approach. The current–voltage and current–temperature characteristics of the detectors were studied and the detectors were successfully tested in a coasting beam experiment.
DOI: 10.1016/j.nima.2019.162558
2019
Cited 11 times
Performance of the Muon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e305" altimg="si54.svg"><mml:mrow><mml:mi>g</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> calorimeter and readout systems measured with test beam data
A single calorimeter station for the Muon g−2 experiment at Fermilab includes the following subsystems: a 54-element array of PbF2 Cherenkov crystals read out by large-area SiPMs, bias and slow-control electronics, a suite of 800 MSPS waveform digitizers, a clock and control distribution network, a gain calibration and monitoring system, and a GPU-based front-end which is read out through a MIDAS data acquisition environment. The entire system performance was evaluated using 2.5–5 GeV electrons at the End Station Test Beam at SLAC. This paper includes a description of the individual subsystems and the results of measurements of the energy response and resolution, energy-scale stability, timing resolution, and spatial uniformity. All measured performances meet or exceed the g−2 experimental requirements. Based on the success of the tests, the complete production of the required 24 calorimeter stations has been made and installation into the main experiment is complete. Furthermore, the calorimeter response measurements reported here informed the design of the reconstruction algorithms that are now employed in the running g−2 experiment.
DOI: 10.1103/physrevapplied.14.064066
2020
Cited 9 times
Reducing Beam-Related Background on Forward Physics Detectors Using Crystal Collimation at the Large Hadron Collider1
Beam collimation in high-energy colliders is customarily carried out by means of massive amorphous absorbers surrounding the circulating beam. Several studies were performed in the last decades to establish an innovative collimation technique that relies on particle deflection by means of channeling between crystalline planes of a bent crystal. We report the operational use of crystal collimation in the Large Hadron Collider that was achieved during a special high-${\ensuremath{\beta}}^{\ensuremath{\ast}}$ physics run with low-intensity beams, representing a milestone for both accelerator and high-energy physics that could pave the way for new synergies in the near future. The deployment of this scheme was steered and motivated by machine-simulation studies, which were then confirmed experimentally using data provided by the experiments thanks to a sensitivity not accessible with the ring instrumentation. The evidence of beam-related experimental background reduction, improved data quality, and faster halo removal with respect to amorphous collimators is obtained using bent crystals as the primary collimation stage. A detailed description of preparatory studies and operational performance is reported, together with a comparison between experimental results and theoretical expectations.
DOI: 10.1016/j.nima.2021.165597
2021
Cited 7 times
The fast non-ferric kicker system for the Muon g−2 Experiment at Fermilab
We describe the installation, commissioning, and characterization of the new injection kicker system in the Muon $g-2$ Experiment (E989) at Fermilab, which makes a precision measurement of the muon magnetic anomaly. Three Blumlein pulsers drive each of the 1.27-m-long non-ferric kicker magnets, which reside in a storage ring vacuum (SRV) that is subjected to a 1.45 T magnetic field. The new system has been redesigned relative to Muon $g-2$'s predecessor experiment, and we present those details in this manuscript.
DOI: 10.1016/j.cpc.2013.11.016
2014
Cited 8 times
Elegent—An elastic event generator
Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy s. These distributions at ISR, Spp̄S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Program title: Elegent Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon–nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but typically below 1 h.
DOI: 10.1016/j.nuclphysbps.2015.02.051
2015
Cited 8 times
Status of the Fermilab <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:math> experiment
The upcoming muon (g−2) experiment at Fermilab will measure the anomalous magnetic moment of the muon to a relative precision of 140 ppb, 4 times better than the previous experiment at BNL. The new experiment is motivated by the persistent 3–4 standard deviations difference between the experimental value and the Standard Model prediction, and it will have the statistical sensitivity necessary to either refute the claim or confirm it with a confidence level exceeding a discovery threshold. The experiment is under construction and scheduled to start running in early 2017.
DOI: 10.1016/j.nuclphysbps.2015.02.051
2015
Cited 8 times
Status of the Fermilab <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.…
DOI: 10.1088/1748-0221/13/02/t02009
2018
Cited 8 times
The laser control of the muon <i>g</i>−2 experiment at Fermilab
The Muon g−2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, aμ=(gμ−2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.
DOI: 10.1016/j.nima.2015.11.059
2016
Cited 7 times
The calibration system of the new g−2 experiment at Fermilab
The muon anomaly (g−2)μ/2 has been measured to 0.54 parts per million by E821 experiment at Brookhaven National Laboratory, and at present there is a 3–4 standard-deviation difference between the Standard Model prediction and the experimental value. A new muon g−2 experiment, E989, is being prepared at Fermilab that will improve the experimental error by a factor of four to clarify this difference. A central component to reach this fourfold improvement in accuracy is the high-precision laser calibration system which should monitor the gain fluctuations of the calorimeter photodetectors at 0.04% accuracy.
DOI: 10.48550/arxiv.1306.5413
2013
Cited 7 times
Summary of the Workshop on Multi-Parton Interactions (MPI@LHC 2012)
With short resumes and highlights the discussions in the different working groups of the workshop MPI@LHC 2012 is documented.
DOI: 10.1016/j.nima.2004.03.201
2004
Cited 12 times
Effect of energy scale imperfections on results of neutrino mass measurements from β-decay
The effect of undetected imperfections of the energy scale on the results of electron spectroscopy experiment is studied for the conditions close to the tritium β-decay experiment KATRIN (KATRIN Collaboration, 2001, arxiv: hep-ex/0109033). A numerical model of the experiment is developed, verified, and used to deduce general trends of fitted parameters. The effects of energy bias and of wrong slope of the calibration line are studied in more detail.
DOI: 10.1016/0009-2541(72)90024-1
1972
Cited 10 times
A contribution to the migration of gold in the biosphere of the humid mild zone
The content of gold in plants has been used as an indicator in the prospecting for gold. For this purpose non-destructive analytical methods have been developed. In the humid mild zone — where the process of weathering is of a kaolinitic character — there is practically no migration of gold, and consequently its increased content indicates the presence of a gold deposit.
DOI: 10.33549/physiolres.931295
2007
Cited 10 times
Biological effects of two successive shock-waves focused on liver tissue and melanoma cells
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.
DOI: 10.48550/arxiv.1712.06153
2017
Cited 6 times
First measurement of elastic, inelastic and total cross-section at $\sqrt{s}=13$ TeV by TOTEM and overview of cross-section data at LHC energies
The TOTEM collaboration has measured the proton-proton total cross section at $\sqrt{s}=13$ TeV with a luminosity-independent method. Using dedicated $β^{*}=90$ m beam optics, the Roman Pots were inserted very close to the beam. The inelastic scattering rate has been measured by the T1 and T2 telescopes during the same LHC fill. After applying the optical theorem the total proton-proton cross section is $σ_{\rm tot}=(110.6 \pm 3.4$) mb, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: $σ_{\rm el} = (31.0 \pm 1.7)$ mb and $σ_{\rm inel} = (79.5 \pm 1.8)$ mb.
DOI: 10.26552/com.c.2015.1.81-86
2015
Cited 6 times
A Surveillance System for Enhancing the Safety of Rescue Teams
The article summarizes preliminary results of the research and development of a system focused on enhancing the safety of teams participating in the integrated rescue system managing extraordinary events or crisis situations (fire, mass disaster, release of harmful industrial substances), and on the support in the course of training.Individual partial technical solutions are mentioned, which should lead to providing automatized telemetric monitoring equipment in a more resistant form making it possible to recognize the nature and intensity of the motion, including the determination of the topical and total energy outputs, monitoring of environmental parameters (temperature, smoke, etc.) and back analysis of the intervention course or training in real time, and the monitoring of health-physiological parameters and signalling risk conditions (physical exhaustion, stress, overheating, etc.) under extreme measures.
2006
Cited 9 times
Prospects for Diffractive and Forward Physics at the LHC
The CMS and TOTEM experiments intend to carry out a joint diffractive/forward physics program with an unprecedented rapidity coverage. The present document outlines some aspects of such a physics program, which spans from the investigation of the low-x structure of the proton to the diffractive production of a SM or MSSM Higgs boson.
DOI: 10.1088/1748-0221/8/06/p06009
2013
Cited 5 times
Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies
The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.
DOI: 10.1051/epjconf/201817206005
2018
Cited 5 times
Soft diffraction at LHC
This contribution reviews and compares various LHC results on soft diffraction, in particular elastic scattering, total, inelastic and elastic cross-section, single and double diffraction.
2018
Cited 5 times
First determination of the $\rho $ parameter at $\sqrt{s} = 13$ TeV -- probing the existence of a colourless three-gluon bound state
The TOTEM experiment at the LHC has performed the first measurement at $\sqrt{s} = 13$ TeV of the $\rho$ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $t=0$, obtaining the following results: $\rho = 0.09 \pm 0.01$ and $\rho = 0.10 \pm 0.01$, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $\rho$ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than 10 TeV (from 2.76 to 13 TeV), has implied the exclusion of all the models classified and published by COMPETE. The $\rho$ results obtained by TOTEM are compatible with the predictions, from alternative theoretical models both in the Regge-like framework and in the QCD framework, of a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering. On the contrary, if shown that the 3-gluon bound state $t$-channel exchange is not of importance for the description of elastic scattering, the $\rho$ value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-$|t|$ reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton-proton cross-section measurement $\sigma_{tot} = 110.3 \pm 3.5$ mb, completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $\sigma_{tot} = 110.5 \pm 2.4$ mb.
DOI: 10.5506/aphyspolb.52.85
2021
Cited 4 times
Coulomb-nuclear Interference in Elastic Scattering: Eikonal Calculation to All Orders of \(\alpha \)
The Coulomb-nuclear interference (CNI) has recently been used by the TOTEM Collaboration to analyse proton-proton elastic-scattering data from the LHC and to draw physics conclusions.This paper will present an eikonal calculation of the CNI effects performed to all orders of the fine structure constant, α.This calculation will be used as a reference to benchmark several widely-used CNI formulae and to verify several recent claims by other authors.
DOI: 10.1016/j.apradiso.2010.12.015
2011
Cited 4 times
Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80keV
Photo-absorption of γ-rays in thin Al, Co, Ti, and Mo convertors was examined with the aim to produce quasi monoenergetic photoelectrons having an energy spread of 0.5-4.7eV about mean kinetic energies at discrete values between 18632 and 80321eV. The photoelectron rates were estimated for commercial photon sources of (241)Am, (119m)Sn, (125m)Te and (109)Cd with activities of 0.55-3.7GBq. Photoelectrons ejected by (241)Am γ- and X-rays from Co convertors were measured with two different electron spectrometers and obtained energy spectra were compared with Monte Carlo predictions.
DOI: 10.1007/978-3-030-29400-7_18
2019
Cited 4 times
Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case
The High-Energy Physics community faces new data processing challenges caused by the expected growth of data resulting from the upgrade of LHC accelerator. These challenges drive the demand for exploring new approaches for data analysis. In this paper, we present a new declarative programming model extending the popular ROOT data analysis framework, and its distributed processing capability based on Apache Spark. The developed framework enables high-level operations on the data, known from other big data toolkits, while preserving compatibility with existing HEP data files and software. In our experiments with a real analysis of TOTEM experiment data, we evaluate the scalability of this approach and its prospects for interactive processing of such large data sets. Moreover, we show that the analysis code developed with the new model is portable between a production cluster at CERN and an external cluster hosted in the Helix Nebula Science Cloud thanks to the bundle of services of Science Box.
DOI: 10.1080/00207219408925979
1994
Cited 9 times
The influence of oxygen on lead phthalocyanine thin films
The dark electrical behaviour of oxygen-exposed thin films of monoclinic lead phthalocyanine (PbPc) with gold electrodes was studied for both planar and sandwich devices. Slow but steady increase of conductivity was observed for the planar devices subject to an oxygen flow at atmospheric pressure, with no saturation within 48 h. The current passing through the devices was found to be remarkably dependent on thickness. The sandwich devices (Au-PbPc-Au) with an oxygen-doped phthalocyanine layer exhibited a rectifying effect for exposure times less than 2 h, remaining after sequential annealing under vacuum at 423 K for 48 h. The behaviour is discussed as a Schottky-type barrier and its width and height are estimated.
DOI: 10.1109/ucc-companion.2018.00018
2018
Cited 3 times
Big Data Tools and Cloud Services for High Energy Physics Analysis in TOTEM Experiment
The High Energy Physics community has been developing dedicated solutions for processing experiment data over decades. However, with recent advancements in Big Data and Cloud Services, a question of application of such technologies in the domain of physics data analysis becomes relevant. In this paper, we present our initial experience with a system that combines the use of public cloud infrastructure (Helix Nebula Science Cloud), storage and processing services developed by CERN, and off-the-shelf Big Data frameworks. The system is completely decoupled from CERN main computing facilities and provides an interactive web-based interface based on Jupyter Notebooks as the main entry-point for the users. We run a sample analysis on 4.7 TB of data from the TOTEM experiment, rewriting the analysis code to leverage the PyRoot and RDataFrame model and to take full advantage of the parallel processing capabilities offered by Apache Spark. We report on the experience collected by embracing this new analysis model: preliminary scalability results show the processing time of our dataset can be reduced from 13 hrs on a single core to 7 mins on 248 cores.
DOI: 10.48550/arxiv.1012.5169
2010
Cited 3 times
Forward Physics at the LHC (Elba 2010)
The papers review the main theoretical and experimental aspects of the Forward Physics at the Large Hadron Collider.
DOI: 10.1016/j.nima.2015.11.041
2016
The calorimeter system of the new muon g-2 experiment at Fermilab
The electromagnetic calorimeter for the new muon (g−2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.
DOI: 10.1016/j.nima.2012.08.084
2013
Status of the TOTEM experiment at LHC
The TOTEM experiment is dedicated to the measurement of the total proton–proton cross-section with the luminosity-independent method and the study of elastic and diffractive scattering processes. Two tracking telescopes, T1 and T2, integrated in the CMS detector, cover the pseudo-rapidity region between 3.1 and 6.5 on both sides of the interaction point IP5. The Roman Pot (RP) stations are located at distances of ±147 m and ±220 m with respect to the interaction point to measure the very forward scattered protons at very small angles. During the LHC technical stop in winter 2010/2011, the TOTEM experiment was completed with the installation of the T1 telescope and the RP stations at ±147 m. In 2011, the LHC machine provided special optics with the large ß⁎=90 m, allowing TOTEM to measure the elastic scattering differential cross-section, down to the four-momentum transfer squared |t|=2×10−2 GeV2. Using the optical theorem and extrapolation of the differential cross-section to t=0 (optical point), the total p–p cross-section at the LHC energy of s=7TeV could be computed for the first time. Furthermore we measured with standard LHC beam optics and the energy of s=7TeV the forward charged particle pseudorapidity density dn/dη in the range of 5.3<|η|<6.4. The status of the experiment, the performance of the detectors with emphasis on the RPs are described and the first physics results are presented.
DOI: 10.1097/01.hjh.0000914876.06277.c8
2023
PS-C10-8: ANALYSIS OF OFFICE SYSTOLIC BLOOD PRESSURE MEASURED BY VARIOUS METHODS IN DIFFERENT CONDITIONS
Objectives: The aim of the study is to confirm results of our pilot study (presented ESH/ISH Glasgow 2021) and perform a detailed analysis of the larger sample size. Design and Method: BP monitors Nissei DM-3000 (both auscultatory and oscillometric), SunTech-40 and Fora P30 Plus, in both conditions, were used for office BP measurements (BPM) in triplets by one physician at the entry and exit phase of the 3 months home BP telemonitoring study. 122 treated patients with essential hypertension, aged 24–85 years, 60% of males, were referred by their physicians as well controlled. Their therapy was not changed during this study. Those starting BPMs in the office at the entry, started BPMs in the quiet room at the exit, and vice versa, approximately at the same time. On the other hand, the order of methods used both in the office and in the quiet room was not changed. Effects of gender, age, BMI, order of BPM (physician/quiet room - P/QR, order of BPM in triplets) and methods of BPM on systolic BP at the entry and exit of the study were evaluated. Linear mixed models with random effect of a patient were used for the statistical analysis of data. Results: Systolic BP (SBP) values significantly depended on the morning medication (yes, no, p = 0.005) and the method of BPM used (p &lt; 0.001). SBP values of various methods varied in dependence on the phase of the study (entry, exit, p &lt; 0.001), age (&lt; 60,&gt; = 60, p &lt; 0.001) and BMI (&lt; 30,&gt; = 30, p &lt; 0.001). SBP was not dependent on the measurement order P/QR significantly. If each method of BPM was analyzed independently on other ones, only auscultatory SBP depended significantly on the measurement order in triplets (p &lt; 0.001). Decrease of mean SBP+SD from the first to the third BPM was seen only at the entry phase of the study - 128.8 + 13.0, 126.0 + 13.5 and 124.7 + 12.6 mmHg. Conclusions: Significant differences between BPM methods used in systolic BP measurement were found. Fora BP monitor showed especially higher mean SBP values probably due to a stress from the first contact with a telemonitoring equipment in the quiet room only at the entry (132.0 + 12.9) vs. (127.3 + 12.3) mmHg. We did not prove any influence of measurement order P/QR even when Fora was used in both attended and unattended conditions. If an independent analysis of BPM methods was used, only auscultatory SBP depended significantly on the measurement order in triplets, whereas no significant influence was shown in oscillometric methods.
DOI: 10.1007/s11018-010-9501-2
2010
The development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV
DOI: 10.1109/sami.2017.7880310
2017
Using mobile technologies with psychiatric patients: Assessing the potential to reduce risk of developing diseases related to inactivity
Mental disorders, such as schizophrenia, are accompanied by increased morbidity and mortality rates, potentially reducing the lifespan of patients by up to 10 years. Premature deaths in schizophrenia sufferers are caused mainly by cardiovascular diseases and complications related to excessive weight gain and type 2 diabetes mellitus. Gaining weight is, furthermore, often a side effect of medicine prescribed for the treatment of schizophrenia. This is why treatment protocols are putting a greater emphasis on healthy lifestyle and exercise for patients, which may support both weight loss and suppress feelings of anxiety. It is, therefore, important for a doctor to monitor the exercise habits of their patients. This article focuses on telemonitoring of physical activity and other biological parameters in patients with mental disorders, such as schizophrenia, using the recent m-Health technology in the form of a Fitbit Flex activity tracker. The Soma web portal has been created to continuously monitor, visualize and analyse the data measured on patients within the scope of research activities.
DOI: 10.1002/cite.330450937
1973
Cited 4 times
Eine neue Entwicklung auf dem Gebiet der Wirbelschichtgranulation
Abstract Die neuentwickelte, kontinuierlich arbeitende Anlage zur Wirbelschichtgranulation besteht im wesentlichen aus einem handelsüblichen Wirbelschichttrockner, der kontinuierlich arbeitenden Entnahmevorrichtung des gekörnten Materials, der Rückführung des Feinanteils und der Flüssigkeitszuführung (z. B. Produktlösung). Die Anlage wird beschrieben, die Regelung diskutiert und die Instrumentierung von Pilot‐ und Betriebsapparatur gezeigt. Weiterhin werden Versuchsresultate wie die spezifische Verdampfungsleistung, der Energieverbrauch und die Kornverteilung im Vergleich zur Zerstäubungstrocknung dargelegt. Wirbelschichttrockner sind bis zu einer Leistung von etwa 400 bis 500 kg verdampftes Wasser/h bei den verwendeten Produkten kostengünstiger als Zerstäubungstrockner.
DOI: 10.1109/pac.2005.1590883
2006
Cited 3 times
Tests of A Roman Pot Prototype for the Totem Experiment
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10σ + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place in the proton beam-line of the SPS accelerator ring. In addition, the pot's shielding against electromagnetic interference and the longitudinal beam coupling impedance have been measured with the wire method.
DOI: 10.1007/bf02585640
1962
Konforme Abbildung einer Fläche auf eine Andere unter Wählbaren Bedingungen
DOI: 10.1007/bf01589240
1971
Cited 3 times
La fonction d'appui dans les formules de la géodésie mathématique
DOI: 10.48550/arxiv.0712.1503
2007
To the theory of high-energy elastic nucleon collisions
The commonly used West and Yennie integral formula for the relative phase between the Coulomb and elastic hadronic amplitudes requires for the phase of the elastic hadronic amplitude to be constant at all kinematically allowed values of t. More general interference formula based on the eikonal model approach does not exhibit such limitation. The corresponding differences will be demonstrated and some predictions of different phenomenological models for elastic pp scattering at energy of 14 TeV at the LHC will be given. Special attention will be devoted to determination of luminosity from elastic scattering data; it will be shown that the systematic error might reach till 5 % if the luminosity is derived from the values in the center of the interference region with the help of West and Yennie formula.
2007
Update on the Lunar Reconnaissance Orbiter: The Instrument Suite and Mission
DOI: 10.1007/bf02585582
1957
Anwendung der Abbildung einer Rotationsfläche auf eine kugel für die Übertragung von Koordinaten bei Grösseren Entefernungen Zwischen den Punkten
DOI: 10.5506/aphyspolbsupp.8.797
2015
Elastic Scattering at the LHC
2013
TOTEM Results on Elastic Scattering and Total Cross-Section
TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, two main parts of its physics programme - proton-proton elastic scattering and total cross-section - are discussed. The analysis procedures are outlined and their status is reviewed.
2013
Summary of the Workshop on Multi-Parton Interactions (MPI@LHC 2012)
With short resumes and highlights the discussions in the different working groups of the workshop MPI@LHC 2012 is documented.
DOI: 10.1109/nssmic.2011.6154341
2011
The TOTEM experiment at LHC
The TOTEM experiment is dedicated to the measurement of the total proton-proton cross-section with the luminosity-independent method and the study of elastic and diffractive scattering processes. Two tracking telescopes, T1 and T2, integrated in the CMS detector, cover the pseudo-rapidity region between 3.1 and 6.5 on both sides of the interaction point IP5. The Roman Pot (RP) stations are located at distances of ± 147m and ± 220 m with respect to the interaction point to measure the very forward scattered protons at very small angles. During the LHC technical stop in winter 2010/2011, the TOTEM experiment was completed with the installation of the T1 telescope and the RP stations at ± 147 m. In 2011, the LHC machine provided special optics with the large ß* = 90 m, allowing TOTEM to measure the elastic scattering differential cross section, down to the four-momentum transfer squared |t| = 2×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−2</sup> GeV <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . Using the optical theorem and extrapolation of the differential cross section to t = 0 (optical point), the total p-p cross section at the LHC energy of √v = 7 TeV could be computed for the first time. The status of the experiment, the performance of the detectors with emphasis on the RPs are described and the first physics results are presented.
DOI: 10.48550/arxiv.1411.4963
2014
Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt(s) = 8 TeV using a displaced interaction point
The pseudorapidity density of charged particles dN(ch)/deta is measured by the TOTEM experiment in pp collisions at sqrt(s) = 8 TeV within the range 3.9 &lt; eta &lt; 4.7 and -6.95 &lt; eta &lt; -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97\% of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p_T &gt; 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 &lt; eta &lt; -6 or 3.7 &lt; eta &lt;4.8 . The dN(ch)/deta has been found to decrease with |eta|, from 5.11 +- 0.73 at eta = 3.95 to 1.81 +- 0.56 at eta= - 6.925. Several MC generators are compared to the data and are found to be within the systematic uncertainty of the measurement.
DOI: 10.48550/arxiv.1110.5808
2011
The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC
Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully operational and serve for collecting elastic and diffractive proton-proton scattering data. Like for other moveable devices approaching the high intensity LHC beams, a reliable and precise control of the RP position is critical to machine protection. After a review of the RP movement control and position interlock system, the crucial task of alignment will be discussed.
DOI: 10.1007/978-1-4757-0471-6_10
1959
Growing Calcite and Other Carbonates
DOI: 10.48550/arxiv.1204.5689
2012
Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $\sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.
2010
Proton-proton elastic scattering at LHC and proton structure
DOI: 10.2307/1575426
1989
Cited 4 times
The Complete Book of Holograms
DOI: 10.3390/instruments2040020
2018
Beam-Background Tests with TOTEM Roman Pot Detectors at the LHC Injection Energy
With the aim of measuring the total cross-section and the ρ parameter, TOTEM has performed tests of beam conditions at the LHC injection energy of s = 900 GeV . The tests have revealed complications in setting up the LHC collimators to minimise the background observed in the Roman Pot (RP) detectors, summarised in this article. In two tests a subset of the RPs was exposed to background compatible with the physics requirements. If no improvement of the collimation strategy is found, it is shown that a small retraction of the RPs can significantly reduce the observed background level.
DOI: 10.1007/bf02585630
1970
On the method of determining the external gravity field on a limited territory
DOI: 10.1007/bf02607334
1965
Получение целесообразной системы координат НА поверхности с точки зрения определения приближенного геоида
1977
Flow-volume curves as a method for detecting airway obstruction in children from an air-polluted area.
DOI: 10.1109/ppc.2005.300674
2005
Generation of Two Successive Shock Waves Focused to a Common Focal Point
Generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector and near the focus they are transformed to strong shock waves. The anodes are energized from separate power supplies and time delay between the discharges can be varied. Schlieren photos of the focal region demonstrated that interaction of the two waves results in creation of a large number of secondary short wavelength shocks. Strong attenuation of the second wave has bee shown by measurements of the shock waveforms at the focus. Localized injury of rabbit's liver induced by the shock waves has been demonstrated by the method of magnetic resonance imaging. Histological analysis of the liver samples taken from the injured region revealed that the boundary between the injured and health tissues is very sharp.
DOI: 10.1111/j.1945-5100.1938.tb00172.x
1938
Czechoslovakian Tektites and the Problem of their Origin: An Up-to-date Résumé of this Question*
Contributions of the Society for Research on MeteoritesVolume 2, Issue 4 p. 1-5 Czechoslovakian Tektites and the Problem of their Origin: An Up-to-date Résumé of this Question* Jan Kašpar, Jan Kašpar Narodni Museum, Prague, CzechoslovakiaSearch for more papers by this author Jan Kašpar, Jan Kašpar Narodni Museum, Prague, CzechoslovakiaSearch for more papers by this author First published: January 1938 https://doi.org/10.1111/j.1945-5100.1938.tb00172.xCitations: 1 † Communicated by F. W. Cassirer, Prague VII, 751, Czechoslovakia, and read by title at the Fifth Annual Meeting, Colorado Museum of Natural History, Denver, June 22 and 23, 1937. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Citing Literature Volume2, Issue4January 1938Pages 1-5 RelatedInformation
DOI: 10.1142/9789814689304_0018
2015
PANEL DISCUSSION II: DIFFRACTION
2014
Dopad sjednocení sazeb DPH na domácnosti ohrožené chudobou
Cilem bakalařske prace je kvantifikovat dopad sjednoceni sazeb DPH na výdaje ceských domacnosti, zejmena pak na pocet domacnosti ohrožených chudobou. Pomoci změny ve výdajich jsou dopocitany hypoteticke přijmy domacnosti po sjednoceni sazeb, z nichž vychazi výpocet miry chudoby v Ceske republice. Výsledkem prace je, že se mira chudoby nepatrně zvýsi, přestože průměrne domacnosti se sniži rocni výdaje, a tedy i vzrostou realne přijmy, o 0,63 %.
2014
Drahé kovy jako peněžní fenomén v historii
Bakalařska prace upina svoji pozornost na historii drahých kovů v peněžni ekonomii. Nejdřive je popsana jejich funkce v roli peněžnich standardů a s tim souvisejici podminky a předpoklady ekonomickeho vývoje. V ramci teto prace jsou popsany a z ekonomickeho hlediska hodnoceny peněžni standardy spojene výlucně se zlatem a střibrem. V dalsi casti je vykresleno obdobi mezi lety 1944 - 1976 spojene s významnou roli drahých kovů a hlavni prostor je zde věnovan kritickemu zhodnoceni tehdejsiho měnoveho systemu. Posledni oddil je zaměřen na analýzu trhů drahých kovů v soucasnosti, kde autor postupuje od popisu zakladnich charakteristik a tendenci trhů zlata, střibra a dalsich kovů směrem k praktickemu využiti daných informaci v ramci investicniho rozhodovani.