ϟ

H. Malbouisson

Here are all the papers by H. Malbouisson that you can download and read on OA.mg.
H. Malbouisson’s last known institution is . Download H. Malbouisson PDFs here.

Claim this Profile →
DOI: 10.1007/jhep07(2021)208
2021
Cited 74 times
Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for physics beyond the standard model (SM) using electron or muon pairs with high invariant mass. A data set of proton-proton collisions collected by the CMS experiment at the LHC at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV from 2016 to 2018 corresponding to a total integrated luminosity of up to 140 fb − 1 is analyzed. No significant deviation is observed with respect to the SM background expectations. Upper limits are presented on the ratio of the product of the production cross section and the branching fraction to dileptons of a new narrow resonance to that of the Z boson. These provide the most stringent lower limits to date on the masses for various spin-1 particles, spin-2 gravitons in the Randall-Sundrum model, as well as spin-1 mediators between the SM and dark matter particles. Lower limits on the ultraviolet cutoff parameter are set both for four-fermion contact interactions and for the Arkani-Hamed, Dimopoulos, and Dvali model with large extra dimensions. Lepton flavor universality is tested at the TeV scale for the first time by comparing the dimuon and dielectron mass spectra. No significant deviation from the SM expectation of unity is observed.
DOI: 10.1016/j.physletb.2023.137955
2023
Cited 22 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mtext>B</mml:mtext></mml:mrow><mml:mrow><mml:mtext>s</mml:mtext></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi mathvariant="normal">μ…
Measurements are presented of the Bs0→μ+μ− branching fraction and effective lifetime, as well as results of a search for the B0→μ+μ− decay in proton-proton collisions at s=13TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016–2018 corresponding to an integrated luminosity of 140fb−1. The branching fraction of the Bs0→μ+μ− decay and the effective Bs0 meson lifetime are the most precise single measurements to date. No evidence for the B0→μ+μ− decay has been found. All results are found to be consistent with the standard model predictions and previous measurements.
DOI: 10.1140/epjc/s10052-021-09200-x
2021
Cited 40 times
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$
Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_\mathrm{H}$ $=$ 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.
DOI: 10.1007/jhep07(2023)073
2023
Cited 16 times
Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract Three searches are presented for signatures of physics beyond the standard model (SM) in ττ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ leptons and the cross sections for the production of a new boson ϕ , in addition to the H(125) boson, via gluon fusion (gg ϕ ) or in association with b quarks, ranging from $$ \mathcal{O} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>O</mml:mi> </mml:math> (10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg ϕ production with local p -values equivalent to about three standard deviations at m ϕ = 0 . 1 and 1.2 TeV. In a search for t -channel exchange of a vector leptoquark U 1 , 95% CL upper limits are set on the dimensionless U 1 leptoquark coupling to quarks and τ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $$ {M}_{\textrm{h}}^{125} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mi>h</mml:mi> <mml:mn>125</mml:mn> </mml:msubsup> </mml:math> and $$ {M}_{\textrm{h},\textrm{EFT}}^{125} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>,</mml:mo> <mml:mi>EFT</mml:mi> </mml:mrow> <mml:mn>125</mml:mn> </mml:msubsup> </mml:math> minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
DOI: 10.1103/physrevlett.132.111901
2024
Cited 3 times
New Structures in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>J</mml:mi><mml:mo>/</mml:mo><mml:mi>ψ</mml:mi><mml:mi>J</mml:mi><mml:mo>/</mml:mo><mml:mi>ψ</mml:mi></mml:mrow></mml:math> Mass Spectrum in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext…
A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst) MeV. Another structure with even higher significance is found at a mass of 6847_{-28}^{+44}(stat)_{-20}^{+48}(syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134_{-25}^{+48}(stat)_{-15}^{+41}(syst) MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.
DOI: 10.1103/physrevlett.132.121901
2024
Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>W</mml:mi><mml:mi>W</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math> Production and Search for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>H</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math> Production in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi…
The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb^{-1} is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ is 5.9±0.8(stat)±0.8(syst)±0.7(modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.
DOI: 10.1007/jhep03(2021)257
2021
Cited 34 times
Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for nonresonant production of Higgs boson pairs via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two photons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb − 1 . No significant deviation from the background-only hypothesis is observed. An upper limit at 95% confidence level is set on the product of the Higgs boson pair production cross section and branching fraction into $$ \gamma \gamma \mathrm{b}\overline{\mathrm{b}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γγ</mml:mi> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> . The observed (expected) upper limit is determined to be 0.67 (0 . 45) fb, which corresponds to 7.7 (5.2) times the standard model prediction. This search has the highest sensitivity to Higgs boson pair production to date. Assuming all other Higgs boson couplings are equal to their values in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-coupling κ λ and the coupling between a pair of Higgs bosons and a pair of vector bosons c 2V are constrained within the ranges − 3 . 3 &lt; κ λ &lt; 8 . 5 and − 1 . 3 &lt; c 2V &lt; 3 . 5 at 95% confidence level. Constraints on κ λ are also set by combining this analysis with a search for single Higgs bosons decaying to two photons, produced in association with top quark-antiquark pairs, and by performing a simultaneous fit of κ λ and the top quark Yukawa coupling modifier κ t .
DOI: 10.1103/physrevd.104.052001
2021
Cited 30 times
Search for top squark production in fully hadronic final states in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.
DOI: 10.1103/physrevlett.131.061801
2023
Cited 7 times
Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cc[over ¯], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at sqrt[s]=13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cc[over ¯] in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cc[over ¯]) is 0.94 (0.50_{-0.15}^{+0.22})pb at 95% confidence level (C.L.), corresponding to 14 (7.6_{-2.3}^{+3.4}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κ_{c}, the observed (expected) 95% C.L. interval is 1.1<|κ_{c}|<5.5 (|κ_{c}|<3.4), the most stringent constraint to date.
DOI: 10.1007/jhep05(2023)228
2023
Cited 5 times
Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
DOI: 10.1007/jhep07(2023)020
2023
Cited 5 times
Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb − 1 . Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $$ \textrm{T}\overline{\textrm{T}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>T</mml:mi> <mml:mover> <mml:mi>T</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $$ \textrm{B}\overline{\textrm{B}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>B</mml:mi> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> production with B quark decays to tW.
DOI: 10.1140/epjc/s10052-023-11632-6
2023
Cited 5 times
Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at $$\sqrt{s}=13\,\text {Te\hspace{-.08em}V} $$
Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal strength modifier $\mu$, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be $\mu$ = 0.95 $^{+0.10}_{-0.09}$. All results are found to be compatible with the standard model within the uncertainties.
DOI: 10.1103/physrevd.108.072004
2023
Cited 5 times
Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>e</mml:mi><mml:mi>μ</mml:mi></mml:mrow></mml:math> final state in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</…
A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110--160 GeV to an ${e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}}$ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of $138\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. No excess is observed for the Higgs boson. The observed (expected) upper limit on the ${e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}}$ branching fraction for it is determined to be $4.4(4.7)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an ${e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}}$ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.
DOI: 10.1140/epjc/s10052-023-11952-7
2023
Cited 5 times
A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$
Abstract A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> <mml:mspace /> <mml:mtext>Te</mml:mtext> <mml:mspace /> <mml:mtext>V</mml:mtext> </mml:mrow> </mml:math> by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The 95% confidence level upper limit set on the branching fraction of the 125 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mtext>Ge</mml:mtext> <mml:mspace /> <mml:mtext>V</mml:mtext> </mml:mrow> </mml:math> Higgs boson to invisible particles, $${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>(</mml:mo> <mml:mtext>H</mml:mtext> <mml:mo>→</mml:mo> <mml:mtext>inv</mml:mtext> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>(</mml:mo> <mml:mtext>H</mml:mtext> <mml:mo>→</mml:mo> <mml:mtext>inv</mml:mtext> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> searches carried out at $${\sqrt{s}=7}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> , 8, and 13 $$\,\text {Te}\hspace{-.08em}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mtext>Te</mml:mtext> <mml:mspace /> <mml:mtext>V</mml:mtext> </mml:mrow> </mml:math> in complementary production modes. The combined upper limit at 95% confidence level on $${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>(</mml:mo> <mml:mtext>H</mml:mtext> <mml:mo>→</mml:mo> <mml:mtext>inv</mml:mtext> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is 0.15 (0.08 expected).
DOI: 10.1016/j.physletb.2023.138290
2023
Cited 5 times
Observation of four top quark production in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016–2018 at the CERN LHC and corresponding to an integrated luminosity of 138fb−1. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7−3.5+3.7(stat)−1.9+2.3(syst)fb, in agreement with the available standard model predictions.
DOI: 10.1007/jhep01(2024)101
2024
Measurement of the τ lepton polarization in Z boson decays in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract The polarization of τ leptons is measured using leptonic and hadronic τ lepton decays in Z → τ + τ − events in proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb − 1 . The measured τ − lepton polarization at the Z boson mass pole is $$ {\mathcal{P}}_{\tau}\left(\textrm{Z}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mfenced> <mml:mi>Z</mml:mi> </mml:mfenced> </mml:math> = −0.144 ± 0.006 (stat) ± 0.014 (syst) = −0.144 ± 0.015, in good agreement with the measurement of the τ lepton asymmetry parameter of A τ = 0.1439 ± 0.0043 = $$ -{\mathcal{P}}_{\tau}\left(\textrm{Z}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mfenced> <mml:mi>Z</mml:mi> </mml:mfenced> </mml:math> at LEP. The τ lepton polarization depends on the ratio of the vector to axial-vector couplings of the τ leptons in the neutral current expression, and thus on the effective weak mixing angle sin 2 $$ {\theta}_{\textrm{W}}^{\textrm{eff}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>θ</mml:mi> <mml:mi>W</mml:mi> <mml:mi>eff</mml:mi> </mml:msubsup> </mml:math> , independently of the Z boson production mechanism. The obtained value sin 2 $$ {\theta}_{\textrm{W}}^{\textrm{eff}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>θ</mml:mi> <mml:mi>W</mml:mi> <mml:mi>eff</mml:mi> </mml:msubsup> </mml:math> = 0.2319 ± 0 . 0008(stat) ± 0 . 0018(syst) = 0 . 2319 ± 0 . 0019 is in good agreement with measurements at e + e − colliders.
DOI: 10.1007/jhep01(2024)128
2024
Study of charm hadronization with prompt $$ {\Lambda}_{\textrm{c}}^{+} $$ baryons in proton-proton and lead-lead collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV
A bstract The production of prompt $$ {\Lambda}_{\textrm{c}}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math> baryons is measured via the exclusive decay channel $$ {\Lambda}_{\textrm{c}}^{+}\to p{\textrm{K}}^{-}{\pi}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> <mml:mo>→</mml:mo> <mml:mi>p</mml:mi> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>−</mml:mo> </mml:msup> <mml:msup> <mml:mi>π</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:math> at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb − 1 , respectively. The measurements are performed within the $$ {\Lambda}_{\textrm{c}}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math> rapidity interval | y | &lt; 1 with transverse momentum ( p T ) ranges of 3–30 and 6–40 GeV/ c for pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of $$ {\Lambda}_{\textrm{c}}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math> with p T &gt; 10 GeV/ c are strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The $$ {\Lambda}_{\textrm{c}}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math> / D 0 production ratio is similar in PbPb and pp collisions at p T &gt; 10 GeV/ c , suggesting that the coalescence process does not play a dominant role in prompt $$ {\Lambda}_{\textrm{c}}^{+} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>Λ</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> </mml:math> baryon production at higher p T .
DOI: 10.1103/physrevlett.132.061801
2024
Search for Scalar Leptoquarks Produced via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> -Lepton–Quark Scattering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:…
The first search for scalar leptoquarks produced in τ-lepton–quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength.Received 11 August 2023Accepted 19 December 2023DOI:https://doi.org/10.1103/PhysRevLett.132.061801Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2024 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsLeptoquarksTau leptonsTechniquesHadron collidersParticles & Fields
DOI: 10.1007/jhep07(2023)161
2023
Cited 4 times
Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric $R$-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.
DOI: 10.1007/jhep07(2023)219
2023
Cited 4 times
Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
The production of a top quark-antiquark pair in association with a W boson ($\mathrm{t\bar{t}}$W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive $\mathrm{t\bar{t}}$W production cross section in the full phase space is measured to be 868 $\pm$ 40 (stat) $\pm$ 51 (syst) fb. The $\mathrm{t\bar{t}}$W$^+$ and $\mathrm{t\bar{t}}$W$^-$ cross sections are also measured as 553 $\pm$ 30 (stat) $\pm$ 30 (syst) and 343 $\pm$ 26 (stat) $\pm$ 25 (syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61 $\pm$ 0.15 (stat) $^{+0.07}_{-0.05}$ (syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date.
DOI: 10.1007/jhep10(2023)115
2023
Cited 3 times
Measurements of the azimuthal anisotropy of prompt and nonprompt charmonia in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV
DOI: 10.1103/physrevlett.131.011803
2023
Cited 3 times
Probing Heavy Majorana Neutrinos and the Weinberg Operator through Vector Boson Fusion Processes in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at sqrt[s]=13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.
DOI: 10.1103/physrevlett.131.041803
2023
Cited 3 times
Search for Nonresonant Pair Production of Highly Energetic Higgs Bosons Decaying to Bottom Quarks
A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ_{2V}, excluding κ_{2V}=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.
DOI: 10.1007/jhep09(2023)032
2023
Cited 3 times
Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for a charged Higgs boson H ± decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016–2018 at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H ± in the mass range of 300–700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H ± mass of 300 Ge V to 0.019 pb for a mass of 700 GeV. These are the first limits on H ± production in the H ± → HW ± decay channel at the LHC.
DOI: 10.1007/jhep09(2023)051
2023
Cited 3 times
Search for new physics in the τ lepton plus missing transverse momentum final state in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb − 1 . The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of t -channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t -channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.
DOI: 10.1007/jhep10(2023)115
2023
Cited 3 times
Measurements of the azimuthal anisotropy of prompt and nonprompt charmonia in PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV
A bstract The second-order ( v 2 ) and third-order ( v 3 ) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J / ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of $$ \sqrt{s_{\textrm{NN}}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>NN</mml:mi> </mml:msub> </mml:msqrt> </mml:math> = 5 . 02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb − 1 recorded with the CMS detector. The J / ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. The v 2 and v 3 coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measured v 2 values for prompt J / ψ mesons are found to be larger than those for nonprompt J / ψ mesons. The prompt J / ψ v 2 values at high p T are found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J / ψ meson v 3 and prompt ψ(2S) v 2 and v 3 values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.
DOI: 10.1016/j.physletb.2021.136535
2021
Cited 12 times
Search for W′ bosons decaying to a top and a bottom quark at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math> in the hadronic final state
A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.
DOI: 10.1103/physrevd.104.052011
2021
Cited 11 times
Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.
DOI: 10.1103/physrevlett.126.252002
2021
Cited 11 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>W</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math> Production Cross Section in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math> and Constraints on Effective Field Theory …
A fiducial cross section for W$\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The W $\to$ e$\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.
DOI: 10.1016/j.physletb.2022.137392
2023
Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quarks final state with boosted topology
We search for new massive scalar particles X and Y through the resonant process X $\to$ YH $\to$ $\mathrm{b\bar{b}b\bar{b}}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.
DOI: 10.1016/j.physletb.2022.137531
2023
Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A search for the nonresonant production of Higgs boson pairs (HH ) via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two tau leptons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of s=13TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138fb−1. Events in which at least one tau lepton decays hadronically are considered and multiple machine learning techniques are used to identify and extract the signal. The data are found to be consistent, within uncertainties, with the standard model (SM) predictions. Upper limits on the HH production cross section are set to constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to 3.3 (5.2) times the SM prediction for the inclusive HH cross section and to 124 (154) times the SM prediction for the vector boson fusion HH cross section. At 95% confidence level, the Higgs field self-coupling is constrained to be within −1.7 and 8.7 times the SM expectation, and the coupling of two Higgs bosons to two vector bosons is constrained to be within −0.4 and 2.6 times the SM expectation.
DOI: 10.1007/jhep06(2023)060
2023
Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark ($\tilde{\mathrm{t}}_1$), is presented. The search targets the four-body decay of the $\tilde{\mathrm{t}}_1$, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino ($\tilde{\chi}^0_1$), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between $m(\tilde{\mathrm{t}}_1)$ and $m(\tilde{\chi}^0_1)$. The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for $m(\tilde{\mathrm{t}}_1) - m(\tilde{\chi}^0_1$) = 10 and 80 GeV, respectively.
DOI: 10.1140/epjc/s10052-023-11587-8
2023
Measurement of the differential $$\hbox {t}\overline{\hbox {t}}$$ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks
Abstract A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production ( $$\hbox {t}\overline{\hbox {t}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>t</mml:mtext> <mml:mover> <mml:mtext>t</mml:mtext> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math> ) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mtext>Ge</mml:mtext> <mml:mspace /> <mml:mtext>V</mml:mtext> </mml:mrow> </mml:math> . The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The differential $$\hbox {t}\overline{\hbox {t}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>t</mml:mtext> <mml:mover> <mml:mtext>t</mml:mtext> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> </mml:math> production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of $$173.06 \pm 0.84\,\text {Ge}\hspace{-.08em}\text {V} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>173.06</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.84</mml:mn> <mml:mspace /> <mml:mtext>Ge</mml:mtext> <mml:mspace /> <mml:mtext>V</mml:mtext> </mml:mrow> </mml:math> .
DOI: 10.1007/jhep07(2023)023
2023
Search for CP violating top quark couplings in pp collisions at $$ \sqrt{s} $$ = 13 TeV
Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The search uses two observables, $\mathcal{O}_1$ and $\mathcal{O}_3$, which are Lorentz scalars. The observable $\mathcal{O}_1$ is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while $\mathcal{O}_3$ consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.
DOI: 10.1016/j.physletb.2023.137813
2023
Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb.
DOI: 10.1016/j.physletb.2023.137849
2023
Search for medium effects using jets from bottom quarks in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
The first study of the shapes of jets arising from bottom (b) quarks in heavy ion collisions is presented. Jet shapes are studied using charged hadron constituents as a function of their radial distance from the jet axis. Lead-lead (PbPb) collision data at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV were recorded by the CMS detector at the LHC, with an integrated luminosity of 1.69 nb$^{-1}$. Compared to proton-proton collisions, a redistribution of the energy in b jets to larger distances from the jet axis is observed in PbPb collisions. This medium-induced redistribution is found to be substantially larger for b jets than for inclusive jets.
DOI: 10.1007/jhep07(2023)046
2023
Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb − 1 . Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> background. A cross section of $$ 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>79.2</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.9</mml:mn> <mml:msubsup> <mml:mfenced> <mml:mtext>stat</mml:mtext> </mml:mfenced> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>8.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>7.7</mml:mn> </mml:mrow> </mml:msubsup> <mml:mfenced> <mml:mtext>syst</mml:mtext> </mml:mfenced> <mml:mo>±</mml:mo> <mml:mn>1.2</mml:mn> <mml:mfenced> <mml:mtext>lumi</mml:mtext> </mml:mfenced> </mml:math> pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.
DOI: 10.1007/jhep07(2023)091
2023
Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb − 1 . The inclusive fiducial cross section is measured to be $$ {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>fid</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mn>73.4</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>5.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mfenced> <mml:mtext>stat</mml:mtext> </mml:mfenced> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2.2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mfenced> <mml:mtext>syst</mml:mtext> </mml:mfenced> </mml:math> fb, in agreement with the standard model expectation of 75 . 4 ± 4 . 1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.
DOI: 10.1016/j.physletb.2023.138076
2023
Evidence for four-top quark production in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138 fb$^{-1}$. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first $\mathrm{t\bar{t}t\bar{t}}$ measurement that includes the all-hadronic final state. The observed significance of the $\mathrm{t\bar{t}t\bar{t}}$ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for $\mathrm{t\bar{t}t\bar{t}}$ production, with a measured cross section of 36 $^{+12}_{-11}$ fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17 $\pm$ 4 (stat) $\pm$ 3 (syst) fb, which is consistent with the standard model prediction.
DOI: 10.1103/physrevlett.131.051901
2023
Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sqrt[s_{NN}]=5.02 TeV, corresponding to an integrated luminosity of 0.38 nb^{-1}, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
DOI: 10.1103/physrevd.108.032017
2023
Measurement of the electroweak production of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi><mml:mi>γ</mml:mi></mml:math> in association with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A measurement is presented for the electroweak production of a W boson, a photon (γ), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The cross section for the electroweak Wγjj production is 23.5+4.9−4.7 fb, whereas the total cross section for Wγjj production is 113±13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters fM,2–5/Λ4 and fT,6–7/Λ4.Received 23 December 2022Accepted 1 March 2023DOI:https://doi.org/10.1103/PhysRevD.108.032017Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2023 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsW & Z bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.48550/arxiv.2305.18106
2023
Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the e$μ$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an e$^{\pm}μ^{\mp}$ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess is observed for the Higgs boson. The observed (expected) upper limit on the e$^{\pm}μ^{\mp}$ branching fraction for it is determined to be 4.4 (4.7) $\times$ 10$^{-5}$ at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an e$^{\pm}μ^{\mp}$ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.
DOI: 10.1103/physrevlett.131.151803
2023
Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> Lepton Pair Production in Ultraperipheral Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext…
We present an observation of photon-photon production of τ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 μb^{-1} collected by the CMS experiment at a center-of-mass energy per nucleon pair of sqrt[s_{NN}]=5.02 TeV. The γγ→τ^{+}τ^{-} process is observed for τ^{+}τ^{-} events with a muon and three charged hadrons in the final state. The measured fiducial cross section is σ(γγ→τ^{+}τ^{-})=4.8±0.6(stat)±0.5(syst) μb, where the second (third) term corresponds to the statistical (systematic) uncertainty in σ(γγ→τ^{+}τ^{-}) in agreement with leading-order QED predictions. Using σ(γγ→τ^{+}τ^{-}), we estimate a model-dependent value of the anomalous magnetic moment of the τ lepton of a_{τ}=0.001_{-0.089}^{+0.055}.
DOI: 10.1140/epjc/s10052-023-12050-4
2023
Measurement of the top quark mass using a profile likelihood approach with the lepton + jets final states in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$
The mass of the top quark is measured in 36.3fb-1 of LHC proton-proton collision data collected with the CMS detector at s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be 171.77±0.37GeV. This approach significantly improves the precision over previous measurements.
DOI: 10.1007/jhep01(2024)173
2024
Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ( $$ \textrm{b}\overline{\textrm{b}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> ) is presented using proton-proton collision data recorded by the CMS experiment at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV and corresponding to an integrated luminosity of 90.8 fb − 1 . Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{qqh}}={1.01}_{-0.46}^{+0.55} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mrow> <mml:mi>Hb</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> <mml:mi>qqh</mml:mi> </mml:msubsup> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mn>1.01</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.46</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.55</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> . The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{incl}.}={0.99}_{-0.41}^{+0.48} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mrow> <mml:mi>Hb</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mtext>incl</mml:mtext> <mml:mo>.</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mn>0.99</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.41</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.48</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.
DOI: 10.1088/1748-0221/19/02/p02031
2024
Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at sqrt(s) = 13 TeV
Abstract The identification of prompt and isolated muons, as well as muons from heavy-flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10 GeV. One provides a continuous variable as an alternative to a cut-based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb -1 of proton-proton collisions data at a centre-of-mass energy of √(s)=13 TeV collected in 2018 with the CMS experiment at the CERN LHC.
DOI: 10.1007/jhep03(2024)134
2024
Search for dark matter particles in W+W− events with transverse momentum imbalance in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for dark matter particles is performed using events with a pair of W bosons and large missing transverse momentum. Candidate events are selected by requiring one or two leptons ( ℓ = electrons or muons). The analysis is based on proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC and corresponding to an integrated luminosity of 138 fb − 1 . No significant excess over the expected standard model background is observed in the ℓν qq and 2 ℓ 2 ν final states of the W + W − boson pair. Limits are set on dark matter production in the context of a simplified dark Higgs model, with a dark Higgs boson mass above the W + W − mass threshold. The dark matter phase space is probed in the mass range 100–300 GeV, extending the scope of previous searches. Current exclusion limits are improved in the range of dark Higgs masses from 160 to 250 GeV, for a dark matter mass of 200 GeV.
DOI: 10.1140/epjc/s10052-023-12268-2
2024
Luminosity determination using Z boson production at the CMS experiment
The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton-proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13TeV. Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20pb-1 of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.
DOI: 10.1140/epjc/s10052-023-12258-4
2024
Measurement of the production cross section for a W boson in association with a charm quark in proton–proton collisions at $$\sqrt{s} = 13\,\hbox {TeV}$$
The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138fb-1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio Rc±=σ(W++c¯)/σ(W-+c) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±=0.950±0.005(stat)±0.010(syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
DOI: 10.48550/arxiv.2401.07090
2024
Test of lepton flavor universality in B$^{\pm}$ $\to$ K$^{\pm}μ^+μ^-$ and B$^{\pm}$ $\to$ K$^{\pm}$e$^+$e$^-$ decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A test of lepton flavor universality in B$^{\pm}$ $\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$ $\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$ $\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$ $\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$ $\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$ $\to$ J/$\psi$K$^\pm$ with J/$\psi$ $\to$ $\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt q^2 \lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78$^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$ $\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.
DOI: 10.48550/arxiv.2401.06896
2024
Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic lead-lead collisions at the LHC
Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we extracted the speed of sound in this medium created using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.
DOI: 10.1103/physrevlett.132.041802
2024
Search for Inelastic Dark Matter in Events with Two Displaced Muons and Missing Transverse Momentum in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb−1 of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016–2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A′→χ1χ2) and the decay branching fraction B(χ2→χ1μ+μ−), where A′ is a dark photon and χ1 and χ2 are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.Received 19 May 2023Revised 24 September 2023Accepted 29 November 2023DOI:https://doi.org/10.1103/PhysRevLett.132.041802Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2024 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasDark matterPhysical SystemsHypothetical particlesTechniquesHadron collidersParticles & Fields
DOI: 10.48550/arxiv.2401.16303
2024
Observation of the $\Lambda_\text{b}^0$ $\to$ J/$\psi\Xi^-$K$^+$ decay
Using proton-proton collision data corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, the $\Lambda_\text{b}^0$ $\to$ J/$\psi\Xi^-$K$^+$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the $\Lambda_\text{b}^0$ $\to$ $\psi$(2S)$\Lambda$ decay, is measured to be $\mathcal{B}$($\Lambda_\text{b}^0$ $\to$ J/$\psi\Xi^-$K$^+$)/$\mathcal{B}$( $\Lambda_\text{b}^0$ $\to$ $\psi$(2S)$\Lambda$) = [3.38 $\pm$ 1.02 $\pm$ 0.61 $\pm$ 0.03]%, where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in $\mathcal{B}$($\psi$(2S) $\to$ J/$\psi\pi^+\pi^-$) and $\mathcal{B}$($\Xi^-$ $\to$ $\Lambda\pi^-$).
DOI: 10.1016/j.physletb.2024.138478
2024
Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp→tH/A→ttc‾ and pp→tH/A→ttu‾ processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb−1. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200–1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM.
DOI: 10.48550/arxiv.2402.01898
2024
Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2$\times$10$^{-3}$.
2024
Combined search for electroweak production of winos, binos, higgsinos, and sleptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018. The analyzed data correspond to an integrated luminosity of up to 137 fb$^{-1}$. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.
DOI: 10.1016/j.physletb.2024.138518
2024
Study of azimuthal anisotropy of ϒ(1S) mesons in pPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msqrt></mml:math> = 8.16 TeV
The azimuthal anisotropy of mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.
DOI: 10.1016/j.physletb.2023.138389
2024
Measurements of azimuthal anisotropy of nonprompt D0 mesons in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
Measurements of the elliptic (v2) and triangular (v3) azimuthal anisotropy coefficients are presented for mesons produced in hadron decays (nonprompt mesons) in lead-lead collisions at sNN=5.02TeV. The results are compared with previously published charm meson anisotropies measured using prompt mesons. The data were collected with the CMS detector in 2018 with an integrated luminosity of 0.58nb−1. Azimuthal anisotropy is sensitive to the interactions of quarks with the hot and dense medium created in heavy ion collisions. Comparing results for prompt and nonprompt mesons can assist in understanding the mass dependence of these interactions. The nonprompt results show lower magnitudes of v2 and v3 and weaker dependences on the meson transverse momentum and collision centrality than those found for prompt mesons. The results are in agreement with theoretical predictions that include a mass dependence in the interactions of quarks with the medium.
2024
Search for pair production of scalar and vector leptoquarks decaying to muons and bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.
DOI: 10.1007/jhep02(2024)106
2024
Higher-order moments of the elliptic flow distribution in PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV
The hydrodynamic flow-like behavior of charged hadrons in high-energy lead-lead collisions is studied through multiparticle correlations. The elliptic anisotropy values based on different orders of multiparticle cumulants, $v_{2}\{2k\}$, are measured up to the tenth order ($k$ = 5) as functions of the collision centrality at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. A hierarchy is observed between the coefficients, with $v_{2}\{2\} &gt; v_{2}\{4\} \gtrsim v_{2}\{6\} \gtrsim v_{2}\{8\} \gtrsim v_{2}\{10\}$. Based on these results, centrality-dependent moments for the fluctuation-driven event-by-event $v_{2}$ distribution are determined, including the skewness, kurtosis and, for the first time, superskewness. Assuming a hydrodynamic expansion of the produced medium, these moments directly probe the initial-state geometry in high-energy nucleus-nucleus collisions.
DOI: 10.1103/physrevc.109.024914
2024
Two-particle Bose-Einstein correlations and their Lévy parameters in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn></mml:mrow></mml:math> TeV
Two-particle Bose--Einstein momentum correlation functions are studied for charged-hadron pairs in lead-lead collisions at a center-of-mass energy per nucleon pair of $\sqrt{{s}_{\mathrm{NN}}}=5.02\phantom{\rule{4pt}{0ex}}\mathrm{TeV}$. The data sample, containing $4.27\ifmmode\times\else\texttimes\fi{}{10}^{9}$ minimum bias events corresponding to an integrated luminosity of 0.607 ${\text{nb}}^{\ensuremath{-}1}$, was collected by the CMS experiment in 2018. The experimental results are discussed in terms of a L\'evy-type source distribution. The parameters of this distribution are extracted as functions of particle pair average transverse mass and collision centrality. These parameters include the L\'evy index or shape parameter $\ensuremath{\alpha}$, the L\'evy scale parameter $R$, and the correlation strength parameter $\ensuremath{\lambda}$. The source shape, characterized by $\ensuremath{\alpha}$, is found to be neither Cauchy nor Gaussian, implying the need for a full L\'evy analysis. Similarly to what was previously found for systems characterized by Gaussian source radii, a hydrodynamical scaling is observed for the L\'evy $R$ parameter. The $\ensuremath{\lambda}$ parameter is studied in terms of the core-halo model.
2024
Search for long-lived particles using displaced vertices and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb$^{-1}$. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 $\mu$m, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 $\mu$m.
2024
Observation of the $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ decay and studies of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon in proton-proton collisions at $\sqrt{s}$ = 13 TeV
The first observation of the decay $\Xi^-_\mathrm{b}$ $\to$ $\psi$(2S)$\Xi^-$ and measurement of the branching ratio of $\Xi^-_\mathrm{b}$ $\to$ $\psi$(2S)$\Xi^-$ to $\Xi^-_\mathrm{b}$ $\to$ J/$\psi$$\Xi^-$ are presented. The J/$\psi$ and $\psi$(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The branching fraction ratio is measured to be $\mathcal{B}$($\Xi^-_\mathrm{b}$ $\to$ $\psi$(2S)$\Xi^-$)/$\mathcal{B}$($\Xi^-_\mathrm{b}$ $\to$ J/$\psi$$\Xi^-$) = 0.84$^{+0.21}_{-0.19}$ (stat) $\pm$ 0.10 (syst) $\pm$ 0.02 ($\mathcal{B}$), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon mass and natural width are also presented, using the $\Xi_\mathrm{b}^-\pi^+$ final state, where the $\Xi^-_\mathrm{b}$ baryon is reconstructed through the decays J/$\psi \Xi^-$, $\psi$(2S)$\Xi^-$, J/$\psi \Lambda$K$^-$, and J/$\psi \Sigma^0$K$^-$. Finally, the fraction of the $\Xi^-_\mathrm{b}$ baryons produced from $\Xi_\mathrm{b}^{\ast{}0}$ decays is determined.
2024
Search for baryon number violation in top quark production and decay using proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb$^{-1}$. Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.
2024
Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions at $\sqrt{s}$ = 13 TeV
DOI: 10.1016/j.physletb.2024.138582
2024
Search for an exotic decay of the Higgs boson into a Z boson and a pseudoscalar particle in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mrow><mml:mspace width="0.20em" /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math>
A search for an exotic decay of the Higgs boson to a Z boson and a light pseudoscalar particle (a), decaying to a pair of leptons and a pair of photons, respectively, is presented. The search is based on proton-proton collision data at a center-of-mass energy of s=13TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 138fb−1. The analysis probes pseudoscalar masses ma between 1 and 30 GeV, leading to two pairs of well-isolated leptons and photons. Upper limits at 95% confidence level are set on the Higgs boson production cross section times its branching fraction to two leptons and two photons. The observed (expected) limits are in the range of 1.1–17.8 (1.7–17.9) fb within the probed ma interval. An excess of data above the expected standard model background with a local (global) significance of 2.6 (1.3) standard deviations is observed for a mass hypothesis of ma=3GeV. Limits on models involving axion-like particles, formulated as an effective field theory, are also reported.
DOI: 10.1103/physrevd.109.072004
2024
Search for flavor changing neutral current interactions of the top quark in final states with a photon and additional jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: B(t→uγ)<0.95×10−5 (1.20×10−5) and B(t→cγ)<1.51×10−5 (1.54×10−5) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for B(t→uγ) is similar to the current best limit, while the limit for B(t→cγ) is significantly tighter than previous results.Received 11 December 2023Accepted 29 January 2024DOI:https://doi.org/10.1103/PhysRevD.109.072004Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2024 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasFlavor changing neutral currentsPhysical SystemsTop quarkTechniquesHadron collidersParticles & Fields
DOI: 10.1016/j.physletb.2024.138633
2024
Search for the lepton flavor violating τ → 3μ decay in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV
A search for the lepton flavor violating τ→3μ decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017–2018, corresponding to an integrated luminosity of 97.7 fb−1. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb−1. The observed (expected) upper limits on the branching fraction B(τ→3μ) at confidence levels of 90 and 95% are 2.9×10−8 (2.4×10−8) and 3.6×10−8 (3.0×10−8), respectively.
DOI: 10.1103/physrevd.109.072007
2024
Search for supersymmetry in final states with disappearing tracks in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb−1. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and Higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The dE/dx energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair-production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and Higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or Higgsino-like dark matter candidate capable of explaining the observed dark matter relic density.5 MoreReceived 28 September 2023Accepted 14 February 2024DOI:https://doi.org/10.1103/PhysRevD.109.072007Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2024 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasSupersymmetric modelsTechniquesHadron collidersParticles & Fields
DOI: 10.48550/arxiv.2404.16082
2024
Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum $p_\mathrm{T}$. This observable is measured in multijet events over the range of $p_\mathrm{T}$ = 360-3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb$^{-1}$. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1177 $\pm$ 0.0013 (exp) $_{-0.0073}^{+0.0116}$ (theo) = 0.1177$_{-0.0074}^{+0.0117}$, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of $\alpha_\mathrm{S}(m_\mathrm{Z})$ in the TeV region shows no deviation from the expected NLO pQCD behaviour.
2024
Performance of CMS muon reconstruction from proton-proton to heavy ion collisions
The performance of muon tracking, identification, triggering, momentum resolution, and momentum scale has been studied with the CMS detector at the LHC using data collected at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV in proton-proton (pp) and lead-lead (PbPb) collisions in 2017 and 2018, respectively, and at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV in proton-lead (pPb) collisions in 2016. Muon efficiencies, momentum resolutions, and momentum scales are compared by focusing on how the muon reconstruction performance varies from relatively small occupancy pp collisions to the larger occupancies of pPb collisions and, finally, to the highest track multiplicity PbPb collisions. We find the efficiencies of muon tracking, identification, and triggering to be above 90% throughout most of the track multiplicity range. The momentum resolution and scale are unaffected by the detector occupancy. The excellent muon reconstruction of the CMS detector enables precision studies across all available collision systems.
DOI: 10.48550/arxiv.2404.18298
2024
Search for the Z boson decay to $\tau\tau\mu\mu$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV
The first search for the Z boson decay to $\tau\tau\mu\mu$ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z $\to$ $\tau\tau\mu\mu$ to Z $\to$ 4$\mu$ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.
DOI: 10.48550/arxiv.2405.00834
2024
Search for new resonances decaying to pairs of merged diphotons in proton-proton collisions at $\sqrt{s}$ = 13 TeV
A search is presented for an extended Higgs sector with two new particles, X and $\phi$, in the process X $\to$ $\phi\phi$ $\to$ $(\gamma\gamma)(\gamma\gamma)$. Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at $\sqrt{s}$ = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. No evidence of such resonances is seen. Upper limits are set on the production cross section versus the resonance masses, representing the most sensitive search in this channel.
DOI: 10.1088/1748-0221/16/07/p07001
2021
Cited 10 times
Performance of the CMS muon trigger system in proton-proton collisions at √(s) = 13
The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 $\times$ 10$^{34}$cm$^{-2}$s$^{-1}$ while delivering proton-proton collisions at $\sqrt{s} =$ 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV.
DOI: 10.1103/physrevd.104.032006
2021
Cited 10 times
Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
Many new physics models, including versions of supersymmetry characterized by $R$-parity violation (RPV), compressed mass spectra, long decay chains, or additional hidden sectors, predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for new physics in events with two top quarks and additional jets are reported. The search is performed using events with at least seven jets and exactly one electron or muon. No requirement on missing transverse momentum is imposed. The study is based on a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV corresponding to 137 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016-2018. The data are used to determine best fit values and upper limits on the cross section for pair production of top squarks in scenarios of RPV and stealth supersymmetry. Top squark masses up to 670 (870) GeV are excluded at 95% confidence level for the RPV (stealth) scenario, and the maximum observed local signal significance is 2.8 standard deviations for the RPV scenario with top squark mass of 400 GeV.
DOI: 10.1007/jhep07(2023)110
2023
Search for top squark pair production in a final state with at least one hadronically decaying tau lepton in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for pair production of the supersymmetric partner of the top quark, the top squark, in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented in final states containing at least one hadronically decaying tau lepton and large missing transverse momentum. This final state is highly sensitive to scenarios of supersymmetry in which the decay of the top squark to tau leptons is enhanced. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$, which was recorded with the CMS detector during 2016-2018. No significant excess is observed with respect to the standard model predictions. Exclusion limits at 95% confidence level on the masses of the top squark and the lightest neutralino are presented under the assumptions of simplified models. The results probe top squark masses up to 1150 GeV for a nearly massless neutralino. This search covers a relatively less explored parameter space in the context of supersymmetry, and the exclusion limit is the most stringent to date for the model considered here.
DOI: 10.1016/j.physletb.2022.137495
2023
Observation of electroweak W+W− pair production in association with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
An observation is reported of the electroweak production of a W+W− pair in association with two jets, with both W bosons decaying leptonically. The data sample corresponds to an integrated luminosity of 138 fb−1 of proton-proton collisions at s=13TeV, collected by the CMS detector at the CERN LHC. Events are selected by requiring exactly two opposite-sign leptons (electrons or muons) and two jets with large pseudorapidity separation and high dijet invariant mass. Events are categorized based on the flavor of the final-state leptons. A signal is observed with a significance of 5.6 standard deviations (5.2 expected) with respect to the background-only hypothesis. The measured fiducial cross section is 10.2±2.0fb and this value is consistent with the standard model prediction of 9.1±0.6fb.
DOI: 10.1016/j.physletb.2022.137563
2023
Precision measurement of the Z boson invisible width in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV
A precise measurement of the invisible width of the Z boson produced in proton-proton collisions at a center-of-mass energy of 13 TeV is presented using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36.3fb−1. The result is obtained from a simultaneous fit to kinematic distributions for two data samples of Z boson plus jets: one dominated by Z boson decays to invisible particles and the other by Z boson decays to muon and electron pairs. The invisible width is measured to be 523±3(stat)±16(syst)MeV. This result is the first precise measurement of the invisible width of the Z boson at a hadron collider, and is the single most precise direct measurement to date, competitive with the combined result of the direct measurements from the LEP experiments.
DOI: 10.1007/jhep06(2023)130
2023
Search for nonresonant Higgs boson pair production in the four leptons plus twob jets final state in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb − 1 . A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ , defined as the ratio of the observed HH production rate in the $$ \textrm{HH}\to {\textrm{ZZ}}^{\ast}\textrm{b}\overline{\textrm{b}}\to 4\ell \textrm{b}\overline{\textrm{b}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>HH</mml:mi> <mml:mo>→</mml:mo> <mml:msup> <mml:mi>ZZ</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mo>→</mml:mo> <mml:mn>4</mml:mn> <mml:mi>ℓ</mml:mi> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λ HHH with respect to the SM value are investigated. The coupling modifier κ λ , defined as λ HHH divided by its SM prediction, is constrained to be within the observed (expected) range − 8 . 8 ( − 9 . 8) &lt; κ λ &lt; 13 . 4 (15 . 0) at 95% confidence level.
DOI: 10.1007/jhep07(2023)077
2023
Measurement of the top quark pole mass using $$ \textrm{t}\overline{\textrm{t}} $$+jet events in the dilepton final state in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A measurement of the top quark pole mass $$ {m}_{\textrm{t}}^{\textrm{pole}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>m</mml:mi> <mml:mi>t</mml:mi> <mml:mtext>pole</mml:mtext> </mml:msubsup> </mml:math> in events where a top quark-antiquark pair ( $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> ) is produced in association with at least one additional jet ( $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> +jet) is presented. This analysis is performed using proton-proton collision data at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb − 1 . Events with two opposite-sign leptons in the final state (e + e − , μ + μ − , e ± μ ∓ ) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $$ {m}_{\textrm{t}}^{\textrm{pole}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mi>m</mml:mi> <mml:mi>t</mml:mi> <mml:mtext>pole</mml:mtext> </mml:msubsup> </mml:math> = 172 . 93 ± 1 . 36 GeV.
DOI: 10.1007/jhep07(2023)092
2023
Search for CP violation in t$$ \overline{\textrm{t}} $$H and tH production in multilepton channels in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
The charge-parity ($CP$) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the $\mathrm{t\bar{t}}$ and tH associated production, using 138 fb$^{-1}$ of data collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H $\to$ WW or H $\to$ $\tau\tau$ and the top quarks decay via t $\to$ Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of $CP$-even from $CP$-odd scenarios. Two-dimensional confidence regions are set on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, which are respectively defined as the $CP$-even and $CP$-odd top-Higgs Yukawa coupling modifiers. No significant fractional $CP$-odd contributions, parameterized by the quantity $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ are observed; the parameter is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H $\to$ ZZ and H $\to$ $\gamma\gamma$ decay modes, yielding two- and one-dimensional confidence regions on $\kappa_\mathrm{t}$ and $\tilde{\kappa}_\mathrm{t}$, while $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ is determined to be $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.28 with an interval of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ $\lt$ 0.55 at 68% confidence level, in agreement with the standard model $CP$-even prediction of $\lvert{f_{CP}^{\mathrm{Htt}}}\rvert$ = 0.
DOI: 10.1103/physrevlett.131.041801
2023
Search for Higgs Boson and Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi></mml:math> Boson through Their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>…
A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (p_{T}) greater than 450 GeV and decaying to a charm quark-antiquark (cc[over ¯]) pair is presented. The search is performed using proton-proton collision data collected at sqrt[s]=13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb^{-1}. Boosted H→cc[over ¯] decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cc[over ¯] decay process, which is observed in association with jets at high p_{T} for the first time with a signal strength of 1.00_{-0.14}^{+0.17}(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cc[over ¯]) is set at 47 (39) times the SM prediction at 95% confidence level.
DOI: 10.1007/jhep08(2023)040
2023
Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H $\to$ ZZ $\to$ 4$\ell$ ($\ell$ = e,$\mu$) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The measured inclusive fiducial cross section is 2.73 $\pm$ 0.26 fb, in agreement with the standard model expectation of 2.86 $\pm$ 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model.
DOI: 10.1103/physrevlett.131.091803
2023
Observation of Same-Sign <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi><mml:mi>W</mml:mi></mml:math> Production from Double Parton Scattering in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
The first observation of the production of W ± W ± bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported.The data sample corresponds to an integrated luminosity of 138 fb -1 recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC.Multivariate discriminants are used to distinguish the signal process from the main backgrounds.A binned maximum likelihood fit is performed to extract the signal cross section.The measured cross section for production of same-sign W bosons decaying leptonically is 80.7 ± 11.2 (stat) +9.5 -8.6 (syst) ± 12.1 (model) fb, whereas the measured fiducial cross section is 6.28 ± 0.81 (stat) ± 0.69 (syst) ± 0.37 (model) fb.The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis.
DOI: 10.1103/physrevd.108.052002
2023
Reconstruction of decays to merged photons using end-to-end deep learning with domain continuation in the CMS detector
A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest. The new technique is demonstrated for the reconstruction of the invariant mass of particles decaying in the CMS detector. The decay of a hypothetical scalar particle A into two photons, A→γγ, is chosen as a benchmark decay. Lorentz boosts γL=60–600 are considered, ranging from regimes where both photons are resolved to those where the photons are closely merged as one object. A training method using domain continuation is introduced, enabling the invariant mass reconstruction of unresolved photon pairs in a novel way. The new technique is validated using π0→γγ decays in LHC collision data.6 MoreReceived 26 April 2022Accepted 1 August 2022DOI:https://doi.org/10.1103/PhysRevD.108.052002Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2023 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)TechniquesDeep learningElectromagnetic calorimetersHadron collidersParticles & Fields
DOI: 10.1103/physrevlett.131.101801
2023
Search for Exotic Higgs Boson Decays <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>H</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi mathvariant="script">A</mml:mi><mml:mi mathvariant="script">A</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mrow><mml:mn>4</mml:mn><mml:mi>γ</mml:mi></mml:mrow></mml:mrow></mml:math> with Events Containing Two Merged Diphotons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" …
We present the first direct search for exotic Higgs boson decays H→AA, A→γγ in events with two photonlike objects. The hypothetical particle A is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at sqrt[s]=13 TeV corresponding to an integrated luminosity of 136 fb^{-1}. No excess above the estimated background is found. We set upper limits on the branching fraction B(H→AA→4γ) of (0.9-3.3)×10^{-3} at 95% confidence level for masses of A in the range 0.1-1.2 GeV.
DOI: 10.1007/jhep08(2023)204
2023
First measurement of the top quark pair production cross section in proton-proton collisions at $$ \sqrt{s} $$ = 13.6 TeV
A bstract The first measurement of the top quark pair ( $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> ) production cross section in proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 . 6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1 . 21 fb − 1 , are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $$ \textrm{t}\overline{\textrm{t}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of $$ {924}_{-40}^{+32} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mn>924</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>40</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>32</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> pb.
DOI: 10.1016/j.physletb.2023.137713
2023
Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The first search is presented for vector-like leptons (VLLs) in the context of the "4321 model", an ultraviolet-complete model with the potential to explain existing B physics measurements that are in tension with standard model predictions. The analyzed data, corresponding to an integrated luminosity of 96.5fb−1, were recorded in 2017 and 2018 with the CMS detector at the LHC in proton-proton collisions at s=13TeV. Final states with ≥3 b -tagged jets and two third-generation leptons (ττ, τντ, or ντντ) are considered. Upper limits are derived on the VLL production cross section in the VLL mass range 500–1050 GeV. The maximum likelihood fit prefers the presence of signal at the level of 2.8 standard deviations, for a representative VLL mass point of 600 GeV. As a consequence, the observed upper limits are approximately double the expected limits.
DOI: 10.1103/physrevlett.131.262301
2023
Probing Small Bjorken-x Nuclear Gluonic Structure via Coherent J/ψ Photoproduction in Ultraperipheral Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.
Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/ψ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W_{γN}^{Pb}) over a wide range of 40<W_{γN}^{Pb}<400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb^{-1}. The cross section is observed to rise rapidly at low W_{γN}^{Pb}, and plateau above W_{γN}^{Pb}≈40 GeV, up to 400 GeV, entering a new regime of small Bjorken-x (≈6×10^{-5}) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.
DOI: 10.1007/jhep12(2023)068
2023
Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory
A bstract A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb − 1 . Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum ( p T ) of the leading pair of leptons and/or jets as well as the p T of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.
DOI: 10.1007/jhep12(2023)070
2023
Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for direct production of low-mass dimuon resonances is performed using $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96 . 6 fb − 1 . The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε 2 in the dark photon model above 10 − 6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin( θ H ) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0 . 5.
DOI: 10.1103/physrevlett.131.262301
2023
Probing Small Bjorken- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>x</mml:mi></mml:math> Nuclear Gluonic Structure via Coherent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>J</mml:mi><mml:mo>/</mml:mo><mml:mi>ψ</mml:mi></mml:mrow></mml:math> Photoproduction in Ultraperipheral Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><…
Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/ψ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (WγNPb) over a wide range of 40<WγNPb<400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb−1. The cross section is observed to rise rapidly at low WγNPb, and plateau above WγNPb≈40 GeV, up to 400 GeV, entering a new regime of small Bjorken-x (≈6×10−5) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.Received 29 March 2023Revised 17 August 2023Accepted 26 October 2023DOI:https://doi.org/10.1103/PhysRevLett.131.262301Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.© 2023 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasPhoton productionRelativistic heavy-ion collisionsPhysical SystemsGluonsTechniquesHadron collidersParticles & FieldsNuclear Physics
2023
Observation of the $\Upsilon$(3S) meson and suppression of $\Upsilon$ states in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV
DOI: 10.1016/j.physletb.2022.137534
2023
Search for Higgs boson decays into Z and J/ψ and for Higgs and Z boson decays into J/ψ or Y pairs in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
Decays of the Higgs boson into a boson and a or meson are searched for in four-lepton final states with the CMS detector at the LHC. A data set of proton-proton collisions corresponding to an integrated luminosity of 138fb−1 is used. Using the same data set, decays of the Higgs and boson into quarkonium pairs are also searched for. An observation of such decays with this sample would indicate the presence of physics beyond the standard model. No evidence for these decays has been observed and upper limits at the 95% confidence level are placed on the corresponding branching fractions (B). Assuming longitudinal polarization of the Higgs boson decay products, 95% confidence level observed upper limits for and are 1.9×10−3 and 6.6×10−3, respectively.
DOI: 10.1016/j.physletb.2023.137803
2023
Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
Results are presented of a search for a heavy Majorana neutrino decaying into two same-flavor leptons ℓ (electrons or muons) and a quark-pair jet. A model is considered in which the is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at s=13TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The data are found to be in agreement with the standard model prediction. For the process in which the is produced in association with a lepton, followed by the decay of the to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the mass and the compositeness scale Λ. For this model the data exclude the existence of () for below 6.0 (6.1) TeV, at the limit where is equal to Λ. For , values of Λ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in collisions at 13 TeV.
2023
Two-particle Bose-Einstein correlations and their Lévy parameters in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV
DOI: 10.1016/j.physletb.2023.137905
2023
Two-particle azimuthal correlations in γp interactions using pPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>8.16</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV…
The first measurements of the Fourier coefficients ($V_{n\Delta}$) of the azimuthal distributions of charged hadrons emitted from photon-proton ($\gamma$p) interactions at the LHC are presented. The data are extracted from 68.8 nb$^{-1}$ of ultra-peripheral proton-lead (pPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV using the CMS detector. The high energy lead ions produce a flux of photons that can interact with the oncoming proton. This $\gamma$p system provides a set of unique initial conditions with multiplicity lower than in photon-lead collisions but comparable to recent electron-positron and electron-proton data. The $V_{n\Delta}$ coefficients are presented in ranges of event multiplicity and transverse momentum ($p_\mathrm{T}$) and are compared to corresponding hadronic minimum bias pPb results. For a given multiplicity range, the mean $p_\mathrm{T}$ of charged particles is smaller in $\gamma$p than in pPb collisions. For both the $\gamma$p and pPb samples, $V_{1\Delta}$ is negative, $V_{2\Delta}$ is positive, and $V_{3\Delta}$ consistent with 0. For each multiplicity and $p_\mathrm{T}$ range, $V_{2\Delta}$ is larger for $\gamma$p events. The $\gamma$p data are consistent with model predictions that have no collective effects.
DOI: 10.1007/jhep07(2023)139
2023
Azimuthal anisotropy of dijet events in PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV
A bstract The path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of $$ \sqrt{s_{\textrm{NN}}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>NN</mml:mi> </mml:msub> </mml:msqrt> </mml:math> = 5 . 02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb − 1 . For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity ( η ) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients v n , n = 2–4 of these azimuthal distributions. The dijet v n values are extracted from long-range (1 . 5 &lt; |∆ η | &lt; 2 . 5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet v 2 values are observed which increase from central to more peripheral events, while the v 3 and v 4 values are consistent with zero within experimental uncertainties.
DOI: 10.1007/jhep11(2023)181
2023
Search for Z′ bosons decaying to pairs of heavy Majorana neutrinos in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for the production of pairs of heavy Majorana neutrinos (N ℓ ) from the decays of Z′ bosons is performed using the CMS detector at the LHC. The data were collected in proton-proton collisions at a center-of-mass energy of $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, with an integrated luminosity of 138 fb − 1 . The signature for the search is an excess in the invariant mass distribution of the final-state objects, two same-flavor leptons (e or μ ) and at least two jets. No significant excess of events beyond the expected background is observed. Upper limits at 95% confidence level are set on the product of the Z′ production cross section and its branching fraction to a pair of N ℓ , as functions of N ℓ and Z′ boson masses ( $$ {m}_{{\textrm{N}}_{\ell }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>ℓ</mml:mi> </mml:msub> </mml:msub> </mml:math> and $$ {m}_{{\textrm{Z}}^{\prime }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msup> <mml:mi>Z</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:msub> </mml:math> , respectively) for $$ {m}_{{\textrm{Z}}^{\prime }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msup> <mml:mi>Z</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:msub> </mml:math> from 0.4 to 4.6 TeV and $$ {m}_{{\textrm{N}}_{\ell }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>ℓ</mml:mi> </mml:msub> </mml:msub> </mml:math> from 0.1 TeV to $$ {m}_{{\textrm{Z}}^{\prime }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msup> <mml:mi>Z</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:msub> </mml:math> / 2. In the theoretical framework of a left-right symmetric model, exclusion bounds in the $$ {m}_{{\textrm{N}}_{\ell }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>ℓ</mml:mi> </mml:msub> </mml:msub> </mml:math> - $$ {m}_{{\textrm{Z}}^{\prime }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msup> <mml:mi>Z</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:msub> </mml:math> plane are presented in both the electron and muon channels. The observed upper limit on $$ {m}_{{\textrm{Z}}^{\prime }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>m</mml:mi> <mml:msup> <mml:mi>Z</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:msub> </mml:math> reaches up to 4.42 TeV. These are the most restrictive limits to date on the mass of N ℓ as a function of the Z′ boson mass.
DOI: 10.1007/jhep07(2023)210
2023
Search for long-lived particles using out-of-time trackless jets in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for long-lived particles decaying in the outer regions of the CMS silicon tracker or in the calorimeters is presented. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. A novel technique, using trackless and out-of-time jet information combined in a deep neural network discriminator, is employed to identify decays of long-lived particles. The results are interpreted in a simplified model of chargino-neutralino production, where the neutralino is the next-to-lightest supersymmetric particle, is long-lived, and decays to a gravitino and either a Higgs or Z boson. This search is most sensitive to neutralino proper decay lengths of approximately 0.5 m, for which masses up to 1.18 TeV are excluded at 95% confidence level. The current search is the best result to date in the mass range from the kinematic limit imposed by the Higgs mass up to 1.8 TeV.