ϟ

Guillermo Mazzolini

Here are all the papers by Guillermo Mazzolini that you can download and read on OA.mg.
Guillermo Mazzolini’s last known institution is . Download Guillermo Mazzolini PDFs here.

Claim this Profile →
DOI: 10.1158/1078-0432.ccr-13-3203
2014
Cited 195 times
Serum Interleukin-8 Reflects Tumor Burden and Treatment Response across Malignancies of Multiple Tissue Origins
Interleukin-8 (IL8) is a chemokine produced by malignant cells of multiple cancer types. It exerts various functions in shaping protumoral vascularization and inflammation/immunity. We evaluated sequential levels of serum IL8 in preclinical tumor models and in patients to assess its ability to estimate tumor burden.IL8 levels were monitored by sandwich ELISAs in cultured tumor cells supernatants, tumor-xenografted mice serum, and in samples from 126 patients with cancer. We correlated IL8 serum levels with baseline tumor burden and with treatment-induced changes in tumor burden, as well as with prognosis.IL8 concentrations correlated with the number of IL8-producing tumor cells in culture. In xenografted neoplasms, IL8 serum levels rapidly dropped after surgical excision, indicating an accurate correlation with tumor burden. In patients with melanoma (n = 16), renal cell carcinoma (RCC; n = 23), non-small cell lung cancer (NSCLC; n = 21), or hepatocellular carcinoma (HCC; n = 30), serum IL8 concentrations correlated with tumor burden and stage, survival (melanoma, n = 16; RCC, n = 23; HCC, n = 33), and objective responses to therapy, including those to BRAF inhibitors (melanoma, n = 16) and immunomodulatory monoclonal antibodies (melanoma, n = 8). IL8 concentrations in urine (n = 18) were mainly elevated in tumors with direct contact with the urinary tract.IL8 levels correlate with tumor burden in preclinical models and in patients with cancer. IL8 is a potentially useful biomarker to monitor changes in tumor burden following anticancer therapy, and has prognostic significance.
DOI: 10.1016/j.jhep.2020.10.030
2021
Cited 81 times
Hepatokines and adipokines in NASH-related hepatocellular carcinoma
The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.
DOI: 10.1200/jco.2004.04.059
2004
Cited 298 times
Phase I Trial of Intratumoral Injection of an Adenovirus Encoding Interleukin-12 for Advanced Digestive Tumors
To evaluate the feasibility and safety of intratumoral injection of an adenoviral vector encoding human interleukin-12 genes (Ad.IL-12) and secondarily, its biologic effect for the treatment of advanced digestive tumors.Ad.IL-12 was administered in doses ranging from 2.5 x 10(10) to 3 x 10(12) viral particles, to seven cohorts of patients with advanced pancreatic, colorectal, or primary liver malignancies. Patients were thoroughly assessed for toxicity, and antitumor response was evaluated by imaging techniques, tumor biopsy, and hypersensitivity skin tests. Patients with stable disease and no serious adverse reactions were allowed to receive up to 3 monthly doses of Ad.IL-12.Twenty-one patients (nine with primary liver, five with colorectal, and seven with pancreatic cancers) received a total of 44 injections. Ad.IL-12 was well tolerated, and dose-limiting toxicity was not reached. Frequent but transient adverse reactions, including fever, malaise, sweating, and lymphopenia, seemed to be related to vector injection rather than to transgene expression. No cumulative toxicity was observed. In four of 10 assessable patients, a significant increase in tumor infiltration by effector immune cells was apparent. A partial objective remission of the injected tumor mass was observed in a patient with hepatocellular carcinoma. Stable disease was observed in 29% of patients, mainly those with primary liver cancer.Intratumoral injection of up to 3 x 10(12) viral particles of Ad.IL-12 to patients with advanced digestive malignancies is a feasible and well-tolerated procedure that exerts only mild antitumor effects.
DOI: 10.1053/j.gastro.2005.03.024
2005
Cited 213 times
Positron Emission Tomography Imaging of Adenoviral-Mediated Transgene Expression in Liver Cancer Patients
In gene-therapy protocols, imaging of gene expression is needed to evaluate the transduction efficiency of the vector, its tissue distribution, and the duration of transgene expression and to assess the feasibility of repeated vector administration.We have used positron emission tomography with a fluorine-18-labeled penciclovir analogue to monitor thymidine kinase gene expression after intratumoral injection of a first-generation recombinant adenovirus in patients with hepatocellular carcinoma. Patients were enrolled in a pilot clinical trial and treated with escalating doses of the vector. Two days after adenovirus inoculation, transgene expression was evaluated during the first hours after administration of the radiotracer both on the treated lesion and on a whole-body basis.Transgene expression in the tumor was dependent on the injected dose of the adenovirus and was detectable in all patients who received > or = 10(12) viral particles. However, when the study was repeated 9 days after vector injection, no expression could be observed. It is interesting to note that no specific expression of the transgene could be detected in distant organs or in the surrounding cirrhotic tissue in any of the cases studied.Our findings show the real possibility of imaging transgene expression in humans by using viral vectors. We show that hepatocarcinoma is a permissive tumor for adenoviral infection and that the nontumoral cirrhotic liver is spared from transduction when the vector is administered by intratumoral injection. These results show that positron emission tomography imaging may help in the design of gene-therapy strategies and in the clinical assessment of new-generation vectors.
DOI: 10.1200/jco.2005.00.463
2005
Cited 162 times
Intratumoral Injection of Dendritic Cells Engineered to Secrete Interleukin-12 by Recombinant Adenovirus in Patients With Metastatic Gastrointestinal Carcinomas
To evaluate the feasibility and safety of intratumoral injection of autologous dendritic cells (DCs) transfected with an adenovirus encoding interleukin-12 genes (AFIL-12) for patients with metastatic gastrointestinal carcinomas. Secondarily, we have evaluated biologic effects and antitumoral activity.Seventeen patients with metastatic pancreatic (n = 3), colorectal (n = 5), or primary liver (n = 9) malignancies entered the study. DCs were generated from CD14+ monocytes from leukapheresis, cultured and transfected with AFIL-12 before administration. Doses from 10 x 10(6) to 50 x 10(6) cells were escalated in three cohorts of patients. Patients received up to three doses at 21-day intervals.Fifteen (88%) and 11 of 17 (65%) patients were assessable for toxicity and response, respectively. Intratumoral DC injections were mainly guided by ultrasound. Treatment was well tolerated. The most common side effects were lymphopenia, fever, and malaise. Interferon gamma and interleukin-6 serum concentrations were increased in 15 patients after each treatment, as well as peripheral blood natural killer activity in five patients. DC transfected with AFIL-12 stimulated a potent antibody response against adenoviral capsides. DC treatment induced a marked increase of infiltrating CD8+ T lymphocytes in three of 11 tumor biopsies analyzed. A partial response was observed in one patient with pancreatic carcinoma. Stable disease was observed in two patients and progression in eight patients, with two of the cases fast-progressing during treatment.Intratumoral injection of DC transfected with an adenovirus encoding interleukin-12 to patients with metastatic gastrointestinal malignancies is feasible and well tolerated. Further studies are necessary to define and increase clinical efficacy.
DOI: 10.1158/0008-5472.can-14-3510
2015
Cited 139 times
Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2−/−IL2Rγnull Immunodeficient Mice
A current pressing need in cancer immunology is the development of preclinical model systems that are immunocompetent for the study of human tumors. Here, we report the development of a humanized murine model that can be used to analyze the pharmacodynamics and antitumor properties of immunostimulatory monoclonal antibodies (mAb) in settings where the receptors targeted by the mAbs are expressed. Human lymphocytes transferred into immunodeficient mice underwent activation and redistribution to murine organs, where they exhibited cell-surface expression of hCD137 and hPD-1. Systemic lymphocyte infiltrations resulted in a lethal CD4(+) T cell-mediated disease (xenograft-versus-host disease), which was aggravated when murine subjects were administered clinical-grade anti-hCD137 (urelumab) and anti-hPD-1 (nivolumab). In mice engrafted with human colorectal HT-29 carcinoma cells and allogeneic human peripheral blood mononuclear cells (PBMC), or with a patient-derived gastric carcinoma and PBMCs from the same patient, we found that coadministration of urelumab and nivolumab was sufficient to significantly slow tumor growth. Correlated with this result were increased numbers of activated human T lymphocytes producing IFNγ and decreased numbers of human regulatory T lymphocytes in the tumor xenografts, possibly explaining the efficacy of the therapeutic regimen. Our results offer a proof of concept for the use of humanized mouse models for surrogate efficacy and histology investigations of immune checkpoint drugs and their combinations.
DOI: 10.1016/j.jhep.2019.03.007
2019
Cited 74 times
A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets
•Mutations and expression alterations of epigenetic modifiers are frequent in HCC. •Jumonji lysine demethylase inhibitors normalize aggressive transcription programs in HCC. •CENPA, KIF20A, NCAPG and PLK1 gene expression signature defines prognosis in HCC. •Epigenetic inhibitors are a potential new therapeutic tool for HCC. Background & Aims A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). Methods We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. Results Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. Conclusions The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy. Lay summary In this study, we found that mutations and changes in expression of epigenetic modifiers are common events in human hepatocellular carcinoma, leading to an aggressive gene expression program and poor clinical prognosis. The transcriptional program can be reversed by pharmacological inhibition of Jumonji enzymes. This inhibition blocks hepatocellular carcinoma progression, providing a novel potential therapeutic strategy. A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy.
DOI: 10.4049/jimmunol.164.6.3112
2000
Cited 155 times
Intratumoral Coinjection of Two Adenoviruses, One Encoding the Chemokine IFN-γ-Inducible Protein-10 and Another Encoding IL-12, Results in Marked Antitumoral Synergy
We have constructed a recombinant defective adenovirus that expresses functional murine IFN-gamma-inducible protein-10 (IP-10) chemokine (AdCMVIP-10). Injection of AdCMVIP-10 into s.c. tumor nodules derived from the CT26 murine colorectal adenocarcinoma cell line displayed some antitumor activity but it was not curative in most cases. Previous studies have shown that injection of similar s. c. CT26 tumor nodules with adenovirus-encoding IL-12 (AdCMVIL-12) induces tumor regression in nearly 70% of cases in association with generation of antitumor CTL activity. AdCMVIP-10 synergizes with the antitumor effect of suboptimal doses of AdCMVIL-12, reaching 100% of tumor eradication not only against injected, but also against distant noninjected tumor nodules. Colocalization of both adenoviruses at the same tumor nodule was required for the local and distant therapeutic effects. Importantly, intratumoral gene transfer with IL-12 and IP-10 generated a powerful tumor-specific CTL response in a synergistic fashion, while both CD4 and CD8 T cells appeared in the infiltrate of regressing tumors. Moreover, the antitumor activity of IP-10 plus IL-12 combined gene therapy was greatly diminished by simultaneous in vivo depletion of CD4+ and CD8+ T cells but was largely unaffected by single depletion of each T cell subset. An important role for NK cells was also suggested by asialo GM1 depletion experiments. From a clinical point of view, the effects of IP-10 permit one to lower the required gene transfer level of IL-12, thus preventing dose-dependent IL-12-mediated toxicity while improving the therapeutic efficacy of the elicited antitumor response.
DOI: 10.1038/sj.gt.3301010
1999
Cited 125 times
Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas
Stimulation of the antitumor immune response by dendritic cells (DC) is critically dependent on their tightly regulated ability to produce interleukin-12 (IL-12). To enhance this effect artificially, bone marrow (BM)-derived DC were genetically engineered to produce high levels of functional IL-12 by ex vivo infection with a recombinant defective adenovirus (AdCMVIL-12). DC-expressing IL-12 injected into the malignant tissue eradicated 50-100% well established malignant nodules derived from the injection of two murine colon adenocarcinoma cell lines. Successful therapy was dependent on IL-12 transfection and was mediated only by syngeneic, but not allogeneic BM-derived DC, indicating that compatible antigen-presenting molecules were required. The antitumor effect was inhibited by in vivo depletion of CD8+ T cells and completely abrogated by simultaneous depletion with anti-CD4 and anti-CD8 mAbs. Mice which had undergone tumor regression remained immune to a rechallenge with tumor cells, showing the achievement of long-lasting systemic immunity that also was able to reject simultaneously induced concomitant untreated tumors. Tumor regression was associated with a detectable CTL response directed against tumor-specific antigens probably captured by DC artificially released inside tumor nodules. Our results open the possibility of similarly treating the corresponding human malignancies.
DOI: 10.1002/ijc.21046
2005
Cited 116 times
Dendritic cells delivered inside human carcinomas are sequestered by interleukin‐8
Abstract In the course of a clinical trial consisting of intratumoral injections of dendritic cells (DCs) transfected to produce interleukin‐12, the use of 111 In‐labeled tracing doses of DCs showed that most DCs remained inside tumor tissue, instead of migrating out. In search for factors that could explain this retention, it was found that tumors from patients suffering hepatocellular carcinoma, colorectal or pancreatic cancer were producing IL‐8 and that this chemokine attracted monocyte‐derived dendritic cells that uniformly express both IL‐8 receptors CXCR1 and CXCR2. Accordingly, neutralizing antihuman IL‐8 monoclonal antibodies blocked the chemotactic attraction of DCs by recombinant IL‐8, as well as by the serum of the patients or culture supernatants of human colorectal carcinomas. In addition, tissue culture supernatants of colon carcinoma cells inhibited DC migration induced by MIP‐3β in an IL‐8‐dependent fashion. IL‐8 production in malignant tissue and the responsiveness of DCs to IL‐8 are a likely explanation of the clinical images, which suggest retention of DCs inside human malignant lesions. Impairment of DC migration toward lymphoid tissue could be involved in cancer immune evasion. © 2005 Wiley‐Liss, Inc.
DOI: 10.1038/cgt.2010.40
2010
Cited 102 times
A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma
The aim of this phase I clinical trial was to assess the feasibility and safety of intratumoral administration of a first-generation adenoviral vector encoding herpes simplex virus thymidine kinase (HSV-TK) gene (Ad.TK) followed by systemic ganciclovir to patients with advanced hepatocellular carcinoma (HCC). Secondarily, we have analyzed its antitumor effect. Ten patients were enrolled in five dose-level cohorts that received from 1010 to 2 × 1012 viral particles (vp). Ad.TK was injected intratumorally and patients received up to three doses at 30-day intervals. Positron emission tomography was used to monitor TK gene expression. Ad.TK injection was feasible in 100% of cases. Treatment was well tolerated and dose-limiting toxicity was not achieved. Cumulative toxicity was not observed. Hepatic toxicity was absent even in cirrhotic patients. Fever, flu-like syndrome, pain at the injection site and pancytopenia were the most common side effects. No partial responses were observed and 60% of patients showed tumor stabilization of the injected lesion. Importantly, two patients who received the highest dose showed signs of intratumoral necrosis by imaging procedures. One of them achieved a sustained stabilization and survived for 26 months. In conclusion, Ad.TK can be safely administered by intratumoral injection to patients with HCC up to 2 × 1012 vp per patient.
DOI: 10.1093/glycob/cwr158
2011
Cited 87 times
Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice
Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.
DOI: 10.1089/scd.2014.0174
2015
Cited 63 times
Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice
Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis.
DOI: 10.3390/cells9112458
2020
Cited 42 times
Significance of Simple Steatosis: An Update on the Clinical and Molecular Evidence
Non-alcoholic fatty liver disease (NAFLD) is defined clinicopathologically by the accumulation of lipids in >5% of hepatocytes and the exclusion of secondary causes of fat accumulation. NAFLD encompasses a wide spectrum of liver damage, extending from simple steatosis or non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH)—the latter is characterized by inflammation and hepatocyte ballooning degeneration, in addition to the steatosis, with or without fibrosis. NAFLD is now the most common cause of chronic liver disease in Western countries and affects around one quarter of the general population. It is a multisystem disorder, which is associated with an increased risk of type 2 diabetes mellitus as well as liver- and cardiovascular-related mortality. Although earlier studies had suggested that NAFL is benign (i.e., non-progressive), cumulative evidence challenges this dogma, and recent data suggest that nearly 25% of those with NAFL may develop fibrosis. Importantly, NAFLD patients are more susceptible to the toxic effects of alcohol, drugs, and other insults to the liver. This is likely due to the functional impairment of steatotic hepatocytes, which is virtually undetectable by current clinical tests. This review provides an overview of the current evidence on the clinical significance of NAFL and discusses the molecular basis for NAFL development and progression.
DOI: 10.1038/gt.2010.10
2010
Cited 70 times
Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma
Mesenchymal stem (stromal) cells (MSCs) are a source of circulating progenitors that are able to generate cells of all mesenchymal lineages and to cover cellular demands of injured tissues. The extent of their transdifferentiation plasticity remains controversial. Cells with MSC properties have been obtained from diverse tissues after purification and expansion in vitro. These cellular populations are heterogeneous and under certain conditions show pluripotent-like properties. MSCs present immunosuppressive and anti-inflammatory features and high migratory capacity toward inflamed or remodeling tissues. In this study we review available data regarding factors and signaling axes involved in the chemoattraction and engraftment of MSCs to an injured tissue or to a tissue undergoing active remodeling. Moreover, experimental evidence in support of uses of MSCs as vehicles of therapeutic genes is discussed. Because of its regenerative capacity and its particular immune properties, the liver is a good model to analyze the potential of MSC-based therapies. Finally, the potential application of MSCs and genetically modified MSCs in liver fibrosis and hepatocellular carcinoma (HCC) is proposed in view of available evidence.
DOI: 10.1021/mp200137c
2011
Cited 58 times
Hepatocellular Carcinoma Cells and Their Fibrotic Microenvironment Modulate Bone Marrow-Derived Mesenchymal Stromal Cell Migration <i>in Vitro</i> and <i>in Vivo</i>
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related death. Fibrogenesis is an active process characterized by the production of several proinflammatory cytokines, chemokines and growth factors. It involves the activation of hepatic stellate cells (HSCs) which accumulate at the site of injury and are the main source of the extracellular matrix deposits. There are no curative treatments for advanced HCC, thus, new therapies are urgently needed. Mesenchymal stromal cells (MSCs) have the ability to migrate to sites of injury or to remodeling tissues after in vivo administration; however, in several cancer models they demonstrated limited efficacy to eradicate experimental tumors partially due to poor engraftment. Thus, the aim of this work was to analyze the capacity of human MSCs (hMSCs) to migrate and anchor to HCC tumors. We observed that HCC and HSCs, but not nontumoral stroma, produce factors that induce hMSC migration in vitro. Conditioned media (CM) generated from established HCC cell lines were found to induce higher levels of hMSC migration than CM derived from fresh patient tumor samples. In addition, after exposure to CM from HCC cells or HSCs, hMSCs demonstrated adhesion and invasion capability to endothelial cells, type IV collagen and fibrinogen. Consistently, these cells were found to increase metalloproteinase-2 activity. In vivo studies with subcutaneous and orthotopic HCC models indicated that intravenously infused hMSCs migrated to lungs, spleen and liver. Seven days post-hMSC infusion cells were located also in the tumor in both models, but the signal intensity was significantly higher in orthotopic than in subcutaneous model. Interestingly, when orthotopic HCC tumors where established in noncirrhotic or cirrhotic livers, the amount of hMSCs localized in the liver was higher in comparison with healthy animals. A very low signal was found in lungs and spleens, indicating that liver tumors are able to recruit them at high efficiency. Taken together our results indicate that HCC and HSC cells produce factors that efficiently induce hMSC migration toward tumor microenvironment in vitro and in vivo and make MSCs candidates for cell-based therapeutic strategies to hepatocellular carcinoma associated with fibrosis.
DOI: 10.1093/glycob/cwv023
2015
Cited 49 times
4-Methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis
Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment.
DOI: 10.1016/j.ymthe.2018.09.012
2018
Cited 47 times
4Mu Decreases CD47 Expression on Hepatic Cancer Stem Cells and Primes a Potent Antitumor T Cell Response Induced by Interleukin-12
The tumor microenvironment (TME) represents a complex interplay between different cellular components, including tumor cells and cancer stem cells (CSCs), with the associated stroma; such interaction promotes tumor immune escape and sustains tumor growth. Several experimental approaches for cancer therapy are focused on TME remodeling, resulting in increased antitumor effects. We previously demonstrated that the hyaluronan synthesis inhibitor 4-methylumbelliferone (4Mu) decreases liver fibrosis and induces antitumor activity in hepatocellular carcinoma (HCC). In this work, 4Mu, in combination with an adenovirus encoding interleukin-12 genes (AdIL-12), elicited a potent antitumor effect and significantly prolonged animal survival (p < 0.05) in an orthotopic HCC model established in fibrotic livers. In assessing the presence of CSCs, we found reduced mRNA levels of CD133+, CD90+, EpCAM+, CD44+, and CD13+ CSC markers within HCC tumors (p < 0.01). Additionally, 4Mu downregulated the expression of the CSC marker CD47+ on HCC cells, promoted phagocytosis by antigen-presenting cells, and, combined with Ad-IL12, elicited a potent cytotoxic-specific T cell response. Finally, animal survival was increased when CD133low HCC cells, generated upon 4Mu treatment, were injected in a metastatic HCC model. In conclusion, the combined strategy ameliorates HCC aggressiveness by targeting CSCs and as a result of the induction of anticancer immunity.
DOI: 10.1007/s12015-015-9585-9
2015
Cited 42 times
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
DOI: 10.1042/cs20180714
2019
Cited 36 times
SPARC is required for the maintenance of glucose homeostasis and insulin secretion in mice
Obesity, metabolic syndrome, and type 2 diabetes, three strongly interrelated diseases, are associated to increased morbidity and mortality worldwide. The pathogenesis of obesity-associated disorders is still under study. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein expressed in many cell types including adipocytes, parenchymal, and non-parenchymal hepatic cells and pancreatic cells. Studies have demonstrated that SPARC inhibits adipogenesis and promotes insulin resistance; in addition, circulating SPARC levels were positively correlated with body mass index in obese individuals. Therefore, SPARC is being proposed as a key factor in the pathogenesis of obesity-associated disorders. The aim of this study is to elucidate the role of SPARC in glucose homeostasis. We show here that SPARC null (SPARC-/-) mice displayed an abnormal insulin-regulated glucose metabolism. SPARC-/- mice presented an increased adipose tissue deposition and an impaired glucose homeostasis as animals aged. In addition, the absence of SPARC worsens high-fat diet-induced diabetes in mice. Interestingly, although SPARC-/- mice on high-fat diet were sensitive to insulin they showed an impaired insulin secretion capacity. Of note, the expression of glucose transporter 2 in islets of SPARC-/- mice was dramatically reduced. The present study provides the first evidence that deleted SPARC expression causes diabetes in mice. Thus, SPARC deficient mice constitute a valuable model for studies concerning obesity and its related metabolic complications, including diabetes.
DOI: 10.1038/sj.cgt.7700072
1999
Cited 89 times
Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12
Interleukin-12 (IL-12) has been shown to possess potent immunoregulatory and antitumoral effects. We have evaluated the anti-oncogenic potential and the mechanisms of the antitumoral effect of in vivo adenovirus-mediated transfer of IL-12 gene in a murine model of colon cancer. AdCMVIL-12 was constructed to permit coordinated production of p40 and p35 subunits of IL-12 gene to obtain the maximum IL-12 bioactivity. Infection of murine colon cancer CT-26 cells in vitro with AdCMVIL-12 resulted in the production of high levels of IL-12. In vivo gene therapy of colon cancer nodules by intratumoral injection of AdCMVIL-12 induced a local increase in IL-12 and interferon-gamma levels and a complete regression of the tumor in 26 of 34 (76%) mice. Tumor disappeared between days 7 and 10 after vector administration. The antitumoral effect was mediated by CD8+ T cells and was associated with the generation of cytotoxic T lymphocytes against colon cancer cells. Animals that eliminated the tumor were protected against a second administration of neoplastic cells. Treatment with AdCMVIL-12 of one tumor nodule also caused regression of established tumors at distant sites. These data demonstrate that AdCMVIL-12 is a useful therapeutic tool for established colon cancer in mice and should be considered for application in humans.
DOI: 10.1016/s1471-4906(00)01824-x
2001
Cited 79 times
IL-12 gene therapy for cancer: in synergy with other immunotherapies
In preclinical models of cancer, gene therapy with interleukin 12 (IL-12) has reached unprecedented levels of success when combined with immunotherapy approaches such as gene transfer of other cytokines and/or chemokines, costimulatory molecules or adoptive cell therapy. These combinations have been found to produce synergistic rather than additive effects. Meanwhile, IL-12 gene therapy is beginning clinical testing as a single agent, but combination strategies are at hand.
DOI: 10.1002/jgm.1228
2008
Cited 54 times
Adenovirus‐mediated inhibition of SPARC attenuates liver fibrosis in rats
Abstract Background The interaction between fibrogenic cells and extracellular matrix plays a role in liver fibrosis, yet the mechanisms are largely unknown. Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that is expressed by hepatic stellate cells and is overexpressed in fibrotic livers. We investigated the in vivo role of SPARC in experimentally induced liver fibrosis in rats. Methods A recombinant adenovirus carrying antisense SPARC was constructed (AdasSPARC). Advanced liver fibrosis was induced in Sprague‐Dawley rats by prolonged intraperitoneal administration of thioacetamide. Animals received injections of AdasSPARC or Adβgal (control adenovirus) via the tail vein and directly into the liver 1 week after the first dose. The pathological changes in liver tissues and indices of fibrosis were assessed at eight weeks. Expression of SPARC, transforming growth factor (TGF)‐β and α‐smooth muscle actin were evaluated by quantitative real‐time polymerase chain reaction, western blotting, enzyme‐linked immunosorbent assay and immunohistochemistry. Results Hepatic SPARC expression significantly increased during the development of liver fibrosis. AdasSPARC markedly attenuated the development of hepatic fibrosis in rats treated with thiocetamide, as assessed by decreased collagen deposition, lower hepatic content of hydroxyproline and less advanced morphometric stage of fibrosis. AdasSPARC treatment reduced inflammatory activity (Knodell score) and suppressed transdifferentiation of hepatic stellate cell to the myofibroblasts like phenotype in vivo . Furthermore, in vitro inhibition of SPARC on hepatic stellate cells decreases the production of TGF‐β. Conclusions This is the first study to demonstrate that knockdown of hepatic SPARC expression ameliorates thioacetamide‐induced liver fibrosis in rats with chronic liver injury. SPARC is a potential target for gene therapy in liver fibrosis. Copyright © 2008 John Wiley &amp; Sons, Ltd.
DOI: 10.1158/0008-5472.can-12-2660
2013
Cited 45 times
Antitumor Immunotherapeutic and Toxic Properties of an HDL-Conjugated Chimeric IL-15 Fusion Protein
Interleukin (IL)-15 effects on CD8 T and natural killer (NK) lymphocytes hold promise to treat cancer. Fusion proteins have been engineered to provide IL-15 receptor alpha (IL-15Rα) mediated trans-presentation to lymphocytes and extend the plasma half-life of the cytokine. In this study, we report on a triple fusion protein combining apolipoprotein A-I (Apo A-I), IL-15, and IL-15Rα's sushi domain. Apo A-I conveys IL-15 to high-density lipoproteins (HDL), from which the cytokine is trans-presented by the IL-15Rα's sushi domain. Such a construction was tested by hydrodynamic gene transfer to the liver of mice. Lethal toxicity was observed upon injection of 10 μg of the expression plasmid. Mice died from an acute lymphocytic pneumonitis in which T and NK cells dominate a severe inflammatory infiltrate. Importantly, mice devoid of NK cells were not susceptible to such toxicity and mice lacking granzymes A and B also survived the otherwise lethal gene transfer. Lower plasmid doses (<2.5 μg) were tolerated and dramatically increased the numbers of NK and memory CD8 T lymphocytes in the liver, spleen, and lungs, to the point of rescuing the deficiency of such lymphocyte subsets in IL-15Rα(-/-) mice. Doses of plasmid within the therapeutic window successfully treated metastatic tumor models, including B16OVA lung metastasis of melanoma and MC38 colon cancer liver metastasis. Sushi-IL-15-Apo as a recombinant protein was also bioactive in vivo, became conjugated to HDL, and displayed immunotherapeutic effects against metastatic disease.
DOI: 10.1371/journal.pone.0095171
2014
Cited 43 times
Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma
Background and Aims Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC. Methods Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated. Results AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro. Conclusion AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.
DOI: 10.1371/journal.pone.0054962
2013
Cited 42 times
Lack of the Matricellular Protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) Attenuates Liver Fibrogenesis in Mice
Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC.Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC(+/+)) and knock-out (SPARC(-/-)) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC(-/-) and SPARC(+/+) mice using Affymetrix Mouse Gene ST 1.0 array.SPARC expression was found induced in fibrotic livers of mouse and human. SPARC(-/-) mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/-) mice when compared to SPARC(+/+) mice; in addition, MMP-2 expression was increased in SPARC(-/-) mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli.Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.
DOI: 10.18632/oncotarget.10288
2016
Cited 36 times
IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrow-derived mesenchymal stromal cells without affecting tumor aggressiveness
New therapies are needed for advanced hepatocellular carcinoma (HCC) and the use of mesenchymal stromal cells (MSCs) carrying therapeutic genes is a promising strategy. HCC produce cytokines recruiting MSCs to the tumor milieu and modifying its biological properties. Our aim was to study changes generated on human MSCs exposed to conditioned media (CM) derived from human HCC fresh samples and xenografts. All CM shared similar cytokines expression pattern including CXCL1-2-3/GRO, CCL2/MCP-1 and CXCL8/IL-8 being the latter with the highest concentration. Neutralizing and knockdown experiments of CCL2/MCP-1, CXCL8/IL-8, CXCR1 and CXCR2 reduced in vitro MSC migration of ≥20%. Simultaneous CXCR1 and CXCR2 neutralization resulted in 50% of MSC migration inhibition. MSC stimulated with CM (sMSC) from HuH7 or HC-PT-5 showed a 2-fold increase of migration towards the CM compared with unstimulated MSC (usMSC). Gene expression profile of sMSC showed ~500 genes differentially expressed compared with usMSC, being 46 genes related with cell migration and invasion. sMSC increased fibroblasts and endothelial cells chemotaxis. Finally, sMSC with HuH7 CM and then inoculated in HCC tumor bearing-mice did not modify tumor growth. In this work we characterized factors produced by HCC responsible for the changes in MSC chemotactic capacity with would have an impact on therapeutic use of MSCs for human HCC.
DOI: 10.3748/wjg.v24.i23.2427
2018
Cited 31 times
Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies
Cell-based therapies for acute and chronic liver diseases are under continuous progress. Mesenchymal stem/stromal cells (MSCs) are multipotent cells able to migrate selectively to damaged tissue and contribute to its healing and regeneration. The MSC pro-regenerative effect occurs due to their immunomodulatory capacity and their ability to produce factors that promote cell protection and survival. Likewise, it has been observed that part of their paracrine effect is mediated by MSC-derived extracellular vesicles (EVs). EVs contain proteins, lipids and nucleic acids (DNA, mRNA, miRNA, lncRNA) from the cell of origin, allowing for intercellular communication. Recently, different studies have demonstrated that MSC-derived EVs could reproduce, at least in part, the biological effects obtained by MSC-based therapies. Moreover, due to EVs' stability for long periods of time and easy isolation methods they have become a therapeutic option to MSCs treatments. This review summarizes the latest results achieved in clinical trials using MSCs as cell therapy for liver regeneration, the role of EVs in liver physiopathology and the potential of MSCderived EVs as intercellular mediators and therapeutic tools in liver diseases.
DOI: 10.1038/s41434-019-0102-7
2019
Cited 28 times
Human umbilical cord perivascular cells-derived extracellular vesicles mediate the transfer of IGF-I to the liver and ameliorate hepatic fibrogenesis in mice
DOI: 10.1002/ijc.20093
2004
Cited 63 times
Improving efficacy of interleukin‐12‐transfected dendritic cells injected into murine colon cancer with anti‐CD137 monoclonal antibodies and alloantigens
Abstract Intralesional administration of cultured dendritic cells (DCs) engineered to produce IL‐12 by in vitro infection with recombinant adenovirus frequently displays eradicating efficacy against established subcutaneous tumors derived from the CT26 murine colon carcinoma cell line. The elicited response is mainly mediated by cytolitic T lymphocytes. In order to search for strategies that would enhance the efficacy of the therapeutic procedure against less immunogenic tumors, we moved onto malignancies derived from the inoculation of MC38 colon cancer cells that are less prone to undergo complete regression upon a single intratumoral injection of IL‐12‐secreting DCs. In this model, we found that repeated injections of such DCs, as opposed to a single injection, achieved better efficacy against both the injected and a distantly implanted tumor; that the use of semiallogeneic DCs that are mismatched in one MHC haplotype with the tumor host showed slightly better efficacy; and that the combination of this treatment with systemic injections of immunostimulatory anti‐CD137 (4‐1BB) monoclonal antibody achieved potent combined effects that correlated with the antitumor immune response measured in IFN‐γ ELISPOT assays. The elicited systemic immune response eradicates concomitant untreated lesions in most cases. Curative efficacy was also found against some tumors established for 2 weeks when these strategies were used in combination. These are preclinical pieces of evidence to be considered in order to enhance the therapeutic benefit of a strategy that is currently being tested in clinical trials. Supplementary Material for this aricle can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020‐7136/suppmat/index.html . © 2004 Wiley‐Liss, Inc.
DOI: 10.2174/1381612033454261
2003
Cited 57 times
Gene Therapy of Cancer with Interleukin-12
IL-12 has demonstrated remarkable antitumor activity when used directly as a recombinant protein or when different viral or non-viral vectors transfer its genes. At enhancing tumor immunity, IL-12 acts as a bridge between innate and adaptive immune responses due to its ability to induce proliferation and activation of NK, NKT, and T cells. In addition, IL-12 inhibits tumor angiogenesis mainly through IFN gamma-dependent production of the chemokine IP10. As a result, IL-12 can eliminate several types of tumors developed in rodents. Pre-clinical experience forecasted a quick and successful clinical translation, but the encouraging results observed in animals were not reproduced in patients. Moreover, unacceptable toxicity resulting from IFN gamma overproduction was observed in 2 renal carcinoma patients included in a phase II clinical trial that consisted in systemic administration of rIL-12. As a consequence, development of IL-12 as an antitumor agent was temporarily halted while the high expectations raised among clinicians faded away. Gene transfer methods are designed to confine IL-12 production in the tumor environment preventing systemic toxicity. Tumor cells, dendritic cells, or autologous fibroblasts have been transfected with recombinant adenoviruses or retroviruses to secrete IL-12 locally, showing good efficacy and safety profiles. IL-12 combination with other immunotherapy approaches synergizes to achieve even better results. Encouraging pilot clinical results have been recently obtained from the first phase I trial studying adenovirus mediated in vivo gene transfer of IL-12 into lesions of advanced cancer patients. Further improvements will follow from: i) increases in the efficacy of gene transduction; ii) development of tumor specific promoters; iii) development of regulatable and long-term expression vectors and iv) combination with other immunological and non-immunological anticancer therapies.
DOI: 10.1152/ajpgi.00316.2010
2011
Cited 38 times
SPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF-β<sub>1</sub>and PDGF
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β(1). Interestingly, TGF-β(1) secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β(1) restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β(1)-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β(1) expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.
DOI: 10.2174/156652313804806561
2013
Cited 35 times
Interleukin-15 in Gene Therapy of Cancer
Interleukin-15 (IL-15) exerts powerful stimulatory effects on lymphocyte subsets that result in antiviral and antitumoral activities. The functions of this cytokine are mainly mediated in a cell-to-cell contact fashion termed IL-15 trans-presentation. This function is mediated by a cell which tethers IL-15 to its plasmatic membrane complexed to IL-15 receptor alpha (IL-15Rα). Such surface complexes interact with interleukin-2 receptor beta and gamma on the adjacent cell to elicit signaling. Unlike interleukin-2, IL-15 protects from activation-induced cell death and does not promote regulatory cells. These features underlie its activity against transplanted tumors and its adjuvanticity in tumor and viral vaccines. The GMP-manufactured recombinant protein is undergoing clinical trials but its rapid renal clearance calls for biotechnological strategies to increase molecular weight and ensure IL-15Rα. trans-presentation. Since early efforts with stable transfected tumor cells, IL-15 has been tested in a variety gene therapy approaches. Those mainly include transfer of expression cassettes to tumor cells, T cells, dendritic cells, vaccination sites and the liver as a biofactory organ. Detailed mechanistic knowledge of IL-15 biology is envisaged to make the most of a powerful immunotherapeutic tool ranked as one of the most promising for cancer immunotherapy.
DOI: 10.1038/s41598-019-40436-6
2019
Cited 26 times
Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis
Abstract Hyaluronic acid (HA) is a glycosaminoglycan of extracellular matrix related to cell surface which interacts with various cell types. To understand the role of HA during hepatocarcinogenesis, we assessed the effect of the inhibition of HA deposition and its association with heterogeneous hepatocellular carcinoma (HCC) cells. In this study, we used transgenic mice C57BL/6J-Tg(Alb1HBV)44Bri/J (HBV-TG) and normal C57BL/6 J (WT) for in vivo study, while HCC cells Huh7 and JHH6 as in vitro models. Both models were treated with an HA inhibitor 4-methylumbelliferone (4MU). We observed that 4MU treatments in animal model down-regulated the mRNA expressions of HA-related genes Has3 and Hyal2 only in HBV-TG but not in normal WT. As observed in vivo , in HCC cell lines, the HAS2 mRNA expression was down-regulated in Huh7 while HAS3 in JHH6, both with or without the presence of extrinsic HA. Interestingly, in both models, the expressions of various cancer stem cells (CD44, CD90, CD133, and EpCAM) were also decreased. Further, histological analysis showed that 4MU treatment with dose 25 mg/kg/day reduced fibrosis, inflammation, and steatosis in vivo , in addition to be pro-apoptotic. We concluded that the inhibition of HA reduced the expressions of HA-related genes and stem cells markers in both models, indicating a possible modulation of cells-to-cells and cells-to-matrix interaction.
DOI: 10.1136/gutjnl-2020-321454
2020
Cited 21 times
Bioinformatic analysis of RHO family of GTPases identifies RAC1 pharmacological inhibition as a new therapeutic strategy for hepatocellular carcinoma
Objective The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). Design We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. Results Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. Conclusions The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.
DOI: 10.1111/liv.14857
2021
Cited 18 times
SPARC inhibition accelerates NAFLD‐associated hepatocellular carcinoma development by dysregulating hepatic lipid metabolism
Non-alcoholic fatty liver (NAFLD) and its more serious form non-alcoholic steatohepatitis increase risk of hepatocellular carcinoma (HCC). Lipid metabolic alterations and its role in HCC development remain unclear. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is involved in lipid metabolism, NAFLD and diabetes, but the effects on hepatic lipid metabolism and HCC development is unknown. The aim of this study was to evaluate the role of SPARC in HCC development in the context of NAFLD.Primary hepatocyte cultures from knockout (SPARC-/- ) or wild-type (SPARC+/+ ) mice, and HepG2 cells were used to assess the effects of free fatty acids on lipid accumulation, expression of lipogenic genes and de novo triglyceride (TG) synthesis. A NAFLD-HCC model was stabilized on SPARC-/- or SPARC+/+ mice. Correlations among SPARC, lipid metabolism-related gene expression patterns and clinical prognosis were studied using HCC gene expression dataset.SPARC-/- mice increases hepatic lipid deposits over time. Hepatocytes from SPARC-/- mice or inhibition of SPARC by an antisense adenovirus in HepG2 cells resulted in increased TG deposit, expression of lipid-related genes and nuclear translocation of SREBP1c. Human HCC database analysis revealed that SPARC negatively correlated with genes involved in lipid metabolism, and with poor survival. In NAFLD-HCC murine model, the absence of SPARC accelerates HCC development. RNA-seq study revealed that pathways related to lipid metabolism, cellular detoxification and proliferation were upregulated in SPARC-/- tumour-bearing mice.The absence of SPARC is associated with an altered hepatic lipid metabolism, and an accelerated NAFLD-related HCC development.
DOI: 10.1089/10430340050016201
2000
Cited 56 times
Adenoviral Gene Transfer of Interleukin 12 into Tumors Synergizes with Adoptive T Cell Therapy Both at the Induction and Effector Level
Tumors infected with a recombinant defective adenovirus expressing interleukin 12 (IL-12) undergo regression, associated with a cytotoxic T lymphocyte (CTL)-mediated antitumor immune response. In the present study we generated anti-CT26 CTLs by short-term coculture of CT26 cells and lymph node cells obtained from mice harboring subcutaneous CT26 tumors injected with an adenoviral vector expressing IL-12 (AdCMVIL-12), control adenovirus (AdCMVlacZ), or saline. Regression of small intrahepatic CT26 tumors in unrelated syngeneic animals was achieved with CTLs derived from mice whose subcutaneous tumors had been injected with AdCMVIL-12 but not with CTLs from the other two control groups. The necessary and sufficient effector cell population for adoptive transfer consisted of CD8+ T cells that showed anti-CT26 specificity partly directed against the AH1 epitope presented by H-2Ld. Interestingly, treatment of a subcutaneous tumor nodule with AdCMVIL-12, combined with intravenous adoptive T cell therapy with short-term CTL cultures, had a marked synergistic effect against large, concomitant live tumors. Expression of IL-12 in the liver in the vicinity of the hepatic tumor nodules, owing to spillover of the vector into the systemic circulation, appeared to be involved in the increased in vivo antitumor activity of injected CTLs. In addition, adoptive T cell therapy improved the outcome of tumor nodules transduced with suboptimal doses of AdCMVIL-12. Our data provide evidence of a strong synergy between gene transfer of IL-12 and adoptive T cell therapy. This synergy operates both at the induction and effector phases of the CTL response, thus providing a rationale for combined therapeutic strategies for human malignancies.
DOI: 10.3748/wjg.v13.i44.5822
2007
Cited 41 times
Immunotherapy and immunoescape in colorectal cancer
Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses.Colorectal carcinoma often presents as metastatic disease that impedes curative surgery.Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage.Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells).However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances.Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response.For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNγ in colorectal carcinoma cells.Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.
DOI: 10.1158/1078-0432.ccr-09-1861
2009
Cited 37 times
A Novel Synergistic Combination of Cyclophosphamide and Gene Transfer of Interleukin-12 Eradicates Colorectal Carcinoma in Mice
Interleukin-12 (IL-12) is an immunostimulatory cytokine with potent antitumor effects in several animal models. However, serious toxicity has been associated with its systemic application in humans. Gene transfer has emerged as a tool to specifically express therapeutic genes into the tumor/peritumoral milieu, thus avoiding systemic toxicity. The aim of this study was to analyze whether subtherapeutic doses of an adenovirus encoding IL-12 (AdIL-12) might synergize with low immunopotentiating doses of cyclophosphamide in the treatment of colorectal carcinoma.The antitumor effect of combining a single low dose of cyclophosphamide with an intratumoral injection of AdIL-12 was evaluated in an in vivo murine colorectal carcinoma model. The immune responses achieved with different treatments were monitored, comparing the effect of combining both therapies with individual treatments.The combined therapy induced a complete tumor regression in >50% of mice in a synergistic fashion, and it significantly prolonged their survival. This strategy was superior to each single treatment in reducing both peripheral and splenic CD4+CD25+Foxp3+ regulatory T cells, increasing the number of activated dendritic cells, and inducing IFN-gamma-secreting CD4-positive T lymphocytes. Importantly, the combined treatment generated a powerful tumor-specific CTL response. Consistently, a significant reduction in IL-10 levels was found. Our data suggest that the combination of nontoxic doses of cyclophosphamide with AdIL-12 allows the generation of good antitumoral responses, thus avoiding undesired side effects of both agents.Our data strongly support the use of a combination of cyclophosphamide and AdIL-12 as a novel therapeutic strategy against colorectal carcinoma.
DOI: 10.1002/ijc.28405
2013
Cited 31 times
The low‐abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer
Studies on the low‐abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low‐abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low‐abundance transcriptome and the whole transcriptome. Analysis of the low‐abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type‐specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF‐C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low‐abundance transcriptome provides useful insights into the molecular basis and treatment of cancer.
DOI: 10.1016/j.molonc.2011.03.007
2011
Cited 30 times
Reversal of gastrointestinal carcinoma‐induced immunosuppression and induction of antitumoural immunity by a combination of cyclophosphamide and gene transfer of IL‐12
Immunotherapy-based strategies for gastrointestinal carcinomas (GIC) have been exploited so far, but these approaches have to face strong mechanisms of immune escape induced by tumours. We previously demonstrated that sub-therapeutic doses of an adenovirus expressing IL-12 genes (AdIL-12) mediated a potent antitumour effect against subcutaneous (s.c.) colorectal carcinomas (CRC) in mice pre-treated with low doses of cyclophosphamide (Cy). In our study we used this combination to assess its impact on the immunosuppressive microenvironment. In s.c. CRC model we demonstrated that non-responder mice failed to decrease Tregs in tumour, spleen and peripheral blood. Reconstitution of Tregs into tumour-bearing mice treated with combined therapy abolished the antitumoural effect. In addition, Cy + AdIL-12 modified Tregs functionality by inhibiting the in vitro secretion of IL-10 and TGF-β and their ability to inhibit dendritic cells activation. Combined treatment decreased the number of myeloid-derived suppressor cells (MDSCs) in comparison to non-treated mice and, interestingly, administration of Tregs restored splenic MDSCs population. Furthermore, combined therapy potently generated specific cytotoxic IFN-γ-secreting CD4+ T cells able to eradicate established CRC tumours after adoptive transfer. Finally, we evaluated the combination on disseminated CRC and pancreatic carcinoma (PC). Cy + AdIL-12 were able to eradicate liver metastatic CRC (47%) and PC tumour nodules (40%) and to prolong animal survival. The results of this study support the hypothesis that Cy + AdIL-12 might be a valid immunotherapeutic strategy for advanced GIC.
DOI: 10.1089/scd.2011.0643
2012
Cited 29 times
A Specific Subpopulation of Mesenchymal Stromal Cell Carriers Overrides Melanoma Resistance to an Oncolytic Adenovirus
The homing properties of mesenchymal stromal c`ells (MSCs) toward tumors turn them into attractive tools for combining cell and gene therapy. The aim of this study was to select in a feasible way a human bone marrow-derived MSC subpopulation that might exhibit a selective ability to target the tumor mass. Using differential in vitro adhesive capacities during cells isolation, we selected a specific MSC subpopulation (termed MO-MSCs) that exhibited enhanced multipotent capacity and increased cell surface expression of specific integrins (integrins α2, α3, and α5), which correlated with an enhanced MO-MSCs adhesiveness toward their specific ligands. Moreover, MO-MSCs exhibited a higher migration toward conditioned media from different cancer cell lines and fresh human breast cancer samples in the presence or not of a human microendothelium monolayer. Further in vivo studies demonstrated increased tumor homing of MO-MSCs toward established 578T and MD-MBA-231 breast cancer and A375N melanoma tumor xenografts. Tumor penetration by MO-MSCs was highly dependent on metallopeptidases production as it was inhibited by the specific inhibitor 1,10 phenantroline. Finally, systemically administered MO-MSCs preloaded with an oncolytic adenovirus significantly inhibited tumor growth in mice harboring established A375N melanomas, overcoming the natural resistance of the tumor to in situ administration of the oncolytic adenovirus. In summary, this work characterizes a novel MSC subpopulation with increased tumor homing capacity that can be used to transport therapeutic compounds.
DOI: 10.1186/s13287-016-0424-y
2016
Cited 24 times
Involvement of hepatic macrophages in the antifibrotic effect of IGF-I-overexpressing mesenchymal stromal cells
Abstract Background Cirrhosis is a major health problem worldwide and new therapies are needed. Hepatic macrophages (hMø) have a pivotal role in liver fibrosis, being able to act in both its promotion and its resolution. It is well-known that mesenchymal stromal cells (MSCs) can modulate the immune/inflammatory cells. However, the effects of MSCs over hMø in the context of liver fibrosis remain unclear. We previously described evidence of the antifibrotic effects of in vivo applying MSCs, which were enhanced by forced overexpression of insulin-like growth factor 1 (AdIGF-I-MSCs). The aim of this work was to analyze the effect of MSCs on hMø behavior in the context of liver fibrosis resolution. Methods Fibrosis was induced in BALB/c mice by chronic administration of thioacetamide (8 weeks). In vivo gene expression analyses, in vitro experiments using hMø isolated from the nonparenchymal liver cells fraction, and in vivo experiments with depletion of Mø were performed. Results One day after treatment, hMø from fibrotic livers of MSCs-treated animals showed reduced pro-inflammatory and pro-fibrogenic gene expression profiles. These shifts were more pronounced in AdIGF-I-MSCs condition. This group showed a significant upregulation in the expression of arginase-1 and a higher downregulation of iNOS expression thus suggesting decreased levels of oxidative stress. An upregulation in IGF-I and HGF expression was observed in hMø from AdIGF-I-MSCs-treated mice suggesting a restorative phenotype in these cells. Factors secreted by hMø, preconditioned with MSCs supernatant, caused a reduction in the expression levels of hepatic stellate cells pro-fibrogenic and activation markers. Interestingly, hMø depletion abrogated the therapeutic effect achieved with AdIGF-I-MSCs therapy. Expression profile analyses for cell cycle markers were performed on fibrotic livers after treatment with AdIGF-I-MSCs and showed a significant regulation in genes related to DNA synthesis and repair quality control, cell cycle progression, and DNA damage/cellular stress compatible with early induction of pro-regenerative and hepatoprotective mechanisms. Moreover, depletion of hMø abrogated such effects on the expression of the most highly regulated genes. Conclusions Our results indicate that AdIGF-I-MSCs are able to induce a pro-fibrotic to resolutive phenotype shift on hepatic macrophages, which is a key early event driving liver fibrosis amelioration.
DOI: 10.1152/ajpendo.00200.2016
2016
Cited 22 times
Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance
We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.
DOI: 10.1038/s41598-017-18981-9
2018
Cited 22 times
SPARC expression is associated with hepatic injury in rodents and humans with non-alcoholic fatty liver disease
Mechanisms that control progression from simple steatosis to steato-hepatitis and fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) are unknown. SPARC, a secreted matricellular protein, is over-expressed in the liver under chronic injury. Contribution of SPARC accumulation to disease severity is largely unknown in NAFLD. We assessed the hypothesis that SPARC is increased in livers with more necrosis and inflammation and could be associated with more fibrosis. qrt-PCR, immunohistochemistry, and ELISA were employed to localize and quantify changes in SPARC in 62 morbidly obese patients with NAFLD/NASH and in a mouse model of diet-induced-NASH. Results were correlated with the severity of NAFLD/NASH. In obese patients 2 subgroups were identified with either high SPARC expression (n = 16) or low SPARC expression (n = 46) in the liver, with a cutoff of 1.2 fold expression. High expression of SPARC paralleled hepatocellular damage and increased mRNA expression of pro-fibrogenic factors in the liver. In line with these findings, in the NASH animal model SPARC knockout mice were protected from inflammatory injury, and showed less inflammation and fibrosis. Hepatic SPARC expression is associated with liver injury and fibrogenic processes in NAFLD. SPARC has potential as preventive or therapeutic target in NAFLD patients.
DOI: 10.1158/1535-7163.mct-17-0193
2018
Cited 22 times
A Tricin Derivative from <i>Deschampsia antarctica</i> Desv. Inhibits Colorectal Carcinoma Growth and Liver Metastasis through the Induction of a Specific Immune Response
Abstract In colorectal carcinoma patients, distant metastatic disease is present at initial diagnosis in nearly 25% of them. The majority of patients with metastatic colorectal carcinoma have incurable disease; therefore, new therapies are needed. Agents derived from medicinal plants have already demonstrated therapeutic activities in human cancer cells. Antartina is an antitumor agent isolated from Deschampsia antarctica Desv. This study aimed to evaluate the antitumor properties of Antartina in colorectal carcinoma models. We used human and murine colorectal carcinoma cell lines for investigating proliferation, apoptosis, and cell-cycle effects of Antartina therapy in vitro. Avatar and immunocompetent colorectal carcinoma animal models were applied for evaluating the effects of Antartina in vivo. Immune response against colorectal carcinoma model was investigated using CTL assay, analyzing dendritic cell activation and intratumor T-cell subpopulation, and by tumor rechallenge experiments. Antartina inhibits in vitro human colorectal carcinoma cell proliferation; however, in vivo experiments in Avatar colorectal carcinoma model Antartina display a limited antitumor effect. In an immunocompetent colorectal carcinoma mice model, Antartina potently inhibited tumor growth and liver metastases, leading to complete tumor regressions in &amp;gt;30% of mice and increased animal survival. In addition, Antartina induced a potent specific cytotoxic T-cell response against colorectal carcinoma and a long-lasting antitumor immunity. Interestingly, Antartina increased tumor immunogenicity and stimulated dendritic cell activation. No toxic effects were observed at the doses employed. Our findings showed that Antartina has the ability to induce antitumor immunity against colorectal carcinoma and can be used to develop new tools for the treatment of colorectal carcinoma. Mol Cancer Ther; 17(5); 966–76. ©2018 AACR.
DOI: 10.1038/s41598-021-85491-0
2021
Cited 15 times
4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice
Abstract Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.
DOI: 10.1016/s0168-8278(00)80073-2
2000
Cited 50 times
Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma
Gene therapy has emerged as a new form of treatment for unresectable hepatocellular carcinoma (HCC). We evaluate here the effect of IL-12 and the suicide gene thymidine kinase as single agents and in combination to treat experimental liver cancer.Recombinant adenoviruses expressing mouse interleukin-12 (AdCMVIL-12) or thymidine kinase of herpes simplex virus (AdCMVtk) or lacZ reporter gene (AdCMVlacZ) were constructed. The efficacy of the treatment was evaluated in a murine HCC model based on subcutaneous implantation of liver tumor cells (BNL).Transduction of BNL cells after in vitro infection with AdCMVlacZ was very low at multiplicity of infection (moi) of 100, whereas 10-15% of cells were transduced when using moi 1,000. Similarly, production of IL-12 was detectable only in BNL cells infected with AdCMVIL-12 at moi 1,000. In vitro infection of BNL cells with AdCMVIL-12 at moi 100 did not abrogate tumorigenicity, whereas moi 1,000 resulted in inhibition of tumor growth in all mice as well as in abrogation of tumor formation in 3 out of 8 animals. In vivo studies showed that intratumor injection of AdCMVIL-12 induced a dose-dependent effect on tumor regression. However, none of the animals exhibited complete tumor elimination with this treatment. We observed that suppression of tumor growth was more intense in animals treated with the combination of AdCMVIL-12 plus AdCMVtk than in animals which received AdCMVtk or AdCMVIL-12 alone. The combined treatment resulted in a significant increase in animal survival, and 25% of treated animals were free of tumor for over 100 days without recurrence of the disease.Combination of AdCMVIL-12 and AdCMVtk is more efficient than either of the two vectors alone for the treatment of the murine model of HCC used in this study.
DOI: 10.1038/sj.gt.3301387
2001
Cited 46 times
Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12
DOI: 10.1016/s0301-472x(02)00956-6
2002
Cited 40 times
Clinical implications of antigen transfer mechanisms from malignant to dendritic cells
Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors specific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T cells receive promitotic and activating signals from endogenous professional antigen-presenting cells (APC) rather than directly from malignant cells. This phenomenon fits with the broader concept of cross-presentation that earlier was demonstrated for minor histocompatibility and viral antigens. Many mechanisms have been found to be capable of transferring antigenic material from malignant cells to APC so that it can be processed and subsequently presented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be the most relevant APC mediating cross-presentation because they can take up antigens from apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) receptors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc receptors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the peculiar capability of reentering the exogenously captured material into the MHC class I pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation (cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and control of the immune-promoting status of the antigen-presenting DC will have important therapeutic implications in the near future.
DOI: 10.1002/ijc.24966
2010
Cited 28 times
Overexpression of SPARC obliterates the <i>in vivo</i> tumorigenicity of human hepatocellular carcinoma cells
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. Current treatments are extremely disappointing. SPARC (Secreted protein, acidic and rich in cysteine) is a matricellular glycoprotein with differential expression in several tumors, including HCC, which significance remains unclear. We infected HCC cells (HepG2, Hep3B and Huh7) with an adenovirus expressing SPARC (AdsSPARC) to examine the role of SPARC expression on HCC cells and its effect on tumor aggressiveness. The in vitro HCC cells substrate-dependent proliferation and cell cycle profile were unaffected; however, SPARC overexpression reduced HCC proliferation when cells were grown in spheroids. A mild induction of cellular apoptosis was observed upon SPARC overexpression. SPARC overexpression resulted in spheroid growth inhibition in vitro while no effects were found when recombinant SPARC was exogenously applied. Moreover, the clonogenic and migratory capabilities were largely decreased in SPARC-overexpressing HCC cells, altogether suggesting a less aggressive HCC cell phenotype. Consistently, AdsSPARC-transduced cells showed increased E-cadherin expression and a concomitant decrease in N-cadherin expression. Furthermore, SPARC overexpression was found to reduce HCC cell viability in response to 5-FU-based chemotherapy in vitro, partially through induction of apoptosis. In vivo experiments revealed that SPARC overexpression in HCC cells inhibited their tumorigenic capacity and increased animal survival through a mechanism that partially involves host macrophages. Our data suggest that SPARC overexpression in HCC cells results in a reduced tumorigenicity partially through the induction of mesenchymal-to-epithelial transition (MET). These evidences point to SPARC as a novel target for HCC treatment.
DOI: 10.1038/gt.2014.102
2014
Cited 23 times
SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage
Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC(-/-)) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC(-/-) mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC(-/-) mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC(-/-) mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC(-/-) mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury.
DOI: 10.1007/978-1-4939-0345-0_3
2014
Cited 21 times
Pulsing Dendritic Cells with Whole Tumor Cell Lysates
One of the strategies employed in immunotherapy for cancer is to use of ex vivo-generated dendritic cells (DC) pulsed with tumor antigens. Several approaches have been used to obtain and load tumor antigens in DC. One such technique is to use whole tumor cell lysate from one or more tumor cell lines of the tumor type to be treated. The advantage of applying this method is that it provides a large spectrum of tumor antigens. However, some considerations must be taken into account to obtain a lysate with appropriate biological activity, such as cell line harvest and the method to lyse the cells. In this chapter, we describe the steps to obtain whole tumor cell lysates from human tumor cell lines by repetitive freeze-thaw cycles in sufficient amount and quality to pulse DC.
DOI: 10.1007/s12035-019-01729-z
2019
Cited 18 times
Mesenchymal Stem Cells Therapy Improved the Streptozotocin-Induced Behavioral and Hippocampal Impairment in Rats
Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocampus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis, relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons, suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by showing that intravenous injection of human MSC restores behavioral and hippocampal alterations in experimental sAD, support the potential use of MSC therapy for the treatment of neurodegenerative diseases.
DOI: 10.1038/sj.gt.3301957
2003
Cited 34 times
Pancreatic cancer escape variants that evade immunogene therapy through loss of sensitivity to IFNγ-induced apoptosis
DOI: 10.1517/14712598.4.7.1073
2004
Cited 32 times
Gene therapy of liver diseases
Many liver diseases lack satisfactory treatment and alternative therapeutic options are urgently needed. Gene therapy is a new mode of treatment for both inherited and acquired diseases, based on the transfer of genetic material to the tissues. Genes are incorporated into appropriate vectors in order to facilitate their entrance and function inside the target cells. Gene therapy vectors can be constructed on the basis of viral or non-viral molecular structures. Viral vectors are frequently used, due to their higher transduction efficiency. Both the type of vector and the expression cassette determine the duration, specificity and inducibility of gene expression. A considerable number of preclinical studies indicate that a great variety of liver diseases, including inherited metabolic defects, chronic viral hepatitis, liver cirrhosis and primary and metastatic liver cancer, are amenable to gene therapy. Gene transfer to the liver can also be used to convert this organ into a factory of secreted proteins needed to treat conditions that do not affect the liver itself. Clinical trials of gene therapy for the treatment of inherited diseases and liver cancer have been initiated but human gene therapy is still in its infancy. Recent progress in vector technology and imaging techniques, allowing in vivo assessment of gene expression, will facilitate the development of clinical applications of gene therapy.
DOI: 10.1016/j.cytogfr.2007.01.014
2007
Cited 29 times
Cytokine gene transfer for cancer therapy
The possibility of inducing a strong immune response to impair tumor growth by ectopically expressing cytokines, followed by the generation of an antitumor memory raised great hopes and enthusiasm as a therapeutic approach. However, the efficacy of this strategy on established tumor models appeared low and the initial results in the clinics were disappointing. Recently, new evidence indicates that cytokine gene combination or the combined use of cytokine genes with additional gene therapy approaches induces a synergistic effect supporting the use of cytokine gene therapy to improve the clinical outcome for cancer patients.
DOI: 10.1186/1423-0127-16-30
2009
Cited 25 times
Immunotherapy for liver tumors: present status and future prospects
Increasing evidence suggests that immune responses are involved in the control of cancer and that the immune system can be manipulated in different ways to recognize and attack tumors. Progress in immune-based strategies has opened new therapeutic avenues using a number of techniques destined to eliminate malignant cells. In the present review, we overview current knowledge on the importance, successes and difficulties of immunotherapy in liver tumors, including preclinical data available in animal models and information from clinical trials carried out during the lasts years. This review shows that new options for the treatment of advanced liver tumors are urgently needed and that there is a ground for future advances in the field.
DOI: 10.1158/1078-0432.ccr-08-1161
2009
Cited 24 times
A Novel A33 Promoter–Based Conditionally Replicative Adenovirus Suppresses Tumor Growth and Eradicates Hepatic Metastases in Human Colon Cancer Models
A33 antigen is a membrane-bound protein expressed in intestinal epithelium that is overexpressed in 95% of primary and metastatic colorectal carcinomas but is absent in most epithelial tissues and tumor types. We hypothesized that A33 promoter might be useful in the design of a conditionally replicative adenovirus for the treatment of colorectal cancer (CRC).We cloned an A33 promoter fragment (A33Pr) that extends from -105 to +307 bp. Using luciferase activity as a reporter gene, we showed that A33Pr was active in CRC cell lines. We next constructed a conditionally replicative adenovirus named AV22EL where E1A was placed under the control of A33Pr. The tumor-specific oncolytic effect of AV22EL was investigated both in vitro and in vivo.AV22EL induced specific in vitro lysis of human CRC cell lines that expressed A33 and have negligible lytic capacity on cells that lacked or had minimal A33 expression, including normal human colonic cells. In vivo, a marked reduction of tumor growth and increased long-term survival rates were observed in nude mice xenografted with s.c. CRC tumors. Combination with 5-fluorouracil induced an additive effect in vitro with no toxic effects in vivo. Remarkably, AV22EL completely eliminated established hepatic metastases in >90% of mice and restored hepatic function according to biochemical parameters. Its systemic administration induced E1A expression only in the hepatic metastasis but not in normal organs.These data show that AV22EL is a stringently regulated and potent oncolytic agent for the treatment of CRC.
DOI: 10.4161/onci.20684
2012
Cited 22 times
Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice
The use of conventional cytotoxic agents at metronomic schedules, alone or in combination with targeted agents or immunotherapy, is being explored as a promising anticancer strategy. We previously reported a potent antitumor effect of a single low-dose cyclophosphamide and interleukin-12 (IL-12) gene therapy against advanced gastrointestinal carcinoma, in mice. Here, we assessed whether the delivery of IL-12 by gene therapy together with metronomic cyclophosphamide exerts antitumor effects in a murine model of colorectal carcinoma. This combination therapy was able, at least in part, to reverse immunosuppression, by decreasing the number of regulatory T cells (Tregs) as well as of splenic myeloid-derived suppressor cells (MDSCs). However, metronomic cyclophosphamide plus IL-12 gene therapy failed to increase the number of tumor-infiltrating T lymphocytes and, more importantly, to induce a specific antitumor immune response. With respect to this, cyclophosphamide at a single low dose displayed a superior anticancer profile than the same drug given at a metronomic schedule. Our results may have important implications in the design of new therapeutic strategies against colorectal carcinoma using cyclophosphamide in combination with immunotherapy.
DOI: 10.1007/s00262-011-1036-0
2011
Cited 22 times
Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma
DOI: 10.1007/s10456-013-9382-5
2013
Cited 21 times
Dendritic cells regulate angiogenesis associated with liver fibrogenesis
During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.
DOI: 10.1371/journal.pone.0107944
2014
Cited 20 times
Low Molecular Weight Hyaluronan-Pulsed Human Dendritic Cells Showed Increased Migration Capacity and Induced Resistance to Tumor Chemoattraction
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA –a poorly immunogenic molecule- represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.
DOI: 10.1038/mt.2015.112
2015
Cited 19 times
Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma
We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy.
DOI: 10.1111/liv.12338
2013
Cited 19 times
The therapeutic potential of bone marrow‐derived mesenchymal stromal cells on hepatocellular carcinoma
Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.
DOI: 10.1002/cmdc.202000763
2021
Cited 12 times
Development of an Improved Guanidine‐Based Rac1 Inhibitor with in vivo Activity against Non‐Small Cell Lung Cancer
The Rho GTPase Rac1 is involved in the control of cytoskeleton reorganization and other fundamental cellular functions. Aberrant activity of Rac1 and its regulators is common in human cancer. In particular, deregulated expression/activity of Rac GEFs, responsible for Rac1 activation, has been associated to a metastatic phenotype and drug resistance. Thus, the development of novel Rac1-GEF interaction inhibitors is a promising strategy for finding new preclinical candidates. Here, we studied structure-activity relationships within a new family of N,N'-disubstituted guanidine as Rac1 inhibitors. We found that compound 1D-142, presents superior antiproliferative activity in human cancer cell lines and higher potency as Rac1-GEF interaction inhibitor in vitro than parental compounds. In addition, 1D-142 reduces Rac1-mediated TNFα-induced NF-κB nuclear translocation during cell proliferation and migration in NSCLC. Notably, 1D-142 allowed us to show for the first time the application of a Rac1 inhibitor in a lung cancer animal model.
DOI: 10.1007/s13105-022-00913-5
2022
Cited 7 times
The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease
DOI: 10.1016/j.mibio.2004.04.004
2004
Cited 31 times
Positron emission tomography and gene therapy: basic concepts and experimental approaches for gene expression imaging
DOI: 10.2174/138955709790361485
2009
Cited 22 times
Altered Hyaluronan Biosynthesis and Cancer Progression: an Immunological Perspective
Hyaluronan is a glycosaminglycan present in practically all tissues as an important component of the extracellular matrix. In spite of its apparent simple chemical structure, hyaluronan is a molecule with multiple and complex physiogical and pathological functions, Hyaluronan is able to regulate a variety of biological processes such as cellular growth, migration, differentiation and inflammation, not only in normal but also in cancer tissues. Besides, increasing evidence suggests hyaluronan as a potent modulator of immune responses which supports a potential role of this molecule in cancer immunotherapy.
DOI: 10.1155/2014/837420
2014
Cited 15 times
Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.
DOI: 10.1016/j.aohep.2020.06.003
2020
Cited 13 times
Argentinian clinical practice guideline for surveillance, diagnosis, staging and treatment of hepatocellular carcinoma
The A.A.E.E.H has developed this guideline for the best care of patients with hepatocellular carcinoma (HCC) from Argentina. It was done from May 2018 to March 2020. Specific clinical research questions were systematically searched. The quality of evidence and level of recommendations were organized according to GRADE. HCC surveillance is strongly recommended with abdominal ultrasound (US) every six months in the population at risk for HCC (cirrhosis, hepatitis B or hepatitis C); it is suggested to add alpha-feto protein (AFP) levels in case of inexeperienced sonographers. Imaging diagnosis in patients at risk for HCC has high specificity and tumor biopsy is not mandatory. The Barcelona Clinic Liver Cancer algorithm is strongly recommended for HCC staging and treatment-decision processes. Liver resection is strongly recommended for patients without portal hypertension and preserved liver function. Composite models are suggested for liver transplant selection criteria. Therapies for HCC with robust clinical evidence include transarterial chemoembolization (TACE) and first to second line systemic treatment options (sorafenib, lenvatinib, regorafenib, cabozantinib and ramucirumab). Immunotherapy with nivolumab and pembrolizumab has failed to show statistical benefit but the novel combination of atezolizumab plus bevacizumab has recently shown survival benefit over sorafenib in frontline.
DOI: 10.1016/s0301-472x(01)00792-5
2002
Cited 29 times
Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12
ObjectiveInjection of dendritic cells (DC) engineered with recombinant adenoviral vectors to produce interleukin-12 (IL-12) inside experimental murine tumors frequently achieves complete regressions. In such a system the function of CD8+ T cells has been shown to be an absolute requirement, in contrast to observations made upon depletion of CD4+ T cells, which minimally affected the outcome. The aim of this work was to study the possible involvement of natural killer (NK) cells in this setting.Materials, Methods, and ResultsDepletions with anti-AsialoGM1 antiserum showed only a small decrease in the proportion of complete regressions obtained that correlated with induction of NK activities in lymphatic tissues into which DC migrate, whereas combined depletions of CD4+ and NK cells completely eliminated the antitumor effects. Likewise in vivo neutralization of interferon-γ (IFN-γ) also eliminated those therapeutic effects. Trying to define the cellular role played by NK cells in vivo, it was observed that injection of cultured DC inside the spleen of T- and B-cell–deficient (Rag1−/−) mice induced upregulation of NK activity only if DC had been adenovirally engineered to produce IL-12. In addition, identically transfected fibroblasts also activated NK cells, indicating that IL-12 transfection was the unique requirement. Equivalent human DC only activated in vitro the cytolytic and cytokine-secreting functions of autologous NK cells if transfected to express human IL-12.ConclusionsOverall, these results point out an important role played by NK cell activation in the potent immunotherapeutic effects elicited by intratumoral injection of IL-12–secreting DC and that NK activation under these conditions is mainly, if not only, dependent on IL-12.
DOI: 10.1042/cs20160035
2016
Cited 13 times
Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability
The liver is constantly exposed to a host of injurious stimuli. This results in hepatocellular death mainly by apoptosis and necrosis, but also due to autophagy, necroptosis, pyroptosis and in some cases by an intricately balanced combination thereof. Overwhelming and continuous cell death in the liver leads to inflammation, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Although data from various disease models may suggest a specific (predominant) cell death mode for different aetiologies, the clinical reality is not as clear cut. Reliable and non-invasive cell death markers are not available in general practice and assessment of cell death mode to absolute certainty from liver biopsies does not seem feasible, yet. Various aetiologies probably induce different predominant cell death modes within the liver, although the death modes involved may change during disease progression. Moreover, current methods applicable in patients are limited to surrogate markers for apoptosis (M30), and possibly for pyroptosis (IL-1 family) and necro(pto)sis (HMGB1). Although markers for some death modes are not available at all (autophagy), others may not be specific for a cell death mode or might not always definitely indicate dying cells. Physicians need to take care in asserting the presence of cell death. Still the serum-derived markers are valuable tools to assess severity of chronic liver diseases. This review gives a short overview of known hepatocellular cell death modes in various aetiologies of chronic liver disease. Also the limitations of current knowledge in human settings and utilization of surrogate markers for disease assessment are summarized.
DOI: 10.1086/517674
1998
Cited 27 times
Cerebral Pseudallescheriasis Due to<i>Pseudallescheria boydii</i>as the First Manifestation of AIDS
DOI: 10.1007/s12015-019-09895-2
2019
Cited 11 times
Umbilical Cord Cell Therapy Improves Spatial Memory in Aging Rats
There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 μl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.
DOI: 10.1097/j.pain.0000000000002476
2021
Cited 8 times
IMT504 blocks allodynia in rats with spared nerve injury by promoting the migration of mesenchymal stem cells and by favoring an anti-inflammatory milieu at the injured nerve
Abstract IMT504, a noncoding, non-CpG oligodeoxynucleotide, modulates pain-like behavior in rats undergoing peripheral nerve injury, through mechanisms that remain poorly characterized. Here, we chose the spared nerve injury model in rats to analyze the contribution of mesenchymal stem cells (MSCs) in the mechanisms of action of IMT504. We show that a single subcutaneous administration of IMT504 reverses mechanical and cold allodynia for at least 5 weeks posttreatment. This event correlated with long-lasting increases in the percentage of MSCs in peripheral blood and injured sciatic nerves, in a process seemingly influenced by modifications in the CXCL12-CXCR4 axis. Also, injured nerves presented with reduced tumor necrosis factor-α and interleukin-1β and increased transforming growth factor-β1 and interleukin-10 protein levels. In vitro analysis of IMT504-pretreated rat or human MSCs revealed internalized oligodeoxynucleotide and confirmed its promigratory effects. Moreover, IMT504-pretreatment induced transcript expression of Tgf-β1 and Il-10 in MSCs; the increase in Il-10 becoming more robust after exposure to injured nerves. Ex vivo exposure of injured nerves to IMT504-pretreated MSCs confirmed the proinflammatory to anti-inflammatory switch observed in vivo. Interestingly, the sole exposure of injured nerves to IMT504 also resulted in downregulated Tnf-α and Il-1β transcripts. Altogether, we reveal for the first time a direct association between the antiallodynic actions of IMT504, its promigratory and cytokine secretion modulating effects on MSCs, and further anti-inflammatory actions at injured nerves. The recapitulation of key outcomes in human MSCs supports the translational potential of IMT504 as a novel treatment for neuropathic pain with a unique mechanism of action involving the regulation of neuroimmune interactions.
DOI: 10.1006/mthe.2001.0317
2001
Cited 23 times
αvβ3 Integrin-Mediated Adenoviral Transfer of Interleukin-12 at the Periphery of Hepatic Colon Cancer Metastases Induces VCAM-1 Expression and T-Cell Recruitment
We previously reported that systemic injection of recombinant adenovirus resulted in a rim of gene transduction around experimental liver tumor nodules. This zone of higher infection is dependent on the alpha(v)beta(3) integrin, acting as an adenovirus internalization receptor, which is overexpressed in tissues surrounding liver metastases. When a recombinant adenovirus encoding interleukin-12 (AdCMVIL-12) is given into a subcutaneous tumor nodule in mice also bearing concomitant liver tumors, a fraction of AdCMVIL-12 reaches the systemic circulation and infects liver tissue, especially at the malignant/healthy tissue interface. As a result of the expression at this location of the interleukin-12 transgenes, VCAM-1 is induced on vessel cells and mediates the recruitment of adoptively transferred anti-tumor cytolytic T-lymphocytes. These studies provide mechanistic explanations for the potent therapeutic synergy observed between interleukin-12 gene transfer and adoptive T-cell therapy.
DOI: 10.1007/s00280-010-1457-z
2010
Cited 12 times
Suramab, a novel antiangiogenic agent, reduces tumor growth and corneal neovascularization
DOI: 10.1159/000050699
2001
Cited 19 times
Gene Therapy of Hepatocellular Carcinoma
The extraordinary versatility of gene therapy opens new possibilities for the treatment of incurable diseases, including hepatocellular carcinoma. Gene therapy strategies against tumors include prodrug activation therapy by the transfer of suicide genes, immunogene therapy, tumoral cell phenotype correction by the inhibition of oncogenes or the transfer of tumor suppressor genes, antiangiogenesis and transfer of oncolytic viruses. The experience accumulated during the last decade of clinical gene therapy indicates that genes can be expressed inside the tumor tissue, but the overall results of the studies conducted so far are still disappointing, mainly due to the poor performance of the currently available gene therapy vectors. This review covers the general aspects of gene therapy vectors, preclinical data available in animal models of hepatocellular carcinoma, and finally a brief summary of the gene therapy clinical trials aimed at the treatment of liver cancer.
2002
Cited 17 times
Effective tumor immunotherapy: start the engine, release the brakes, step on the gas pedal,...and get ready to face autoimmunity.
2003
Cited 17 times
Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies.
Immunotherapeutic monoclonal antibodies (mAbs) can be defined as those that exert their functions by tampering with immune system cell molecules, causing an enhancement of antitumor immune responses. Some of these antibodies are agonistic ligands for surface receptors involved in the activation of lymphocytes and/or antigen-presenting cells, whereas others are antagonists of mechanisms that normally limit the intensity of immune reactions. Several mAbs of this category have been described to display in vivo antitumor activity in mouse models. Only anti-CTLA-4 (CD152) mAb has entered clinical trials, but the preclinical effects described for anti-CD40, anti-CD137 (4-1BB), anti-CD102 (intercellular adhesion molecule-2), and regulatory T cell-depleting mAbs should lead to their prompt clinical development. Their use in combination with immunizations against tumor antigens has been reported to be endowed with synergistic properties. This new group of antitumor agents holds promise for at least additive effects with conventional therapies of cancer and deserves intensive translational research.
DOI: 10.1002/jcp.24153
2012
Cited 9 times
Anti‐tumor effect of SLPI on mammary but not colon tumor growth
Abstract Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that was related to cancer development and metastasis dissemination on several types of tumors. However, it is not known the effect of SLPI on mammary and colon tumors. The aim of this study was to examine the effect of SLPI on mammary and colon tumor growth. The effect of SLPI was tested on in vitro cell apoptosis and in vivo tumor growth experiments. SLPI over‐expressing human and murine mammary and colon tumor cells were generated by gene transfection. The administration of murine mammary tumor cells over‐expressing high levels of SLPI did not develop tumors in mice. On the contrary, the administration of murine colon tumor cells over‐expressing SLPI, developed faster tumors than control cells. Intratumoral, but not intraperitoneal administration of SLPI, delayed the growth of tumors and increased the survival of mammary but not colon tumor bearing mice. In vitro culture of mammary tumor cell lines treated with SLPI, and SLPI producer clones were more prone to apoptosis than control cells, mainly under serum deprivation culture conditions. Herein we demonstrated that SLPI induces the apoptosis of mammary tumor cells in vitro and decreases the mammary but not colon tumor growth in vivo. Therefore, SLPI may be a new potential therapeutic tool for certain tumors, such as mammary tumors. J. Cell. Physiol. 228: 469–475, 2013. © 2012 Wiley Periodicals, Inc.
DOI: 10.3390/ijms24119586
2023
Chromatographic Scalable Method to Isolate Engineered Extracellular Vesicles Derived from Mesenchymal Stem Cells for the Treatment of Liver Fibrosis in Mice
New therapeutic options for liver cirrhosis are needed. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising tool for delivering therapeutic factors in regenerative medicine. Our aim is to establish a new therapeutic tool that employs EVs derived from MSCs to deliver therapeutic factors for liver fibrosis. EVs were isolated from supernatants of adipose tissue MSCs, induced-pluripotent-stem-cell-derived MSCs, and umbilical cord perivascular cells (HUCPVC-EVs) by ion exchange chromatography (IEC). To produce engineered EVs, HUCPVCs were transduced with adenoviruses that code for insulin-like growth factor 1 (AdhIGF-I-HUCPVC-EVs) or green fluorescent protein. EVs were characterized by electron microscopy, flow cytometry, ELISA, and proteomic analysis. We evaluated EVs' antifibrotic effect in thioacetamide-induced liver fibrosis in mice and on hepatic stellate cells in vitro. We found that IEC-isolated HUCPVC-EVs have an analogous phenotype and antifibrotic activity to those isolated by ultracentrifugation. EVs derived from the three MSCs sources showed a similar phenotype and antifibrotic potential. EVs derived from AdhIGF-I-HUCPVC carried IGF-1 and showed a higher therapeutic effect in vitro and in vivo. Remarkably, proteomic analysis revealed that HUCPVC-EVs carry key proteins involved in their antifibrotic process. This scalable MSC-derived EV manufacturing strategy is a promising therapeutic tool for liver fibrosis.
DOI: 10.3390/ijms241914843
2023
Hepatic SPARC Expression Is Associated with Inflammasome Activation during the Progression of Non-Alcoholic Fatty Liver Disease in Both Mice and Morbidly Obese Patients
The severity of non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to steatohepatitis, and it is not yet clearly understood which patients will progress to liver fibrosis or cirrhosis. SPARC (Secreted Protein Acidic and Rich in Cysteine) has been involved in NAFLD pathogenesis in mice and humans. The aim of this study was to investigate the role of SPARC in inflammasome activation, and to evaluate the relationship between the hepatic expression of inflammasome genes and the biochemical and histological characteristics of NAFLD in obese patients. In vitro studies were conducted in a macrophage cell line and primary hepatocyte cultures to assess the effect of SPARC on inflammasome. A NAFLD model was established in SPARC knockout (SPARC−/−) and SPARC+/+ mice to explore inflammasome activation. A hepatic RNAseq database from NAFLD patients was analyzed to identify genes associated with SPARC expression. The results were validated in a prospective cohort of 59 morbidly obese patients with NAFLD undergoing bariatric surgery. Our results reveal that SPARC alone or in combination with saturated fatty acids promoted IL-1β expression in cell cultures. SPARC−/− mice had reduced hepatic inflammasome activation during the progression of NAFLD. NAFLD patients showed increased expression of SPARC, NLRP3, CASP1, and IL-1β. Gene ontology analysis revealed that genes positively correlated with SPARC are linked to inflammasome-related pathways during the progression of the disease, enabling the differentiation of patients between steatosis and steatohepatitis. In conclusion, SPARC may play a role in hepatic inflammasome activation in NAFLD.
DOI: 10.2174/1566523214666141224095757
2015
Cited 7 times
Combined Therapy for Gastrointestinal Carcinomas: Exploiting Synergies Between Gene Therapy and Classical Chemo-Radiotherapy
Surgical resection is the only curative option for patients with gastrointestinal carcinomas. Unfortunately, the majority of patients are diagnosed in advanced stages when surgery is not possible. Moreover, the incidence and mortality for certain type of tumors such as hepatocellular carcinoma or pancreatic cancer are steadily increasing worldwide. In spite of the advances in the development of molecular targeted therapies for cancer, the impact on patient survival has been rather limited. It is unlikely that individual agents would be ultimately successful as monotherapy. There is a growing area of research focused on the combination of classical chemotherapy (e.g. cyclophosphamide, gemcitabine, paclitaxel and doxorubicin) with radiotherapy and/or gene therapy strategies. Combined approaches seem to be required due to multiple resistance mechanisms that tumors utilize to limit the activity of chemotherapeutic agents (e.g. the occurrence of multidrug resistance or epigenetic alterations), evade immune responses (e.g. induction of regulatory T cells or myeloid-derived suppressor cells) and to generate resistance against anti-angiogenesis or to radiotherapy by, for example, the induction of hypoxia-inducible factor 1. In addition, new studies suggest that combination of low dose of conventional chemotherapy and gene therapy could allow the development of synergic mechanisms able to achieve significant therapeutic effects against diverse tumors. Although cancer gene therapy is not yet available in clinical practice, advances being recently made look promising, especially when it was applied in combination with standard chemo- or radiotherapy protocols. Keywords: Gastrointestinal, cancer, gene therapy, combined strategies, chemotherapy, radiotherapy, immunotherapy.
DOI: 10.1016/j.bbr.2019.04.001
2019
Cited 7 times
Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats
There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 μl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.
DOI: 10.1111/liv.15084
2021
Cited 6 times
Glycosylated 4‐methylumbelliferone as a targeted therapy for hepatocellular carcinoma
Reaching efficacious drug delivery to target cells/tissues represents a major obstacle in the current treatment of solid malignancies including hepatocellular carcinoma (HCC). In this study, we developed a pipeline to selective add complex-sugars to the aglycone 4-methylumbelliferone (4MU) to help their bioavailability and tumour cell intake.The therapeutic efficacy of sugar-modified rutinosyl-4-methylumbelliferone (4MUR) and 4MU were compared in vitro and in an orthotopic HCC model established in fibrotic livers. The mechanistic bases of its selective target to liver tumour cells were evaluated by the interaction with asialoglycoprotein receptor (ASGPR), the mRNA expression of hyaluronan synthases (HAS2 or HAS3) and hyaluronan deposition.4MUR showed a significant antiproliferative effect on liver tumoural cells as compared to non-tumoural cells in a dose-dependent manner. Further analysis showed that 4MUR is incorporated mostly into HCC cells by interaction with ASGPR, a receptor commonly overexpressed in HCC cells. 4MUR-treatment decreased the levels of HAS2 and HAS3 and the cytoplasmic deposition of hyaluronan. Moreover, 4MUR reduced CFSC-2G activation, hence reducing the fibrosis. In vivo efficacy showed that 4MUR treatment displayed a greater tumour growth inhibition and increased survival in comparison to 4MU. 4MUR administration was associated with a significant reduction of liver fibrosis without any signs of tissue damage. Further, 60% of 4MUR treated mice did not present macroscopically tumour mass post-treatment.Our results provide evidence that 4MUR may be used as an effective HCC therapy, without damaging non-tumoural cells or other organs, most probably due to the specific targeting.
DOI: 10.1517/14712598.5.1.7
2005
Cited 11 times
Intratumoural administration of dendritic cells: hostile environment and help by gene therapy
AbstractLike paratroopers in special operations, dendritic cells (DCs) can be deployed behind the enemy borders of malignant tissue to ignite an antitumour immune response. ‘Cross-priming T cell responses’ is the code name for their mission, which consists of taking up antigen from transformed cells or their debris, migrating to lymphoid tissue ferrying the antigenic cargo, and meeting specific Tcells. This must be accomplished in such an immunogenic manner that specific T lymphocytes would mount a robust enough response as to fully reject the malignancy. To improve their immunostimulating activity, local gene therapy can be very beneficial, either by transfecting DCs with genes enhancing their performance, or by preparing tumour tissue with pro-inflammatory mediators. In addition, endogenous DCs from the tumour host can be attracted into the malignant tissue following transfection of certain chemokine genes into tumour cells. On their side, tumour stroma and malignant cells set up a hostile immunosuppressive environment for artificially released or attracted DCs. This milieu is usually rich in transforming growth factor-β, vascular endothelial growth factor, and IL-10, -6 and -8, among other substances that diminish DC performance. Several molecular strategies are being devised to interfere with the immunosuppressive actions of these substances and to further enhance the level of anticancer immunity achieved after artificial release of DCs intratumourally.Keywordsanticancerdeliverydendritic cellsgene therapyintratumoural administration
DOI: 10.2217/imt.12.99
2012
Cited 6 times
The liver, liver metastasis and liver cancer: a special case for immunotherapy with cytokines and immunostimulatory monoclonal antibodies
ImmunotherapyVol. 4, No. 11 EditorialThe liver, liver metastasis and liver cancer: a special case for immunotherapy with cytokines and immunostimulatory monoclonal antibodiesGuillermo Mazzolini, María C Ochoa, Aizea Morales-Kastresana, Miguel F Sanmamed & Ignacio MeleroGuillermo MazzoliniGene Therapy Laboratory, Universidad Austral, Avda. Presidente Perón, 1500, B1629ODT Buenos Aires, ArgentinaSearch for more papers by this author, María C OchoaCenter for Applied Medical Research, University of Navarra, Avda. Pio XII, 55, 31008 Pamplona, SpainSearch for more papers by this author, Aizea Morales-KastresanaCenter for Applied Medical Research, University of Navarra, Avda. Pio XII, 55, 31008 Pamplona, SpainSearch for more papers by this author, Miguel F SanmamedDepartment of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, SpainSearch for more papers by this author & Ignacio Melero* Author for correspondenceCenter for Applied Medical Research, University of Navarra, Avda. Pio XII, 55, 31008 Pamplona, Spain and Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain. Search for more papers by this authorEmail the corresponding author at imelero@unav.esPublished Online:29 Nov 2012https://doi.org/10.2217/imt.12.99AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: cytokinesgene therapyimmunostimulatory monoclonal antibodyliverReferences1 Crispe IN. The liver as a lymphoid organ. Annu. Rev. Immunol.27,147–163 (2009).Crossref, Medline, CAS, Google Scholar2 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology47(2),729–736 (2008).Crossref, Medline, CAS, Google Scholar3 Swain MG. Natural killer T cells within the liver: conductors of the hepatic immune orchestra. Dig. Dis.28(1),7–13 (2010).Crossref, Medline, Google Scholar4 Wisse E, Luo D, Vermijlen D, Kanellopoulou C, De Zanger R, Braet F. On the function of pit cells, the liver-specific natural killer cells. Semin. Liver Dis.17(4),265–286 (1997).Crossref, Medline, CAS, Google Scholar5 O’Connell PJ, Morelli AE, Logar AJ, Thomson AW. Phenotypic and functional characterization of mouse hepatic CD8 α + lymphoid-related dendritic cells. J. Immunol.165(2),795–803 (2000).Crossref, Medline, Google Scholar6 Starzl TE, Demetris AJ, Trucco M et al. Systemic chimerism in human female recipients of male livers. Lancet340(8824),876–877 (1992).Crossref, Medline, CAS, Google Scholar7 Bishop GA, Ierino FL, Sharland AF et al. Approaching the promise of operational tolerance in clinical transplantation. Transplantation91(10),1065–1074 (2011).Crossref, Medline, Google Scholar8 Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH. Chronic inflammation, immune escape and oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatology doi:10.1002/hep.25674 (2012) (Epub ahead of print).Medline, Google Scholar9 Matar P, Alaniz L, Rozados V et al. Immunotherapy for liver tumors: present status and future prospects. J. Biomed. Sci.16,30 (2009).Crossref, Medline, Google Scholar10 Mazzolini G, Prieto J, Melero I. Gene therapy of cancer with interleukin-12. Curr. Pharm. Des.9(24),1981–1991 (2003).Crossref, Medline, CAS, Google Scholar11 Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13(2),155–168 (2002).Crossref, Medline, CAS, Google Scholar12 Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90(7),2541–2548 (1997).Medline, CAS, Google Scholar13 Berraondo P, Prieto J, Gonzalez-Aseguinolaza G. Advances in interleukin-12 gene therapy for acquired liver diseases. Curr. Gene Ther.9(2),62–71 (2009).Crossref, Medline, CAS, Google Scholar14 Sangro B, Mazzolini G, Ruiz J et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol.22(8),1389–1397 (2004).Crossref, Medline, CAS, Google Scholar15 Reboredo M, Zabala M, Mauleon I et al. Interleukin-12 inhibits liver-specific drug-inducible systems in vivo. Gene Ther.15(4),277–288 (2008).Crossref, Medline, CAS, Google Scholar16 Zabala M, Lasarte JJ, Perret C et al. Induction of immunosuppressive molecules and regulatory T cells counteracts the antitumor effect of interleukin-12-based gene therapy in a transgenic mouse model of liver cancer. J. Hepatol.47(6),807–815 (2007).Crossref, Medline, CAS, Google Scholar17 Waldmann TA, Lugli E, Roederer M et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood117(18),4787–4795 (2011).Crossref, Medline, CAS, Google Scholar18 Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol. Sci.33(1),35–41 (2012).Crossref, Medline, CAS, Google Scholar19 Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer7(2),95–106 (2007).Crossref, Medline, CAS, Google Scholar20 Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol.157(1),9–19 (2009).Crossref, Medline, CAS, Google Scholar21 Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8),711–723 (2010).Crossref, Medline, CAS, Google Scholar22 Robert C, Thomas L, Bondarenko I et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364(26),2517–2526 (2011).Crossref, Medline, CAS, Google Scholar23 Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366(26),2443–2454 (2012).Crossref, Medline, CAS, Google Scholar24 Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366(26),2455–2465 (2012).Crossref, Medline, CAS, Google Scholar25 Saenger YM, Wolchok JD. The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun.8,1 (2008).Medline, Google Scholar26 Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab. Semin. Oncol.37(5),450–454 (2010).Crossref, Medline, CAS, Google Scholar27 Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin. Oncol.37(5),508–516 (2010).Crossref, Medline, CAS, Google Scholar28 Beatty GL, Chiorean EG, Fishman MP et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science331(6024),1612–1616 (2011).Crossref, Medline, CAS, Google Scholar29 Dubrot J, Milheiro F, Alfaro C et al. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol. Immunother.59(8),1223–1233 (2010).Crossref, Medline, CAS, Google Scholar30 Mazzolini G, Murillo O, Atorrasagasti C et al. Immunotherapy and immunoescape in colorectal cancer. World J. Gastroenterol.13(44),5822–5831 (2007).Crossref, Medline, CAS, Google Scholar31 Malvicini M, Ingolotti M, Piccioni F et al. Reversal of gastrointestinal carcinoma-induced immunosuppression and induction of antitumoural immunity by a combination of cyclophosphamide and gene transfer of IL-12. Mol. Oncol.5(3),242–255 (2011).Crossref, Medline, CAS, Google Scholar32 Ko HJ, Kim YJ, Kim YS et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res.67(15),7477–7486 (2007).Crossref, Medline, CAS, Google Scholar33 Vincent J, Mignot G, Chalmin F et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res.70(8),3052–3061 (2010).Crossref, Medline, CAS, Google Scholar34 Michaud M, Martins I, Sukkurwala AQ et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science334(6062),1573–1577 (2011).Crossref, Medline, CAS, Google Scholar35 Avella DM, Li G, Schell TD et al. Regression of established hepatocellular carcinoma is induced by chemoimmunotherapy in an orthotopic murine model. Hepatology55(1),141–152 (2012).Crossref, Medline, CAS, Google Scholar36 Ma L, Luo L, Qiao H et al. Complete eradication of hepatocellular carcinomas by combined vasostatin gene therapy and B7H3-mediated immunotherapy. J. Hepatol.46(1),98–106 (2007).Crossref, Medline, CAS, Google Scholar37 Huang KW, Wu HL, Lin HL et al. Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc. Natl Acad. Sci. USA107(33),14769–14774 (2010).Crossref, Medline, CAS, Google Scholar38 Uno T, Takeda K, Kojima Y et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med.12(6),693–698 (2006).Crossref, Medline, CAS, Google Scholar39 Melero I, Martinez-Forero I, Dubrot J, Suarez N, Palazon A, Chen L. Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin. Cancer Res.15(5),1507–1509 (2009).Crossref, Medline, CAS, Google Scholar40 Martinez-Forero I, Okada H, Topalian SL, Gajewski TF, Korman AJ, Melero I. Workshop on immunotherapy combinations society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011. J. Transl. Med.10(1),108 (2012).Crossref, Medline, Google ScholarFiguresReferencesRelatedDetailsCited ByDissociated Responses in Patients with Metastatic Solid Tumors Treated with Immunotherapy25 September 2021 | Drugs in R&D, Vol. 21, No. 4Immunotherapy for Hepatocellular Carcinoma: Is Latin America Ready for Primetime?22 September 2020 | Clinical Liver Disease, Vol. 16, No. 3Novel risk group stratification for metastatic urothelial cancer patients treated with immune checkpoint inhibitors25 February 2020 | Cancer Medicine, Vol. 9, No. 8Sites of metastasis and association with clinical outcome in advanced stage cancer patients treated with immunotherapy29 August 2019 | BMC Cancer, Vol. 19, No. 1Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors19 March 2015 | OncoImmunology, Vol. 4, No. 6Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4+CD25+Treg cellsThe International Journal of Biochemistry & Cell Biology, Vol. 55 Vol. 4, No. 11 Follow us on social media for the latest updates Metrics Downloaded 235 times History Published online 29 November 2012 Published in print November 2012 Information© Future Medicine LtdKeywordscytokinesgene therapyimmunostimulatory monoclonal antibodyliverFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download
2002
Cited 9 times
An anti-ICAM-2 (CD102) monoclonal antibody induces immune-mediated regressions of transplanted ICAM-2-negative colon carcinomas.
Monoclonal antibodies (mAbs) can mediate antitumor effects by indirect mechanisms involving antiangiogenesis and up-regulation of the cellular immune response rather than by direct tumor cell destruction. From mAbs raised by immunization of rats with transformed murine endothelial cells, a mAb (EOL4G8) was selected for its ability to eradicate a fraction of established colon carcinomas that did not express the EOL4G8-recognized antigen. The antigen was found to be ICAM-2 (CD102). Antitumor effects of EOL4G8, which required a functional T-cell compartment, were abrogated by depletion of CD8(+) cells and correlated with antitumor CTL activity, whereas only a mild inhibition of angiogenesis was observed. Interestingly, we found that EOL4G8 acting on endothelial ICAM-2 markedly enhances leukotactic factor activity-1-independent adhesion of immature dendritic cells to endothelium-an effect that is at least in part mediated by DC-SIGN (CD209).
DOI: 10.1016/s0039-6109(03)00230-5
2004
Cited 7 times
Biologic therapy of liver tumors
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (GendicineR and OncorineR). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
2018
Cited 4 times
Immunostimulatory monoclonal antibodies for hepatocellular carcinoma therapy. Trends and perspectives.
Hepatocellular carcinoma (HCC) is the second cause of cancer-related death in the world and is the main cause of death in cirrhotic patients. Unfortunately, the incidence of HCC has grown significantly in the last decade. Curative treatments such as surgery, liver transplantation or percutaneous ablation can only be applied in less than 30% of cases. The multikinase inhibitor sorafenib is the first line therapy for advanced HCC. Regorafenib is the standard of care for second-line patients. However, novel and more specific potent therapeutic approaches for advanced HCC are still needed. The liver constitutes a unique immunological microenvironment, although anti-tumor immunity seems to be feasible with the use of checkpoint inhibitors such as nivolumab. Efficacy may be further increased by combining checkpoint inhibitors or by applying loco-regional treatments. The success of immune checkpoint blockade has renewed interest in immunotherapy in HCC.
DOI: 10.18632/oncotarget.9456
2016
Cited 3 times
SPARC gene deletion protects against toxic liver injury and is associated to an enhanced proliferative capacity and reduced oxidative stress response
SPARC, also known as osteonectin and BM-40, is a matricellular protein with a number of biological functions. Hepatic SPARC expression is induced in response to thioacetamide, bile-duct ligation, and acute injuries such as concanavalin A and lipopolysacharide (LPS)/D-galactosamine. We have previously demonstrated that the therapeutic inhibition of SPARC or SPARC gene deletion protected mice against liver injury. We investigated the mechanisms involved in the protective effect of SPARC inhibition in mice. We performed a proteome analysis of livers from SPARC+/+ and SPARC-/- mice chronically treated with thioacetamide. Catalase activity, carbonylation levels, oxidative stress response, and mitochondrial function were studied. Genomic analysis revealed that SPARC-/- mice had an increased expression of cell proliferation genes. Proteins involved in detoxification of reactive oxygen species such as catalase, peroxirredoxine-1, and glutathione-S-transferase P1 and Mu1 were highly expressed as evidenced by proteome analysis; hepatic catalase activity was increased in SPARC-/- mice. Oxidative stress response and carbonylation levels were lower in livers from SPARC-/- mice. Hepatic mitochondria showed lower levels of nitrogen reactive species in the SPARC-/- concanavalin A-treated mice. Mitochondrial morphology was preserved, and its complex activity reduced in SPARC-/- mice. In conclusion, our data suggest that the protection associated with SPARC gene deletion may be partially due to a higher proliferative capacity of hepatocytes and an enhanced oxidative stress defense in SPARC-/- mice after liver injury.
DOI: 10.1158/1538-7445.am2015-261
2015
Cited 3 times
Abstract 261: Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice
Abstract To evaluate the pharmacodynamics effects and antitumor activities of immunostimulatory mAb, we have developed a “humanized” murine model in which the receptors targeted by such mAbs become expressed. Human lymphocytes transferred into immunodeficient mice undergo activation and redistribute to organs with surface expression of hCD137 and hPD-1. Systemic lymphocyte infiltrations result in lethal xenograft-versus-host disease, which is aggravated when mice are given clinical-grade anti-hCD137 (urelumab) and anti-hPD-1 (nivolumab) mAbs. In mice engrafted with either a human colorectal carcinoma cell line (HT-29) and allogeneic human PBMCs or a primary gastric carcinoma and PBMCs from the patient, urelumab and nivolumab significantly slowed tumor growth (p&amp;lt;0.01). Increased activated human T lymphocytes producing IFN-ϒ and decreased human regulatory T lymphocytes in the xenografted tumors may explain such therapeutic activities. These mouse models permit surrogate analyses to test and make predictions on immunotherapy strategies encompassing immunostimulatory mAbs and their combinations. Citation Format: Miguel F. Sanmamed, Inmaculada Rodriguez, Carmen Oñate, Arantza Azpilikueta, Maria E. Rodriguez-Ruiz, Aizea Morales-Kastresana, Sara Labiano, Jose L. Perez-Gracia, Salvador Martín-Algarra, Carlos Alfaro, Kurt A. Schalper, Guillermo Mazzolini, Francesca Sarno, Manuel Hidalgo, Alan J. Korman, Maria Jure-Kunkel, Ignacio Melero. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 261. doi:10.1158/1538-7445.AM2015-261
DOI: 10.4161/onci.21651
2012
Cited 3 times
Chemoimmunotherapy for advanced gastrointestinal carcinomas: A successful combination of gene therapy and cyclophosphamide
The combination of a single low dose of cyclophosphamide (Cy) with the adenovirus-mediated gene transfer of interleukin-12 (AdIL-12) might represent a successful therapy for experimental gastrointestinal tumors. This approach has been proven to revert immunosuppressive mechanisms elicited by cancer cells and to synergistically promote antitumor immunity. In addition, this therapeutic regimen has been shown to be more efficient in achieving complete tumor regressions in mice than the application of a metronomic schedule of Cy plus AdIL-12.
DOI: 10.3390/ijms22105055
2021
Cited 3 times
Acceleration of TAA-Induced Liver Fibrosis by Stress Exposure Is Associated with Upregulation of Nerve Growth Factor and Glycopattern Deviations
Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased β1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.
DOI: 10.1007/978-1-4939-0345-0_5
2014
Ex Vivo Loading of Autologous Dendritic Cells with Tumor Antigens
Ex vivo-generated antigen-loaded dendritic cells (DC) have been shown to be immunogenic in patients with cancer. Loading DC with autologous whole tumor antigens is a strategy to arm DC against tumor without human leukocyte antigen (HLA) restriction. Furthermore, this approach allows the presentation of a full antigen range to the immune system. We describe the methods to obtain whole antigens from autologous tumor tissues in order to load DC generated ex vivo from patients with gastrointestinal cancer.
DOI: 10.1016/s0301-472x(01)00630-0
2001
Cited 5 times
Thrombopenic purpura induced by a monoclonal antibody directed to a 35-kilodalton surface protein (p35) expressed on murine platelets and endothelial cells
With the aim of obtaining monoclonal antibodies (mAbs) against mouse endothelial surface antigens, immunization of rats with a mouse-derived endothelial cell line (PY4.1) and subsequent hybridoma production were performed.One of the mAbs produced by hybridoma EOL5F5 was selected for its surface binding to endothelial cell lines, and identification of the mAb-recognized antigen was performed by immunoprecipitation. Experiments were performed to analyze the effects of EOL5F5 on systemic administration to mice.EOL5F5-recognized antigen was a single band of 35 kDa under reducing and nonreducing conditions, features that do not match other known differentiation antigens with comparable tissue distribution. In vivo administration of purified EOL5F5 mAb to mice (n = 20) induced intense cutaneous purpura as well as severe but transient thrombocytopenia. Expression of EOL5F5-recognized antigen was detected on platelets from which it immunoprecipitated a moiety of identical electrophoretic pattern in SDS-PAGE, as the one recognized on endothelial cells. Immunohistochemically, EOL5F5-recognized antigen (p35) also was expressed on dermal capillaries, suggesting that, in addition to thrombocytopenia, damaging effects of the antibody on endothelial cells also might cause the observed purpura.Our results show induction of thrombocytopenic purpura in mice with an mAb against a single antigenic determinant expressed on both platelets and endothelium. EOL5F5 mAb injection sets the stage for useful experimental models that resemble immune thrombocytopenic purpura.
2003
Cited 4 times
Anti-ICAM-2 monoclonal antibody synergizes with intratumor gene transfer of interleukin-12 inhibiting activation-induced T-cell death.
Systemic treatment with an anti-ICAM-2 monoclonal antibody (mAb; EOL4G8) eradicates certain established mouse tumors through a mechanism dependent on the potentiation of a CTL-mediated response. However, well-established tumors derived from the MC38 colon carcinoma cell line were largely refractory to this treatment as well as to intratumor injection of a recombinant adenovirus encoding interleukin-12 (IL-12; AdCMVIL-12). We sought to design combined therapy strategies with AdCMVIL-12 plus anti-ICAM-2 mAbs and to identify their mechanism of action.Analysis of antitumor and toxic effects were performed with C57BL/6 mice bearing established MC38 tumors. Anti-ovalbumin T-cell receptor transgenic mice and tumors transfected with this antigen were used for in vitro and in vivo studies on activation-induced cell death (AICD) of CD8(+) T cells.Combined treatment with various systemic doses of EOL4G8 mAb plus intratumor injection of AdCMVIL-12 induced complete regression of MC38 tumors treated 7 days after implantation. Unfortunately, most of such mice succumbed to a systemic inflammatory syndrome that could be prevented if IFN-gamma activity were neutralized once tumors had been rejected. Importantly, dose reduction of EOL4G8 mAb opened a therapeutic window (complete cure of 9 of 18 cases without toxicity). We also show that ICAM-2 ligation by EOL4G8 mAb on activated CTLs prevents AICD, thus extending IFN-gamma production.Combination of intratumor gene transfer of IL-12and systemic anti-ICAM-2 mAb display synergistic therapeutic and toxic effects. CTL life extension resulting from AICD inhibition by anti-ICAM-2 mAbs is the plausible mechanism of action.
2010
Inmunoterapia del cáncer: Importancia de controlar la inmunosupresión
Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.