ϟ

G. Karapostoli

Here are all the papers by G. Karapostoli that you can download and read on OA.mg.
G. Karapostoli’s last known institution is . Download G. Karapostoli PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/12/10/p10003
2017
Cited 439 times
Particle-flow reconstruction and global event description with the CMS detector
The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions.
DOI: 10.1088/1748-0221/12/01/p01020
2017
Cited 356 times
The CMS trigger system
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.
DOI: 10.1016/j.physletb.2016.12.009
2017
Cited 277 times
Evidence for collectivity in pp collisions at the LHC
Measurements of two- and multi-particle angular correlations in pp collisions at s=5,7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0pb−1 (5 TeV), 6.2pb−1 (7 TeV), and 0.7pb−1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v2 of KS0 and Λ/Λ‾ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v2 values of charged hadrons (mostly pions), KS0, and Λ/Λ‾, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT≈2GeV/c. For 13 TeV data, the v2 signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
DOI: 10.1088/1748-0221/12/02/p02014
2017
Cited 254 times
Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV
Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 inverse-femtobarns collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity eta and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided. The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and abs(eta) < 5.0). In the barrel region (abs(eta) < 1.3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and abs(eta) < 0.8.
DOI: 10.1016/j.physletb.2018.02.004
2018
Cited 158 times
Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector
A measurement of the coupling strength of the Higgs boson to a pair of tau leptons is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 35.9 inverse femtobarns. The H to tau tau signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H to tau tau signal production cross section and branching fraction is 1.09 +0.27-0.26 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8 TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to tau leptons by a single experiment.
DOI: 10.1103/physrevlett.116.172302
2016
Cited 156 times
Measurement of Long-Range Near-Side Two-Particle Angular Correlations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math>Collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 inverse nanobarns. The correlations are studied over a broad range of pseudorapidity (abs(eta) < 2.4) and over the full azimuth (phi) as a function of charged particle multiplicity and transverse momentum (pt). In high-multiplicity events, a long-range (abs(Delta eta) > 2.0), near-side (Delta phi approximately 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < pt < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity, with an overall correlation strength similar to that found in earlier pp data at sqrt(s) = 7 TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities of N[ch] approximately 180, a region so far unexplored in pp collisions. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.
DOI: 10.1007/jhep11(2017)047
2017
Cited 131 times
Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $$ \sqrt{s}=13 $$ TeV
Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.
DOI: 10.1103/physrevlett.116.071801
2016
Cited 126 times
Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
No signal of new particles has been found by the CMS collaboration from Run 2 of the LHC at 13 TeV. This null result tightens constraints on a variety of models that predict the existence of heavy resonant states that decay into pairs of jets.
DOI: 10.1016/j.physletb.2015.12.020
2016
Cited 120 times
Angular analysis of the decay B0→ K⁎0μ+μ− from pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
The angular distributions and the differential branching fraction of the decay ⁎B0→K⁎(892)0μ+μ− are studied using data corresponding to an integrated luminosity of 20.5 fb−1 collected with the CMS detector at the LHC in pp collisions at s=8 TeV. From 1430 signal decays, the forward–backward asymmetry of the muons, the ⁎K⁎(892)0 longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.
DOI: 10.1007/jhep04(2017)039
2017
Cited 119 times
Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = 5.02 $$ \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=5.02 $$ TeV
The spectra of charged particles produced within the pseudorapidity window |η| < 1 at $$ \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=5.02 $$ TeV are measured using 404 μb−1 of PbPb and 27.4 pb−1 of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < p T < 400 GeV in pp and 0.7 < p T < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, R AA, is measured in bins of collision centrality. The R AA in the 5% most central collisions shows a maximal suppression by a factor of 7-8 in the p T region of 6-9 GeV. This dip is followed by an increase, which continues up to the highest p T measured, and approaches unity in the vicinity of p T = 200 GeV. The R AA is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS collaboration to construct the pPb nuclear modification factor, R pA, up to 120 GeV. For p T > 20 GeV, R pA exhibits weak momentum dependence and shows a moderate enhancement above unity.
DOI: 10.1016/j.physletb.2018.05.074
2018
Cited 119 times
Nuclear modification factor of D0 mesons in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The transverse momentum ($p_\mathrm{t}$) spectrum of prompt D$^0$ mesons and their antiparticles has been measured via the hadronic decay channels D$^0 \to \mathrm{K}^- \pi^+$ and $\overline{\mathrm{D}}^0 \to \mathrm{K}^+ \pi^-$ in pp and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D$^0$ meson $p_\mathrm{t}$ range of 2-100 GeV and in the rapidity range of $|y| < $1. The pp (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 pb$^{-1}$ (530 $\mu$b$^{-1}$). The measured D$^0$ meson $p_\mathrm{t}$ spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D$^0$ meson yields in PbPb and pp collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions. For central events, the D$^0$ meson yield in the PbPb collisions is suppressed by a factor of 5-6 compared to the pp reference in the $p_\mathrm{t}$ range of 6-10 GeV. For D$^0$ mesons in the high-$p_\mathrm{t}$ range of 60-100 GeV, a significantly smaller suppression is observed. The results are also compared to theoretical calculations.
DOI: 10.1016/j.physletb.2018.04.030
2018
Cited 118 times
Measurement of angular parameters from the decay B0 → K⁎0μ+μ− in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
Angular distributions of the decay $\mathrm{B}^0 \to \mathrm{K}^{*0} \mu^+ \mu^-$ are studied using a sample of proton-proton collisions at $\sqrt{s} = $ 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$^{-1}$. An angular analysis is performed to determine the $P_1$ and $P_5'$ parameters, where the $P_5'$ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the $P_1$ and $P_5'$ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.
DOI: 10.1016/j.physletb.2017.07.001
2017
Cited 104 times
Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math> with the CMS experiment
The cross section for coherent J/ψ photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at sNN=2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159μb−1, collected during the 2011 PbPb run. The J/ψ mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is dσXn0ncoh/dy(J/ψ)=0.36±0.04(stat)±0.04(syst) mb in the rapidity interval 1.8<|y|<2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0n measurement gives a total coherent photoproduction cross section of dσcoh/dy(J/ψ)=1.82±0.22(stat)±0.20(syst)±0.19(theo) mb. The data strongly disfavor the impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/ψ photoproduction in γ+Pb interactions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing.
DOI: 10.1016/j.physletb.2017.02.012
2017
Cited 103 times
Search for dijet resonances in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math> and constraints on dark matter and other models
A search is presented for narrow resonances decaying to dijet final states in proton–proton collisions at s=13TeV using data corresponding to an integrated luminosity of 12.9 fb−1. The dijet mass spectrum is well described by a smooth parameterization and no significant evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.4 TeV, scalar diquarks below 6.9 TeV, axigluons and colorons below 5.5 TeV, excited quarks below 5.4 TeV, color-octet scalars below 3.0 TeV, W′ bosons below 2.7 TeV, Z′ bosons below 2.1 TeV and between 2.3 and 2.6 TeV, and RS gravitons below 1.9 TeV. These extend previous limits in the dijet channel. Vector and axial-vector mediators in a simplified model of interactions between quarks and dark matter are excluded below 2.0 TeV. The first limits in the dijet channel on dark matter mediators are presented as functions of dark matter mass and are compared to the exclusions of dark matter in direct detection experiments.
DOI: 10.1103/physrevlett.118.122301
2017
Cited 102 times
Observation of Charge-Dependent Azimuthal Correlations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mtext>−</mml:mtext><mml:mi>Pb</mml:mi></mml:mrow></mml:math> Collisions and Its Implication for the Search for the Chiral Magnetic Effect
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta) < 2.4, and a third particle measured in the hadron forward calorimeters (4.4 < abs(eta) < 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
DOI: 10.1103/physrevlett.120.081801
2018
Cited 99 times
Observation of Electroweak Production of Same-Sign <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math> Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:…
The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.
DOI: 10.1103/physrevd.94.112004
2016
Cited 88 times
Search for long-lived charged particles in proton-proton collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
Results are presented of a search for heavy stable charged particles produced in proton-proton collisions at √s=13 TeV using a data sample corresponding to an integrated luminosity of 2.5 fb−1 collected in 2015 with the CMS detector at the CERN LHC. The search is conducted using signatures of anomalously high energy deposits in the silicon tracker and long time-of-flight measurements by the muon system. The data are consistent with the expected background, and upper limits are set on the cross sections for production of long-lived gluinos, top squarks, tau sleptons, and leptonlike long-lived fermions. These upper limits are equivalently expressed as lower limits on the masses of new states; the limits for gluinos, ranging up to 1610 GeV, are the most stringent to date. Limits on the cross sections for direct pair production of long-lived tau sleptons are also determined.Received 27 September 2016DOI:https://doi.org/10.1103/PhysRevD.94.112004Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.© 2016 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasHypothetical particle physics modelsSupersymmetryParticles & Fields
DOI: 10.1103/physrevlett.117.051802
2016
Cited 85 times
Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn></mml:math>and 13 TeV
A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3 fb^{-1}, respectively. The interpretation of the search results focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between 1.4×10^{-4} and 5.6×10^{-2}. Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.
DOI: 10.1103/physrevlett.117.031802
2016
Cited 84 times
Search for Narrow Resonances in Dijet Final States at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>with the Novel CMS Technique of Data Scouting
A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8 fb^{-1}. The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of 1 kHz, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on the coupling of a leptophobic resonance Z_{B}^{'} to quarks, improving on the results obtained by previous experiments for the mass range from 500 to 800 GeV.
DOI: 10.1140/epjc/s10052-017-4781-1
2017
Cited 83 times
Suppression and azimuthal anisotropy of prompt and nonprompt $${\mathrm{J}}/\psi $$ J / ψ production in PbPb collisions at $$\sqrt{{s_{_{\text {NN}}}}} =2.76$$ s NN = 2.76 $$\,\mathrm{TeV}$$ TeV
The nuclear modification factor [Formula: see text] and the azimuthal anisotropy coefficient [Formula: see text] of prompt and nonprompt (i.e. those from decays of b hadrons) [Formula: see text] mesons, measured from PbPb and pp collisions at [Formula: see text] [Formula: see text] at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta [Formula: see text] [Formula: see text] and rapidity [Formula: see text], extending down to [Formula: see text] [Formula: see text] in the [Formula: see text] range. The [Formula: see text] of prompt [Formula: see text] is found to be nonzero, but with no strong dependence on centrality, rapidity, or [Formula: see text] over the full kinematic range studied. The measured [Formula: see text] of nonprompt [Formula: see text] is consistent with zero. The [Formula: see text] of prompt [Formula: see text] exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or [Formula: see text] in the fiducial range. The nonprompt [Formula: see text] [Formula: see text] shows a suppression which becomes stronger as rapidity or [Formula: see text] increases. The [Formula: see text] and [Formula: see text] of open and hidden charm, and of open charm and beauty, are compared.
DOI: 10.1007/jhep03(2018)166
2018
Cited 81 times
Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV
Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of proton-proton collision data collected at $\sqrt{s} =$ 13 TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simplified models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.
DOI: 10.1103/physrevd.96.032003
2017
Cited 79 times
Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV
A search for supersymmetry is presented based on multijet events with large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of √s=13 TeV. The data, corresponding to an integrated luminosity of 35.9 fb−1, were collected with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No evidence for a significant excess of events is observed relative to the expectation from the standard model. Limits on the cross sections for the pair production of gluinos and squarks are derived in the context of simplified models. Assuming the lightest supersymmetric particle to be a weakly interacting neutralino, 95% confidence level lower limits on the gluino mass as large as 1800 to 1960 GeV are derived, and on the squark mass as large as 960 to 1390 GeV, depending on the production and decay scenario.6 MoreReceived 25 April 2017DOI:https://doi.org/10.1103/PhysRevD.96.032003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.© 2017 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasHadron-hadron interactionsParticle productionSupersymmetryParticles & Fields
DOI: 10.1016/j.physletb.2017.01.027
2017
Cited 77 times
Search for high-mass diphoton resonances in proton–proton collisions at 13 TeV and combination with 8 TeV search
A search for the resonant production of high-mass photon pairs is presented. The search focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4.5 TeV, and with widths, relative to the mass, between 1.4×10−4 and 5.6×10−2. The data sample corresponds to an integrated luminosity of 12.9fb−1 of proton–proton collisions collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV. No significant excess is observed relative to the standard model expectation. The results of the search are combined statistically with those previously obtained in 2012 and 2015 at s=8 and 13 TeV, respectively, corresponding to integrated luminosities of 19.7 and 3.3fb−1, to derive exclusion limits on scalar resonances produced through gluon–gluon fusion, and on Randall–Sundrum gravitons. The lower mass limits for Randall–Sundrum gravitons range from 1.95 to 4.45 TeV for coupling parameters between 0.01 and 0.2. These are the most stringent limits on Randall–Sundrum graviton production to date.
DOI: 10.1103/physrevd.93.012003
2016
Cited 75 times
Search for vectorlike charge<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>3</mml:mn><mml:mtext> </mml:mtext><mml:mi>T</mml:mi></mml:mrow></mml:math>quarks in proton-proton collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mo stretchy="false">(</mml:mo></mml:mrow></mml:msqrt><mml:mi>s</mml:mi><mml:mo stretchy="false">)</mml:mo…
A search for fermionic top quark partners $T$ of charge $2/3$ is presented. The search is carried out in proton-proton collisions corresponding to an integrated luminosity of $19.7\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ collected at a center-of-mass energy of $\sqrt{s}=8\text{ }\text{ }\mathrm{TeV}$ with the CMS detector at the LHC. The $T$ quarks are assumed to be produced strongly in pairs and can decay into $tH$, $tZ$, and $bW$. The search is performed in five exclusive channels: a single-lepton channel, a multilepton channel, two all-hadronic channels optimized either for the $bW$ or the $tH$ decay, and one channel in which the Higgs boson decays into two photons. The results are found to be compatible with the standard model expectations in all the investigated final states. A statistical combination of these results is performed and lower limits on the $T$ quark mass are set. Depending on the branching fractions, lower mass limits between 720 and 920 GeV at 95% confidence level are found. These are among the strongest limits on vectorlike $T$ quarks obtained to date.
DOI: 10.1140/epjc/s10052-016-4293-4
2016
Cited 75 times
Measurement of the differential cross section and charge asymmetry for inclusive $$\mathrm {p}\mathrm {p}\rightarrow \mathrm {W}^{\pm }+X$$ p p → W ± + X production at $${\sqrt{s}} = 8$$ s = 8 TeV
The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].
DOI: 10.1007/jhep03(2017)156
2017
Cited 74 times
Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV and cross section ratios to 2.76 and 7 TeV
A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum pT and the absolute jet rapidity abs(y) is presented. Data from LHC proton-proton collisions at sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-kT clustering algorithm with a size parameter of 0.7 in a phase space region covering jet pT from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-pT jet range between 21 and 74 GeV is also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is alpha[S(M[Z]) = 0.1164 +0.0060 -0.0043, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented.
DOI: 10.1140/epjc/s10052-017-5267-x
2017
Cited 74 times
Search for new phenomena with the $$M_{\mathrm {T2}}$$ M T 2 variable in the all-hadronic final state produced in proton–proton collisions at $$\sqrt{s} = 13$$ s = 13 $$\,\text {TeV}$$ TeV
A search for new phenomena is performed using events with jets and significant transverse momentum imbalance, as inferred through the MT2 variable. The results are based on a sample of proton-proton collisions collected in 2016 at a center-of-mass energy of 13 TeV with the CMS detector and corresponding to an integrated luminosity of 35.9 fb-1 . No excess event yield is observed above the predicted standard model background, and the results are interpreted as exclusion limits at 95% confidence level on the masses of predicted particles in a variety of simplified models of R-parity conserving supersymmetry. Depending on the details of the model, 95% confidence level lower limits on the gluino (light-flavor squark) masses are placed up to 2025 (1550) GeV . Mass limits as high as 1070 (1175) GeV are set on the masses of top (bottom) squarks. Information is provided to enable re-interpretation of these results, including model-independent limits on the number of non-standard model events for a set of simplified, inclusive search regions.
DOI: 10.1103/physrevc.96.015202
2017
Cited 72 times
Measurement of inclusive jet cross sections in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:mrow></mml:math> and PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mtext mathvariant="italic">NN</mml:mtext></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn></mml:mrow></mml:math> TeV
Inclusive jet spectra from pp and PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV, collected with the CMS detector at the CERN Large Hadron Collider, are presented. Jets are reconstructed with three different distance parameters (R=0.2, 0.3, and 0.4) for transverse momentum (pT) greater than 70GeV/c and pseudorapidity |η|<2. Next-to-leading-order quantum chromodynamic calculations with nonperturbative corrections are found to overpredict jet production cross sections in pp for small distance parameters. The jet nuclear modification factors for PbPb compared to pp collisions, show a steady decrease from peripheral to central events, along with a weak dependence on the jet pT. They are found to be independent of the distance parameter in the measured kinematic range.3 MoreReceived 17 September 2016Revised 29 March 2017DOI:https://doi.org/10.1103/PhysRevC.96.015202Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.©2017 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasQCD in nuclear reactionsQuark & gluon jetsRelativistic heavy-ion collisionsNuclear Physics
DOI: 10.1016/j.physletb.2015.10.004
2015
Cited 76 times
Pseudorapidity distribution of charged hadrons in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
The pseudorapidity distribution of charged hadrons in pp collisions at sqrt(s) =13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (abs(eta)<2) using both hit pairs and reconstructed tracks. For central pseudorapidities (abs(eta)<0.5), the charged-hadron multiplicity density is dN/d(eta)[charged,abs(eta) < 0.5] = 5.49 +/- 0.01 (stat) +/- 0.17 (sys), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies.
DOI: 10.1007/jhep07(2017)014
2017
Cited 67 times
Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = 13 $$ \sqrt{s}=13 $$ TeV
A search for dark matter particles is performed using events with large missing transverse momentum, at least one energetic jet, and no leptons, in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 12.9 fb−1. The search includes events with jets from the hadronic decays of a W or Z boson. The data are found to be in agreement with the predicted background contributions from standard model processes. The results are presented in terms of simplified models in which dark matter particles are produced through interactions involving a vector, axial-vector, scalar, or pseudoscalar mediator. Vector and axial-vector mediator particles with masses up to 1.95 TeV, and scalar and pseudoscalar mediator particles with masses up to 100 and 430 GeV respectively, are excluded at 95% confidence level. The results are also interpreted in terms of the invisible decays of the Higgs boson, yielding an observed (expected) 95% confidence level upper limit of 0.44 (0.56) on the corresponding branching fraction. The results of this search provide the strongest constraints on the dark matter pair production cross section through vector and axial-vector mediators at a particle collider. When compared to the direct detection experiments, the limits obtained from this search provide stronger constraints for dark matter masses less than 5, 9, and 550 GeV, assuming vector, scalar, and axial-vector mediators, respectively. The search yields stronger constraints for dark matter masses less than 200 GeV, assuming a pseudoscalar mediator, when compared to the indirect detection results from Fermi-LAT.
DOI: 10.1103/physrevc.97.044912
2018
Cited 67 times
Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mi>Pb</mml:mi></mml:mrow></mml:math> and PbPb collisions at the CERN Large Hadron Collider
Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at √sNN=8.16TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.18 MoreReceived 4 August 2017DOI:https://doi.org/10.1103/PhysRevC.97.044912Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.©2018 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasRelativistic heavy-ion collisionsNuclear Physics
DOI: 10.1103/physrevlett.120.142302
2018
Cited 65 times
Measurement of the Splitting Function in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> and Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml…
Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Received 30 August 2017DOI:https://doi.org/10.1103/PhysRevLett.120.142302Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.© 2018 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasQuark-gluon plasmaRelativistic heavy-ion collisionsNuclear Physics
DOI: 10.1103/physrevlett.120.202301
2018
Cited 65 times
Measurement of Prompt <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>D</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:math> Meson Azimuthal Anisotropy in Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn…
The prompt D^{0} meson azimuthal anisotropy coefficients, v_{2} and v_{3}, are measured at midrapidity (|y|<1.0) in Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02 TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (p_{T}) range of 1 to 40 GeV/c, for central and midcentral collisions. The v_{2} coefficient is found to be positive throughout the p_{T} range studied. The first measurement of the prompt D^{0} meson v_{3} coefficient is performed, and values up to 0.07 are observed for p_{T} around 4 GeV/c. Compared to measurements of charged particles, a similar p_{T} dependence, but smaller magnitude for p_{T}<6 GeV/c, is found for prompt D^{0} meson v_{2} and v_{3} coefficients. The results are consistent with the presence of collective motion of charm quarks at low p_{T} and a path length dependence of charm quark energy loss at high p_{T}, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.
DOI: 10.1016/j.physletb.2016.01.056
2016
Cited 64 times
Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h →ττ
A search for a heavy scalar boson H decaying into a pair of lighter standard-model-like 125 GeV Higgs bosons hh and a search for a heavy pseudoscalar boson A decaying into a Z and an h boson are presented. The searches are performed on a data set corresponding to an integrated luminosity of 19.7 fb−1 of pp collision data at a centre-of-mass energy of 8 TeV, collected by CMS in 2012. A final state consisting of two τ leptons and two b jets is used to search for the decay. A final state consisting of two τ leptons from the h boson decay, and two additional leptons from the Z boson decay, is used to search for the decay . The results are interpreted in the context of two-Higgs-doublet models. No excess is found above the standard model expectation and upper limits are set on the heavy boson production cross sections in the mass ranges and .
DOI: 10.1103/physrevd.95.092001
2017
Cited 64 times
Measurement of differential cross sections for top quark pair production using the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>lepton</mml:mtext><mml:mo>+</mml:mo><mml:mrow><mml:mtext>jets</mml:mtext></mml:mrow></mml:mrow></mml:math> final state in proton-proton collisions at 13 TeV
Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.
DOI: 10.1016/j.physletb.2018.01.001
2018
Cited 63 times
Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for the production of Higgs boson pairs in proton-proton collisions at a centre-of-mass energy of 13 TeV is presented, using a data sample corresponding to an integrated luminosity of 35.9 inverse femtobarns collected with the CMS detector at the LHC. Events with one Higgs boson decaying into two bottom quarks and the other decaying into two tau leptons are explored to investigate both resonant and nonresonant production mechanisms. The data are found to be consistent, within uncertainties, with the standard model background predictions. For resonant production, upper limits at the 95% confidence level are set on the production cross section for Higgs boson pairs as a function of the hypothesized resonance mass and are interpreted in the context of the minimal supersymmetric standard model. For nonresonant production, upper limits on the production cross section constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to about 30 (25) times the prediction of the standard model.
DOI: 10.1103/physrevlett.119.152301
2017
Cited 63 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>B</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:math> Meson Nuclear Modification Factor in Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml…
The differential production cross sections of B^{±} mesons are measured via the exclusive decay channels B^{±}→J/ψK^{±}→μ^{+}μ^{-}K^{±} as a function of transverse momentum in pp and Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02 TeV per nucleon pair with the CMS detector at the LHC. The pp(Pb-Pb) data set used for this analysis corresponds to an integrated luminosity of 28.0 pb^{-1} (351 μb^{-1}). The measurement is performed in the B^{±} meson transverse momentum range of 7 to 50 GeV/c, in the rapidity interval |y|<2.4. In this kinematic range, a strong suppression of the production cross section by about a factor of 2 is observed in the Pb-Pb system in comparison to the expectation from pp reference data. These results are found to be roughly compatible with theoretical calculations incorporating beauty quark diffusion and energy loss in a quark-gluon plasma.
DOI: 10.1016/j.physletb.2017.02.010
2017
Cited 59 times
Search for narrow resonances in dilepton mass spectra in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext>TeV</mml:mtext></mml:math> and combination with 8 TeV data
A search for narrow resonances in dielectron and dimuon invariant mass spectra has been performed using data obtained from proton-proton collisions at sqrt(s) = 13 TeV collected with the CMS detector. The integrated luminosity for the dielectron sample is 2.7 inverse femtobarns and for the dimuon sample 2.9 inverse femtobarns. The sensitivity of the search is increased by combining these data with a previously analysed set of data obtained at sqrt(s) = 8 TeV and corresponding to a luminosity of 20 inverse femtobarns. No evidence for non-standard-model physics is found, either in the 13 TeV data set alone, or in the combined data set. Upper limits on the product of production cross section and branching fraction have also been calculated in a model-independent manner to enable interpretation in models predicting a narrow dielectron or dimuon resonance structure. Limits are set on the masses of hypothetical particles that could appear in new-physics scenarios. For the Z'[SSM] particle, which arises in the sequential standard model, and for the superstring inspired Z'[psi] particle, 95% confidence level lower mass limits for the combined data sets and combined channels are found to be 3.37 and 2.82 TeV, respectively. The corresponding limits for Kaluza-Klein gravitons arising in the Randall-Sundrum model of extra dimensions with coupling parameters 0.01 and 0.10 are 1.46 and 3.11 TeV, respectively. These results significantly exceed the limits based on the 8 TeV LHC data.
DOI: 10.1007/jhep08(2016)029
2016
Cited 57 times
Measurement of the t t ¯ $$ \mathrm{t}\overline{\mathrm{t}} $$ production cross section in the eμ channel in proton-proton collisions at s = 7 $$ \sqrt{s}=7 $$ and 8 TeV
The inclusive cross section for top quark pair production is measured in proton-proton collisions at $$ \sqrt{s}=7 $$ and 8 TeV, corresponding to 5.0 and 19.7 fb−1, respectively, with the CMS experiment at the LHC. The cross sections are measured in the electron-muon channel using a binned likelihood fit to multi-differential final state distributions related to identified b quark jets and other jets in the event. The measured cross section values are 173.6 ± 2.1(stat) − 4.0 + 4.5 (syst) ± 3.8(lumi)pb at $$ \sqrt{s}=7 $$ TeV, and 244.9 ± 1.4(stat) − 5.5 + 6.3 (syst) ± 6.4(lumi)pb at $$ \sqrt{s}=8 $$ TeV, in good agreement with QCD calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions defined by the acceptance requirements on the two charged leptons in the final state. The cross section results are used to determine the top quark pole mass via the dependence of the theoretically predicted cross section on the mass, giving a best result of 173. 8 − 1.8 + 1.7 GeV. The data at $$ \sqrt{s}=8 $$ TeV are also used to set limits, for two neutralino mass values, on the pair production of supersymmetric partners of the top quark with masses close to the top quark mass.
DOI: 10.1016/j.physletb.2017.11.041
2018
Cited 57 times
Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext>TeV</mml:mtext></mml:math>
The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at sqrt(s[NN]) = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 < pT < 100 GeV. The analysis focuses on pT > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pT of about 60-80 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pT greater than or equal to 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.
DOI: 10.1140/epjc/s10052-016-4286-3
2016
Cited 56 times
Measurement of the double-differential inclusive jet cross section in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV
A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum $$p_{\mathrm {T}} $$ and absolute jet rapidity $$|y |$$ is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13 $$\,\text {TeV}$$ . The data samples correspond to integrated luminosities of 71 and 44 $$\,\text {pb}^\text {-1}$$ for $$|y |<3$$ and $$3.2<|y |<4.7$$ , respectively. Jets are reconstructed with the anti- $$k_{\mathrm {t}} $$ clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet $$p_{\mathrm {T}} $$ up to 2 $$\,\text {TeV}$$ and jet rapidity up to $$|y |$$ = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at $$\sqrt{s}=13\,\text {TeV} $$ as at smaller centre-of-mass energies.
DOI: 10.1007/jhep05(2017)013
2017
Cited 56 times
Observation of Y(1S) pair production in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV
Pair production of Y(1S) mesons is observed at the LHC in proton-proton collisions at $$ \sqrt{s}=8 $$ TeV by the CMS experiment in a data sample corresponding to an integrated luminosity of 20.7 fb−1. Both Y(1S) candidates are fully reconstructed via their decays to μ + μ −. The fiducial acceptance region is defined by an absolute Y(1S) rapidity smaller than 2.0. The fiducial cross section for the production of Y(1S) pairs, assuming that both mesons decay isotropically, is measured to be 68.8±12.7 (stat)±7.4 (syst)±2.8 ( $$ \mathrm{\mathcal{B}} $$ ) pb, where the third uncertainty comes from the uncertainty in the branching fraction of Y(1S) decays to μ + μ −. Assuming instead that the Y(1S) mesons are produced with different polarizations leads to variations in the measured cross section in the range from −38% to +36%.
DOI: 10.1007/jhep07(2017)121
2017
Cited 54 times
Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at s = 13 $$ \sqrt{s}=13 $$ TeV
A search is performed for third-generation scalar leptoquarks and heavy right-handed neutrinos in events containing one electron or muon, one hadronically decaying τ lepton, and at least two jets, using a $$ \sqrt{s}=13 $$ TeV pp collision data sample corresponding to an integrated luminosity of 12.9 fb-1 collected with the CMS detector at the LHC in 2016. The number of observed events is found to be in agreement with the standard model prediction. A limit is set at 95% confidence level on the product of the leptoquark pair production cross section and β 2, where β is the branching fraction of leptoquark decay to a τ lepton and a bottom quark. Assuming β = 1, third-generation leptoquarks with masses below 850 GeV are excluded at 95% confidence level. An additional search based on the same event topology involves heavy right-handed neutrinos, NR, and right-handed W bosons, WR, arising in a left-right symmetric extension of the standard model. In this search, WR bosons are assumed to decay to a tau lepton and NR followed by the decay of the NR to a tau lepton and an off-shell WR boson. Assuming the mass of the right-handed neutrino to be half of the mass of the right-handed W boson, WR boson masses below 2.9 TeV are excluded at 95% confidence level. These results improve on the limits from previous searches for third-generation leptoquarks and heavy right-handed neutrinos with τ leptons in the final state.
DOI: 10.1016/j.physletb.2017.10.020
2017
Cited 54 times
Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext>TeV</mml:mtext></mml:math>
A measurement of vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets are presented. The analysis is based on a data sample of proton-proton collisions at sqrt(s) = 13 TeV collected with the CMS detector and corresponding to an integrated luminosity of 35.9 inverse femtobarns. The search is performed in the fully leptonic final state ZZ to lll'l', where l, l' = e, mu. The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations. A fiducial cross section for the electroweak production is measured to be sigma[EW](pp -> ZZjj -> lll'l'jj) = 0.40 -0.16 +0.21 (stat) -0.09 +0.13 (syst) fb, which is consistent with the standard model prediction. Limits on anomalous quartic gauge couplings are determined in terms of the effective field theory operators T0, T1, T2, T8, and T9. This is the first measurement of vector boson scattering in the ZZ channel at the LHC.
DOI: 10.1016/j.physletb.2016.05.087
2016
Cited 53 times
Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons
A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged tau leptons or a b b-bar pair. The Z boson is identified via its decays to electrons or muons. The search exploits data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 inverse femtobarns. No significant deviations are observed from the standard model expectation and limits are set on production cross sections and parameters of two-Higgs-doublet models.
DOI: 10.1103/physrevd.94.052012
2016
Cited 52 times
Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV
A search is presented for the production of two Higgs bosons in final states containing two photons and two bottom quarks. Both resonant and nonresonant hypotheses are investigated. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV collected with the CMS detector. Good agreement is observed between data and predictions of the standard model (SM). Upper limits are set at 95% confidence level on the production cross section of new particles and compared to the prediction for the existence of a warped extra dimension. When the decay to two Higgs bosons is kinematically allowed, assuming a mass scale Lambda[R] = 1 TeV for the model, the data exclude a radion scalar at masses below 980 GeV. The first Kaluza-Klein excitation mode of the graviton in the RS1 Randall-Sundrum model is excluded for masses between 325 and 450 GeV. An upper limit of 0.71 pb is set on the nonresonant two-Higgs-boson cross section in the SM-like hypothesis. Limits are also derived on nonresonant production assuming anomalous Higgs boson couplings.
DOI: 10.1016/j.physletb.2016.05.044
2016
Cited 52 times
Study of Z boson production in pPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.
DOI: 10.1103/physrevlett.120.071802
2018
Cited 49 times
Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair
An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (p_{T}) and decaying to a bottom quark-antiquark pair (bb[over ¯]) is performed using a data set of pp collisions at sqrt[s]=13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb^{-1}. A highly Lorentz-boosted Higgs boson decaying to bb[over ¯] is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with Z→bb[over ¯] decays. The Z→bb[over ¯] process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of H→bb[over ¯] with reconstructed p_{T}>450 GeV and in the pseudorapidity range -2.5<η<2.5 is 74±48(stat)_{-10}^{+17}(syst) fb, which is consistent within uncertainties with the standard model prediction.
DOI: 10.1103/physrevlett.120.092301
2018
Cited 49 times
Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mo>+</mml:mo><mml:mi>Pb</mml:mi></mml:mrow></mml:math> Collisions at the LHC
The azimuthal anisotropy Fourier coefficients (v_{n}) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v_{n} correlations are measured for the first time in pp and p+Pb collisions. The v_{2} and v_{4} coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v_{2} and v_{3} is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.
DOI: 10.1016/j.physletb.2016.06.004
2016
Cited 50 times
Combined search for anomalous pseudoscalar HVV couplings in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="normal">VH</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">H</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi mathvariant="normal">b</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover><mml:mo stretchy="false…
A search for anomalous pseudoscalar couplings of the Higgs boson H to electroweak vector bosons V (= W or Z) in a sample of proton-proton collision events corresponding to an integrated luminosity of 18.9 inverse femtobarns at a center-of-mass energy of 8 TeV is presented. Events consistent with the topology of associated VH production, where the Higgs boson decays to a pair of bottom quarks and the vector boson decays leptonically, are analyzed. The consistency of data with a potential pseudoscalar contribution to the HVV interaction, expressed by the effective pseudoscalar cross section fractions f[a3], is assessed by means of profile likelihood scans. Results are given for the VH channels alone and for a combined analysis of the VH and previously published H to VV channels. Under certain assumptions, f[a3](ZZ) > 0.0034 is excluded at 95% confidence level in the combination. Scenarios in which these assumptions are relaxed are also considered.
DOI: 10.1103/physrevd.96.112003
2017
Cited 50 times
Measurement of charged pion, kaon, and proton production in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at √s=13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pT≈0.1–1.7 GeV/c and rapidities |y|<1. The pT spectra and integrated yields are compared to previous results at smaller √s and to predictions of Monte Carlo event generators. The average pT increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at √s=0.9, 2.76, and 7 TeV show that the average pT and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.3 MoreReceived 30 June 2017DOI:https://doi.org/10.1103/PhysRevD.96.112003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.© 2017 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasFragmentation into hadronsParticle productionParticles & Fields
DOI: 10.1140/epjc/s10052-016-4261-z
2016
Cited 49 times
Search for new physics in same-sign dilepton events in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV
A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 inverse femtobarns. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a W boson candidate, the number of jets, the number of b quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680 GeV, respectively, at the 95% confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119 fb) and two same-sign top quarks (1.7 pb) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
DOI: 10.1016/j.physletb.2016.09.062
2016
Cited 48 times
Search for lepton flavour violating decays of the Higgs boson to eτ and eμ in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A direct search for lepton flavour violating decays of the Higgs boson (H) in the H to e tau and H to e mu channels is described. The data sample used in the search was collected in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC and corresponds to an integrated luminosity of 19.7 inverse femtobarns. No evidence is found for lepton flavour violating decays in either final state. Upper limits on the branching fractions, B(H to e tau ) < 0.69% and B(H to e mu) < 0.035%, are set at the 95% confidence level. The constraint set on B(H to e tau) is an order of magnitude more stringent than the existing indirect limits. The limits are used to constrain the corresponding flavour violating Yukawa couplings, absent in the standard model.
DOI: 10.1016/j.physletb.2017.07.047
2017
Cited 47 times
Cross section measurement of t-channel single top quark production in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The cross section for the production of single top quarks in the t channel is measured in proton-proton collisions at 13 TeV with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 2.2 inverse femtobarns. The event selection requires one muon and two jets where one of the jets is identified as originating from a bottom quark. Several kinematic variables are then combined into a multivariate discriminator to distinguish signal from background events. A fit to the distribution of the discriminating variable yields a total cross section of 238 +/- 13 (stat) +/- 29 (syst) pb and a ratio of top quark and top antiquark production of R[t-ch.] = 1.81 +/- 0.18 (stat) +/- 0.15 (syst). From the total cross section the absolute value of the CKM matrix element V[tb] is calculated to be 1.05 +/- 0.07 (exp) +/- 0.02 (theo). All results are in agreement with the standard model predictions.
DOI: 10.1016/j.physletb.2018.02.033
2018
Cited 46 times
Measurement of quarkonium production cross sections in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
Differential production cross sections of prompt J/ψ and ψ(2S) charmonium and ϒ(nS) (n=1,2,3) bottomonium states are measured in proton–proton collisions at s=13TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb−1 for the J/ψ and 2.7 fb−1 for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity |y|<1.2. The double-differential cross sections for each state are measured as a function of y and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt ψ(2S) to J/ψ, ϒ(2S) to ϒ(1S), and ϒ(3S) to ϒ(1S) production.
DOI: 10.1016/j.physletb.2017.10.021
2017
Cited 44 times
Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state
A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13TeV and correspond to an integrated luminosity of 38.6fb−1. They are combined with the data collected at center-of-mass energies of 7 and 8TeV, corresponding to integrated luminosities of 5.1 and 19.7fb−1, respectively. All observations are consistent with the expectations for the standard model Higgs boson.
DOI: 10.1016/j.physletb.2016.03.046
2016
Cited 41 times
Measurement of the CP-violating weak phase ϕs and the decay width difference ΔΓs using the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">s</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">→</mml:mo><mml:mi mathvariant="normal">J</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi>ψ</mml:mi><…
The CP-violating weak phase phi[s] of the Bs meson and the decay width difference Delta Gamma[s] of the Bs light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of Bs to J/Psi phi(1020) to mu+mu-K+K- decays. The analysed data set corresponds to an integrated luminosity of 19.7 inverse femtobarns collected in pp collisions at a centre-of-mass energy of 8 TeV. A total of 49,200 reconstructed Bs decays are used to extract the values of phi[s] and Delta Gamma[s] by performing a time-dependent and flavour-tagged angular analysis of the mu+mu-K+K- final state. The weak phase is measured to be phi[s] = -0.075 +/- 0.097 (stat) +/- 0.031 (syst) rad, and the decay width difference is Delta Gamma[s] = 0.095 +/- 0.013 (stat) +/- 0.007 (syst) inverse picoseconds.
DOI: 10.1007/jhep02(2017)028
2017
Cited 41 times
Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at s = 7 $$ \sqrt{s}=7 $$ and 8 TeV
Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at $$ \sqrt{s}=7 $$ and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 fb−1, respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f V R | < 0.16, |f T L | < 0.057, and − 0.049 < f T R < 0.048, respectively. For the FCNC couplings κ tug and κ tcg, the 95% CL upper limits on coupling strengths are |κ tug|/Λ < 4.1 × 10− 3 TeV−1 and |κ tcg|/Λ < 1.8 × 10− 2 TeV−1, where Λ is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0 × 10−5 and 4.1 × 10−4 for the decays t → ug and t → cg, respectively.
DOI: 10.1007/jhep10(2017)019
2017
Cited 41 times
Search for top squark pair production in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV using single lepton events
A search for top squark pair production in pp collisions at $$ \sqrt{s}=13 $$ TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb−1. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.
DOI: 10.1103/physrevlett.116.052002
2016
Cited 40 times
Measurement of the Top Quark Pair Production Cross Section in Proton-Proton Collisions at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
The top quark pair production cross section is measured for the first time in proton-proton collisions at sqrt[s]=13 TeV by the CMS experiment at the CERN LHC, using data corresponding to an integrated luminosity of 43 pb^{-1}. The measurement is performed by analyzing events with at least one electron and one muon of opposite charge, and at least two jets. The measured cross section is 746±58(stat)±53(syst)±36(lumi) pb, in agreement with the expectation from the standard model.
DOI: 10.1140/epjc/s10052-017-4984-5
2017
Cited 40 times
Measurement of double-differential cross sections for top quark pair production in pp collisions at $$\sqrt{s} = 8$$ s = 8 $$\,\text {TeV}$$ TeV and impact on parton distribution functions
Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
DOI: 10.1016/j.physletb.2018.04.036
2018
Cited 40 times
Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton–proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9. The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small to 30% of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26–0.04 pb for T quark masses in the range 0.7–1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy boson decaying to Tt, with , is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for boson masses in the range from 1.5 to 2.5 TeV.
DOI: 10.1007/jhep01(2018)054
2018
Cited 40 times
Search for resonant and nonresonant Higgs boson pair production in the b b ¯ ℓνℓν $$ \mathrm{b}\overline{\mathrm{b}}\mathit{\ell \nu \ell \nu } $$ final state in proton-proton collisions at s = 13 $$ \sqrt{s}=13 $$ TeV
Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into ll nu nu, through either W or Z bosons, and bbbar are presented. The analyses are based on a sample of proton-proton collisions at sqrt(s) = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the prediction, consistent with expectations. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
DOI: 10.1016/j.physletb.2018.01.077
2018
Cited 40 times
Search for pair production of vector-like quarks in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">b</mml:mi><mml:mi mathvariant="normal">W</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover><mml:mi mathvariant="normal">W</mml:mi></mml:math> channel from proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="…
A search is presented for the production of vector-like quark pairs, T$\overline{\mathrm{T}}$ or Y$\overline{\mathrm{Y}}$, with electric charge of 2/3 (T) or -4/3 (Y), in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data were collected by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.8 fb$^{-1}$. The T and Y quarks are assumed to decay exclusively to a W boson and a b quark. The search is based on events with a single isolated electron or muon, large missing transverse momentum, and at least four jets with large transverse momenta. In the search, a kinematic reconstruction of the final state observables is performed, which would permit a signal to be detected as a narrow mass peak ($\approx$7% resolution). The observed number of events is consistent with the standard model prediction. Assuming strong pair production of the vector-like quarks and a 100% branching fraction to bW, a lower limit of 1295 GeV at 95% confidence level is set on the T and Y quark masses.
DOI: 10.1016/j.physletb.2017.01.075
2017
Cited 39 times
Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC
Measurements of strange hadron (K0s, Lambda + anti-Lambda, and Xi+ + Xi-) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at sqrt(s) = 7 TeV, pPb collisions at sqrt(s[NN]) = 5.02 TeV, and PbPb collisions at sqrt(s[NN]) = 2.76 TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics.
DOI: 10.1140/epjc/s10052-017-4828-3
2017
Cited 39 times
Measurement of prompt and nonprompt $$\mathrm{J}/{\psi }$$ J / ψ production in $$\mathrm {p}\mathrm {p}$$ p p and $$\mathrm {p}\mathrm {Pb}$$ p Pb collisions at $$\sqrt{s_{\mathrm {NN}}} =5.02\,\text {TeV} $$ s NN = 5.02 TeV
This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production.
DOI: 10.1007/jhep01(2016)096
2016
Cited 38 times
Observation of top quark pairs produced in association with a vector boson in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV
Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 inverse femtobarns, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from ttW or ttZ decays. The ttW cross section is measured to be 382 +117 -102 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242 +65 -55 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the ttW and ttZ cross sections.
DOI: 10.1016/j.physletb.2017.04.071
2017
Cited 38 times
Measurement of the cross section for electroweak production of Zγ in association with two jets and constraints on anomalous quartic gauge couplings in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A measurement is presented of the cross section for the electroweak production of a Z boson and a photon in association with two jets in proton-proton collisions at sqrt(s)= 8 TeV. The Z bosons are identified through their decays to electron or muon pairs. The measurement is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns. The electroweak contribution has a significance of 3.0 standard deviations, and the measured fiducial cross section is 1.86 +0.90/-0.75 (stat) +0.34/-0.26 (syst) +/- 0.05 (lumi) fb, while the summed electroweak and quantum chromodynamic total cross section in the same region is observed to be 5.94 +1.53/-1.35 (stat) +0.43/-0.37 (syst) +/- 0.13 (lumi) fb. Both measurements are consistent with the leading-order standard model predictions. Limits on anomalous quartic gauge couplings are set based on the Z gamma mass distribution.
DOI: 10.1103/physrevlett.119.141802
2017
Cited 38 times
Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi></mml:math> Bosons Using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/…
A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13 TeV is presented. The data sample corresponds to an integrated luminosity of 15.2 fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
DOI: 10.1016/j.physletb.2016.05.002
2016
Cited 37 times
Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV
A search for new physics is performed based on all-hadronic events with large missing transverse momentum produced in proton–proton collisions at s=13 TeV. The data sample, corresponding to an integrated luminosity of 2.3 fb−1, was collected with the CMS detector at the CERN LHC in 2015. The data are examined in search regions of jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momentum, and the scalar sum of jet transverse momenta. The observed numbers of events in all search regions are found to be consistent with the expectations from standard model processes. Exclusion limits are presented for simplified supersymmetric models of gluino pair production. Depending on the assumed gluino decay mechanism, and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino mass from 1440 to 1600 GeV are obtained, significantly extending previous limits.
DOI: 10.1016/j.physletb.2018.03.084
2018
Cited 37 times
Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton–proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for a massive resonance decaying into a pair of standard model Higgs bosons, in a final state consisting of two b quark–antiquark pairs, is performed. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV is used, collected by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9fb−1. The Higgs bosons are highly Lorentz-boosted and are each reconstructed as a single large-area jet. The signal is characterized by a peak in the dijet invariant mass distribution, above a background from the standard model multijet production. The observations are consistent with the background expectations, and are interpreted as upper limits on the products of the s-channel production cross sections and branching fractions of narrow bulk gravitons and radions in warped extra-dimensional models. The limits range from 126 to 1.4 fb at 95% confidence level for resonances with masses between 750 and 3000 GeV, and are the most stringent to date, over the explored mass range.
DOI: 10.1103/physrevlett.119.082301
2017
Cited 37 times
Study of Jet Quenching with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Z</mml:mi><mml:mo>+</mml:mo><mml:mrow><mml:mtext>jet</mml:mtext></mml:mrow></mml:mrow></mml:math> Correlations in Pb-Pb and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:msqrt><mml…
The production of jets in association with Z bosons, reconstructed via the μ^{+}μ^{-} and e^{+}e^{-} decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p_{T}^{Z}>60 GeV/c and a recoiling jet with p_{T}^{jet}>30 GeV/c. The p_{T} imbalance x_{jZ}=p_{T}^{jet}/p_{T}^{Z}, as well as the average number of jet partners per Z, R_{jZ}, was studied in intervals of p_{T}^{Z}. The R_{jZ} is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30 GeV/c p_{T}^{jet} threshold because they lose energy.
DOI: 10.1007/jhep10(2017)076
2017
Cited 36 times
Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV
A search is presented for decays beyond the standard model of the 125 GeV Higgs bosons to a pair of light bosons, based on models with extended scalar sectors. Light boson masses between 5 and 62.5 GeV are probed in final states containing four τ leptons, two muons and two b quarks, or two muons and two τ leptons. The results are from data in proton-proton collisions corresponding to an integrated luminosity of 19.7 fb−1, accumulated by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. No evidence for such exotic decays is found in the data. Upper limits are set on the product of the cross section and branching fraction for several signal processes. The results are also compared to predictions of two-Higgs-doublet models, including those with an additional scalar singlet.
DOI: 10.1140/epjc/s10052-017-5079-z
2017
Cited 36 times
Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$
A data sample of events from proton-proton collisions with two isolated same-sign leptons, missing transverse momentum, and jets is studied in a search for signatures of new physics phenomena by the CMS Collaboration at the LHC. The data correspond to an integrated luminosity of 35.9 fb-1 , and a center-of-mass energy of 13 TeV . The properties of the events are consistent with expectations from standard model processes, and no excess yield is observed. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos, squarks, and same-sign top quarks, as well as top-quark associated production of a heavy scalar or pseudoscalar boson decaying to top quarks, and on the standard model production of events with four top quarks. The observed lower mass limits are as high as 1500 GeV for gluinos, 830 GeV for bottom squarks. The excluded mass range for heavy (pseudo)scalar bosons is 350-360 (350-410) GeV . Additionally, model-independent limits in several topological regions are provided, allowing for further interpretations of the results.
DOI: 10.1007/jhep04(2016)035
2016
Cited 35 times
Search for anomalous single top quark production in association with a photon in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV
The result of a search for flavor changing neutral currents (FCNC) through single top quark production in association with a photon is presented. The study is based on proton-proton collisions at a center-of-mass energy of 8 TeV using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb−1. The search for tγ events where t → Wb and W → μν is conducted in final states with a muon, a photon, at least one hadronic jet with at most one being consistent with originating from a bottom quark, and missing transverse momentum. No evidence of single top quark production in association with a photon through a FCNC is observed. Upper limits at the 95% confidence level are set on the tuγ and tcγ anomalous couplings and translated into upper limits on the branching fraction of the FCNC top quark decays: ℬ(t → uγ) < 1.3 × 10− 4 and ℬ(t → cγ) < 1.7 × 10− 3. Upper limits are also set on the cross section of associated tγ production in a restricted phase-space region. These are the most stringent limits currently available.
DOI: 10.1016/j.physletb.2016.10.007
2016
Cited 35 times
Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.
DOI: 10.1016/j.physletb.2017.04.043
2017
Cited 35 times
Search for heavy gauge W′ bosons in events with an energetic lepton and large missing transverse momentum at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A search is presented for W' bosons in events with an electron or muon and large missing transverse momentum, using proton-proton collision data at sqrt(s) = 13 TeV collected with the CMS detector in 2015 and corresponding to an integrated luminosity of 2.3 inverse femtobarns. No evidence of an excess of events relative to the standard model expectations is observed. For a W' boson described by the sequential standard model, upper limits at 95% confidence level are set on the product of the production cross section and branching fraction and lower limits are established on the new boson mass. Masses below 4.1 TeV are excluded combining electron and muon decay channels, significantly improving upon the results obtained with the 8 TeV data. Exclusion limits at 95% confidence level on the product of the W' production cross section and branching fraction are also derived in combination with the 8 TeV data. Finally, exclusion limits are set for the production of generic W' bosons decaying into this final state using a model-independent approach.
DOI: 10.1007/jhep10(2017)005
2017
Cited 35 times
Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at s = 13 $$ \sqrt{s}=13 $$ TeV
A search for direct production of top squark pairs in events with jets and large transverse momentum imbalance is presented. The data are based on proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector in 2016 at the CERN LHC, and correspond to an integrated luminosity of 35.9 fb−1. The search considers a variety of R-parity conserving supersymmetric models, including ones for which the top squark and neutralino masses are nearly degenerate. Specialized jet reconstruction tools are developed to exploit the unique characteristics of the signal topologies. With no significant excess of events observed above the standard model expectations, upper limits are set on the direct top squark pair production cross section in the context of simplified supersymmetric models for various decay hypotheses. Models with larger differences in mass between the top squark and neutralino are probed for masses up to 1040 and 500 GeV, respectively, whereas models with a more compressed mass hierarchy are probed up to 660 and 610 GeV, respectively. The smallest mass difference probed is for masses near to 550 and 540 GeV, respectively.
DOI: 10.1103/physrevlett.120.142301
2018
Cited 35 times
Suppression of Excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">ϒ</mml:mi></mml:math> States Relative to the Ground State in Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt></mml:mrow><mml:mrow><mml:mi>NN</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><…
The relative yields of $\Upsilon$ mesons produced in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, $\Upsilon$(2S) and $\Upsilon$(3S), to the ground state, $\Upsilon$(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{PbPb}$ / [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{pp}$, are measured to be 0.308 $\pm$ 0.055 (stat) $\pm$ 0.019 (syst) for the $\Upsilon$(2S) and less than 0.26 at 95% confidence level for the $\Upsilon$(3S). No significant $\Upsilon$(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.
DOI: 10.1140/epjc/s10052-017-4718-8
2017
Cited 34 times
Measurement of the $$\mathrm{t}\overline{\mathrm{t}} $$ t t ¯ production cross section using events in the $$\mathrm {e}\mu $$ e μ final state in pp collisions at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV
The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
DOI: 10.1007/jhep02(2016)156
2016
Cited 34 times
Correlations between jets and charged particles in PbPb and pp collisions at s N N = 2.76 $$ \sqrt{s_{\mathrm{NN}}}=2.76 $$ TeV
The quark-gluon plasma is studied via medium-induced changes to correlations between jets and charged particles in PbPb collisions compared to pp reference data. This analysis uses data sets from PbPb and pp collisions with integrated luminosities of 166 μb−1 and 5.3 pb−1, respectively, collected at $$ \sqrt{s_{\mathrm{NN}}}=2.76 $$ TeV. The angular distributions of charged particles are studied as a function of relative pseudorapidity (Δη) and relative azimuthal angle (Δϕ) with respect to reconstructed jet directions. Charged particles are correlated with all jets with transverse momentum (p T) above 120 GeV, and with the leading and subleading jets (the highest and second-highest in p T, respectively) in a selection of back-to-back dijet events. Modifications in PbPb data relative to pp reference data are characterized as a function of PbPb collision centrality and charged particle p T. A centrality-dependent excess of low-p T particles is present for all jets studied, and is most pronounced in the most central events. This excess of low-p T particles follows a Gaussian-like distribution around the jet axis, and extends to large relative angles of Δη ≈ 1 and Δϕ ≈ 1.
DOI: 10.1103/physrevlett.119.221802
2017
Cited 34 times
Search for Evidence of the Type-III Seesaw Mechanism in Multilepton Final States in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at sqrt[s]=13 TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9 fb^{-1}. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.
DOI: 10.1016/j.physletb.2017.06.009
2017
Cited 33 times
Search for anomalous couplings in boosted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">W</mml:mi><mml:mi mathvariant="normal">W</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi mathvariant="normal">W</mml:mi><mml:mi mathvariant="normal">Z</mml:mi><mml:mo stretchy="false">→</mml:mo><mml:mi>ℓ</mml:mi><mml:mi>ν</mml:mi><mml:mi mathvariant="normal">q</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">…
This Letter presents a search for new physics manifested as anomalous triple gauge boson couplings in WW and WZ diboson production in proton-proton collisions. The search is performed using events containing a W boson that decays leptonically and a W or Z boson whose decay products are merged into a single reconstructed jet. The data, collected at sqrt(s) = 8 TeV with the CMS detector at the LHC, correspond to an integrated luminosity of 19 inverse femtobarns. No evidence for anomalous triple gauge couplings is found and the following 95% confidence level limits are set on their values: lambda ([-0.011, 0.011]), Delta kappa[gamma] ([-0.044, 0.063]), and Delta g[1,Z] ([-0.0087, 0.024]). These limits are also translated into their effective field theory equivalents: c[WWW] / Lambda^2 ([-2.7, 2.7] TeV^{-2}), c[B] / Lambda^2 ([-14, 17] TeV^{-2}), and c[W] / Lambda^2 ([-2.0, 5.7] TeV^{-2}).
DOI: 10.1007/jhep06(2018)001
2018
Cited 33 times
Search for lepton flavour violating decays of the Higgs boson to μτ and eτ in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV
A search for lepton flavour violating decays of the Higgs boson in the $\mu\tau$ and e$\tau$ decay modes is presented. The search is based on a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions collected with the CMS detector in 2016, at a centre-of-mass energy of 13 TeV. No significant excess over the standard model expectation is observed. The observed (expected) upper limits on the lepton flavour violating branching fractions of the Higgs boson are $\mathcal{B}$(H$\to\mu\tau$) < 0.25% (0.25%) and $\mathcal{B}$(H$\to$e$\tau$) < 0.61% (0.37%), at 95% confidence level. These results are used to derive upper limits on the off-diagonal $\mu\tau$ and e$\tau$ Yukawa couplings $\sqrt{|{Y_{\mu\tau}}|^{2}+|{Y_{\tau\mu}}|^{2}} < 1.43 \times 10^{-3}$ and $\sqrt{|{Y_{\mathrm{e}\tau}}|^{2}+|{Y_{\tau\mathrm{e}}}|^{2}} < 2.26 \times 10^{-3}$ at 95% confidence level. The limits on the lepton flavour violating branching fractions of the Higgs boson and on the associated Yukawa couplings are the most stringent to date.
DOI: 10.1140/epjc/s10052-017-5140-y
2017
Cited 32 times
Measurements of the associated production of a Z boson and b jets in pp collisions at $${\sqrt{s}} = 8\,\text {TeV} $$ s = 8 TeV
Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at sqrt(s) = 8 TeV are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8 inverse femtobarns. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.
DOI: 10.1140/epjc/s10052-018-5567-9
2018
Cited 32 times
Measurements of the $$\mathrm {p}\mathrm {p}\rightarrow \mathrm{Z}\mathrm{Z}$$ p p → Z Z production cross section and the $$\mathrm{Z}\rightarrow 4\ell $$ Z → 4 ℓ branching fraction, and constraints on anomalous triple gauge couplings at $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV
Four-lepton production in proton-proton collisions, pp→(Z/γ∗)(Z/γ∗)→4ℓ , where ℓ=e or μ , is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb-1 . The ZZ production cross section, σ(pp→ZZ)=17.2±0.5(stat)±0.7(syst)±0.4(theo)±0.4(lumi) pb , measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60<mℓ+ℓ-<120GeV , is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be B(Z→4ℓ)=4.83-0.22+0.23(stat)-0.29+0.32(syst)±0.08(theo)±0.12(lumi)×10-6 for events with a four-lepton invariant mass in the range 80<m4ℓ<100GeV and a dilepton mass mℓℓ>4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ γ couplings at 95% confidence level: -0.0012<f4Z<0.0010 , -0.0010<f5Z<0.0013 , -0.0012<f4γ<0.0013 , -0.0012<f5γ<0.0013 .
DOI: 10.1140/epjc/s10052-016-4206-6
2016
Cited 31 times
Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks
A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons ([Formula: see text]) in proton-proton collisions collected by the CMS experiment at the LHC at [Formula: see text]. The data correspond to an integrated luminosity of 19.7[Formula: see text]. The search considers [Formula: see text] resonances with masses between 1 and 3[Formula: see text], having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and [Formula: see text] events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 % confidence level for the product of the production cross section and branching fraction [Formula: see text] range from 10 to 1.5[Formula: see text] for the mass of X from 1.15 to 2.0[Formula: see text], significantly extending previous searches. For a warped extra dimension theory with a mass scale [Formula: see text] [Formula: see text], the data exclude radion scalar masses between 1.15 and 1.55[Formula: see text].
DOI: 10.1140/epjc/s10052-016-4083-z
2016
Cited 31 times
Measurement of the inclusive jet cross section in pp collisions at $$\sqrt{s} = 2.76\,\text {TeV}$$ s = 2.76 TeV
The double-differential inclusive jet cross section is measured as a function of jet transverse momentum $$p_{\mathrm {T}}$$ and absolute rapidity $$|y |$$ , using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of $$\sqrt{s} = 2.76\,{\mathrm{TeV}}$$ and corresponding to an integrated luminosity of 5.43 $$\,\text {pb}^{-1}$$ . Jets are reconstructed within the $$p_{\mathrm {T}}$$ range of 74 to 592 $$\,\text {GeV}$$ and the rapidity range $$|y |<3.0$$ . The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.
DOI: 10.1007/jhep02(2017)048
2017
Cited 31 times
Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at s = 13 $$ \sqrt{s}=13 $$ TeV
A search for heavy resonances that decay to tau lepton pairs is performed using proton-proton collisions at sqrt(s) = 13 TeV. The data were collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 2.2 inverse femtobarns. The observations are in agreement with standard model predictions. An upper limit at 95% confidence level on the product of the production cross section and branching fraction into tau lepton pairs is calculated as a function of the resonance mass. For the sequential standard model, the presence of Z' bosons decaying into tau lepton pairs is excluded for Z' masses below 2.1 TeV, extending previous limits for this final state. For the topcolor-assisted technicolor model, which predicts Z' bosons that preferentially couple to third-generation fermions, Z' masses below 1.7 TeV are excluded, representing the most stringent limit to date.
DOI: 10.1007/jhep02(2017)096
2017
Cited 30 times
Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV
The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at sqrt(s) = 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 +/- 0.5 inverse picobarns. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W- to W+ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.
DOI: 10.1016/j.physletb.2017.05.074
2017
Cited 30 times
Measurement of the differential inclusive B+ hadron cross sections in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pTB and rapidity yB in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 48.1 pb−1. The measurement uses the exclusive decay channel B+→J/ψK+, with J/ψ mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.
DOI: 10.1007/jhep11(2017)085
2017
Cited 30 times
Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV
A bstract A search for pair production of massive vector-like T and B quarks in proton-proton collisions at $$ \sqrt{s}=13 $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> </mml:math> TeV is presented. The data set was collected in 2015 by the CMS experiment at the LHC and corresponds to an integrated luminosity of up to 2.6 fb −1 . The T and B quarks are assumed to decay through three possible channels into a heavy boson (either a W, Z or Higgs boson) and a third generation quark. This search is performed in final states with one charged lepton and several jets, exploiting techniques to identify W or Higgs bosons decaying hadronically with large transverse momenta. No excess over the predicted standard model background is observed. Upper limits at 95% confidence level on the T quark pair production cross section are set that exclude T quark masses below 860 GeV in the singlet, and below 830 GeV in the doublet branching fraction scenario. For other branching fraction combinations with ℬ(T → tH) + ℬ(T → bW) ≥ 0.4, lower limits on the T quark range from 790 to 940 GeV. Limits are also set on pair production of singlet vector-like B quarks, which can be excluded up to a mass of 730 GeV. The techniques showcased here for understanding highly-boosted final states are important as the sensitivity to new particles is extended to higher masses.
DOI: 10.1103/physrevd.94.072002
2016
Cited 29 times
Measurement of the integrated and differential<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:math>production cross sections for high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">T</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math…
The cross section for pair production of top quarks ($t\overline{t}$) with high transverse momenta is measured in $pp$ collisions, collected with the CMS detector at the LHC with $\sqrt{s}=8\text{ }\text{ }\mathrm{TeV}$ in data corresponding to an integrated luminosity of $19.7\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. The measurement is performed using $\mathrm{lepton}+\text{jets}$ events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark ${p}_{\mathrm{T}}$ and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be ${\ensuremath{\sigma}}_{t\overline{t}}=0.499\ifmmode\pm\else\textpm\fi{}0.035(\mathrm{stat}+\mathrm{syst})\ifmmode\pm\else\textpm\fi{}0.095(\mathrm{theo})\ifmmode\pm\else\textpm\fi{}0.013(\mathrm{lumi})\text{ }\text{ }\mathrm{pb}$ for top quark ${p}_{\mathrm{T}}&gt;400\text{ }\text{ }\mathrm{GeV}$. The parton-level measurement is ${\ensuremath{\sigma}}_{t\overline{t}}=1.44\ifmmode\pm\else\textpm\fi{}0.10(\mathrm{stat}+\mathrm{syst})\ifmmode\pm\else\textpm\fi{}0.29(\mathrm{theo})\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{lumi})\text{ }\text{ }\mathrm{pb}$. The integrated and differential cross section results are compared to predictions from several event generators.
DOI: 10.1007/jhep01(2016)006
2016
Cited 29 times
Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at s N N = 2.76 $$ \sqrt{s_{\mathrm{NN}}}=2.76 $$ TeV
An analysis of dijet events in PbPb and pp collisions is performed to explore the properties of energy loss by partons traveling in a quark-gluon plasma. Data are collected at a nucleon-nucleon center-of-mass energy of 2.76 TeV at the LHC. The distribution of transverse momentum (pT) surrounding dijet systems is measured by selecting charged particles in different ranges of pT and at different angular cones of pseudorapidity and azimuth. The measurement is performed as a function of centrality of the PbPb collisions, the pT asymmetry of the jets in the dijet pair, and the distance parameter R used in the anti-kt jet clustering algorithm. In events with unbalanced dijets, PbPb collisions show an enhanced multiplicity in the hemisphere of the subleading jet, with the pT imbalance compensated by an excess of low-pT particles at large angles from the jet axes.
DOI: 10.1103/physrevd.97.072006
2018
Cited 29 times
Search for massive resonances decaying into WW , WZ , ZZ , qW , and qZ with dijet final states at s=13 TeV
Results are presented from a search in the dijet final state for new massive narrow resonances decaying to pairs of $W$ and $Z$ bosons or to a $W/Z$ boson and a quark. Results are based on data recorded in proton-proton collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of $35.9\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. The mass range investigated extends upwards from 1.2 TeV. No excess is observed above the estimated standard model background and limits are set at 95% confidence level on cross sections, which are interpreted in terms of various models that predict gravitons, heavy spin-1 bosons, and excited quarks. In a heavy vector triplet model, ${W}^{\ensuremath{'}}$ and ${Z}^{\ensuremath{'}}$ resonances, with masses below 3.2 and 2.7 TeV, respectively, and spin-1 resonances with degenerate masses below 3.8 TeV are excluded at 95% confidence level. In the case of a singlet ${W}^{\ensuremath{'}}$ resonance masses between 3.3 and 3.6 TeV can be excluded additionally. Similarly, excited quark resonances, ${q}^{*}$, decaying to $qW$ and $qZ$ with masses less than 5.0 and 4.7 TeV, respectively, are excluded. In a narrow-width bulk graviton model, upper limits are set on cross sections ranging from 0.6 fb for high resonance masses above 3.6 TeV, to 36.0 fb for low resonance masses of 1.3 TeV.
DOI: 10.1016/j.physletb.2018.03.019
2018
Cited 29 times
Search for new long-lived particles at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
A search for long-lived particles was performed with data corresponding to an integrated luminosity of 2.6 fb−1 collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2015. The analysis exploits two customized topological trigger algorithms, and uses the multiplicity of displaced jets to search for the presence of a signal decay occurring at distances between 1 and 1000 mm. The results can be interpreted in a variety of different models. For pair-produced long-lived particles decaying to two b quarks and two leptons with equal decay rates between lepton flavors, cross sections larger than 2.5 fb are excluded for proper decay lengths between 70–100 mm for a long-lived particle mass of 1130 GeV at 95% confidence. For a specific model of pair-produced, long-lived top squarks with R-parity violating decays to a b quark and a lepton, masses below 550–1130 GeV are excluded at 95% confidence for equal branching fractions between lepton flavors, depending on the squark decay length. This mass bound is the most stringent to date for top squark proper decay lengths greater than 3 mm.
DOI: 10.1140/epjc/s10052-016-4105-x
2016
Cited 28 times
Measurement of $$\mathrm {t}\overline{\mathrm {t}}$$ t t ¯ production with additional jet activity, including $$\mathrm {b}$$ b quark jets, in the dilepton decay channel using pp collisions at $$\sqrt{s} = 8\,\text {TeV} $$ s = 8 TeV
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
DOI: 10.1016/j.physletb.2016.01.010
2016
Cited 28 times
Transverse momentum spectra of inclusive b jets in pPb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext>TeV</mml:mtext></mml:math>
We present a measurement of b jet transverse momentum (pT) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35nb−1 collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon–nucleon collisions and are compared to a reference obtained from pythia simulations of pp collisions. The pythia-based estimate of the nuclear modification factor is found to be 1.22±0.15(stat+syst pPb)±0.27(systPYTHIA) averaged over all jets with pT between 55 and 400GeV/c and with |ηlab|<2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.
DOI: 10.1016/j.physletb.2016.07.006
2016
Cited 28 times
Measurements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">t</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover></mml:math> charge asymmetry using dilepton final states in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8…
The charge asymmetry in tt‾ events is measured using dilepton final states produced in pp collisions at the LHC at s=8TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5fb−1. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The tt‾ and leptonic inclusive charge asymmetries are found to be 0.011±0.011(stat)±0.007(syst) and 0.003±0.006(stat)±0.003(syst), respectively. These results, as well as charge asymmetry measurements made as a function of the invariant mass, rapidity, and transverse momentum of the tt‾ system, are in agreement with predictions of the standard model.
DOI: 10.1140/epjc/s10052-016-4205-7
2016
Cited 28 times
Measurement of inclusive jet production and nuclear modifications in pPb collisions at $$\sqrt{s_{_\mathrm {NN}}} =5.02\,\mathrm{TeV} $$ s NN = 5.02 TeV
Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of sqrt(s[NN]) = 5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 35 inverse nanobarns is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0 &lt; eta[CM] &lt; 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about eta[CM] = 0 is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at sqrt(s) = 7 TeV. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.