ϟ

Hong Zhao

Here are all the papers by Hong Zhao that you can download and read on OA.mg.
Hong Zhao’s last known institution is . Download Hong Zhao PDFs here.

Claim this Profile →
DOI: 10.1038/nm1764
2008
Cited 1,509 times
Stromal gene expression predicts clinical outcome in breast cancer
DOI: 10.1016/j.ccell.2014.11.017
2015
Cited 310 times
The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells
Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human data set analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases.
DOI: 10.1158/0008-5472.can-10-0111
2010
Cited 294 times
Apatinib (YN968D1) Reverses Multidrug Resistance by Inhibiting the Efflux Function of Multiple ATP-Binding Cassette Transporters
Abstract Apatinib, a small-molecule multitargeted tyrosine kinase inhibitor, is in phase III clinical trial for the treatment of patients with non–small-cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (ABCB1), multidrug resistance protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr, and HEK293/ABCB1 cells overexpressing ABCB1 and in S1-M1-80, MCF-7/FLV1000, and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photoaffinity labeling of both ABCB1 and ABCG2 with [125I]iodoarylazidoprazosin in a concentration-dependent manner. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration that produced a reversal of MDR, did not significantly alter the ABCB1 or ABCG2 protein or mRNA expression levels or the phosphorylation of AKT and extracellular signal–regulated kinase 1/2 (ERK1/2). Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1-resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking the AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs. Cancer Res; 70(20); 7981–91. ©2010 AACR.
DOI: 10.1172/jci96313
2019
Cited 268 times
Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers
Understanding the tumor immune microenvironment (TIME) promises to be key for optimal cancer therapy, especially in triple-negative breast cancer (TNBC).Integrating spatial resolution of immune cells with laser capture microdissection gene expression profiles, we defined distinct TIME stratification in TNBC, with implications for current therapies including immune checkpoint blockade.TNBCs with an immunoreactive microenvironment exhibited tumoral infiltration of granzyme B + CD8 + T cells (GzmB + CD8 + T cells), a type 1 IFN signature, and elevated expression of multiple immune inhibitory molecules including indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand 1 (PD-L1), and resulted in good outcomes.An "immune-cold" microenvironment with an absence of tumoral CD8 + T cells was defined by elevated expression of the immunosuppressive marker B7-H4, signatures of fibrotic stroma, and poor outcomes.A distinct poor-outcome immunomodulatory microenvironment, hitherto poorly characterized, exhibited stromal restriction of CD8 + T cells, stromal expression of PD-L1, and enrichment for signatures of cholesterol biosynthesis.Metasignatures defining these TIME subtypes allowed us to stratify TNBCs, predict outcomes, and identify potential therapeutic targets for TNBC.
DOI: 10.1186/s13058-015-0527-x
2015
Cited 179 times
Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors.iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models.High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor β was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal.Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic.
DOI: 10.1158/1078-0432.ccr-14-3157
2015
Cited 158 times
FDA Approval: Ceritinib for the Treatment of Metastatic Anaplastic Lymphoma Kinase–Positive Non–Small Cell Lung Cancer
On April 29, 2014, the FDA granted accelerated approval to ceritinib (ZYKADIA; Novartis Pharmaceuticals Corporation), a breakthrough therapy-designated drug, for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive, metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib. The approval was based on a single-arm multicenter trial enrolling 163 patients with metastatic ALK-positive NSCLC who had disease progression on (91%) or intolerance to crizotinib. Patients received ceritinib at a starting dose of 750 mg orally once daily. The objective response rate (ORR) by a blinded independent review committee was 44% (95% CI, 36-52), and the median duration of response (DOR) was 7.1 months. The ORR by investigator assessment was similar. Safety was evaluated in 255 patients. The most common adverse reactions and laboratory abnormalities included diarrhea (86%), nausea (80%), increased alanine transaminase (80%), increased aspartate transaminase (75%), vomiting (60%), increased glucose (49%), and increased lipase (28%). Although 74% of patients required at least one dose reduction or interruption due to adverse reactions, the discontinuation rate due to adverse reactions was low (10%). With this safety profile, the benefit-risk analysis was considered favorable because of the clinically meaningful ORR and DOR.
DOI: 10.1186/1471-2172-14-6
2013
Cited 164 times
Characterization of murine macrophages from bone marrow, spleen and peritoneum
Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. We found that peritoneal macrophages (PMs) appear to be more mature than bone marrow derived macrophages (BMs) and splenic macrophages (SPMs) based on their morphology and surface molecular characteristics. BMs showed the strongest capacity for both proliferation and phagocytosis among the three populations of macrophage. Under resting conditions, SPMs maintained high levels of pro-inflammatory cytokines expression (IL-6, IL-12 and TNF-α), whereas BMs produced high levels of suppressive cytokines (IL-10 and TGF-β). However, SPMs activated with LPS not only maintained higher levels of (IL-6, IL-12 and TNF-α) than BMs or PMs, but also maintained higher levels of IL-10 and TGF-β. Our results show that BMs, SPMs and PMs are distinct populations with different biological functions, providing clues to guide their further experimental or therapeutic use.
DOI: 10.1038/s41563-018-0099-0
2018
Cited 127 times
Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance
Islet transplantation is a promising therapy for type 1 diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis. Here, we report that localized immunomodulation using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) results in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts over 200 days. Survivors generated normal systemic responses to donor antigens, implying immune privilege of the graft, and had increased CD4+CD25+FoxP3+ T regulatory cells in the graft and draining lymph nodes. Deletion of T regulatory cells resulted in acute rejection of established islet allografts. This localized immunomodulatory biomaterial-enabled approach may provide an alternative to chronic immunosuppression for clinical islet transplantation. Islet transplantation for diabetes treatment requires immunosuppression to control rejection. A microgel presenting Fas ligand with immunomodulatory properties is now shown to prolong the survival of allogeneic islet grafts in vivo.
DOI: 10.5527/wjn.v2.i3.84
2013
Cited 114 times
Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases
Matrix metalloproteinases (MMPs) are members of the neutral proteinase family. They were previously thought to be anti-fibrotic because of their ability to degrade and remodel of extracellular matrix. However, recent studies have shown that MMPs are implicated in initiation and progression of kidney fibrosis through tubular cell epithelial-mesenchymal transition (EMT) as well as activation of resident fibroblasts, endothelial-mesenchymal transition (EndoMT) and pericyte-myofibroblast transdifferentiation. Interstitial macrophage infiltration has also been shown to correlate with the severity of kidney fibrosis in various chronic kidney diseases. MMPs secreted by macrophages, especially MMP-9, has been shown by us to be profibrotic by induction of tubular cells EMT. EMT is mainly induced by transforming growth factor-β (TGF-β). However, MMP-9 was found by us and others to be up-regulated by TGF-β1 in kidney tubular epithelial cells and secreted by activated macrophages, resulting in EMT and ultimately kidney fibrosis. Therefore, MMP-9 may serve as a potential therapeutic target to prevent kidney fibrosis in chronic kidney disease. This review, by a particular focus on EMT, seeks to provide a comprehensive understanding of MMPs, especially MMP-9, in kidney fibrosis.
DOI: 10.1038/jhg.2010.84
2010
Cited 109 times
A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect
GATA6 is a member of the GATA family of transcription factors, and its expression and functions overlap with those of GATA4 during heart development. Mutations in GATA4 have been related to human congenital heart diseases (CHDs) in several studies, whereas mutations in GATA6 have only recently been reported in patients with persistent truncus arteriosus. Animal experiments have revealed critical roles for GATA6 in the development of the myocardium and cardiac morphogenesis, thereby highlighting the potential involvement of GATA6 defects in the pathogenesis of CHDs. Here, we screened the GATA6 in 270 individuals with sporadic CHDs by direct sequencing. After identification of the mutation, a luciferase reporter assay and real-time quantitative polymerase chain reaction were performed to detect functional changes in the mutant transcription factor. The same heterozygous missense mutation (Ser184Asn) was identified in three patients, including one with tetralogy of Fallot and two with atrial septal defects. This mutation was not found in 500 unrelated ethnically matched healthy subjects. Direct sequencing of this region in the parents of these three patients revealed the same mutation in one of the parents for each patient, and one of the parent carriers presented with a bicuspid aortic valve. Biological analysis revealed clearly decreased transcriptional activity of GATA6 Ser184Asn in vitro. All these data suggest that GATA6 Ser184Asn is a novel mutation associated with CHDs and has an important role in disease pathogenesis.
DOI: 10.1002/stem.1746
2014
Cited 97 times
Chloroquine Eliminates Cancer Stem Cells Through Deregulation of Jak2 and DNMT1
Triple negative breast cancer (TNBC) is known to contain a high percentage of CD44(+) /CD24(-/low) cancer stem cells (CSCs), corresponding with a poor prognosis despite systemic chemotherapy. Chloroquine (CQ), an antimalarial drug, is a lysotropic reagent which inhibits autophagy. CQ was identified as a potential CSC inhibitor through in silico gene expression signature analysis of the CD44(+) /CD24(-/low) CSC population. Autophagy plays a critical role in adaptation to stress conditions in cancer cells, and is related with drug resistance and CSC maintenance. Thus, the objectives of this study were to examine the potential enhanced efficacy arising from addition of CQ to standard chemotherapy (paclitaxel) in TNBC and to identify the mechanism by which CQ eliminates CSCs in TNBCs. Herein, we report that CQ sensitizes TNBC cells to paclitaxel through inhibition of autophagy and reduces the CD44(+) /CD24(-/low) CSC population in both preclinical and clinical settings. Also, we are the first to report a mechanism by which CQ regulates the CSCs in TNBC through inhibition of the Janus-activated kinase 2 (Jak2)-signal transducer and activator of transcription 3 signaling pathway by reducing the expression of Jak2 and DNA methyltransferase 1.
DOI: 10.1016/j.ccell.2018.10.002
2018
Cited 96 times
The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability
The fate of disseminated tumor cells is largely determined by microenvironment (ME) niche. The osteogenic niche promotes cancer cell proliferation and bone metastasis progression. We investigated the underlying mechanisms using pre-clinical models and analyses of clinical data. We discovered that the osteogenic niche serves as a calcium (Ca) reservoir for cancer cells through gap junctions. Cancer cells cannot efficiently absorb Ca from ME, but depend on osteogenic cells to increase intracellular Ca concentration. The Ca signaling, together with previously identified mammalian target of rapamycin signaling, promotes bone metastasis progression. Interestingly, effective inhibition of these pathways can be achieved by danusertib, or a combination of everolimus and arsenic trioxide, which provide possibilities of eliminating bone micrometastases using clinically established drugs.
DOI: 10.1158/1078-0432.ccr-16-1293
2016
Cited 91 times
FDA Approval: Alectinib for the Treatment of Metastatic, ALK-Positive Non–Small Cell Lung Cancer Following Crizotinib
On December 11, 2015, the FDA granted accelerated approval to alectinib (Alecensa; Genentech) for the treatment of patients with anaplastic lymphoma receptor tyrosine kinase (ALK)-positive, metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib. This approval was based on two single-arm trials including 225 patients treated with alectinib 600 mg orally twice daily. The objective response rates (ORR) by an independent review committee in these studies were 38% [95% confidence interval (CI), 28-49] and 44% (95% CI, 36-53); the median durations of response (DOR) were 7.5 months and 11.2 months. In a pooled analysis of 51 patients with measurable disease in the central nervous system (CNS) at baseline, the CNS ORR was 61% (95% CI, 46-74); the CNS DOR was 9.1 months. The primary safety analysis population included 253 patients. The most common adverse reactions were fatigue (41%), constipation (34%), edema (30%), and myalgia (29%). The most common laboratory abnormalities were anemia (56%), increased aspartate aminotransferase (51%), increased alkaline phosphatase (47%), increased creatine phosphokinase (43%), hyperbilirubinemia (39%), hyperglycemia (36%), increased alanine aminotransferase (34%), and hypocalcemia (32%). Dose reductions due to adverse reactions occurred in 12% of patients, whereas 27% of patients had alectinib dosing interrupted for adverse reactions. Permanent discontinuation of alectinib due to adverse reactions occurred in only 6% of patients. With the clinically meaningful ORR and DOR as well as the safety profile observed in these trials, alectinib was determined to have a favorable benefit-risk profile for the treatment of the indicated population. Clin Cancer Res; 22(21); 5171-6. ©2016 AACR.
DOI: 10.3389/fmicb.2018.01403
2018
Cited 69 times
Presence of Segmented Filamentous Bacteria in Human Children and Its Potential Role in the Modulation of Human Gut Immunity
Segmented filamentous bacteria (SFB) are commensal organisms that grow by anchoring a specialized holdfast structure to the intestinal walls of a variety of animals. Interaction of SFB with Peyer's patches in mice promotes the post-natal maturation of the immune system. We previously reported that the colonization of SFB in humans mainly occurs by 36 months of age, and is difficult to be detected afterward. In this study, we measured the level of SFB in intestinal fluids of human children. SFB were found via qPCR to represent a small fraction of the whole SFB-positive microbiota (105 SFB in 1011 total bacteria). Bacteria with filamentous segmented morphology were observed in intestinal fluids via fluorescent in situ hybridization, and from gut biopsies via scanning electron microscopy. SFB-specific DNA and peptide fragments were also identified via multiple displacement amplification PCR and mass spectrometry. There was an overall positive correlation between the presence of SFB and the titer of total secretory immunoglobulin A (sIgA), which is more apparent in intestinal fluids of the age group of 8-36 months. Afterward there was a decline of SFB in numbers correlated with a reduction of total sIgA. RT-qPCR analysis of the terminal ileal biopsies revealed that the expression of Th17 pathway genes were induced in SFB-positive samples, while the markers of T and B cell receptor signaling pathways were also upregulated. Collectively, these data suggest that SFB is a rare member of microbiota, and may play an important role in the development of human gut immunity.
DOI: 10.1186/s40425-019-0733-7
2019
Cited 64 times
Niclosamide, an antihelmintic drug, enhances efficacy of PD-1/PD-L1 immune checkpoint blockade in non-small cell lung cancer
<h3>Background</h3> PD-1/PD-L1 blockade has received approval for clinical application due to its encouraging benefit with improving prognosis in selected populations. Unfortunately, the response to immunotherapy for many patients remains unsatisfactory. It remains a great challenge to generate potential combinations that will outperform single agents alone with regard to anti-tumor activity. <h3>Methods</h3> Using NSCLC cell lines and mouse models, we explored the effects of combined niclosamide and PD-L1 blockade on tumor growth and T cell function. Furthermore, we investigated the relationship between PD-L1 and p-STAT3 expression in tumor samples from patients with NSCLC using IHC, as well as their relationship to patient survival. <h3>Results</h3> In vitro, niclosamide, an antihelmintic drug, enhanced the cancer cell lysis mediated by T cells in the presence of PD-L1 blockade. Accordingly, mice treated with niclosamide and PD-L1 antibody showed significant delay in tumor growth and increased survival which were associated with the increase of tumor infiltrating T cells and granzyme B release. Importantly, we found niclosamide could decrease the expression of PD-L1 in both a concentration- and time-dependent manner in NSCLC cells, which was linked to the blockage of p-STAT3 binding to the promoter of PD-L1. <h3>Conclusions</h3> An enhancement of PD-L1 antibody by niclosamide was observed in inhibition of NSCLC growth in vitro and in vivo, which was involved in blockage of p-STAT3 binding to promoter of PD-L1 and finally downregulation of PD-L1 expression. These encourage the combination therapy of niclosamide and PD-1/PD-L1 blockade to be further studied in clinic.
DOI: 10.1093/bib/bbad008
2023
Cited 11 times
Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?
Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility.
DOI: 10.1074/jbc.m201078200
2002
Cited 123 times
Discoidin Domain Receptor 2 Interacts with Src and Shc following Its Activation by Type I Collagen
Discoidin domain receptor 2 (DDR2) is an unusual receptor tyrosine kinase in that its ligand is fibrillar collagen rather than a growth factor-like peptide.We examined signal transduction pathways of DDR2.Here we show that DDR2 is also unusual in that it requires Src activity to be maximally tyrosine-phosphorylated, and that Src activity also promotes association of DDR2 with Shc.The interaction with Shc involves a portion of Shc not previously implicated in interaction with receptor tyrosine kinases.These results identify Src kinase and the adaptor protein Shc as key signaling intermediates in DDR2 signal transduction.Furthermore, Src is required for DDR2-mediated transactivation of the matrix metalloproteinase-2 promoter.The data support a model in which Src and the DDR2 receptor cooperate in a regulated fashion to direct the phosphorylation of both the receptor and its targets.Receptor tyrosine kinases (RTKs) 1 of the discoidin domain receptor (DDR) family are unlike most RTKs, in that they do not use typical peptide growth factors as ligands; instead, they signal in response to fibrillar collagens (1, 2), establishing the DDR family as receptors for extracellular matrix molecules.Thus far, two DDR receptors have been identified, DDR1 and DDR2.DDR1 is primarily expressed in epithelial cells in the brain, gastrointestinal tract, lung, and kidney, whereas DDR2 is expressed in interstitial cells in the heart, skeletal muscle, lung, brain, and kidney (3).DDR1 and DDR2 are differentially activated by collagens.DDR1 is activated primarily by collagen types I, II, III, V, and XI, whereas DDR2 is activated mainly by collagen types I and III (1, 2, 4).In addition to their unique ligand specification, several other
DOI: 10.1016/j.yjmcc.2006.01.024
2006
Cited 105 times
Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3β
Although bradykinin has been demonstrated to protect the heart at reperfusion, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. Here we aimed to determine whether bradykinin protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3beta (GSK-3beta). Bradykinin given at reperfusion reduced infarct size in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion. The infarct-limiting effect of bradykinin was reversed by atractyloside, an opener of the mPTP, suggesting that bradykinin may protect the heart at reperfusion by modulating the mPTP opening. In support of this observation, bradykinin prevented the collapse of mitochondrial membrane potential (DeltaPsi(m)), an index of the mPTP opening. Bradykinin increased GSK-3beta phosphorylation at reperfusion, and the selective inhibitor of GSK-3beta SB216763 reduced infarct size and prevented the loss of DeltaPsi(m) by mimicking the effect of bradykinin. The effect of bradykinin on GSK-3beta phosphorylation was blocked by wortmannin and LY294002, and bradykinin increased Akt phosphorylation at reperfusion. Further experiments showed that the MEK inhibitor PD98059 prevented the effect of bradykinin on GSK-3beta. However, the mTOR/p70s6K pathway inhibitor rapamycin did not alter bradykinin-induced GSK-3beta phosphorylation and bradykinin failed to alter phosphorylation of either mTOR or p70s6K at reperfusion. Taken together, these data suggest that bradykinin protects the heart at reperfusion by modulating the mPTP opening through inhibition of GSK-3beta. The PI3-kinase/Akt pathway and ERK, but not the mTOR/p70s6K pathway account for the suppression of GSK-3beta by bradykinin.
DOI: 10.1016/j.brainres.2011.10.016
2012
Cited 89 times
Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation
The role of satellite glial cells (SGCs) of sensory ganglia in chronic pain begins to receive interest. The present study aims to investigate the contribution of SGC activation to the development of neuropathic pain. A neuropathic pain model was established by lumbar 5 spinal nerve ligation (SNL), and glial fibrillary acidic protein (GFAP) was used as a marker of SGC activation. It was found that SGCs were activated in the ipsilateral dorsal root ganglia (DRG) increased significantly as early as 4h following SNL, gradually increased to a peak level at day 7, and then stayed at a high level to the end of the experiment at day 56. SGC activation in the SNL group was significantly higher than that in the sham group at days 1, 3 and 7 after operation. Immunofluorescent double labeling showed that the activated SGCs encircled large, medium-sized and small neurons. The SGCs surrounded the small and medium-sized neurons were preferentially activated in the early phase, but shifted to large diameter neurons as time went on. Continuous infusion of fluorocitrate, a glial metabolism inhibitor, to the affected DRG via mini-osmotic pump for 7d significantly alleviated mechanical allodynia at day 7. These results suggest that SGCs in the DRG were activated after SNL. SGC activation contributed to the early maintenance of neuropathic pain.
DOI: 10.1097/jto.0b013e318248240b
2012
Cited 83 times
Prognostic Significance of TAZ Expression in Resected Non-Small Cell Lung Cancer
Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. Recently, TAZ has been identified as an oncogene and has an important role in tumorigenicity of non-small cell lung cancer (NSCLC). Therefore, TAZ may present a novel target for the future diagnosis, prognosis, and therapy for lung cancer. We investigated the relationship between TAZ expression and clinicopathological parameters and determined its prognostic significance concerning survival in patients with resected NSCLC.TAZ expression was immunohistochemically studied in 181 consecutive patients with NSCLC and 20 cases of normal lung tissue. The association between expression of TAZ and clinicopathological parameters was evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of TAZ expression on survival.TAZ expression was observed in 121 of the 181 (66.8%) NSCLC. TAZ had nuclear and cytoplasmic expression. Clinicopathologically, TAZ expression was significantly associated with lung adenocarcinoma (p = 0. 002), poorer differentiation (p = 0.001), p-tumor, node, metastasis stage (p = 0.001), lymph node metastasis (p = 0.032), intratumoral vascular invasion (p = 0.004), pleural invasion (p = 0.003), adjuvant chemotherapy (p = 0.044), and poorer prognosis (p = 0.002). Multivariable analysis confirmed that TAZ expression increased the hazard of death after adjusting for other clinicopathological factors (hazard ratio, 2.56; 95% confidence interval, 1.39-4.66; p = 0.01). Overall survival was significantly prolonged in TAZ negative group when compared with TAZ positive group (61.8 versus 47.1 months; p < 0.0001), as was disease-free survival (44.3 versus 25.1 months; p < 0.0001). Adjuvant chemotherapy prolonged overall survival among resected NSCLC patients with TAZ positive expression (p = 0.001).This study suggests that TAZ expression is a prognostic indicator of poorer survival probability for patients with resected NSCLC.
DOI: 10.1158/0008-5472.can-11-2333
2012
Cited 81 times
A Novel Method of Transcriptional Response Analysis to Facilitate Drug Repositioning for Cancer Therapy
Little research has been done to address the huge opportunities that may exist to reposition existing approved or generic drugs for alternate uses in cancer therapy. In addition, there has been little work on strategies to reposition experimental cancer agents for testing in alternate settings that could shorten their clinical development time. Progress in each area has lagged, in part, because of the lack of systematic methods to define drug off-target effects (OTE) that might affect important cancer cell signaling pathways. In this study, we addressed this critical gap by developing an OTE-based method to repurpose drugs for cancer therapeutics, based on transcriptional responses made in cells before and after drug treatment. Specifically, we defined a new network component called cancer-signaling bridges (CSB) and integrated it with a Bayesian factor regression model (BFRM) to form a new hybrid method termed CSB-BFRM. Proof-of-concept studies were conducted in breast and prostate cancer cells and in promyelocytic leukemia cells. In each system, CSB-BFRM analysis could accurately predict clinical responses to more than 90% of drugs approved by the U.S. Food and Drug Administration and more than 75% of experimental clinical drugs that were tested. Mechanistic investigation of OTEs for several high-ranking drug-dose pairs suggested repositioning opportunities for cancer therapy, based on the ability to enforce retinoblastoma-dependent repression of important E2F-dependent cell-cycle genes. Together, our findings establish new methods to identify opportunities for drug repositioning or to elucidate the mechanisms of action of repositioned drugs.
DOI: 10.3109/10253890.2012.680526
2012
Cited 72 times
Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine
Extreme heat stress-induced gastrointestinal injury and dysfunction may occur during summer. We investigated possible mechanisms of heat stress-induced damage in the small intestine using male Sprague-Dawley rats subjected to 2 h of heat stress (40 °C, 60% relative humidity) daily for 10 consecutive days. Rats were killed at specific times immediately following heat treatment to determine: morphological changes by optical and electron microscopy; intestinal permeability using fluorescein isothiocyanate-dextran; production of reactive oxygen species (ROS), malondialdehyde (MDA), and activities of superoxide-dismutase and glutathione-peroxidase by specific assays; phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by immunocytochemistry and western-blot analysis. The rat intestinal epithelial cell line (IEC-6) and specific MAPK inhibitors were used for in vitro investigation of effects of activation of MAPKs by heat stress. Heat stress caused marked morphological damage to the small intestine and significantly increased intestinal permeability. Heat stress increased ROS and MDA production, and significantly reduced anti-oxidase activity. MAPK activity in small intestine was increased by heat stress. In vitro, heat stress caused damage and apoptosis in IEC-6 cells; inhibition of ERK1/2 activation (by U0126) exacerbated these effects, which were attenuated by inhibition of JNK (by SP600125) and p38 (by SB203580) activation. Hence, heat stress caused severe small intestine injury, increased oxidative stress, and activated MAPK signaling pathways. The in vitro studies indicated that ERK1/2 activation is anti-apoptotic, and JNK and p38 activation are pro-apoptotic in heat stressed intestinal epithelial cells.
DOI: 10.1158/1078-0432.ccr-14-0395
2014
Cited 72 times
Old Drug New Use—Amoxapine and Its Metabolites as Potent Bacterial β-Glucuronidase Inhibitors for Alleviating Cancer Drug Toxicity
Abstract Purpose: Irinotecan (CPT-11) induced diarrhea occurs frequently in patients with cancer and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the nontoxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as a potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11–induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. Experimental Design: The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by Escherichia coli GUS enzyme and cell-based assay. Low-dosage daily oral administration was designed to use along with CPT-11 to treat tumor-bearing mice. Results: Computational modeling results indicated that amoxapine and its metabolites bound in the active site of GUS and satisfied critical pharmacophore features: aromatic features near bacterial loop residue F365′ and hydrogen bond toward E413. Amoxapine and its metabolites were demonstrated as potent in vitro. Administration of low dosages of amoxapine with CPT-11 in mice achieved significant suppression of diarrhea and reduced tumor growth. Conclusions: Amoxapine has great clinical potential to be rapidly translated to human subjects for irinotecan-induced diarrhea. Clin Cancer Res; 20(13); 3521–30. ©2014 AACR.
DOI: 10.1093/annonc/mds581
2013
Cited 70 times
Phase II study of sorafenib in combination with cisplatin and 5-fluorouracil to treat recurrent or metastatic nasopharyngeal carcinoma
We aimed to investigate the efficacy and tolerability of sorafenib combined with cisplatin and 5-fluorouracil (5-FU) in patients with recurrent or metastatic nasopharyngeal carcinoma (NPC).It was a Simon two-stage designed trial. Chemotherapy-naive patients with recurrent or metastatic disease were enrolled. The regimen was sorafenib 400 mg orally b.i.d., cisplatin 80 mg/m(2) i.v. day 1, and 5-FU 1000 mg/m(2)/day CIV for 4 days, repeated every 21 days. After a maximum of six cycles of chemotherapy, patients received maintenance of sorafenib.In total, 54 patients were enrolled. The objective response rate reached 77.8%, including 1 complete response and 41 partial responses. The median progression-free survival was 7.2 months (95% CI 6.8-8.4 months), and the median overall survival was 11.8 months (95% CI 10.6-18.7 months). Major toxic effects included hand-foot skin reaction, myelosuppression, and gastrointestinal (GI) reaction. The incidence of hemorrhage was 22.2%, and one patient with liver metastases died of GI bleeding. Contrast-enhanced ultrasonography was carried out in a subset of patients with liver metastases.Combination of sorafenib, cisplatin (80 mg/m(2)) and 5-FU (3000 mg/m(2)) was tolerable and feasible in recurrent or metastatic NPC. Further randomized trials to compare sorafenib plus cisplatin and 5-FU with standard dose of cisplatin plus 5-FU in NPC are warranted.
DOI: 10.1073/pnas.1210353110
2013
Cited 66 times
Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer
Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Met(mt)) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Met(mt) mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Met(mt), significantly increased tumor penetrance over Met(mt) or Trp53 loss alone. Unlike Met(mt) tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Met(mt) tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC.
DOI: 10.1158/0008-5472.can-15-2662
2016
Cited 64 times
<i>In Vivo</i> Visualization and Characterization of Epithelial–Mesenchymal Transition in Breast Tumors
Abstract The activation of the epithelial-to-mesenchymal transition (EMT) program is a critical step in cancer progression and metastasis, but visualization of this process at the single-cell level, especially in vivo, remains challenging. We established an in vivo approach to track the fate of tumor cells based on a novel EMT-driven fluorescent color switching breast cancer mouse model and intravital two-photon laser scanning microscopy. Specifically, the MMTV-PyMT, Rosa26-RFP-GFP, and Fsp1-Cre triple transgenic mouse model was used to monitor the conversion of RFP-positive epithelial cells to GFP-positive mesenchymal cells in mammary tumors under the control of the Fsp1 (ATL1) promoter, a gate-keeper of EMT initiation. RFP-positive cells were isolated from the tumors, sorted, and transplanted into mammary fat pads of SCID mice to monitor EMT during breast tumor formation. We found that the conversion from RFP- to GFP-positive and spindle-shaped cells was a gradual process, and that GFP-positive cells preferentially localized close to blood vessels, independent of tumor size. Furthermore, cells undergoing EMT expressed high levels of the HGF receptor, c-Met, and treatment of RFP-positive cells with the c-Met inhibitor, cabozantinib, suppressed the RFP-to-GFP conversion in vitro. Moreover, administration of cabozantinib to mice with palpable RFP-positive tumors resulted in a silent EMT phenotype whereby GFP-positive cells exhibited reduced motility, leading to suppressed tumor growth. In conclusion, our imaging technique provides a novel opportunity for visualizing tumor EMT at the single-cell level and may help to reveal the intricacies underlying tumor dynamics and treatment responses. Cancer Res; 76(8); 2094–104. ©2016 AACR.
DOI: 10.1016/j.celrep.2014.08.073
2014
Cited 62 times
The Prognostic Ease and Difficulty of Invasive Breast Carcinoma
Breast carcinoma (BC) has been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The sheer number of reported signatures has led to speculation that everything is prognostic in BC. Here, we show that this ubiquity is an apparition caused by a poor understanding of the interrelatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological profile, or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers but who experience a distant metastasis within 5 years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intratumoral heterogeneity.
DOI: 10.1158/0008-5472.can-17-2994
2018
Cited 57 times
Targeting Brain-Adaptive Cancer Stem Cells Prohibits Brain Metastatic Colonization of Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) exhibits more traits possessed by cancer stem cells (CSC) than other breast cancer subtypes and is more likely to develop brain metastases. TNBC patients usually have shorter survival time after diagnosis of brain metastasis, suggesting an innate ability of TNBC tumor cells in adapting to the brain. In this study, we establish novel animal models to investigate early tumor adaptation in brain metastases by introducing both patient-derived and cell line-derived CSC-enriched brain metastasis tumorsphere cells into mice. We discovered astrocyte-involved tumor activation of protocadherin 7 (PCDH7)-PLCβ-Ca2+-CaMKII/S100A4 signaling as a mediator of brain metastatic tumor outgrowth. We further identified and evaluated the efficacy of a known drug, the selective PLC inhibitor edelfosine, in suppressing the PCDH7 signaling pathway to prohibit brain metastases in the animal models. The results of this study reveal a novel signaling pathway for brain metastases in TNBC and indicate a promising strategy of metastatic breast cancer prevention and treatment by targeting organ-adaptive cancer stem cells.Significance: These findings identify a compound to block adaptive signaling between cancer stem cells and brain astrocytes. Cancer Res; 78(8); 2052-64. ©2018 AACR.
DOI: 10.1126/scitranslmed.aat0150
2018
Cited 57 times
Systems biology–based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma
Systematic drug repositioning identifies digoxin as a potential treatment for groups 3 and 4 medulloblastoma.
DOI: 10.1038/srep11805
2015
Cited 55 times
Identification of urine protein biomarkers with the potential for early detection of lung cancer
Abstract Lung cancer is the leading cause of cancer-related deaths and has an overall 5-year survival rate lower than 15%. Large-scale clinical trials have demonstrated a significant relative reduction in mortality in high-risk individuals with low-dose computed tomography screening. However, biomarkers capable of identifying the most at-risk population and detecting lung cancer before it becomes clinically apparent are urgently needed in the clinic. Here, we report the identification of urine biomarkers capable of detecting lung cancer. Using the well-characterized inducible Kras (G12D) mouse model of lung cancer, we identified alterations in the urine proteome in tumor-bearing mice compared with sibling controls. Marked differences at the proteomic level were also detected between the urine of patients and that of healthy population controls. Importantly, we identified 7 proteins commonly found to be significantly up-regulated in both tumor-bearing mice and patients. In an independent cohort, we showed that 2 of the 7 proteins were up-regulated in urine samples from lung cancer patients but not in those from controls. The kinetics of these proteins correlated with the disease state in the mouse model. These tumor biomarkers could potentially aid in the early detection of lung cancer.
DOI: 10.1186/s12860-016-0101-0
2016
Cited 52 times
Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells
Endothelial-mesenchymal transition (EndoMT) is a major source of myofibroblast formation in kidney fibrosis. Our previous study showed a profibrotic role for matrix metalloproteinase 9 (MMP-9) in kidney fibrosis via induction of epithelial-mesenchymal transition (EMT). Inhibition of MMP-9 activity reduced kidney fibrosis in murine unilateral ureteral obstruction. This study investigated whether MMP-9 also plays a role in EndoMT in human glomerular endothelial cells.TGF-β1 (10 or 20 ng/ml) induced EndoMT in HKGECs as shown by morphological changes. In addition, VE-cadherin and CD31 were significantly downregulated, whereas α-SMA, vimentin, and N-cadherin were upregulated. RT-PCR revealed that Snail, a known inducer of EMT, was upregulated. The MMP inhibitor GM6001 abrogated TGF-β1-induced EndoMT. Zymography indicated that MMP-9 was also upregulated in TGF-β1-treated HKGECs. Recombinant MMP-9 (2 μg/ml) induced EndoMT in HKGECs via Notch signaling, as evidenced by increased formation of the Notch intracellular domain (NICD) and decreased Notch 1. Inhibition of MMP-9 activity by its inhibitor showed a dose-dependent response in preventing TGF-β1-induced α-SMA and NICD in HKGECs, whereas inhibition of Notch signaling by γ-secretase inhibitor (GSI) blocked rMMP-9-induced EndoMT.Taken together, our results demonstrate that MMP-9 plays an important role in TGF-β1-induced EndoMT via upregulation of Notch signaling in HKGECs.
DOI: 10.2147/ijn.s176176
2018
Cited 51 times
Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells
Fluorescent carbon-based nanomaterials have promising properties such as biosensing, cell imaging, tracing and drug delivery. However, carbon dots (CDs) with specific inherent biological functions have not been investigated. Ginsenosides are the components with multiple bioactivities found in plants of the genus Panax, which have attracted a lot of attention for their anticancer effect.In this study, we prepared a kind of novel photoluminescent CDs from ginsenoside Re by one-step hydrothermal synthesis method. The conventional methods including transmission electron microscopy, Fourier transform infrared spectroscopy, HPLC and fluorescence spectrum were used for characterization of CDs. In vitro anticancer effect was investigated by cytotoxicity assay, flow cytometry and Western blot analysis.The as-prepared Re-CDs had an average diameter of 4.6±0.6 nm and excellent luminescent properties. Cellular uptake of Re-CDs was facilitated by their tiny nanosize, with evidence of their bright excitation-dependent fluorescent images. Compared with ginsenoside Re, the Re-CDs showed greater inhibition efficiency of cancer cell proliferation, with lower toxicity to the normal cells. The anticancer activity of Re-CDs was suggested to be associated with the generation of large amount of ROS and the caspase-3 related cell apoptosis.Hopefully, the dual functional Re-CDs, which could both exhibit bioimaging and anticancer effect, are expected to have great potential in future clinical applications.
DOI: 10.1038/s41598-022-21661-y
2022
Cited 19 times
Alarming antibiotics resistance of Helicobacter pylori from children in Southeast China over 6 years
The increasing rates of antibiotic resistance in Helicobacter pylori (H. pylori) are a major concern of the decreasing eradication rate. Large-scale and long-period studies on antimicrobial susceptibility of H. pylori in children are limited. This study aimed to describe the temporal changes of antibiotic resistance among children in southeast China. Gastric biopsies obtained from children were cultured for H. pylori from 2015 to 2020. Susceptibility to clarithromycin (CLA), amoxicillin (AML), metronidazole (MTZ), furazolidone (FZD), tetracycline (TET) and levofloxacin (LEV) was tested. Data from 2012 to 2014 reported previously were obtained for comparing the change in temporal trends of antibiotic resistance. A total of 1638 (52.7%) H. pylori strains were isolated from 3111 children recruited. The resistance rates to CLA, MTZ and LEV were 32.8%, 81.7% and 22.8%, respectively. There were 52.9% strains resistant to single resistance, 28.7% to double resistance, and 9.0% to triple resistance. The total resistance rate and resistance rates to CLA, MTZ, LEV, CLA + LEV and CLA + MTZ + LEV increased annually in a linear manner. All resistant patterns except single resistance increased obviously from 2015 to 2017 and 2018 to 2020 compared to that from 2012 to 2014. Double resistance to CLA + MTZ increased significantly with age. The resistance rate to CLA and triple resistance to CLA, MTZ and LEV increased in children with prior H. pylori treatment than that from children without prior treatment. The antibiotic resistance rates of H. pylori were high in a large pediatric population in southeast China from 2015 to 2020. Individual treatment based on susceptibility test is imperative and optimal regimens should be chosen in H. pylori eradication therapy.
DOI: 10.1186/s40478-022-01447-z
2022
Cited 17 times
Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer’s disease
Abstract Background Regulatory T cells (Tregs) play a neuroprotective role by suppressing microglia and macrophage-mediated inflammation and modulating adaptive immune reactions. We previously documented that Treg immunomodulatory mechanisms are compromised in Alzheimer’s disease (AD). Ex vivo expansion of Tregs restores and amplifies their immunosuppressive functions in vitro. A key question is whether adoptive transfer of ex vivo expanded human Tregs can suppress neuroinflammation and amyloid pathology in a preclinical mouse model. Methods An immunodeficient mouse model of AD was generated by backcrossing the 5xFAD onto Rag2 knockout mice (5xFAD-Rag2KO). Human Tregs were expanded ex vivo for 24 days and administered to 5xFAD-Rag2KO. Changes in amyloid burden, microglia characteristics and reactive astrocytes were evaluated using ELISA and confocal microscopy. NanoString Mouse AD multiplex gene expression analysis was applied to explore the impact of ex vivo expanded Tregs on the neuroinflammation transcriptome. Results Elimination of mature B and T lymphocytes and natural killer cells in 5xFAD-Rag2KO mice was associated with upregulation of 95 inflammation genes and amplified number of reactive microglia within the dentate gyrus. Administration of ex vivo expanded Tregs reduced amyloid burden and reactive glial cells in the dentate gyrus and frontal cortex of 5xFAD-Rag2KO mice. Interrogation of inflammation gene expression documented down-regulation of pro-inflammatory cytokines ( IL1A&amp;B, IL6 ), complement cascade ( C1qa, C1qb, C1qc, C4a/b ), toll-like receptors ( Tlr3, Tlr4 and Tlr7 ) and microglial activations markers ( CD14, Tyrobp,Trem2 ) following Treg administration. Conclusions Ex vivo expanded Tregs with amplified immunomodulatory function, suppressed neuroinflammation and alleviated AD pathology in vivo. Our results provide preclinical evidences for Treg cell therapy as a potential treatment strategy in AD.
DOI: 10.1158/0008-5472.can-08-3141
2009
Cited 76 times
Costimulation as a Platform for the Development of Vaccines: A Peptide-Based Vaccine Containing a Novel Form of 4-1BB Ligand Eradicates Established Tumors
Vaccines represent an attractive treatment modality for the management of cancer primarily because of their specificity and generation of immunologic memory important for controlling recurrences. However, the efficacy of therapeutic vaccines may require formulations that not only generate effective immune responses but also overcome immune evasion mechanisms employed by progressing tumor. Costimulatory molecules play critical roles in modulating innate, adaptive, and regulatory immunity and have potential to serve as effective immunomodulatory components of therapeutic vaccines. In this study, we tested the function of a novel soluble form of 4-1BB ligand (4-1BBL) costimulatory molecule in modulating innate, adaptive, and regulatory immunity and assessed its therapeutic efficacy in the HPV-16 E7-expressing TC-1 cervical cancer and survivin-expressing 3LL lung carcinoma mouse models. Vaccination with 4-1BBL activated dendritic cells and enhanced antigen uptake, generated CD8(+) T-cell effector/memory responses, and endowed T effector cells refractory to suppression by CD4(+)CD25(+)FoxP3(+) T regulatory cells. Immunization with 4-1BBL in combination with an E7 peptide or survivin protein resulted in eradication of TC-1 and 3LL tumors, respectively. 4-1BBL was more effective than TLR agonists LPS, MPL, and CpG and an agonistic 4-1BB antibody as a component of E7 peptide-based therapeutic vaccine for the generation of immune responses and eradication of TC-1 established tumors in the absence of detectable toxicity. Therapeutic efficacy was associated with reversal of tumor-mediated nonresponsiveness/anergy as well as establishment of long-term CD8(+) T-cell memory. Potent pleiotropic immunomodulatory activities combined with lack of toxicity highlight the potential of 4-1BBL molecule as an effective component of therapeutic cancer vaccines.
DOI: 10.4049/jimmunol.1003266
2011
Cited 62 times
Pancreatic Islets Engineered with SA-FasL Protein Establish Robust Localized Tolerance by Inducing Regulatory T Cells in Mice
Abstract Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for &amp;gt;1 wk in vitro. SA-FasL–engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL–engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4+CD25+Foxp3+ regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.
DOI: 10.1093/bioinformatics/btr202
2011
Cited 53 times
An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data
Prediction of synergistic effects of drug combinations has traditionally been relied on phenotypic response data. However, such methods cannot be used to identify molecular signaling mechanisms of synergistic drug combinations. In this article, we propose an enhanced Petri-Net (EPN) model to recognize the synergistic effects of drug combinations from the molecular response profiles, i.e. drug-treated microarray data.We addressed the downstream signaling network of the targets for the two individual drugs used in the pairwise combinations and applied EPN to the identified targeted signaling network. In EPN, drugs and signaling molecules are assigned to different types of places, while drug doses and molecular expressions are denoted by color tokens. The changes of molecular expressions caused by treatments of drugs are simulated by two actions of EPN: firing and blasting. Firing is to transit the drug and molecule tokens from one node or place to another, and blasting is to reduce the number of molecule tokens by drug tokens in a molecule node. The goal of EPN is to mediate the state characterized by control condition without any treatment to that of treatment and to depict the drug effects on molecules by the drug tokens.We applied EPN to our generated pairwise drug combination microarray data. The synergistic predictions using EPN are consistent with those predicted using phenotypic response data. The molecules responsible for the synergistic effects with their associated feedback loops display the mechanisms of synergism.The software implemented in Python 2.7 programming language is available from request.stwong@tmhs.org.
DOI: 10.1186/bcr3183
2012
Cited 52 times
Crk adaptor proteins act as key signaling integrators for breast tumorigenesis
CT10 regulator of kinase (Crk) adaptor proteins (CrkI, CrkII and CrkL) play a role in integrating signals for migration and invasion of highly malignant breast cancer cell lines. This has important implications, as elevated CrkI/II protein levels were observed in a small cohort of breast cancer patients, which identified a potential role for Crk proteins in breast cancer progression. Numerous in vitro studies identified a role for Crk proteins in cell motility, but little is known about how Crk proteins contribute to breast cancer progression in vivo. The clinical significance of Crk proteins in human breast cancer was assessed by analyzing published breast cancer datasets using a gene expression signature that was generated following CrkII over-expression and by examining Crk protein expression in tissue microarrays of breast tumors (n = 254). Stable knockdown of Crk (CrkI/CrkII/CrkL) proteins was accomplished using a short hairpin RNA (shRNA)-mediated approach in two basal breast cancer cell lines, MDA-231 1833TR and SUM1315, where the former have a high affinity to form bone metastases. Both in vitro assays (cell migration, invasion, soft agar growth) and in vivo experiments (intra-cardiac, tibial and mammary fat pad injections) were performed to assess the functional significance of Crk proteins in breast cancer. A gene signature derived following CrkII over-expression correlated significantly with basal breast cancers and with high grade and poor outcome in general. Moreover, elevated Crk immunostaining on tissue microarrays revealed a significant association with highly proliferative tumors within the basal subtype. RNAi-mediated knockdown of all three Crk proteins in metastatic basal breast cancer cells established a continued requirement for Crk in cell migration and invasion in vitro and metastatic growth in vivo. Furthermore, Crk ablation suppressed anchorage independent growth and in vivo orthotopic tumor growth. This was associated with diminished cell proliferation and was rescued by expression of non-shRNA targeted CrkI/II. Perturbations in tumor progression correlated with altered integrin signaling, including decreased cell spreading, diminished p130Cas phosphorylation, and Cdc42 activation. These data highlight the physiological importance of Crk proteins in regulating growth of aggressive basal breast cancer cells and identify Crk-dependent signaling networks as promising therapeutic targets.
DOI: 10.1242/jcs.103036
2013
Cited 52 times
Association of β-catenin with P-Smad3 but not LEF-1 dissociates <i>in vitro</i> profibrotic from anti-inflammatory effects of TGF-β1
Summary Transforming growth factor β1 (TGF-β1) is known to be both anti-inflammatory and profibrotic. Cross-talk between TGF-β/Smad and Wnt/β-catenin pathways in epithelial–mesenchymal transition (EMT) suggests a specific role for β-catenin in profibrotic effects of TGF-β1. However, no such mechanistic role has been demonstrated for β-catenin in the anti-inflammatory effects of TGF-β1. In the present study, we explored the role of β-catenin in the profibrotic and anti-inflammatory effects of TGF-β1 by using a cytosolic, but not membrane, β-catenin knockdown chimera (F-TrCP-Ecad) and the β-catenin/CBP inhibitor ICG-001. TGF-β1 induced nuclear Smad3/β-catenin complex, but not β-catenin/LEF-1 complex or TOP-flash activity, during EMT of C1.1 (renal tubular epithelial) cells. F-TrCP-Ecad selectively degraded TGF-β1-induced cytoplasmic β-catenin and blocked EMT of C1.1 cells. Both F-TrCP-Ecad and ICG-001 blocked TGF-β1-induced Smad3/β-catenin and Smad reporter activity in C1.1 cells, suggesting that TGF-β1-induced EMT depends on β-catenin binding to Smad3, but not LEF-1 downstream of Smad3, through canonical Wnt. In contrast, in J774 macrophages, the β-catenin level was low and was not changed by interferon-γ (IFN-γ) or lipopolysaccharide (LPS) with or without TGF-β1. TGF-β1 inhibition of LPS-induced TNF-α and IFN-γ-stimulated inducible NO synthase (iNOS) expression was not affected by F-TrCP-Ecad, ICG-001 or by overexpression of wild-type β-catenin in J774 cells. Inhibition of β-catenin by either F-TrCP-Ecad or ICG-001 abolished LiCl-induced TOP-flash, but not TGF-β1-induced Smad reporter, activity in J774 cells. These results demonstrate for the first time that β-catenin is required as a co-factor of Smad in TGF-β1-induced EMT of C1.1 epithelial cells, but not in TGF-β1 inhibition of macrophage activation. Targeting β-catenin may dissociate the TGF-β1 profibrotic and anti-inflammatory effects.
DOI: 10.1097/jto.0b013e31823085f4
2012
Cited 50 times
Predictive Value of Intratumoral Microvascular Density in Patients with Advanced Non-small Cell Lung Cancer Receiving Chemotherapy Plus Bevacizumab
IntroductionThe use of bevacizumab combined with chemotherapy represents a recent advance in clinical oncology for significantly improving the survival of patients who have non-small cell lung cancer (NSCLC). There is an unmet need for biomarkers that can predict response to such treatment and identify patients sensitive to it. Our study was designed to investigate the predictive value of intratumoral microvascular density (MVD) in patients with NSCLC treated with bevacizumab.MethodsSixteen patients with NSCLC who underwent chemotherapy combined with bevacizumab were included into this study. Paraffin-embedded tumor samples were sectioned and stained immunohistochemically for the blood vessel markers CD34 and CD31 to characterize the intratumoral vasculature. A computerized image analysis program was used to quantitatively calculate the intratumoral MVD. Treatment response was evaluated by computed tomography scanning.ResultsTwo types of blood vessels, undifferentiated (CD31+/CD34−) and differentiated (CD34+), were identified. A positive correlation was found between the largest percentage of tumor shrinkage and the MVD of undifferentiated (CD31+/CD34−) vessels, with Spearman correlation coefficient being 0.576 (p = 0.019). No correlation between tumor shrinkage and differentiated vessel MVD (CD34+) was found. Moreover, seven of the eight patients with more undifferentiated vessels showed a partial response, versus only one of the seven patients with fewer undifferentiated vessels (p = 0.009).ConclusionsThere are two major types of microvessel in lung cancer vasculature. The MVD of undifferentiated vessels is a favorable predictor for patients with NSCLC treated with a chemotherapy regimen plus bevacizumab, with a higher MVD value correlating with better treatment response. Further studies are needed to verify the predictive role of MVD in treatment of NSCLC with bevacizumab.
DOI: 10.18632/oncotarget.4659
2015
Cited 44 times
Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition
Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression.Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes.CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis.This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling.Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression.
DOI: 10.1016/j.celrep.2018.02.095
2018
Cited 41 times
KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer
<h2>Summary</h2> Triple-negative breast cancers (TNBCs) display a complex spectrum of mutations and chromosomal aberrations. Chromosome 5q (5q) loss is detected in up to 70% of TNBCs, but little is known regarding the genetic drivers associated with this event. Here, we show somatic deletion of a region syntenic with human 5q33.2–35.3 in a mouse model of TNBC. Mechanistically, we identify <i>KIBRA</i> as a major factor contributing to the effects of 5q loss on tumor growth and metastatic progression. Re-expression of <i>KIBRA</i> impairs metastasis <i>in vivo</i> and inhibits tumorsphere formation by TNBC cells <i>in vitro</i>. <i>KIBRA</i> functions co-operatively with the protein tyrosine phosphatase <i>PTPN14</i> to trigger mechanotransduction-regulated signals that inhibit the nuclear localization of oncogenic transcriptional co-activators YAP/TAZ. Our results argue that the selective advantage produced by 5q loss involves reduced dosage of <i>KIBRA</i>, promoting oncogenic functioning of YAP/TAZ in TNBC.
DOI: 10.7717/peerj.11306
2021
Cited 26 times
The regulation of immune checkpoints by the hypoxic tumor microenvironment
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1 α (HIF-1 α ), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1 α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
DOI: 10.1080/08923973.2022.2054428
2022
Cited 15 times
Up-regulation of LncRNA UCA1 by TGF-β promotes doxorubicin resistance in breast cancer cells
Doxorubicin (DOX) resistance remains a major challenge for adriamycin-based treatment of breast cancer (BC). Transforming growth factor β (TGF-β) has been reported to contribute to drug resistance. Although the role of long noncoding RNAs (LncRNAs) in cancer progression has been widely studied, its effect on TGF-β-induced resistance remains limited. This study aimed to investigate the role of LncRNA on the regulation of TGF-β-induced drug resistance.Cell counting kit-8 (CCK-8) and an EdU assay were used to evaluate cell viability and proliferation. The level of LncRNA mRNA expression in BC tissues and cells was examined by quantitative real-time PCR. Changes in epithelial-mesenchymal transition (EMT) and cell apoptosis were quantified by Western blot and immunofluorescence.TGF-β induced EMT and promoted DOX resistance. LncRNA urothelial carcinoma-associated 1(lncRNA UCA1) associated with TGF-β was upregulated in BC cells and tissues. LncRNA UCA1 silencing enhanced sensitivity to DOX decreased cellular proliferation and increased apoptosis in BC cells. The effect of TGF-β on EMT and DOX resistance disappeared following a lncRNA UCA1 knockdown.These findings suggest that lncRNA-UCA1, a mediator of TGF-β signaling, could predispose BC patients to EMT and DOX resistance.
DOI: 10.1016/j.clnu.2022.11.018
2023
Cited 6 times
The impact of exclusive enteral nutrition on the gut microbiome and bile acid metabolism in pediatric Crohn's disease
Gut dysbiosis and associated bile acid (BA) metabolism play an important role in the pathogenesis of Crohn's disease (CD). We investigated the impacts of the exclusive enteral nutrition treatment (EEN) on the gut microbiome (GM) and BAs metabolism for patients with CD.Targeted metabolomics analysis and metagenomics analysis were performed in feces to investigate the BA and GM changes of patients before and after 2-months EEN therapy. The Pediatric Crohn's Disease Activity Index (PCDAI) and fecal calprotectin were used to evaluate the severity and mucosal inflammation of CD.A total of 27 newly diagnosed pediatric patients with CD and 27 healthy controls were recruited in this study. Both GM structure and the secondary BA metabolism were significantly impaired in patients, which could return towards normal levels after EEN treatment. The most abundant taxa Firmicutes and 11 BAs were found closely associated with the PCDAI score and fecal calprotectin. Meanwhile, the close interactions between Firmicute bacteria and BAs might contribute to the remission of CD after EEN treatment. The qPCR data further confirmed that the relative expressions of Firmicutes phylum, and genus Flavonifractor and Clostridium V were improved after EEN treatment.Firmicutes bacteria and the balance of primary and secondary BA compositions in the gut were closely associated with the health status of CD disease indicated by the PCDAI score and fecal calprotectin. Understanding the recovery process of gut microbiome and BA metabolism will help us to explore the potential mechanisms of EEN therapy.
DOI: 10.1016/j.ijbiomac.2023.127314
2023
Cited 6 times
Sodium alginate hydrogel integrated with type III collagen and mesenchymal stem cell to promote endometrium regeneration and fertility restoration
A thinner endometrium has been linked to implantation failure, and various therapeutic strategies have been attempted to improve endometrial regeneration, including the use of mesenchymal stem cells (MSCs). However, low survival and retention rates of transplanted stem cells are main obstacles to efficient stem cell therapy in thin endometrium. Collagen type III is a key component of the extracellular matrix, plays a crucial role in promoting cell proliferation and differentiation, and has been identified as the major collagen expressed at the implantation site. Herein, composite alginate hydrogel containing recombinant type III collagen (rCo III) and umbilical cord mesenchymal stem cells are developed. rCo III serves as favorable bioactive molecule, displaying that rCo III administration promotes MSCs proliferation, stemness maintenance and migration. Moreover, rCo III administration enhances cell viability and migration of mouse endometrial stromal cells (ESCs). In a mouse model of thin endometrium, the Alg-rCo III hydrogel loaded with MSCs (MSC/Alg-rCo III) significantly induces endometrial regeneration and fertility enhancement in vivo. Further studies demonstrate that the MSC/Alg-rCo III hydrogel promoted endometrial function recovery partly by regulating mesenchymal-epithelial transition of ESCs. Taken together, the combination of Alg-rCo III hydrogel and MSCs has shown promising results in promoting endometrium regeneration and fertility restoration, and may provide new therapeutic options for endometrial disease.
DOI: 10.1016/j.jcmgh.2022.10.009
2023
Cited 5 times
Sex Differences in Genomic Features of Hepatitis B–Associated Hepatocellular Carcinoma With Distinct Antitumor Immunity
Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity.Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice.Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect.Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.
DOI: 10.1124/jpet.106.101477
2006
Cited 72 times
<i>N</i><sup>6</sup>-(3-Iodobenzyl)-adenosine-5′-<i>N</i>-methylcarboxamide Confers Cardioprotection at Reperfusion by Inhibiting Mitochondrial Permeability Transition Pore Opening via Glycogen Synthase Kinase 3β
Although the adenosine A<sub>3</sub> receptor agonist <i>N</i><sup>6</sup>-(3-iodobenzyl)-adenosine-5′-<i>N</i>-methylcarboxamide (IB-MECA) has been reported to be cardioprotective at reperfusion, little is known about the mechanisms underlying the protection. We hypothesized that IB-MECA may protect the heart at reperfusion by preventing the opening of mitochondrial permeability transition pore (mPTP) through inactivation of glycogen synthase kinase (GSK) 3β. IB-MECA (1 μM) applied during reperfusion reduced infarct size in isolated rat hearts, an effect that was abrogated by the selective A<sub>3</sub> receptor antagonist 1,4-dihydro-2-methyl-6-phenyl-4-(phenylethynyl)-3,5-pyridinedicarboxylic acid 3-ethyl-5-[(3-nitrophenyl)-methyl]ester (MRS1334) (100 nM). The effect of IB-MECA was abrogated by the mPTP opener atractyloside (20 μM), implying that the action of IB-MECA may be mediated by inhibition of the mPTP opening. In cardiomyocytes, IB-MECA attenuated oxidant-induced loss of mitochondrial membrane potential (ΔΨ<sub>m</sub>), which was reversed by MRS1334. IB-MECA also reduced Ca<sup>2+</sup>-induced mitochondrial swelling. IB-MECA enhanced phosphorylation of GSK-3β (Ser<sup>9</sup>) upon reperfusion, and the GSK-3 inhibitor 3-(2,4-dichlorophenyl)-4-(1-methyl-1<i>H</i>-indol-3-yl)-1<i>H</i>-pyrrole-2,5-dione (SB216763) (3 μM) mimicked the protective effect of IB-MECA by attenuating both infarction and the loss of ΔΨ<sub>m</sub>. In addition, the effect of IB-MECA on GSK-3β was reversed by wortmannin (100 nM), and IB-MECA was shown to enhance Akt phosphorylation upon reperfusion. In contrast, rapamycin (2 nM) failed to affect GSK-3β phosphorylation by IB-MECA, and IB-MECA did not alter phosphorylation of either mTOR (Ser<sup>2448</sup>) or 70s6K (Thr<sup>389</sup>). Taken together, these data suggest that IB-MECA prevents myocardial reperfusion injury by inhibiting the mPTP opening through the inactivation of GSK-3β at reperfusion. IB-MECA-induced GSK-3β inhibition is mediated by the PI3-kinase/Akt signal pathway but not by the mTOR/p70s6K pathway.
DOI: 10.1158/0008-5472.can-09-4480
2010
Cited 54 times
4-1BB Ligand as an Effective Multifunctional Immunomodulator and Antigen Delivery Vehicle for the Development of Therapeutic Cancer Vaccines
Abstract Therapeutic subunit vaccines based on tumor-associated antigens (TAA) represent an attractive approach for the treatment of cancer. However, poor immunogenicity of TAAs requires potent adjuvants for therapeutic efficacy. We recently proposed the tumor necrosis factor family costimulatory ligands as potential adjuvants for therapeutic vaccines and, hence, generated a soluble form of 4-1BBL chimeric with streptavidin (SA-4-1BBL) that has pleiotropic effects on cells of innate, adaptive, and regulatory immunity. We herein tested whether these effects can translate into effective cancer immunotherapy when SA-4-1BBL was also used as a vehicle to deliver TAAs in vivo to dendritic cells (DCs) constitutively expressing the 4-1BB receptor. SA-4-1BBL was internalized by DCs upon receptor binding and immunization with biotinylated antigens conjugated to SA-4-1BBL resulted in increased antigen uptake and cross-presentation by DCs, leading to the generation of effective T-cell immune responses. Conjugate vaccines containing human papillomavirus 16 E7 oncoprotein or survivin as a self-TAA had potent therapeutic efficacy against TC-1 cervical and 3LL lung carcinoma tumors, respectively. Therapeutic efficacy of the vaccines was associated with increased CD4+ T and CD8+ T-cell effector and memory responses and higher intratumoral CD8+ T effector/CD4+CD25+Foxp3+ T regulatory cell ratio. Thus, potent pleiotropic immune functions of SA-4-1BBL combined with its ability to serve as a vehicle to increase the delivery of antigens to DCs in vivo endow this molecule with the potential to serve as an effective immunomodulatory component of therapeutic vaccines against cancer and chronic infections. Cancer Res; 70(10); 3945–54. ©2010 AACR.
DOI: 10.1002/cncr.27553
2012
Cited 48 times
Involvement of epidermal growth factor receptor overexpression in the promotion of breast cancer brain metastasis
Abstract BACKGROUND: Brain‐metastatic breast cancer (BMBC) is increasing and poses a severe clinical problem because of the lack of effective treatments and because the underlying molecular mechanisms are largely unknown. Recent work has demonstrated that deregulation of epidermal growth factor receptor (EGFR) may correlate with BMBC progression. However, the exact contribution that EGFR makes to BMBC remains unclear. METHODS: The role of EGFR in BMBC was explored by serial analyses in a brain‐trophic clone of human MDA‐MB‐231 breast carcinoma cells (231‐BR cells). EGFR expression was inhibited by stable short‐hairpin RNA transfection or by the kinase inhibitor erlotinib, and it was activated by heparin‐binding epidermal growth factor‐like growth factor (HB‐EGF). Cell growth and invasion activities also were analyzed in vitro and in vivo. RESULTS: EGFR inhibition or activation strongly affected 231‐BR cell migration/invasion activities as assessed by an adhesion assay, a wound‐healing assay, a Boyden chamber invasion assay, and cytoskeleton staining. Also, EGFR inhibition significantly decreased brain metastases of 231‐BR cells in vivo. Surprisingly, changes to EGFR expression affected cell proliferation activities less significantly as determined by a 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, an anchorage‐independent growth assay, and cell cycle analysis. Immunoblot analysis suggested that EGFR drives cells' invasiveness capability mainly through phosphoinositide 3‐kinase/protein kinase B and phospholipase C γ downstream pathways. In addition, EGFR was involved less in proliferation because of the insensitivity of the downstream mitogen‐activated protein kinase pathway. CONCLUSIONS: The current results indicated that EGFR plays more important roles in cell migration and invasion to the brain than in cell proliferation progression on 231‐BR cells, providing new evidence of the potential value of EGFR inhibition in treating BMBC. Cancer 2012. © 2012 American Cancer Society.
DOI: 10.1158/0008-5472.can-12-4617
2013
Cited 42 times
Novel Modeling of Cancer Cell Signaling Pathways Enables Systematic Drug Repositioning for Distinct Breast Cancer Metastases
A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target-disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to repurpose known or shelved drugs for brain, lung, and bone metastases of breast cancer with the hypothesis that cancer subtypes have their own specific signaling mechanisms. To test the hypothesis, we addressed specific CSBs for each metastasis that satisfy (i) CSB proteins are activated by the maximal number of enriched signaling pathways specific to a given metastasis, and (ii) CSB proteins are involved in the most differential expressed coding genes specific to each breast cancer metastasis. The identified signaling networks for the three types of breast cancer metastases contain 31, 15, and 18 proteins and are used to reposition 15, 9, and 2 drug candidates for the brain, lung, and bone metastases. We conducted both in vitro and in vivo preclinical experiments as well as analysis on patient tumor specimens to evaluate the targets and repositioned drugs. Of special note, we found that the Food and Drug Administration-approved drugs, sunitinib and dasatinib, prohibit brain metastases derived from breast cancer, addressing one particularly challenging aspect of this disease.
DOI: 10.1126/scisignal.2004839
2014
Cited 41 times
Dynamic Reprogramming of Signaling Upon Met Inhibition Reveals a Mechanism of Drug Resistance in Gastric Cancer
Understanding how inhibitors rewire the Met receptor pathway points to a strategy for more effective gastric cancer treatment.
DOI: 10.3978/j.issn.2218-6751.2015.11.03
2015
Cited 41 times
Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells.
Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown.To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes.Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines.Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation.
DOI: 10.1038/srep03467
2013
Cited 40 times
Transcriptional signaling pathways inversely regulated in Alzheimer's disease and glioblastoma multiform
Convincing epidemiological data suggest an inverse association between cancer and neurodegeneration, including Alzheimer's disease (AD). Since both AD and cancer are characterized by abnormal, but opposing cellular behavior, i.e., increased cell death in AD while excessive cell growth occurs in cancer, this motivates us to initiate the study into unraveling the shared genes and cell signaling pathways linking AD and glioblastoma multiform (GBM). In this study, a comprehensive bioinformatics analysis on clinical microarray datasets of 1,091 GBM and 524 AD cohorts was performed. Significant genes and pathways were identified from the bioinformatics analyses - in particular ERK/MAPK signaling, up-regulated in GBM and Angiopoietin Signaling pathway, reciprocally up-regulated in AD - connecting GBM and AD (P < 0.001), were investigated in details for their roles in GBM growth in an AD environment. Our results showed that suppression of GBM growth in an AD background was mediated by the ERK-AKT-p21-cell cycle pathway and anti-angiogenesis pathway.
DOI: 10.2147/dddt.s67961
2014
Cited 40 times
Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer&amp;nbsp;in&amp;nbsp;vitro and in vivo
Protein kinase B (AKT) signaling frequently is deregulated in human cancers and plays an important role in nasopharyngeal carcinoma (NPC). This preclinical study investigated the effect of MK-2206, a potent allosteric AKT inhibitor, on human NPC cells in vitro and in vivo.The effect of MK-2206 on the growth and proliferation of CNE-1, CNE-2, HONE-1, and SUNE-1 cells was assessed by Cell Counting Kit 8 and colony formation assay. Flow cytometry was performed to analyze cell cycle and apoptosis. The effects of MK-2206 on the AKT pathway were analyzed by Western blotting. Autophagy induction was evaluated via electron microscopy and Western blot. To test the effects of MK-2206 in vivo, CNE-2 cells were subcutaneously implanted into nude mice. Tumor-bearing mice were treated orally with MK-2206 or placebo. Tumors were harvested for immunohistochemical analysis.In vitro, MK-2206 inhibited the four NPC cell line growths and reduced the sizes of the colonies in a dose-dependent manner. At 72 and 96 hours, the half maximal inhibitory concentration (IC50) values of MK-2206 in CNE-1, CNE-2, and HONE-1 cell lines were 3-5 μM, whereas in SUNE-1, IC50 was less than 1 μM, and MK-2206 induced cell cycle arrest at the G1 phase. However, our study found no evidence of apoptosis. MK-2206 induced autophagy in NPC cells, as evidenced by electron microscopy and Western blot, and inhibited the growth of tumors that were subcutaneously implanted in mice. Inhibition of downstream phosphorylation through the PRAS40 and S6 pathways seems to be the main mechanism for the MK-2206-induced growth inhibition.Our preclinical study suggests that MK-2206's antiproliferative effect may be useful for NPC treatment; however, strategies for reinforcing this effect are needed to maximize clinical benefit.
DOI: 10.1158/0008-5472.can-14-1768-a
2014
Cited 37 times
SA-4-1BBL and Monophosphoryl Lipid A Constitute an Efficacious Combination Adjuvant for Cancer Vaccines
Abstract Vaccines based on tumor-associated antigens (TAA) have limited therapeutic efficacy due to their weak immunogenic nature and the various immune evasion mechanisms active in advanced tumors. In an effort to overcome these limitations, we evaluated a combination of the T-cell costimulatory molecule SA-4-1BBL with the TLR4 agonist monophosphoryl lipid A (MPL) as a novel vaccine adjuvant system. In the TC-1 mouse allograft model of human papilloma virus (HPV)-induced cancer, a single administration of this combination adjuvant with HPV E7 protein caused tumor rejection in all tumor-bearing mice. On its own, SA-4-1BBL outperformed MPL in this setting. Against established tumors, two vaccinations were sufficient to elicit rejection in the majority of mice. In the metastatic model of Lewis lung carcinoma, vaccination of the TAA survivin with SA-4-1BBL/MPL yielded superior efficacy against pulmonary metastases. Therapeutic efficacy of SA-4-1BBL/MPL was achieved in the absence of detectable toxicity, correlating with enhanced dendritic cell activation, CD8+ T-cell function, and an increased intratumoral ratio of CD8+ T effector cells to CD4+FoxP3+ T regulatory cells. Unexpectedly, use of MPL on its own was associated with unfavorable intratumoral ratios of these T-cell populations, resulting in suboptimal efficacy. The efficacy of MPL monotherapy was restored by depletion of T regulatory cells, whereas eliminating CD8+ T cells abolished the efficacy of its combination with SA-4-1BBL. Mechanistic investigations showed that IFNγ played a critical role in supporting the therapeutic effect of SA-4-1BBL/MPL. Taken together, our results offer a preclinical proof of concept for the use of a powerful new adjuvant system for TAA-based cancer vaccines. Cancer Res; 74(22); 6441–51. ©2014 AACR.
DOI: 10.1371/journal.pone.0147226
2016
Cited 35 times
Low Prognostic Nutritional Index Correlates with Worse Survival in Patients with Advanced NSCLC following EGFR-TKIs
Objective This study was designed to demonstrate the prognostic value of prognostic nutritional index (PNI), a reflection systemic immunonutritional status, on the long-term survival of patients taking epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs). Methods In this retrospective study, eligible advanced NSCLC patients with sensitive EGFR mutations (exon 19 deletion or L858R in exon 21) were included to investigate the correlation between the PNI and overall survival (OS). The PNI was calculated as 10 x serum albumin value (g/dl) + 0.005 x peripheral lymphocyte count (per mm3). The prognostic significance of PNI and other clinicopathologic factors was identified by univariate and multivariate analysis. Results Finally, 144 patients met the inclusion criteria. The optimal cut-off value of PNI for survival stratification was 48.78. Compared with high PNI group (n = 81), low PNI (n = 63) was significantly associated with elevated C-reactive protein (CRP) level and non-response to TKIs. Overall survival was superior in the high PNI group (HR, 0.44, p = 0.004), especially for patient with L858R (HR, 0.37, p = 0.009) rather than 19 deletion (HR, 0.69, p = 0.401). The independent prognostic value of PNI was validated by multivariate analysis. Conclusion This pilot investigation demonstrated that low prognostic nutritional index correlates with worse survival for patients with advanced NSCLC and taking EGFR-TKIs. The assessment of a convenient index, known as PNI, worth attention in routine clinical practice for patients following EGFR-TKIs treatment.
DOI: 10.3892/ijmm.2015.2077
2015
Cited 34 times
TBX20 loss-of-function mutation contributes to double outlet right ventricle
Congenital heart disease (CHD), the most prevalent birth defect in humans worldwide, is still a leading non‑infectious cause of infant morbidity and mortality. Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of CHD, and more than 50 genes have been linked to various types of CHD. Nevertheless, CHD is a heterogeneous disorder and the genetic components underpinning CHD in an overwhelming majority of cases remain unknown. In the present study, the entire coding exons and flanking introns of the TBX20 gene, which codes for a T-box transcription factor essential for the proper development of the heart, were sequenced in a cohort of 146 unrelated patients with CHD. The available relatives of the index patient harboring an identified mutation and 200 unrelated ethnically matched healthy individuals used as the controls were also genotyped for TBX20. The functional characteristics of the TBX20 mutation were assayed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX20 mutation, p.R143W, was identified in an index patient with double outlet right ventricle (DORV). Genetic analyses of the pedigree of the proband revealed that in the family, the mutation co-segregated with DORV transmitted in an autosomal dominant pattern with complete penetrance. The missense mutation was absent in 400 control chromosomes and the altered amino acid was completely conserved evolutionarily across species. Functional analysis revealed that mutant TBX20 had a significantly diminished transcriptional activity compared with its wild-type counterpart. To the best of our knowledge, this study is the first to report the association of TBX20 loss-of-function mutation with increased susceptibility to DORV in humans, which provides novel insight into the molecular mechanisms responsible for CHD, suggesting potential implications for the antenatal prophylaxis of CHD.
DOI: 10.1093/ndt/gfw308
2016
Cited 34 times
Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial–mesenchymal transition
Endothelial cells are known to contribute to kidney fibrosis via endothelial-mesenchymal transition (EndoMT). Matrix metalloproteinase 9 (MMP-9) is known to be profibrotic. However, whether MMP-9 contributes to kidney fibrosis via EndoMT is unknown.Primary mouse renal peritubular endothelial cells (MRPECs) were isolated and treated by recombinant human transforming growth factor beta 1 (rhTGF-β1) with or without MMP-9 inhibitor or by recombinant human MMP-9 (rhMMP-9) alone. Kidney fibrosis was induced by unilateral ureteral obstruction (UUO) in MMP-9 knockout (KO) and wide-type (WT) control mice. The effects of MMP-9 on EndoMT of MRPECs and kidney fibrosis were examined.We showed that MRPECs underwent EndoMT after rhTGF-β1 treatment or in UUO kidney as evidenced by decreased expression of endothelial markers, vascular endothelial cadherin (VE-cadherin) and CD31, and increased levels of mesenchymal markers, α-smooth muscle actin (α-SMA) and vimentin. The expression of fibrosis markers was also up-regulated significantly after rhTGF-β1 treatment in MRPECs. The EndoMT and fibrosis markers were significantly less in rhTGF-β1-treated MMP-9 KO MRPECs, whereas MMP-9 alone was sufficient to induce EndoMT in MRPECs. UUO kidney of MMP-9 KO mice showed significantly less interstitial fibrosis and EndoMT in MRPECs. Notch signaling shown by Notch intracellular domain (NICD) was increased, while Notch-1 was decreased in rhTGF-β1-treated MRPECs of MMP-9 WT but not MMP-9 KO mice. Inhibition of MMP-9 or Notch signaling prevented rhTGF-β1- or rhMMP-9-induced α-SMA and NICD upregulation in MRPECs. UUO kidney of MMP-9 KO mice had less staining of Notch signaling transcription factor Hey-1 in VE-cadherin-positive MRPECs than WT controls.Our results demonstrate that MMP-9-dependent Notch signaling plays an important role in kidney fibrosis through EndoMT of MRPECs.
DOI: 10.1016/j.biomaterials.2018.11.015
2019
Cited 32 times
Localized immune tolerance from FasL-functionalized PLG scaffolds
Intraportal allogeneic islet transplantation has been demonstrated as a potential therapy for type 1 diabetes (T1D). The placement of islets into the liver and chronic immunosuppression to control rejection are two major limitations of islet transplantation. We hypothesize that localized immunomodulation with a novel form of FasL chimeric with streptavidin, SA-FasL, can provide protection and long-term function of islets at an extrahepatic site in the absence of chronic immunosuppression. Allogeneic islets modified with biotin and engineered to transiently display SA-FasL on their surface showed sustained survival following transplantation on microporous scaffolds into the peritoneal fat in combination with a short course (15 days) of rapamycin treatment. The challenges with modifying islets for clinical translation motivated the modification of scaffolds with SA-FasL as an off-the-shelf product. Poly (lactide-co-glycolide) (PLG) was conjugated with biotin and fabricated into particles and subsequently formed into microporous scaffolds to allow for rapid and efficient conjugation with SA-FasL. Biotinylated particles and scaffolds efficiently bound SA-FasL and induced apoptosis in cells expressing Fas receptor (FasR). Scaffolds functionalized with SA-FasL were subsequently seeded with allogeneic islets and transplanted into the peritoneal fat under the short-course of rapamycin treatment. Scaffolds modified with SA-FasL had robust engraftment of the transplanted islets that restored normoglycemia for 200 days. Transplantation without rapamycin or without SA-FasL did not support long-term survival and function. This work demonstrates that scaffolds functionalized with SA-FasL support allogeneic islet engraftment and long-term survival and function in an extrahepatic site in the absence of chronic immunosuppression with significant potential for clinical translation.
DOI: 10.1038/s42003-020-1042-x
2020
Cited 29 times
Chemogenomic profiling of breast cancer patient-derived xenografts reveals targetable vulnerabilities for difficult-to-treat tumors
Abstract Subsets of breast tumors present major clinical challenges, including triple-negative, metastatic/recurrent disease and rare histologies. Here, we developed 37 patient-derived xenografts (PDX) from these difficult-to-treat cancers to interrogate their molecular composition and functional biology. Whole-genome and transcriptome sequencing and reverse-phase protein arrays revealed that PDXs conserve the molecular landscape of their corresponding patient tumors. Metastatic potential varied between PDXs, where low-penetrance lung micrometastases were most common, though a subset of models displayed high rates of dissemination in organotropic or diffuse patterns consistent with what was observed clinically. Chemosensitivity profiling was performed in vivo with standard-of-care agents, where multi-drug chemoresistance was retained upon xenotransplantation. Consolidating chemogenomic data identified actionable features in the majority of PDXs, and marked regressions were observed in a subset that was evaluated in vivo. Together, this clinically-annotated PDX library with comprehensive molecular and phenotypic profiling serves as a resource for preclinical studies on difficult-to-treat breast tumors.
DOI: 10.4049/jimmunol.2000055
2020
Cited 28 times
Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression
Abstract Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1–engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in &amp;gt;90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft transcripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-β, IL-10, and decreased levels of proinflammatory T-bet, IL-1β, TNF-α, and IFN-γ as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance. Immunohistochemical analyses showed intense peri-islet infiltration of T regulatory cells in long-term grafts and systemic depletion of this cell population resulted in prompt rejection. The transient display of SA-PDL1 protein on the surface of islets serves as a practical means of localized immunomodulation that accomplishes sustained graft survival in the absence of chronic immunosuppression with potential clinical implications.
DOI: 10.1158/2326-6066.cir-19-0210
2020
Cited 25 times
<i>XCL1</i>/<i>Glypican-3</i> Fusion Gene Immunization Generates Potent Antitumor Cellular Immunity and Enhances Anti–PD-1 Efficacy
Abstract Cancer vaccines can amplify existing antitumor responses or prime naïve T cells to elicit effector T-cell functions in patients through immunization. Antigen-specific CD8+ T cells are crucial for the rejection of established tumors. We constructed XCL1-GPC3 fusion molecules as a liver cancer vaccine by linking the XCL1 chemokine to glypican-3 (GPC3), which is overexpressed in hepatocellular carcinoma (HCC). Cells expressing XCL1-GPC3 chemoattracted murine XCR1+CD8α+ dendritic cells (DC) and human XCR1+CD141+ DCs in vitro and promoted their IL12 production. After subcutaneous mXcl1-GPC3 plasmid injection, mXCL1-GPC3 was mainly detected in CD8α+ DCs of mouse draining lymph nodes. XCL1-GPC3–targeted DCs enhanced antigen-specific CD8+ T-cell proliferation and induced the de novo generation of GPC3-specific CD8+ T cells, which abolished GPC3-expressing tumor cells in mouse and human systems. We immunized a murine autochthonous liver cancer model, with a hepatitis B background, with the mXcl1-GPC3 plasmid starting at 6 weeks, when malignant hepatocyte clusters formed, or at 14 weeks, when liver tumor nodules developed, after diethylnitrosamine administration. mXcl1-GPC3–immunized mice displayed significantly inhibited tumor formation and growth compared with GPC3-immunized mice. After mXcl1-GPC3 immunization, mouse livers showed elevated production of IFNγ, granzyme B, IL18, CCL5, CXCL19, and Xcl1 and increased infiltration of GPC3-specific CD8+ T cells, activated natural killer (NK) cells, and NKT cells. The antitumor effects of these immune cells were further enhanced by the administration of anti–PD-1. Anti-HCC effects induced by hXCL1-GPC3 were confirmed in an HCC-PDX model from 3 patients. Thus, XCL1-GPC3 might be a promising cancer vaccine to compensate for the deficiency of the checkpoint blockades in HCC immunotherapy.
DOI: 10.3390/cancers14040904
2022
Cited 13 times
Characterisation of the Stromal Microenvironment in Lobular Breast Cancer
Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer, and it exhibits a number of clinico-pathological characteristics distinct from the more common invasive ductal carcinoma (IDC). We set out to identify alterations in the tumor microenvironment (TME) of ILC. We used laser-capture microdissection to separate tumor epithelium from stroma in 23 ER+ ILC primary tumors. Gene expression analysis identified 45 genes involved in regulation of the extracellular matrix (ECM) that were enriched in the non-immune stroma of ILC, but not in non-immune stroma from ER+ IDC or normal breast. Of these, 10 were expressed in cancer-associated fibroblasts (CAFs) and were increased in ILC compared to IDC in bulk gene expression datasets, with PAPPA and TIMP2 being associated with better survival in ILC but not IDC. PAPPA, a gene involved in IGF-1 signaling, was the most enriched in the stroma compared to the tumor epithelial compartment in ILC. Analysis of PAPPA- and IGF1-associated genes identified a paracrine signaling pathway, and active PAPP-A was shown to be secreted from primary CAFs. This is the first study to demonstrate molecular differences in the TME between ILC and IDC identifying differences in matrix organization and growth factor signaling pathways.
DOI: 10.1021/acs.jcim.2c00038
2022
Cited 13 times
Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism
Accurate estimation of the synthetic accessibility of small molecules is needed in many phases of drug discovery. Several expert-crafted scoring methods and descriptor-based quantitative structure–activity relationship (QSAR) models have been developed for synthetic accessibility assessment, but their practical applications in drug discovery are still quite limited because of relatively low prediction accuracy and poor model interpretability. In this study, we proposed a data-driven interpretable prediction framework called GASA (Graph Attention-based assessment of Synthetic Accessibility) to evaluate the synthetic accessibility of small molecules by distinguishing compounds to be easy- (ES) or hard-to-synthesize (HS). GASA is a graph neural network (GNN) architecture that makes self-feature deduction by applying an attention mechanism to automatically capture the most important structural features related to synthetic accessibility. The sampling around the hypothetical classification boundary was used to improve the ability of GASA to distinguish structurally similar molecules. GASA was extensively evaluated and compared with two descriptor-based machine learning methods (random forest, RF; eXtreme gradient boosting, XGBoost) and four existing scores (SYBA: SYnthetic Bayesian Accessibility; SCScore: Synthetic Complexity score; RAscore: Retrosynthetic Accessibility score; SAscore: Synthetic Accessibility score). Our analysis demonstrates that GASA achieved remarkable performance in distinguishing similar molecules compared with other methods and had a broader applicability domain. In addition, we show how GASA learns the important features that affect molecular synthetic accessibility by assigning attention weights to different atoms. An online prediction service for GASA was offered at http://cadd.zju.edu.cn/gasa/.
DOI: 10.2217/rme-2023-0089
2023
Cited 4 times
Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
DOI: 10.1007/s12032-010-9541-0
2010
Cited 42 times
The relationship between drug exposure and clinical outcomes of non-small cell lung cancer patients treated with gefitinib
DOI: 10.1007/s10549-011-1420-7
2011
Cited 40 times
The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: an in vivo analysis in triple-negative breast cancer models
DOI: 10.1016/j.bbrc.2010.09.037
2010
Cited 38 times
Prolyl hydroxylase 3 interacts with Bcl-2 to regulate doxorubicin-induced apoptosis in H9c2 cells
Prolyl hydroxylases (PHDs) are dioxygenases that use oxygen as a co-substrate to hydroxylate proline residues. Three PHD isoforms (PHD1, PHD2 and PHD3) have been identified in mammalian cells. PHD3 expression is upregulated in some cardiac diseases such as cardiomyopathy, myocardial ischemia-reperfusion injury and congestive heart failure, all of which are associated with apoptosis. However, the role of PHDs in cardiomyocyte apoptosis remains unknown. Here, we have found that exposure of embryonic rat heart-derived H9c2 cells to doxorubicin (DOX) induced cell apoptosis as evaluated by caspase-3/7 activity, mitochondrial membrane potential (Δψm) and cell viability, and that this apoptosis was linked to PHD3 upregulation. PHD inhibition or PHD3 silencing substantially ameliorated DOX-induced apoptosis, but PHD1 or PHD2 knockdown did not significantly influence apoptosis. Furthermore, immunoprecipitation experiments showed that PHD3 upregulation reduced the formation of the Bax-Bcl-2 complex, inhibiting the anti-apoptotic effect of Bcl-2. Thus, PHD3 upregulation may be partially responsible for DOX-induced cardiomyocyte apoptosis via its interaction with Bcl-2. Inhibition of PHD3 is likely to be cardioprotective against apoptosis in some heart disorders.
DOI: 10.1186/1746-6148-9-241
2013
Cited 37 times
Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway
As the world warms up, heat stress is becoming a major cause of economic loss in the livestock industry. Long-time exposure of animals to hyperthermia causes extensive cell apoptosis, which is harmful to them. AKT and AKT-related serine-threonine kinases are known to be involved in signaling cascades that regulate cell survival, but the mechanism remains elusive. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K) /AKT signal pathway provides protection against apoptosis induced by heat stress to ascertain the key point for treatment.Under heat stress, rats showed increased shedding of intestinal epithelial cells. These rats also had elevated levels of serum cortisol and improved expression of heat shock proteins (Hsp27, Hsp70 and Hsp90) in response to heat stress. Apoptosis analysis by TUNEL assay revealed a higher number of villi epithelial cells that were undergoing apoptosis in heat-treated rats than in the normal control. This is supported by gene expression analysis, which showed an increased ratio of Bax/Bcl-2 (p < 0.05), an important indicator of apoptosis. During heat-induced apoptosis, more AKTs were activated, showing increased phosphorylation. An increase of BAD phosphorylation, which is an inhibitory modification, ensued. In rat IEC-6 cell line, a significant higher level of AKT phosphorylation was observed at 2 h after heat exposure. This coincided with a marked reduction of apoptosis.Together, these results suggest that heat stress caused damages to rat jejunum and induced apoptosis to a greater degree. HSPs and pro-survival factors were involved in response to heat stress. Among them, AKT played a key role in inhibiting heat-induced apoptosis.
DOI: 10.3892/ijmm.2012.930
2012
Cited 34 times
A novel GATA6 mutation associated with congenital ventricular septal defect
Ventricular septal defect (VSD) is the most common form of congenital cardiovascular malformation and an important contributor to the substantially increased morbidity and mortality in infants. Emerging evidence indicates the genetic basis for the pathogenesis of congenital VSD in a significant proportion of patients. However, congenital VSD is a genetically heterogeneous disease and the genetic defects responsible for VSD in the overwhelming majority of cases remain unclear. In this study, the entire coding region of the GATA6 gene, which encodes a zinc-finger transcription factor crucial to normal cardiogenesis, was sequenced in 130 unrelated patients with congenital VSD. The available relatives of the index patient carrying the identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were subsequently genotyped. The functional characteristics of the mutant GATA6 were assessed in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, a novel heterozygous missense GATA6 mutation, p.G220S, was identified in a proband with VSD. The variation was absent in 400 control chromosomes and the altered amino acid was highly conserved evolutionarily across species. Genetic analysis of the family members of the mutation carrier showed that the substitution co-segregated with VSD was inherited as an autosomal dominant trait. Functional analysis demonstrated that the p.G220S mutation of GATA6 was associated with significantly decreased transcriptional activity. The findings provide novel insight into the molecular mechanism involved in VSD, implying the potential clinical implications in the gene-specific prophylaxis and therapy of this common developmental abnormality in neonates.
DOI: 10.1007/s00246-015-1173-x
2015
Cited 33 times
A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease
DOI: 10.1016/j.ajpath.2016.03.015
2016
Cited 28 times
α3 Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice
Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3β1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was selectively deleted from proximal tubules of murine kidney by Sglt2Cre. Ablation of E-cadherin up-regulated α3β1 integrin at cell-cell adhesion. E-cadherin-deficient proximal tubular epithelial cell displayed enhanced transforming growth factor-β1-induced α-smooth muscle actin (α-SMA) and vimentin expression, which was suppressed by siRNA silencing of α3 integrin, but not β1 integrin. Up-regulation of transforming growth factor-β1-induced α-SMA was mediated by an α3 integrin-dependent increase in integrin-linked kinase (ILK). Src phosphorylation of β-catenin and consequent p-β-catenin-Y654/p-Smad2 transcriptional complex underlies the transcriptional up-regulation of ILK. Kidney fibrosis after unilateral ureteric obstruction or ischemia reperfusion was increased in proximal tubule E-cadherin-deficient mice in comparison to that of E-cadherin intact control mice. The exacerbation of fibrosis was explained by the α3 integrin-dependent increase of ILK, β-catenin nuclear translocation, and α-SMA/proximal tubular-specific Cre double positive staining in proximal tubular epithelial cell. These studies delineate a nonconventional integrin/ILK signaling by α3 integrin-dependent Src/p-β-catenin-Y654/p-Smad2-mediated up-regulation of ILK through which loss of E-cadherin leads to kidney fibrosis.
DOI: 10.1111/ajt.15747
2020
Cited 22 times
Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege
We have previously shown that pancreatic islets engineered to transiently display a modified form of FasL protein (SA-FasL) on their surface survive indefinitely in allogeneic recipients without a need for chronic immunosuppression. Mechanisms that confer long-term protection to allograft are yet to be elucidated. We herein demonstrated that immune protection evolves in two distinct phases; induction and maintenance. SA-FasL-engineered allogeneic islets survived indefinitely and conferred protection to a second set of donor-matched, but not third-party, unmanipulated islet grafts simultaneously transplanted under the contralateral kidney capsule. Protection at the induction phase involved a reduction in the frequency of proliferating alloreactive T cells in the graft-draining lymph nodes, and required phagocytes and TGF-β. At the maintenance phase, immune protection evolved into graft site-restricted immune privilege as the destruction of long-surviving SA-FasL-islet grafts by streptozotocin followed by the transplantation of a second set of unmanipulated islet grafts into the same site from the donor, but not third party, resulted in indefinite survival. The induced immune privilege required both CD4+ CD25+ Foxp3+ Treg cells and persistent presence of donor antigens. Engineering cell and tissue surfaces with SA-FasL protein provides a practical, efficient, and safe means of localized immunomodulation with important implications for autoimmunity and transplantation.
DOI: 10.1158/1078-0432.ccr-21-2595
2022
Cited 10 times
A Novel Third-generation EGFR Tyrosine Kinase Inhibitor Abivertinib for EGFR T790M-mutant Non–Small Cell Lung Cancer: a Multicenter Phase I/II Study
To establish recommended phase II dose (RP2D) in phase I and evaluate safety and efficacy of abivertinib in patients with EGFR Thr790Met point mutation (T790M)-positive(+) non-small cell lung cancer (NSCLC) with disease progression from prior EGFR inhibitors in phase II.This multicenter, open-label study included 367 adult Chinese patients. Abivertinib at doses of 50 mg twice a day to 350 mg twice a day was evaluated in phase I in continual 28-day cycles, and the RP2D of 300 mg twice a day was used in phase II in continual 21-day cycles. Primary endpoints include RP2D in phase I and objective response rate (ORR) at RP2D in phase II.The RP2D of 300 mg twice a day for abivertinib was established based on pharmacokinetics, efficacy, and safety profiles across doses in phase I. In phase II, 227 patients received RP2D for a median treatment duration of 24.6 weeks (0.43-129). Among 209 response-evaluable patients, confirmed ORR was 52.2% [109/209; 95% confidence interval (CI): 45.2-59.1]. Disease control rate (DCR) was 88.0% (184/209; 95% CI: 82.9-92.1). The median duration of response (DoR) and progression-free survival (PFS) was 8.5 months (95% CI: 6.1-9.2) and 7.5 months (95% CI: 6.0-8.8), respectively. The median overall survival (OS) was 24.9 months [95% CI: 22.4-not reachable (NR)]. All (227/227) patients reported at least 1 adverse event (AE), with 96.9% (220/227) of treatment-related AEs. Treatment-related serious AEs were reported in 13.7% (31/227) of patients. Death was reported in 4.4% (10/227) of patients, and none was deemed as treatment-related.Abivertinib of 300 mg twice a day demonstrated favorable clinical efficacy with manageable side effects in patients with EGFR T790M+ NSCLC.
DOI: 10.1002/bio.1032
2008
Cited 37 times
A quantitative study of factors affecting<i>in vivo</i>bioluminescence imaging
Abstract In vivo bioluminescence imaging (BLI) has the advantages of high sensitivity and low background. By counting the number of photons emitted from a specimen, BLI can quantify biological events such as tumour growth, gene expression and drug response. The intensities and kinetics of the BL signal are affected by many factors and may confound the quantitative results acquired from consecutive imaging sessions or different specimens. We used three different mouse models of tumours to examine whether anaesthetics, positioning and tumour growth may affect the consistency of the BL signal. The results showed that BLI signal could be affected by different anaesthetics and repetitive positioning. Using the same anaesthetics produced consistent peak times, while other factors were held constant. However, as the tumours grew the peak times shifted and the time course of BL signals had different shapes, depending on the positioning of the mice. The data indicate that a carefully designed BLI experiment is required to generate optimal and consistent results. Copyright © 2008 John Wiley &amp; Sons, Ltd.
DOI: 10.3109/02656736.2012.729173
2012
Cited 32 times
Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation
Purpose: The aim of this study was to further understand the effects and mechanism of heat stress on the intestinal mucosal immune system of the rat, including changes in the intestinal mucosal barrier and immune function and their effects on bacterial translocation.Materials and methods: Sprague Dawley (SD) rats were randomly divided into control and heat-stress groups. Both groups were housed in a 25°C environment of 60% relative humidity. The heat-stress group was subjected to 40°C for 2 h daily over 3 days.Results: Compared with the control group villi length in the small intestines of the heat-stress group was shortened. Jejunal mucosa were seriously damaged and the number of goblet cells in the epithelia of the duodenum and jejunum was significantly reduced. Electron microscopy revealed intestinal mucosal disorder, a large number of exudates of inflammatory fibrous material, fuzzy tight junction structure between epithelial cells, and cell gap increases in the heat-stress group. Transcription of IFN-γ, IL-2, IL-4, and IL-10, was significantly reduced, as was that of the intestinal mucosal immune-related proteins TLR2, TLR4, and IgA. The number of CD3+ T cells and CD3+CD4+CD8− T cells in the mesenteric lymph nodes (MLNs) was significantly lower, while the number of CD3+CD4−CD8+ T cells was significantly increased. The bacteria isolated from the MLNs were Escherichia coli.Conclusions: Heat stress damages rat intestinal mechanical and mucosal immune barriers, and reduces immune function of the intestinal mucosa and mesenteric lymphoid tissues, leading to bacterial translocation.
DOI: 10.1371/journal.pone.0039797
2012
Cited 32 times
Genome-Wide Screening for Genetic Alterations in Esophageal Cancer by aCGH Identifies 11q13 Amplification Oncogenes Associated with Nodal Metastasis
Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes.To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH) analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5%) of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC.These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.
DOI: 10.1117/1.3619294
2011
Cited 31 times
On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification
We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.
DOI: 10.5732/cjc.012.10212
2012
Cited 30 times
SPARC expression and prognostic value in non-small cell lung cancer
Secreted protein, acidic and rich in cysteine (SPARC) is expressed in numerous types of tumors and is suggested to have prognostic value.Moreover, because of its strong affinity for albumin, and hence albumin鄄 bound drugs, SPARC has increasingly become a focus for research.In this study, we aimed to determine SPARC expression in patients with non鄄 small cell lung cancer (NSCLC) and investigate the association of SPARC with disease prognosis.Tissue microarrays were constructed with specimens from 105 patients with NSCLC treated at Sun Yat鄄 sen University Cancer Center, and immunohistochemical analysis was performed on these tissue microarrays to assess SPARC expression.Our results showed that SPARC expression status did not significantly relate with age, gender, and tumor stage.However, SPARC was expressed more frequently in squamous cell carcinoma than in adenocarcinoma (75% vs. 43.5%,P = 0.004).Patients with smoking history had higher SPARC expression than non鄄 smokers (68.2% vs. 33.3%,P = 0.002).In both univariate and multivariate analyses, SPARC was a prognostic factor of overall survival (HR = 0.32; 95% CI: 0.16-0.65)but not disease鄄 free survival.Our study indicates that SPARC expression is higher in squamous cell carcinom a than in adenocarcinoma in NSCLC.Most notably, SPARC can be used as a prognostic factor for NSCLC.
DOI: 10.1186/bcr3246
2012
Cited 30 times
Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes
Angiogenesis represents a potential therapeutic target in breast cancer. However, responses to targeted antiangiogenic therapies have been reported to vary among patients. This suggests that the tumor vasculature may be heterogeneous and that an appropriate choice of treatment would require an understanding of these differences.To investigate whether and how the breast tumor vasculature varies between individuals, we isolated tumor-associated and matched normal vasculature from 17 breast carcinomas by laser-capture microdissection, and generated gene-expression profiles. Because microvessel density has previously been associated with disease course, tumors with low (n = 9) or high (n = 8) microvessel density were selected for analysis to maximize heterogeneity for this feature.We identified differences between tumor and normal vasculature, and we describe two subtypes present within tumor vasculature. These subtypes exhibit distinct gene-expression signatures that reflect features including hallmarks of vessel maturity. Potential therapeutic targets (MET, ITGAV, and PDGFRβ) are differentially expressed between subtypes. Taking these subtypes into account has allowed us to derive a vascular signature associated with disease outcome.Our results further support a role for tumor microvasculature in determining disease progression. Overall, this study provides a deeper molecular understanding of the heterogeneity existing within the breast tumor vasculature and opens new avenues toward the improved design and targeting of antiangiogenic therapies.
DOI: 10.3390/ijms161025199
2015
Cited 25 times
miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2
Cardiomyocyte progenitor cells play essential roles in early heart development, which requires highly controlled cellular organization. microRNAs (miRs) are involved in various cell behaviors by post-transcriptional regulation of target genes. However, the roles of miRNAs in human cardiomyocyte progenitor cells (hCMPCs) remain to be elucidated. Our previous study showed that miR-134 was significantly downregulated in heart tissue suffering from congenital heart disease, underlying the potential role of miR-134 in cardiogenesis. In the present work, we showed that the upregulation of miR-134 reduced the proliferation of hCMPCs, as determined by EdU assay and Ki-67 immunostaining, while the inhibition of miR-134 exhibited an opposite effect. Both up- and downregulation of miR-134 expression altered the transcriptional level of cell-cycle genes. We identified Meis2 as the target of miR-134 in the regulation of hCMPC proliferation through bioinformatic prediction, luciferase reporter assay and western blot. The over-expression of Meis2 mitigated the effect of miR-134 on hCMPC proliferation. Moreover, miR-134 did not change the degree of hCMPC differentiation into cardiomyocytes in our model, suggesting that miR-134 is not required in this process. These findings reveal an essential role for miR-134 in cardiomyocyte progenitor cell biology and provide new insights into the physiology and pathology of cardiogenesis.
DOI: 10.3892/etm.2014.1932
2014
Cited 25 times
Germacrone reverses Adriamycin resistance through cell apoptosis in multidrug-resistant breast cancer cells
Multidrug resistance (MDR) is a major obstacle to the chemotherapeutic treatment of breast cancer. Germacrone, the main component of Rhizoma Curcuma, has been shown to possess antitumor, anti-inflammatory and immunomodulatory properties. The aim of the present study was to investigate the effect of germacrone on MCF-7/Adriamycin (ADR) multidrug-resistant human breast cancer cells. The treatment of MCF-7/ADR cells with a combination of germacrone and ADR resulted in an increase in cytotoxicity compared with that of ADR alone, as determined using an MTT assay. Flow cytometric analysis revealed that germacrone promoted cell apoptosis in a dose-dependent manner, whilst treatment with germacrone plus ADR enhanced the apoptotic effect synergistically. Furthermore, the results from the western blot analysis demonstrated that augmenting ADR treatment with germacrone resulted in a reduction of anti-apoptotic protein expression levels (bcl-2) and enhancement of pro-apoptotic protein expression levels (p53 and bax) in MCF-7/ADR cells compared with the levels achieved by treatment with ADR alone. In addition, germacrone significantly reduced the expression of P-glycoprotein via the inhibition of the multidrug resistance 1 (MDR1) gene promoter. These findings demonstrate that germacrone has a critical role against MDR and may be a novel MDR reversal agent for breast cancer chemotherapy.
DOI: 10.1158/0008-5472.can-16-3427
2017
Cited 25 times
Identification of Interacting Stromal Axes in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is a molecularly heterogeneous cancer that is difficult to treat. Despite the role it may play in tumor progression and response to therapy, microenvironmental (stromal) heterogeneity in TNBC has not been well characterized. To address this challenge, we investigated the transcriptome of tumor-associated stroma isolated from TNBC (n = 57). We identified four stromal axes enriched for T cells (T), B cells (B), epithelial markers (E), or desmoplasia (D). Our analysis method (STROMA4) assigns a score along each stromal axis for each patient and then combined the axis scores to subtype patients. Analysis of these subtypes revealed that prognostic capacity of the B, T, and E scores was governed by the D score. When compared with a previously published TNBC subtyping scheme, the STROMA4 method better captured tumor heterogeneity and predicted patient benefit from therapy with increased sensitivity. This approach produces a simple ontology that captures TNBC heterogeneity and informs how tumor-associated properties interact to affect prognosis. Cancer Res; 77(17); 4673-83. ©2017 AACR.
DOI: 10.3389/fimmu.2021.625586
2021
Cited 16 times
The Effects of Helicobacter pylori Infection on Microbiota Associated With Gastric Mucosa and Immune Factors in Children
Background Helicobacter pylori infection is the main cause of chronic gastritis in children. Little is known about the effect of Helicobacter pylori on microbiota and immunity. This study was aimed at characterizing stomach microbiota and immune-regulatory properties of children with Helicobacter pylori colonization. Methods We studied 122 children who had undergone gastric endoscopy due to gastrointestinal symptoms, 57 were diagnosed with Helicobacter pylori infection. Endoscopic mucosal biopsy samples were obtained for DNA and RNA extraction. Microbiomes were analyzed by 16S rRNA profiling, with the differentially expressed genes analyzed using RNA sequencing. The RNA-sequencing results of selected genes were validated by qRT-PCR. Results Bacterial diversity of Helicobacter pylori -positive gastric specimens were lower than those of negative, and both groups were clearly separated according to beta diversity. Helicobacter pylori -positive group significantly reduced proportions of six phyla and eight genera; only Helicobacter taxa were more abundant in Helicobacter pylori- negative group. Gastric tissues RNA sequencing showed increased expression of multiple immune response genes in Helicobacter pylori -infection. Helicobacter pylori -infected children with restructured gastric microbiota had higher levels of FOXP3, IL-10, TGF-β1 and IL-17A expressions, which were consistent with increased CD4 + T cell and macrophagocyte, compared with non-infected children. Conclusions Presence of Helicobacter pylori significantly influences gastric microbiota and results in lower abundance of multiple taxonomic levels in children. Meanwhile, it affects gastric immune environment and promotes the occurrence of gastritis. Clinical Trial Registration [ http://www.chictr.org.cn ], identifier [ChiCTR1800015190]
DOI: 10.1242/jcs.01573
2004
Cited 39 times
p38α, but not p38β, inhibits the phosphorylation and presence of c-FLIPS in DISC to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling
Pharmacological inhibitors of JNK (SP600125) and p38 (PD169316) sensitize tumor cells to Fas-mediated apoptosis. PD169316 is less potent than SP600125 and diminishes its effect when present together. Because the p38 isoforms that promote (p38alpha) or inhibit (p38beta) apoptosis are both suppressed by PD169316, we investigated their regulatory involvement in Fas-signaling. We report here, that p38alpha, but not p38beta, exerts its proapoptotic effect by inhibiting the phosphorylation and presence of c-FLIPS, but not c-FLIPL, in the DISC to promote caspase-8 activation and type I signaling in Fas-activated Jurkat cells. Its effect was enhanced by enforced expression of Flag-tagged p38alpha and was attenuated by its inactive mutant (p38alpha-AGF) or by translational silencing. By contrast, type II signaling was facilitated by p38alpha-dependent mitochondrial presence of tBid and inhibition of Bcl-2 (Ser70) phosphorylation as well as by p38alpha/beta-dependent mitochondrial localization of Bax and inhibition of phosphorylation of Bad (Ser112/Ser155). Potentiation of Fas-mediated apoptosis by the inhibition of JNK1/2 correlated with the loss of Bad (Ser136) phosphorylation and was dependent on the stimulatory effect of p38alpha on DISC and the downstream effects of both p38alpha and p38beta. These data underscore the need to reassess the findings obtained with pan-p38 inhibitors and suggest that activation of p38alpha coupled with targeted inhibition of p38beta and JNK1/2 should optimally sensitize tumor cells to Fas-mediated apoptosis.
DOI: 10.1080/08977190902863548
2009
Cited 33 times
Overexpression of Reg3α increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells
Regenerating gene (Reg) family protein Reg3alpha is normally expressed in pancreatic acinar and endocrine cells. In order to explore its effect on islet beta-cell replication, insulinoma MIN6 cells were stably transfected with murine Reg3alpha cDNA. Determined using real-time PCR and Western blots, the levels of Reg3alpha mRNA and protein in Reg3alpha-transfected clones were increased 10- and 6-fold, respectively. Western blots also revealed that the protein was released into the culture medium, consistent with an endocrine effect. In MTT cell proliferation assay, Reg3alpha-overexpressing cells exhibited a 2-fold increase in the rate of cell growth. In order to investigate the intracellular mechanism, we studied cell cycle regulatory proteins. In Reg3alpha-expressing cells, we detected 2.2- and 2.5-fold increased levels of cyclin D1 and CDK4, respectively, which paralleled a 1.8-fold increase in the rate of Akt phosphorylation. It is established that beta-cell replication is associated with increased cyclin D1 and CDK4 levels; deficiency in CDK4 or cyclin D2 results in reduced beta-cell mass and diabetes. Our results suggest that Reg3alpha stimulates beta-cell replication, by activating Akt kinase and increasing the levels of cyclin D1/CDK4.
DOI: 10.4049/jimmunol.181.2.931
2008
Cited 33 times
Induction of Tolerance to Cardiac Allografts Using Donor Splenocytes Engineered to Display on Their Surface an Exogenous Fas Ligand Protein
Abstract The critical role played by Fas ligand (FasL) in immune homeostasis renders this molecule an attractive target for immunomodulation to achieve tolerance to auto- and transplantation Ags. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. The i.p. injection of ACI rats with Wistar-Furth rat splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third-party cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4+CD25+FoxP3+ T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naive unmanipulated ACI rats resulted in indefinite survival of secondary Wistar-Furth grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity.
DOI: 10.3171/2008.8.jns08644
2009
Cited 32 times
A screening platform for glioma growth and invasion using bioluminescence imaging
The study of tumor cell growth and invasion in cancer biology is often limited by the inability to visualize tumor cell behavior in real time in animal models. The authors provide evidence that glioma cells are heterogeneous,with a subset responsible for increased invasiveness. The use of bioluminescence (BL) imaging to investigate dynamic aspects of glioma progression are discussed.Glioblastoma multiforme-initiating cells were generated under conditions typically used to sustain neural stem cells. The invasiveness potential was determined using a Matrigel chamber. The presence of an "invasiveness gene signature" that correlated with patient survival outcome was ascertained through microarray gene expression analysis. To measure invasiveness, the authors devised a method focussed on BL imaging and tested it in vitro and in vivo using a zebrafish xenograft model. Bioluminescence imaging signals were verified using known inhibitors of glioma growth: AEE788, N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester, and compound E.The authors' data support the idea that glioblastoma multiforme-initiating cells are heterogeneous and possess an invasive subset; BL imaging was used as a readout method to assess this invasive subset. The in vitro data obtained using a known glioma growth inhibitor, AEE788, showed that BL imaging could detect cellular movement and invasion even before overall cell death was detectable on conventional viability assays. Further work using a zebrafish tumor xenograft model supported the efficacy of BL imaging in monitoring changes in tumor load.The authors used optically transparent zebrafish and high-resolution confocal imaging to track tumor growth in vivo and demonstrate the efficacy of this model for screening antitumor and antiangiogenic compounds.The integration of zebrafish transgenic technology into human cancer biological studies may aid in the development of cancer models targeting specific organs, tissues, or cell types within tumors. Zebrafish could also provide a cost-effective means for the rapid development of therapeutic agents directed at blocking tumor growth and invasion.
DOI: 10.1093/annonc/mdp592
2010
Cited 29 times
Overexpression of AIB1 negatively affects survival of surgically resected non-small-cell lung cancer patients
The amplified in breast cancer 1 (AIB1) gene has been considered to play an oncogenic role in human cancers, but its clinical/prognostic significance in non-small-cell lung cancer (NSCLC) is still unclear.The methods of immunohistochemistry and FISH were utilized to examine protein expression and amplification of AIB1 in 230 informative surgically resected NSCLCs and in 30 samples of normal lung tissues.Overexpression and amplification of AIB1 were found in 48.3% and 8.2% of NSCLCs, respectively. AIB1 overexpression was associated with AIB1 gene amplification and cell proliferation but not related to estrogen receptor (ER)-alpha, ER-beta, progesterone receptor or androgen receptor status. A positive correlation between AIB1 overexpression and an ascending pathologic node stage in lung adenocarcinoma (ADC) was observed (P = 0.043). Univariate survival analysis demonstrated a significant association of AIB1 overexpression with shortened patient survival, especially for those with stage III disease (P < 0.001). Importantly, AIB1 expression was evaluated as the most significant predictor for survival in multivariate analysis (hazards ratio = 2.069, P < 0.001).Overexpression of AIB1 might provide a selective advantage for lymph node metastasis of lung ADC and serve as a useful biomarker for poor prognosis for NSCLC patients.
DOI: 10.1258/ebm.2010.009362
2010
Cited 27 times
2-Aminoethoxydiphenyl borate, a inositol 1,4,5-triphosphate receptor inhibitor, prevents atrial fibrillation
The expression of the inositol 1,4,5-triphosphate receptor (IP3R) is upregulated and the function of IP3R also increases during atrial fibrillation (AF). 2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable inhibitor of IP3R. However, the effect of 2-APB on AF is unknown. The aim of the present study is to explore the effects of 2-APB on AF. In vitro rabbit heart models of ischemia-, stretch- and cholinergic agitation-induced AF were developed. Fura-2-acetoxymethyl (Fura-2-AM) and Mg2+-Fura-2-AM were used to monitor alterations of intracellular Ca2+ and ATP, respectively, in HL-1 cells, an atrial muscle cell line, under chemical ischemia or cholinergic agitation. The results showed that inhibition of IP3R significantly reduced the incidence and its probability of being sustained in all three types of AF. IP3R inhibition ameliorated the cytoplasmic Ca2+ overload and energy compromise resulting from chemical ischemia or cholinergic agitation. Thus, IP3R inhibition may be a novel target for AF treatment, and IP3R may be an important molecule in the context of different kinds of AF.
DOI: 10.1371/journal.pcbi.1003043
2013
Cited 25 times
Chapter 17: Bioimage Informatics for Systems Pharmacology
Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.
DOI: 10.1007/s11033-013-2742-9
2013
Cited 24 times
Losartan reverses glomerular podocytes injury induced by AngII via stabilizing the expression of GLUT1
DOI: 10.1016/j.lfs.2015.05.014
2015
Cited 21 times
Electro-acupuncture up-regulates astrocytic MCT1 expression to improve neurological deficit in middle cerebral artery occlusion rats
Cerebral ischemia is one of the common diseases treated by electro-acupuncture (EA). Although the clinical efficacy has been widely affirmed, the mechanisms of action leading to the health benefits are not understood. In this study, the role of EA in modulating the lactate energy metabolism and lactate transportation was explored on the middle cerebral artery occlusion (MCAO) ischemic rat model.Repeated EA treatments once daily for 7 days were applied to the MCAO rats and neurological function evaluation was performed. Brain tissues were harvested for lactate concentration examination, immunohistochemical staining, Western blot and qRT-PCR analyses for the expressions of lactate transporter (monocarboxylate transporter 1, MCT1) and glial fibrillary acidic protein (GFAP).The animal behavioral tests showed that the 7-day EA treatments significantly promoted the recovery of neurological deficits in the MCAO rats, which correlated with the enhanced lactate energy metabolism in the ischemic brain. In the cortical ischemic area of the MCAO rats, EA treatments led to the activation of astrocytes, and induced a further increase of lactate transporter (monocarboxylate transporter 1, MCT1) expression in astrocytes at both protein and mRNA levels.Our results suggest that the EA treatments activated lactate metabolism in the resident astrocytes around the ischemic area and up-regulated the expression of MCT1 in these astrocytes which facilitated the transfer of intracellular lactate to extracellular domain to be utilized by injured neurons to improve the neurological deficit.
DOI: 10.1111/hel.12481
2018
Cited 19 times
Antibiotics resistance of <i>Helicobacter pylori</i> in children with upper gastrointestinal symptoms in Hangzhou, China
Abstract Background The decreasing eradication rate of Helicobacter pylori is mainly because of the progressive increase in its resistance to antibiotics. Studies on antimicrobial susceptibility of H . pylori in children are limited. This study aimed to investigate the resistance rates and patterns of H . pylori strains isolated from children. Materials and Methods Gastric mucosa biopsy samples obtained from children who had undergone upper gastrointestinal endoscopy were cultured for H. pylori , and susceptibility to six antibiotics (clarithromycin, amoxicillin, gentamicin, furazolidone, metronidazole, and levofloxacin) was tested from 2012‐2014. Results A total of 545 H. pylori strains were isolated from 1390 children recruited. The total resistance rates of H. pylori to clarithromycin, metronidazole, and levofloxacin were 20.6%, 68.8%, and 9.0%, respectively. No resistance to amoxicillin, gentamicin, and furazolidone was detected. 56.1% strains were single resistance, 19.6% were resistant to more than one antibiotic, 16.7% for double resistance, and 2.9% for triple resistance in 413 strains against any antibiotic. And the H. pylori resistance rate increased significantly from 2012‐2014. There was no significant difference in the resistance rates to clarithromycin, metronidazole, and levofloxacin between different gender, age groups, and patients with peptic ulcer diseases or nonulcer diseases. Conclusions Antibiotic resistance was indicated in H. pylori strains isolated from children in Hangzhou, and it increased significantly during the 3 years. Our data strongly support current guidelines, which recommend antibiotic susceptibility tests prior to eradication therapy.
DOI: 10.1111/jgh.14980
2020
Cited 17 times
Application of gene chip technology in the diagnostic and drug resistance detection of <i>Helicobacter pylori</i> in children
Abstract Background and Aims Helicobacter pylori (HP) culture for diagnosing HP infection is time‐consuming and technologically complex. This study evaluated the clinical significance of gastric mucosal gene chip technology in the rapid diagnosis of HP infection and detection of drug resistance in children. Methods Patients (between the age of 2.5 and 16.0 years old) manifesting gastrointestinal symptoms were enrolled in this study. HP culture of gastric mucosa and drug sensitivity test were performed. A gene chip of gastric mucosa was used to detect the presence of HP infection, some single nucleotide polymorphisms in HP drug resistance genes, or associated gene mutation. DNA sequencing was investigated and compared with the gene chip test results. Results Out of 267 cases, HP culture was positive in 169 cases and negative in 98 cases. HP detection by the gene chip method was positive in 208 cases and negative in 59 cases. The sensitivity, specificity, and accuracy of the gene chip technology for diagnosing HP infection were 96.1, 85.0, and 93.6%, respectively. HP resistance gene locus using the gene chip showed the main mutation locus of clarithromycin to be 2143A/G, levofloxacin at locus GyrA 91 and GyrA 87, and amoxicillin at PBP1 556ser. Concordance rates between gene chip and DNA sequencing for VacA‐S/M, 16S rRNA, 23S rRNA, and GyrA were greater than 95%, and that of PBP1 was greater than 82%. Conclusion Gastric mucosal gene chip technology can be used for rapid diagnosis and drug resistance detection of HP infection in children.
DOI: 10.1177/1758835920936151
2020
Cited 17 times
Emerging treatment strategies for breast cancer brain metastasis: from translational therapeutics to real-world experience
Systemic therapies for primary breast cancer have made great progress over the past two decades. However, oncologists confront an insidious and particularly difficult problem: in those patients with metastatic breast cancer, up to 50% of human epidermal growth factor 2 (HER2)-positive and 25–40% of triple-negative subtypes, brain metastases (BM) kill most of them. Fortunately, standard- of-care treatments for BM have improved rapidly, with a decline in whole brain radiation therapy and use of fractionated stereotactic radiosurgery as well as targeted therapies and immunotherapies. Meanwhile, advances in fundamental understanding of the basic biological processes of breast cancer BM (BCBM) have led to many novel experimental therapeutic strategies. In this review, we describe the most recent clinical treatment options and emerging experimental therapeutic strategies that have the potential to combat BCBM.
DOI: 10.3390/cancers14133195
2022
Cited 8 times
Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer
Methyladenosine modifications are the most abundant RNA modifications, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2'-O-methyladenosine (m6Am). As reversible epigenetic modifications, methyladenosine modifications in eukaryotic RNAs are not invariable. Drastic alterations of m6A are found in a variety of diseases, including cancers. Dynamic changes of m6A modification induced by abnormal methyltransferase, demethylases, and readers can regulate cancer progression via interfering with the splicing, localization, translation, and stability of mRNAs. Meanwhile, m6A, m1A, and m6Am modifications also exert regulatory effects on noncoding RNAs in cancer progression. In this paper, we reviewed recent findings concerning the underlying biomechanism of methyladenosine modifications in oncogenesis and metastasis and discussed the therapeutic potential of methyladenosine modifications in cancer treatments.
1991
Cited 35 times
Antithrombotic effects of Andrographis paniculata nees in preventing myocardial infarction.
In 16 dogs the endothelium of the left anterior descending coronary artery was injured mechanically. Then a copper wire was inserted into the lumen as a choke of flow and the vessel was slightly compressed from outside by a constrictor. Eight dogs had been treated beforehand with a preparation of flavone extracted from the root of the Chinese medicinal herb Andrographis paniculata (TFAP). In the control group, saline solution was given, the epicardially recorded ST segment started to elevate within 15 minutes, the platelet aggregation rate and the plasma levels of TXB2 increased rapidly, whereas the level of 6-k-PGF1 alpha remained stable. Platelet cGMP rose continuously; however, platelet cAMP rose only at 60 minutes. Histological findings confirmed the occurrence of arterial thrombus and myocardial necrosis. Contrariwise, in the pretreated group there was no elevation of the ST segment, plasma 6-k-PGF1 alpha and platelet cAMP were increased, the production of TXB2 and aggregation of platelets were inhibited, and no thrombus or myocardial infarction was induced. All data suggest that TFAP might promote the synthesis of PGI2, inhibit the production of TXA2, stimulate the synthesis of cAMP in platelets, impede aggregation of platelets, and thereby prevent the formation of thrombi as well as the development of myocardial infarction.
DOI: 10.1111/j.1745-7254.2007.00541.x
2007
Cited 28 times
Effect of telmisartan on expression of protein kinase C-? in kidneys of diabetic mice
To investigate the effects of angiotensin receptor blocker (ARB) telmisartan on the expression and distribution of protein kinase C (PKC)-alpha in the kidneys of diabetic mice.Diabetic mice were induced with streptozotocin and a group of them were randomly selected for treatment with telmisartan. After 6 weeks, the expression and localization of PKC-alpha in the renal cortex, and the outer and inner medulla were assessed by immunohistochemistry and semiquantitative Western blotting. In addition, expressions of PKC-alpha, transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in glomeruli were measured by semiquantitative immunohistochemistry.Diabetic and normal mice showed similar distributions of PKC-alpha in the kidneys. The expression of PKC-alpha was found in glomeruli, epithelial cells of proximal tubules, and medullary-collecting duct, while not in the medullary and cortical thick ascending limb, and was different in the epithelial cells of proximal tubules of diabetic nephropathy (DN) mice, PKC-alpha was mostly translocated from the basement membrane to the apical membrane, whereas it was largely translocated from the apical membrane to the basement membrane in epithelial cells of the inner medullary-collecting duct. Western blotting detected increased expression of PKC-alpha in the renal cortex and outer medulla, but not in the inner medulla of DN mice. Enhanced expressions of PKC-alpha, TGF-beta1, and VEGF were shown in the glomeruli of DN mice, where PKC-alpha exhibited a correlation to VEGF, but no correlation to TGF-beta1. ARB telmisartan attenuated alterations of PKC-alpha as mentioned earlier in the DN mice.Our findings suggest that PKC-alpha may play a role in the pathogenesis of DN, and that the nephroprotective effects of ARB telmisartan may be partly associated with its influence on PKC-alpha.