ϟ

H. Nogima

Here are all the papers by H. Nogima that you can download and read on OA.mg.
H. Nogima’s last known institution is . Download H. Nogima PDFs here.

Claim this Profile →
DOI: 10.1016/s0927-6505(96)00045-x
1996
Cited 37 times
A limit to the rate of ultra high energy γ-rays in the primary cosmic radiation
An upper limit to the flux of Ultra High Energy (UHE) γ-rays in the primary cosmic radiation is obtained through the data of the electromagnetic and the muon detectors of the EAS-TOP Extensive Air Shower array (Campo Imperatore, National Gran Sasso Laboratories, atmospheric depth 810g cm−2). The search is performed by selecting Extensive Air Showers (EAS) with low muon content. For EAS electron sizes Ne > 6.3 · 105, no showers are observed with the core located inside a fiducial area and no muons recorded in the 140 m2 muon detector, during a live time of 8440 h. The 90% c.l. upper limit to the relative intensity of γ-ray with respect to cosmic ray (c.r.) primaries is IγIc.r. < 7.3·10−5, at primary energy E0 ≥ 1015 eV: this limit is lower than reported in previous measurements.
DOI: 10.1088/1748-0221/11/10/t10004
2016
Cited 18 times
Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter
We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.
DOI: 10.1016/j.nima.2024.169400
2024
CMS iRPC FEB development and validation
In view of the High Luminosity upgrade of the CERN LHC, the forward CMS Muon spectrometer will be extended with two new stations of improved Resistive Plate Chambers (iRPC) covering the pseudorapidity range from 1.8 to 2.4. Compared to the present RPC system, the gap thickness is reduced to lower the avalanche charge, and an innovative 2D strip readout geometry is proposed. These improvements will allow iRPC detector to cope with higher background rates. A new Front-End-Board (FEB) is designed to readout iRPC signals with a threshold as low as 30 fC and an integrated Time Digital Converter with a resolution of 30 ps. In addition, the communication bandwidth is significantly increased by using optical fibers. The history, final design, certification, and calibration of this FEB are presented.
DOI: 10.1088/1748-0221/16/05/c05002
2021
Cited 6 times
Front-end electronics for CMS iRPC detectors
Abstract A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm -2 ) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6 mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work.
DOI: 10.1016/s0168-9002(98)01129-2
1999
Cited 13 times
The hadron calorimeter of EAS-TOP: operation, calibration and resolution
We describe and discuss the operation, calibration and stability of the EAS-TOP calorimeter (Campo Imperatore, National Gran Sasso Laboratories), a large area hadron and muon detector devoted to cosmic-ray physics. It consists of iron slabs (for a total thickness of 818 g cm−2) and Iarocci tubes as sensitive layers, operating in the streamer mode and the “quasi proportional” regime. Using a model describing the operation of the “quasi proportional” chambers, we derive a calibration curve in the energy range 50–5000 GeV, whose reliability has been indirectly checked through on-site measurements, by means of an accelerator beam run (up to≃600–700 GeV) and by comparing the model predictions on hadron shower transition curves with the data.
DOI: 10.1016/s0927-6505(98)00024-3
1998
Cited 12 times
The high energy muon spectrum in Extensive Air Showers: first data from LVD and EAS-TOP at Gran Sasso
We present evidence for a dependence of the average deep underground muon energies on shower size in the coincident EAS-TOP and LVD data at the Gran Sasso laboratories. The measured relation agrees with a mixed chemical composition of the cosmic ray primary spectrum at energies around 1015 eV.
DOI: 10.1016/j.nuclphysbps.2004.06.007
2006
Cited 7 times
AIRFLY: Measurement of the Air Fluorescence Radiation Induced by Electrons
The AIRFLY (AIR FLuorescence Yield) experiment objective is the precise measurement of the fluorescence yield in atmospheric gases. AIRFLY takes data at the Beam Test Facility of the INFN Laboratori Nazionali di Frascati. A first test performed on the beam line has allowed to verify the feasibility of the physics program which includes an absolute measurement of the fluorescence yield with a precision better than 5%, the measurement of the spectrum and of the yield dependence on the electron energy, gas pressure, temperature and composition. Details of the experimental apparatus and preliminary results from the test are reported.
DOI: 10.1088/1748-0221/17/01/c01011
2022
Upgrade of the CMS resistive plate chambers for the high luminosity LHC
Abstract During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb −1 . The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented.
DOI: 10.1088/1748-0221/15/10/c10027
2020
Cited 3 times
Experiences from the RPC data taking during the CMS RUN-2
The CMS experiment recorded 177.75 /fb of proton-proton collision data during the RUN-1 and RUN-2 data taking period. Successful data taking at increasing instantaneous luminosities with the evolving detector configuration was a big achievement of the collaboration. The CMS RPC system provided redundant information for the robust muon triggering, reconstruction, and identification. To ensure stable data taking, the CMS RPC collaboration has performed detector operation, calibration, and performance studies. Various software and related tools are developed and maintained accordingly. In this paper, the overall performance of the CMS RPC system and experiences of the data taking during the RUN-2 period are summarised.
DOI: 10.1016/j.nima.2023.168272
2023
The CMS RPC system readiness for LHC Run-3 data taking
During Run-3, the LHC is preparing to deliver instantaneous luminosity in the range from 5 × 1034 cm−2 s−1 to 7.5 × 1034 cm−2 s−1. To ensure stable data taking, providing redundant information for robust muon triggering, reconstruction and identification, the CMS RPC collaboration has used the opportunity given by the LHC long shutdown 2 (LS2), to perform a series of maintenance and preparation activities for the new data taking period. The overall performance of the RPC system after the LS2 commissioning period and the activities in preparation for future data taking will be presented.
DOI: 10.1016/j.nima.2023.168266
2023
RPC background studies at CMS experiment
During Run2 the high instantaneous luminosity, up to 2.21034cm−2s−1, lead to a substantial hit rate in the Compact Muon Solenoid experiment’s muon chambers due to multiple background sources to physics processes sought for at LHC. In this article we will describe the analysis method devised to measure and identify the contributions to such background in the Resistive Plate Chambers. Thorough understanding of the background rates provides the base for the upgrade of the muon detectors for the High-Luminosity LHC.
DOI: 10.1088/1748-0221/16/04/c04005
2021
CMS RPC background — studies and measurements
Abstract The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity 1.9 &lt; |η| &lt; 2.4. Present results will be updated with the final geometry description, once it is available. The radiation background has been studied in terms of expected particle rates, absorbed dose and fluence. Two High Luminosity LHC (HL-LHC) scenarios have been investigated — after collecting 3000 and 4000 fb -1 . Estimations with safety factor of 3 have been considered, as well.
DOI: 10.1088/1748-0221/15/10/c10007
2020
RPC system in the CMS Level-1 Muon Trigger
The CMS experiment implements a two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High Level Trigger. To cope with the more challenging luminosity conditions, a new Level-1 architecture has been deployed during run II. This new architecture exploits in a better way the redundancy and complementarity of the three muon subsystems: Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC). The role of each subsystem in the Level-1 Muon Trigger is described here, highlighting the contribution from the RPC system. Challenges brought by the HL-LHC environment and new possibilities coming from detector and trigger upgrades are also discussed.
DOI: 10.1088/1748-0221/16/05/c05003
2021
CMS phase-II upgrade of the RPC Link System
Abstract The present RPC Link System has been servicing as one of the CMS subsystems since installation in 2008. Although the current Link System has been functioning well for the past 13 years, the aging of its electronic components and lack of radiation hard ASICs could present problems for future operations. Additionally, the needs to have a more robust control interface against electromagnetic interference, to improve the trigger performance with finer time granularity and to incorporate a higher bandwidth transmission lines led the idea of upgrading the Link System for the HL-LHC. This paper reviews the features of the recently developed prototype of the new Link System.
DOI: 10.1007/bf02506646
1995
Cited 6 times
Large-P T physics with cosmic-ray events
DOI: 10.1007/s41605-022-00340-6
2022
R &amp;D of back-end electronics for improved resistive plate chambers for the phase 2 upgrade of the CMS end-cap muon system
The Large Hadron Collider (LHC) at European Organization for Nuclear Research is planned to be upgraded to the high luminosity LHC. Increasing the luminosity makes muon triggering reliable and offline reconstruction very challenging. To enhance the redundancy of the Compact Muon Solenoid (CMS) Muon system and resolve the ambiguity of track reconstruction in the forward region, an improved Resistive Plate Chamber (iRPC) with excellent time resolution will be installed in the Phase-2 CMS upgrade. The iRPC will be equipped with Front-End Electronics (FEE), which can perform high-precision time measurements of signals from both ends of the strip. New Back-End Electronics (BEE) need to be researched and developed to provide sophisticated functionalities such as interacting with FEE with shared links for fast, slow control (SC) and data, in addition to trigger primitives (TPs) generation and data acquisition (DAQ). The BEE prototype uses a homemade hardware board compatible with the MTCA standard, the back-end board (BEB). BEE interacts with FEE via a bidirectional 4.8 Gbps optical paired-link that integrates clock, data, and control information. The clock and fast/slow control commands are distributed from BEB to the FEE via the downlink. The uplink is used for BEB to receive the time information of the iRPC’s fired strips and the responses to the fast/slow control commands. To have a pipelined detector data for cluster finding operation, recover (DeMux) the time relationship of which is changed due to the transmission protocol for the continuous incoming MUXed data from FEE. Then at each bunch crossing (BX), clustering fired strips that satisfy time and spatial constraints to generate TPs. Both incoming raw MUXed detector data and TPs in a time window and latency based on the trigger signal are read out to the DAQ system. Gigabit Ethernet (GbE) of SiTCP and commercial 10-GbE are used as link standards for SC and DAQ, respectively, for the BEB to interact with the server. The joint test results of the BEB with iRPC and Front-End Board (FEB) show a Bit Error Rate of the transmission links less than $$1\times {10^{-16}}$$ , a time resolution of the FEB Time-to-Digital Converter of 16 ps, and the resolution of the time difference between both ends of 160 ps which corresponding a spatial resolution of the iRPC of approximately 1.5 cm. Test results showed the correctness and stable running of the BEB prototype, of which the functionalities fulfill the iRPC requirements.
2003
Study of the Fluorescence Yield for Electrons Between 0.5 - 2.2 MeV
The fluorescence yield in air is an important parameter for the reconstruction of air showers events. The new generation of air fluorescence experiments demands for a better precision of the fluorescence yield, and several efforts are being done to get it. We present some preliminary results of measurements performed at University of Campinas. Using 90 Sr as source of electrons and a prototype chamber we obtained firsts measurements of the fluorescence light produced in nitrogen and in dry air. The analysis is aided by a detailed Monte Carlo simulation
DOI: 10.1088/1748-0221/13/01/p01002
2018
Brightness and uniformity measurements of plastic scintillator tiles at the CERN H2 test beam
We study the light output, light collection efficiency and signal timing of a variety of organic scintillators that are being considered for the upgrade of the hadronic calorimeter of the CMS detector. The experimental data are collected at the H2 test-beam area at CERN, using a 150 GeV muon beam. In particular, we investigate the usage of over-doped and green-emitting plastic scintillators, two solutions that have not been extensively considered. We present a study of the energy distribution in plastic-scintillator tiles, the hit efficiency as a function of the hit position, and a study of the signal timing for blue and green scintillators.
DOI: 10.1088/1748-0221/15/10/c10025
2020
CMS RPC activities during LHC LS-2
The second LHC long shutdown period (LS2) is an important opportunity for the CMS Resistive Plate Chambers (RPC) to complete their consolidation and upgrade projects. The consolidation includes detector maintenance for gas tightness, HV (high voltage), LV (low voltage) and slow control operation. All services for the RPC Phase-2 upgrade: improved RPC in stations RE3/1 and RE4/1, were anticipated for installation to LS2. This paper summarises the RPC system maintenance and upgrade activities.
DOI: 10.1088/1748-0221/15/10/c10009
2020
A new approach for CMS RPC current monitoring using Machine Learning techniques
The CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current is essential for the correct interpretation of its instabilities as they can be caused either by changes in external conditions or by malfunctioning of the detector in the ideal case. We propose a Machine Learning(ML) based approach to be used for monitoring the CMS RPC currents. The approach is crucial for the development of an automated monitoring system capable of warning for possible hardware problems at a very early stage, which will contribute further to the stable operation of the CMS RPC detector.
DOI: 10.1016/s0920-5632(97)00121-7
1997
Cited 3 times
Multicomponent extensive air shower observations at EAS-TOP
The study of cosmic rays at primary energies Eo > 1014 eV requires the detection of the different components of Extensive Air Showers through ground based stations. EAS-TOP is such an array (located at Campo Imperatore 2000 m a.s.l., National Gran Sasso Laboratories), including detectors of the electromagnetic, muon (Eμ, ≈ GeV at the surface, and Eμ, ≈ TeV in coincidence with the detectors operating in the underground Gran Sasso Laboratories), hadron and atmospheric Cerenkov light components. The combined operation of the detectors is discussed from the point of view of the capability of measuring the cosmic ray primary spectrum and composition. The main lines for checking the significant features of the high energy hadron interaction model used for the interpretation of the data are outlined.
DOI: 10.1088/1748-0221/16/04/c04001
2021
Towards a two-dimensional readout of the improved CMS Resistive Plate Chamber with a new front-end electronics
Abstract As part of the Compact Muon Solenoid experiment Phase-II upgrade program, new resistive plate chambers will be installed in the region at low angle with respect to the beam collision axis, in order to improve the detection of muons with a low transverse momentum. High background conditions are expected in this region during the high-luminosity phase of the Large Hadron Collider, therefore an improved-RPC design has been proposed with a new front-end electronics to sustain a higher particle rate capability and better time resolution. A new technology is used in the front-end electronics resulting in low achievable signal detection of 1–20 fC. Crucial in the design of the improved-RPC is the capability of a two-dimensional readout in order to improve the spatial resolution, mainly motivated by trigger requirements. In this work, the first performance results towards this two-dimensional readout are presented, based on data taken on a real-size prototype chamber with two embedded readout planes with orthogonal strips.
DOI: 10.1007/s41605-020-00229-2
2021
Research and development of the back-end electronics for the two-dimensional improved resistive plate chambers in CMS upgrade
DOI: 10.1088/1748-0221/9/03/p03008
2014
Radiation tolerance of an SLVS receiver based on commercial components
The capability of ProASIC3L FPGAs to receive SLVS signals has been studied in laboratory conditions and after irradiation. The irradiation has been performed using a Cs-137 source. The SLVS communication has remained functional after 201 Gy. The slowest rise time after irradiation is 324 ps, negligibly degraded with respect to the pre-irradiation rise time.
DOI: 10.1088/1748-0221/12/12/p12034
2017
Radioactive source calibration test of the CMS Hadron Endcap Calorimeter test wedge with Phase I upgrade electronics
The Phase I upgrade of the CMS Hadron Endcap Calorimeters consists of new photodetectors (Silicon Photomultipliers in place of Hybrid Photo-Diodes) and front-end electronics. The upgrade will eliminate the noise and the calibration drift of the Hybrid Photo-Diodes and enable the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade also includes increased longitudinal segmentation of the calorimeter readout, which allows pile-up mitigation and recalibration due to depth-dependent radiation damage. As a realistic operational test, the responses of the Hadron Endcap Calorimeter wedges were calibrated with a 60Co radioactive source with upgrade electronics. The test successfully established the procedure for future source calibrations of the Hadron Endcap Calorimeters. Here we describe the instrumentation details and the operational experiences related to the sourcing test.
1997
Comparison of the electron and muon data in extensive air showers with the expectations from a cosmic-ray composition and hadron interaction model.
DOI: 10.1088/1748-0221/14/08/e08001
2019
Erratum: Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter
1995
The EASCAMP Detector at Campinas
DOI: 10.1088/1748-0221/15/09/c09025
2020
Effects of the electronic threshold on the performance of the RPC system of the CMS experiment
Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC) . In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage.
2020
arXiv : CMS RPC Background -- Studies and Measurements
DOI: 10.47749/t/unicamp.1997.115131
2021
Estudo de chuveiros atmosféricos extensos como o calorímetro hadrônico MHD-EAS-TOP
Esta tese foi desenvolvida no âmbito do experimento EAS-TOP , tendo um calorimetro hadronico para raios cosmicos como objeto e instrumento de estudo. O trabalho consiste de uma parte instrumental e outra de analise de dados. Na parte instrumental destaca-se a medida da flutuacao de resposta dos detectores proporcionais, obtida atraves da selecao de eventos de chuveiros. Na outra parte o calorimetro e usado para o estudo de chuveiros atmosfericos extensos. A analise e feita comparando os dados experimentais com simulacoes. Discutem-se as perspectivas futuras da utilizacao do calorimetro para essa analise Abstract
DOI: 10.47749/t/unicamp.1992.71876
2021
Montagem e testes do módulo de tracejamento do EASCAMP
33 m> ' 4 """ 6 , w" " "''' lCG1hl 0:: '' 80 "" ' '''""' J ' tO''• 13 "'' 2C(".Otl' HXI " 'n "" ' 3 <lO" ] X J O ~ L56 m' ' LS6 m> ' 2 ' 10'' 2 ' lo" lCG006-00 2,7 111-"'' ' """" J X J()"" "59 l ' 10"j7_6 "' ' 1.24 ' ' Jx '"" Jx !Ou '',,' <UO!ll+ól ' 1.61 ' ' 7 ' 1G" ' ' tO" '""(1!071581)...;oo' ' ' l'J",,. ~ 11-49 ' " , .. lO'" ' " "' 141 d 1 ' 10" <U11<ó•l69' m, " l.l•lü" 1.3•10" "•' '"'' d SML 710 ""
DOI: 10.1590/s0103-97332002000500013
2002
Development and status of the Pierre Auger Observatory
We discuss the status of the Pierre Auger Observatory. The construction of the southern site in Argentina has started a year and a half ago. The project is in its first phase which consists in the construction and running of the so-called engineering array, a prototype of the experiment. The goals, design and construction of the observatory are discussed.
1997
The Hadron Spectrum at 840 g.cm -2 average Atmospheric Depth
1995
Study of Particle Tracking from EASCAMP
1995
On the Rate of UHE γ-ray Primaries